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Introduction

The dynamical features of atomic and molecular systems have been of interest

in quantum mechanics since its very beginnings [1]. The equation of motion in

(non-relativistic) quantum mechanics is the time-dependent Schrödinger equation

i~
∂

∂t
Ψ = HΨ, (1)

where H denotes the system’s Hamiltonian. The wide search for methods to solve

the time-dependent Schrödinger equation started only in the late 1970’s, although

some fundamental principles were already formulated in the 1930’s [1]. The

theoretical description of time-dependent molecular phenomena gained additional

momentum with the foundation of femtochemistry by A. Zewail in the late 1980’s

[2].

Chemistry focuses its interest on molecules and the exact theoretical descrip-

tion of time-dependent processes makes it necessary to solve the Schrödinger

equation for the coupled electronic and nuclear motion. As the computational

effort to find a solution scales exponentially with the degrees of freedom in a

system, this is only possible for very small molecules.

The traditional approach to address this problem is a separation of nuclear and

electronic variables. Within the Born-Oppenheimer adiabatic approximation (see

chapter 1.1) the electronic problem is solved first for fixed nuclear geometry. This
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INTRODUCTION

is the concern of quantum chemistry. The solution yields electronic eigenfunctions

and eigenenergies which depend parametrically on the nuclear geometry. The

calculated eigenenergies for different nuclear geometries build potential energy

surfaces belonging to one electronic state. These potential energy curves are

used in quantum dynamics to solve the time-dependent Schrödinger equation for

the nuclei and several integration schemes have been developed [3–6].

Within the Born-Oppenheimer approximation the dynamics of the nuclei is

limited to a single electronic state. The adiabatic approximation also generally

fails in describing the dynamics in excited states. Prominent examples for this

breakdown are the Jahn-Teller effect [7], electronic predissociation [8] or internal

conversions [9]. Furthermore, conical intersections, originating from the coupling

of electronic and vibrational motion, are of central significance in many photo-

chemical processes [10].

These nonadiabatically coupled cases can still be treated — in principle ex-

actly — by propagating nuclear wave functions in coupled electronic states. This

is usually done in a diabatic representation, where the Hamiltonian contains diag-

onal and off-diagonal potential matrix elements, see reference [11] and references

therein. Coupling between electronic states can also be induced by external per-

turbations, e.g. electric fields, and can be described by explicit time-dependent

coupling elements in the Hamiltonian.

The exact propagation of the nuclear wave function gets very cumbersome, if

more than a few degrees of freedom have to be computed. A promising attempt

to reduce the many-body Schrödinger equation for the nuclei to a set of cou-

pled equations for each nuclear coordinate is the time-dependent self-consistent

field [12] or time-dependent Hartree approximation. It was extended to a multi-

configurational approach [13] and also to treat nonadiabatically coupled cases

[14].

Over the last 20 years many methods have been devised to investigate elec-
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INTRODUCTION

tronic and nuclear motion simultaneously. All of them truncate the full quantum

mechanical description to some extent in order to keep the numerical effort con-

trollable. Among those are the Car-Parinello method [15,16] or electron-nuclear

dynamics (END) which was developed by Öhrn and co-workers [17,18]. Another

large group of mixed classical/quantum mechanical methods employs a time-

dependent Hartree-Fock description of the electrons and a classic description for

the nuclei [19–26]. This list is of course by no means complete.

Only recently, several attempts have been made to address the full coupled

problem: Bandrauk and co-workers performed calculations on the H+
2 molecule

in strong laser fields for fixed molecular orientation [27,28]. The Bandrauk group

also introduced linear models for the combined electronic and nuclear motion

[29–31]. This model of reduced dimensionality, which becomes very useful in

ultraintense laser fields [32–35], was recently applied to the H2 molecule [36].

Within the framework of the Graduiertenkolleg 690 “Electron density” this

work investigates the full quantum mechanical description of a coupled electronic

and nuclear motion. The focus of our interest lies in the temporal changes of

electron and nuclear density during a coupled electron and nuclear dynamics.

For that it is necessary to solve the time-dependent Schrödinger equation exactly

for all nuclear and electronic degrees of freedom. We already mentioned that this

is very demanding for real molecules. However, it is possible to find a model sys-

tem that is small enough to be tractable computationally and, on the other hand,

contains all physics of a coupled electronic and nuclear dynamics. Therefore, we

employ a simple model which was introduced by Shin and Metiu [37, 38] for the

description of charge-transfer processes. It involves only a single nuclear and a

single electronic degree of freedom and the particle interactions are parameter-

ized in such a way as to allow for a facile transition from a Born-Oppenheimer

behaviour to a situation where the adiabatic approximation breaks down. Within

this model we can easily explore features beyond a limiting Born-Oppenheimer
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INTRODUCTION

description. By adding another electron the physics of a many-electron system is

also available.

This work is organized as follows: The first two chapters give an overview of

the employed theoretical (chapter 1) and numerical (chapter 2) methods. We dis-

cuss the Born-Oppenheimer approximation, the theoretical description of matter-

field interaction and give the original definition of the electron localization func-

tion (ELF). Furthermore, we describe how the time-dependent Schrödinger equa-

tion can be solved by the split-operator algorithm and how to obtain eigenstates

and absorption spectra.

Chapter 3 investigates the changes in the eigenstates and potential energy

surfaces, obtained from an adiabatic approximation, when switching from a typ-

cial Born-Oppenheimer situation to a strongly coupled one. The changes in the

dynamical behaviour of electron and nucleus due to nonadiabatic coupling are

discussed by means of wave packet calculations employing the full Hamiltonian.

Furthermore, we discuss how usually not easily available quantities like the ki-

netic coupling elements and the transition dipole moments between adiabatic

states change under the influence of vibronic coupling. Finally, we shortly dis-

cuss why reversing the Born-Oppenheimer approximation leads to an unphysical

description.

In chapter 4 the model Hamiltonian is modified for the purpose to describe

an electronic predissociation process. Wave packet calculations demonstrate the

change of electron and nuclear densities during the fragmentation.

Chapter 5 regards perturbations imposed by external electric fields and inves-

tigates how absorption spectra change in the presence of strong nonadiabatic cou-

pling. In this way a clear illustration of the commonly employed Franck-Condon

principle for spectroscopic transitions can be found in terms of time-dependent

electron and nuclear densities. The interaction with strong laser pulses leads to

the formation of nuclear and electronic wave packets.
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INTRODUCTION

An extension of the simple model (chapter 6) illustrates the concept of electron

localization in a many-electron system and how localization changes as a function

of time during a vibrational motion in an electronically excited state. Therefore,

it was necessary to extend the definition of the widely used electron localization

function using an exact, time-dependent wave function.

Finally, we give a short outlook (chapter 7) on how to define electron local-

ization in the case of anti-parallel electron spins. We derive a similar function as

the ELF and demonstrate its usefulness in a numerical example.

The aim of this work is to provide a deeper insight and a more fundamental

understanding of how nonadiabatic coupling changes nuclear and electron densi-

ties as a function of time, not restricted to the electronic ground state. Therefore,

it is not sufficient to rely on common concepts of the electron density alone. One

rather has to simultaneously regard the time-dependent perturbation of the den-

sity by the nuclear motion which is crucial to concepts of, e.g. charge transfer or

localization.
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Chapter 1

Theoretical background

1.1 The Born-Oppenheimer approximation and

its limitations

Solving the many-particle Schrödinger equation is a tedious task. Without any

approximations an analytical solution can only be obtained for systems of no

more than two interacting particles. The Born-Oppenheimer approximation [39]

is a special case of an adiabatic approximation and it serves as a starting point

for many methods of modern quantum chemistry. While this work tries to avoid

this approximation, it is nevertheless necessary to obtain a basic understanding

of its features.

The total Hamiltonian of a given molecular system — neglecting spin-orbit

interactions — is of the form [9]:

Htot = Tel(x) + Tnucl(R) + V (x,R) (1.1)

Here, x and R denote the sets of electronic and nuclear coordinates. Tel(x)

and Tnucl(R) are the operators of the kinetic energy of electrons and nuclei, re-
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1.1. THE BORN-OPPENHEIMER APPROXIMATION AND ITS LIMITATIONS

spectively, while V (x,R) is the Coulomb interaction of all particles (using atomic

units, ~ = me = e = 1):

Tel(x) = − 1

2

∑

i

∇2
i

Tnucl(R) = −
∑

α

1

2Mα

∇2
α (1.2)

V (x,R) =
∑

i

∑

j>i

1

|~xi − ~xj|
+
∑

α

∑

β>α

ZαZβ
∣
∣
∣~Rα − ~Rβ

∣
∣
∣

−
∑

i

∑

α

Zα
∣
∣
∣~xi − ~Rα

∣
∣
∣

Here, i and j count the electrons, while α and β count the nuclei. Mα are

the masses of the nuclei. In the following we will omit the vector signs of the

coordinates in order to simplify the notation, i.e. ~xi = xi and ~Rα = Rα.

The adiabatic approximation has its foundation in the large difference between

the electronic and nuclear masses, which means that in the time average the

electrons are expected to move much faster than the nuclei. This allows for

a partitioning into the “slow” (nuclear) and “fast” (electronic) subsystems [9].

Thus, assuming that the electron density only depends on the position, but not

on the momenta (i.e. masses) of the nuclei, the mean electron density can be

described by a set of electronic wave functions ϕ(x,R) evaluated at fixed values

of the nuclear coordinates R:

ρ(x) =

∫

|ϕ(x,R)|2 |χ(R)|2 dR (1.3)

The second term describes the density of the probability distribution of the

nuclear coordinates. It has the meaning of a nuclear wave function which will

soon become clearer.

Evaluating equation (1.3) makes it necessary to determine the wave function

of the “fast” subsystem for fixed values of R. We apply above partitioning to the
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1.1. THE BORN-OPPENHEIMER APPROXIMATION AND ITS LIMITATIONS

molecular Hamiltonian (1.1) and rewrite it in terms of centre-of-mass coordinates

[40]:

Htot = Tnucl +Hel

Hel = Tel + V (x,R) (1.4)

Here, Hel denotes the electronic Hamiltonian. The adiabatic electronic wave

functions ϕn(x,R) are determined by the electronic Schrödinger equation:

Hel(R)ϕn(x,R) = εn(R)ϕn(x,R) (1.5)

Here, n counts the adiabatic electronic states and εn(R) are the eigenenergies

that depend parametrically on the nuclear coordinates. The set of electronic func-

tions {ϕn(x,R)} are eigenfunctions of a Hermitian operator and form a complete

basis set. They may be chosen orthogonal and orthonormal :

〈ϕn(x,R) | ϕn′(x,R)〉 = δnn′ (1.6)

We may now expand the complete wave function Ψtot(x,R) into the basis of

electronic eigenfunctions:

Ψtot(x,R) =
∑

n

ϕn(x,R)χn(R) (1.7)

As already mentioned above, the expansion coefficients χn(R) are functions

of the nuclear coordinate. The index n counts the different electronic states.

Inserting this expansion into the Schrödinger equation yields the following set of

coupled equations:
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1.1. THE BORN-OPPENHEIMER APPROXIMATION AND ITS LIMITATIONS

∑

n

(Tnucl +Hel)ϕn(x,R)χn(R) = Etot

∑

n

ϕn(x,R)χn(R) (1.8)

No approximations were introduced so far. Equation (1.8) is just a re-writing

of the Schrödinger equation in terms of a basis set expansion. The nuclear kinetic

energy operator Tnucl is a differential operator and absorbing mass dependence,

sign and summation into the Nabla operator allows for an easier notation:

Tnucl =
∑

α

− 1

2Mα
∇2

α
!
= ∇2

nucl (1.9)

Expanding the single terms of equation (1.8) leads to the following expression:

∑

n

(
∇2

nucl +Hel

)
ϕnχn = Etot

∑

n

ϕnχn

∑

n

{
∇2

nucl (ϕnχn) +Hel ϕnχn

}
= Etot

∑

n

ϕnχn

∑

n

{∇nucl [(ϕn∇nuclχn) + (χn∇nuclϕn)]

+ χnHelϕn}

= Etot

∑

n

ϕnχn (1.10)

∑

n

{
ϕn

(
∇2

nuclχn

)
+ 2 (∇nuclϕn) (∇nuclχn)

+ χn

(
∇2

nuclϕn

)
+ χnεnϕn

}
= Etot

∑

n

ϕnχn

Projection onto one electronic state 〈ϕm| and integration over the electronic

coordinates, transforms equation (1.10) into:

∇2
nucl χn + εm χn +

∑

n

{2〈ϕm |∇nucl|ϕn〉 (∇nuclχn)

+ 〈ϕm

∣
∣∇2

nucl

∣
∣ϕn〉χn

}
= Etotχm (1.11)
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1.1. THE BORN-OPPENHEIMER APPROXIMATION AND ITS LIMITATIONS

Here we used the orthonormality (1.6) of the electronic basis set. The first

two terms now contain no longer electronic functions, while the terms in the curly

bracket couple different electronic states via derivatives with respect to nuclear

coordinates. The terms of the form T
(k)
mn = 〈 ϕm

∣
∣∇k

nucl

∣
∣ϕn〉 (with k = 1, 2) are

called kth-order non-adiabatic coupling elements, respectively, while the last term

of the bracket is the mass polarization.

The adiabatic approximation restricts the total wave function to one electronic

state, i.e. all coupling elements in equation (1.11) are neglected. Thus only the

terms with m = n survive. Also, the diagonal first-order non-adiabatic coupling

elements are zero if we take equation (1.6) into account:

〈ϕn |ϕn 〉 = 1

⇒ ∇nucl〈ϕn |ϕn 〉 = 0

∇nucl〈ϕn |ϕn 〉 = 〈ϕn |∇nucl|ϕn〉
︸ ︷︷ ︸

diagonal coupling 1st order

+ 〈∇nucl ϕn | ϕn〉 = 0 (1.12)

ϕn∈
�

=⇒ 〈ϕn |∇nucl|ϕn〉 = − 〈∇nucl ϕn | ϕn〉

⇔ 〈ϕn |∇nucl|ϕn〉 = 〈∇nucl ϕn | ϕn〉 = 0

We may now rewrite equation (1.11) with the surviving terms:

(
∇2

nucl + εm + 〈ϕm

∣
∣∇2

nucl

∣
∣ϕm〉

)
χm = Etotχm (1.13)

Re-introduction of the kinetic energy operator (eqn. (1.9)) yields:

(
Tnucl + εm + 〈ϕm

∣
∣∇2

nucl

∣
∣ϕm〉

)
χm = Etotχm (1.14)

The term 〈ϕm |∇2
nucl|ϕm〉 is the so-called diagonal correction and is much

smaller than εm, as the mass of the nuclei enters into the denominator. The

15



1.2. ACCURACY OF THE BORN-OPPENHEIMER APPROXIMATION

shape of the field, acting on the nuclei, is therefore determined almost entirely

by εm [41].

In the Born-Oppenheimer approximation the diagonal correction is also ne-

glected and equation (1.11) takes now again the form of the Schrödinger equation:

[Tnucl + εm(R)]χm(R) = Etotχm(R) (1.15)

We have now arrived at the point of the Born-Oppenheimer picture, where

the motion of the nuclei is restricted to a single electronic state potential energy

surface |m〉. The corresponding eigenenergies epsilonm(R), which are obtained

from the electronic Schrödinger equation (1.5), serve as the potenial term for the

nuclear motion.

1.2 Accuracy of the Born-Oppenheimer approx-

imation

In order to get an estimate of the accuracy of the Born-Oppenheimer approxi-

mation one has to find an estimate for the off-diagonal kinetic coupling elements

T
(k)
mn, where m,n are quantum numbers and k = 1, 2. A central quantity of the

approximation is the mass ratio between electrons and nuclei that may be ex-

pressed as Born-Oppenheimer parameter κ = (1/M)1/4 (in a.u., me = 1). We

will only present the results here, for a detailed discussion the reader should refer

to reference [9].

It is possible to calculate the first-order correction to the Born-Oppenheimer

wave function Ψn(R, x) = ψ(R)ϕn(x,R) from perturbation theory [42]. It takes

the form:
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1.2. ACCURACY OF THE BORN-OPPENHEIMER APPROXIMATION

δΨmn =
∑

m′ 6=m

∑

n′

Lm′n′mn +Km′n′mn

Emn − Em′n′

Ψm′n′ (1.16)

The perturbation term contains matrix elements of the operators L and K

which are defined as (in atomic units):

Lmn(R) = −
∑

α

1

Mα
〈ϕm(x,R)| ∂

∂Rα
|ϕn(x,R)〉 ∂

∂Rα

Kmn(R) = −
∑

α

1

Mα
〈ϕm(x,R)| ∂

2

∂R2
α

|ϕn(x,R)〉 (1.17)

The first-order correction term to the energy is the diagonal electronic matrix

element Knn(R) which generates no coupling and thus does not violate the adia-

batic approximation. It is just a coordinate dependent correction to the adiabatic

potential. The second-order correction to the energy is:

δEmn =
∑

m′ 6=m

∑

n′

|Lm′n′mn +Km′n′mn|2
Emn − Em′n′

(1.18)

One can show that the matrix elements of K can be neglected if the electronic

energy seperation is not too small. The non-adiabaticity stems mostly from the

Lm′n′mn matrix elements. For small quantum numbers n and only electronic

state contributing to the sum over m′ one obtains the following non-adiabatic

corrections:

δΨmn ≈ κ3(E/∆E)2Ψm′n′

δEmn ≈ κ6E(E/∆E)3 (1.19)

Here E denotes the electronic energy and ∆E the energy seperation between

electronic states. Thus, if ∆E ≈ E (as is usually true for the first excited state),

17



1.3. MATTER-FIELD INTERACTION

the corrections to the wave function, the adiabatic potential1 and the energy are

on the order of κ3, κ4 and κ6.

From equation (1.19) follows that the accuracy of the adiabatic approximation

is the higher, the larger the gap between the electronic states is. For excited

electronic states the level spacing gets increasingly smaller and it is evident that

the non-adiabaticity effects for the ground state are much smaller then for highly

excited states, that always show effects of degeneration and quasi-degeneration.

If for a certain nuclear configuration R the gap between two electronic states

Em(R) and Em′(R) gets negligibly small, the nuclear motion in the vicinity of such

a configuration is no longer adiabatic. The motion of the electronic subsystem

has the period 2π/∆E and the condition for adiabaticity takes the form (ω is the

frequency of the nuclear motion):

ω/∆E � 1 (1.20)

If this condition is not fulfilled, the states m and m′ get strongly mixed by

nuclear motion. An exception is the case where the crossing electronic states

belong to different symmetries. Then the integrals over the electronic states in

equation (1.17) vanish and Kmn(R) = Lmn(R) = 0.

1.3 Matter-field interaction

The exact description of the interaction of a molecule with an intense laser pulse

involves the coupling of all degrees of freedom of the molecule to the quantum

states of the external field. This is very cumbersome and so throughout this work

we will treat the laser field as purely classical. The interaction term W (t) in the

1The correction to the adiabatic potential can be written as δEm ≈ 1

2
κ4E(E/∆E)2.

18



1.3. MATTER-FIELD INTERACTION

Hamiltonian describes the interaction of a particle with the electric field. In the

following we will shortly derive its mathematical form.

The electric field ~E with wave vector ~k and frequency ω may be written as:

~E(~R, t) = ~ε f(t)E0

(

ei(~k ~R−ωt) + e−i(~k ~R−ωt)
)

(1.21)

Here, ~ε is the polarization vector, f(t) is the envelope function of the laser

pulse and E0 half of the maximal field strength. Under the assumption that the

wave length of the fields is much larger than the range of a given molecule [43],

we can safely neglect the position dependency (dipole approximation):

~E(t) = ~ε f(t)E0

(
e−iωt + eiωt

)
(1.22)

The interaction term W (t) takes now the form [44]

W (t) = −~µ ~E(t). (1.23)

where ~µ is the dipole moment of the molecule. Inserting equation (1.23) into the

time-dependent Schrödinger equation (2.1) yields (in a.u.):

i
∂

∂t
Ψ(t) =

[

H − ~µ~E(t)
]

Ψ(t) (1.24)

Expanding the wave function into the basis of electronic and vibrational eigen-

states of the Hamiltonian yields time-dependent expansion coefficients an,v(t)

(thus defining a wave packet):

|Ψ(t)〉 =
∑

n

∑

v

an,v(t) e
−iEn,vt |Ψn,v ϕn 〉 (1.25)
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1.3. MATTER-FIELD INTERACTION

Here, n counts the electronic and v the vibrational states of the molecule.

|Ψn,v〉 denotes an vibrational eigenstate in electronic state n and En,v is its

eigenenergy. Projection onto an eigenstate 〈Ψm,v′ ϕm| yields a set of coupled

equations for the coefficients:

i
∂

∂t
am,v′(t) = Em,v′ am,v′(t) +

∑

n

∑

v

µm,v′,n,v(t) an,v(t) e
iωm,v′,n,vt (1.26)

In above equation µm,v′,n,v(t) are the transition dipole moments which result

from the projection of the electric field vector ~E(t) onto the dipole moment ~µ

and are of the form:

µm,v′,n,v(t) = 〈Ψm,v′ϕm| − ~µ · ~E(t)|Ψn,vϕn〉 = −E(t)µm,v′,n,v (1.27)

The transition frequencies ωm,v′,n,v are given by (in a.u.):

ωm,v′,n,v = Em,v′ − En,v (1.28)

In equation (1.26) all electronic and vibrational states are coupled by the

external field and finally takes the form:

i~
∂

∂t
am,v′(t) = Em,v′ am,v′(t)

− f(t)E0

{
e−iωt + eiωt

}∑

v

∑

n

µm,v′,n,v an,v(t) e
iωm,v′,n,vt

= Em,v′ am,v′(t) (1.29)

− f(t)E0

∑

v

∑

n

µm,v′,n,v

{
eiωm,v′,n,v+ωt + eiωm,v′,n,v−ωt

}
an,v(t)

For an absorption process the first exponential varies very fast as a function

of time. This means that all observables averaged over time-intervals larger than
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1.4. TIME-DEPENDENT PERTURBATION THEORY

several optical cycles of the external field (several femtoseconds in the case of

an UV excitation) have no contributions from terms containing the sum of the

laser frequency and the transition frequency and are neglected (rotating wave ap-

proximation). The reverse holds true for a stimulated emission process (counter-

rotating wave approximation) [45].

The complicated equations that arise from matter-field interaction may be

solved approximately in terms of time-dependent perturbation theory as we will

see in the next section.

1.4 Time-dependent perturbation theory

A simplified description of the interaction of matter with a weak electromagnetic

field may be obtained in terms of the time-dependent perturbation theory [46,47].

In this approach the field is treated classically whereas the interaction with the

quantum system is a time-dependent perturbation. Let us regard a quantum

system whose time evolution for times t < 0 is given by equation (2.1) (in a.u.):

i
∂

∂t
Ψ0(t) = H0Ψ0(t) (1.30)

Here H0 is the Hamiltonian of the unperturbed system. At t = 0 a small,

time-dependent perturbation W (t) acts on the system, thus equation (1.30) has

to be modified:

i
∂

∂t
Ψ(t) = [H0 +W (t)] Ψ(t) = HΨ(t) (1.31)

We are looking for solutions of this equation under the condition that Ψ(t) =

Ψ0(t) for times t ≤ 0. The wave function can formally be written as:
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1.4. TIME-DEPENDENT PERTURBATION THEORY

Ψ(t) = e−iHt ϕ(t) (1.32)

Inserting equation (1.32) into (1.31) yields:

i
∂

∂t
φ(t) = Wtφ(t) (1.33)

φ(t) is the wave function in the interaction picture, while the pertubation

takes the form:

Wt = eiHt W (t) e−iHt (1.34)

Integration of the partial differential equation (1.33) gives the following ex-

pression:

φ(t) = φ(0) +
1

i

t∫

0

Wt′φ(t′) dt′ (1.35)

Solving this equation is quite difficult, as the wave function φ(t) also appears

in the time integral. It is, however, possible to obtain an approximate solution

via an iterative procedure. For that we replace the exact function in the integral

by φ(0) and get the first-order correction:

φ(1)(t) = φ(0) +
1

i

t∫

0

Wt′φ(0) dt′ (1.36)

Replacing φ(t) in equation (1.35) by the first order function (1.36) yields the

second-order correction:

φ(2)(t) = φ(0) +
1

i

t∫

0

Wt′φ(t′) dt′ +
1

i2

t∫

0

t′∫

0

Wt′Wt′′φ(0) dt′′dt′ (1.37)
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1.5. STRONG-FIELD HAMILTONIAN

This iteration may be continued to higher orders.

While this formalism gives corrections to the wave function in the interaction

picture, our interest lies in the Schrödinger picture. Using equation (1.32) one

finds for the first-order wave function:

Ψ(1)(t) = e−iHtΨ(0) +
1

i

t∫

0

e−iH(t−t′)Wt′e
−iHt′Ψ(0) dt′ (1.38)

Here φ(0) = Ψ(0). The second-order wave function may be obtained similarly.

1.5 Strong-field Hamiltonian

The interaction of molecules with intense laser fields shows interesting phenom-

ena like bond-softening or above-threshold ionization (ATI) [48]. A theoretical

description is no longer possible in terms of time-dependent perturbation theory

(see section 1.4) as considerable amounts of population are transferred between

electronic states. In the following we shortly describe how to incorporate the

matter-field interaction into the usual Born-Oppenheimer picture of non-coupled

electronic states.

Consider a system that consists only of two electronic states |1〉 and |2〉.
The system is initially in its electronic ground state |1〉. Population may be

transferred by an intense laser pulse to the excited state |2〉. The Hamiltonian

now transforms into a matrix H with coupling off-diagonal elements:

H =




H1 W12

W21 H2



 (1.39)

Hn (n = 1, 2) are the Hamiltonians of the electronic states |1〉 and |2〉. The

coupling by the field Wnm is of the form:
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1.6. ELECTRON LOCALIZATION FUNCTION

Wnm = −E0 µnm f(t) cos(ωt) (1.40)

Here µnm is the transition dipole moment (µnm = 〈n |µ̂|m〉), E0 is the field

strength and f(t) is the envelope function of the pulse. The nuclear wave func-

tion has two components ψn (n = 1, 2) that describe the nuclear motion in the

electronic states. The equation of motion now turns into a matrix equation (in

a.u.):




H1 W12

W21 H2








ψ1

ψ2



 = i
∂

∂t




ψ1

ψ2



 (1.41)

The interaction with a strong laser pulse transfers considerable amounts of

population from the ground state to higher states and often strong oscillations

in the populations are seen during the interaction time. They are known as Rabi

oscillations [46, 49]. The solution of equation (1.41) can be found in terms of

diabatic states or by solving the full, coupled problem of electronic and nuclear

motion.

1.6 Electron localization function

According to Thomas A. McCormick the electron localization function (ELF ) is:

“Qualitatively ELF assigns high values to a point in space where there is

significant electron density, but few or no nodes pass through the point.

It assigns lower values to points that either have little electron density

or through which enough nodes from one or more occupied orbitals pass

that these nodes can overcome the contribution of the density to ELF at

that point.” [50]

In the following we provide the basic definition as developed by Becke and

Edgecombe [51]. However, their definition is not applicable straighforward to an

exact wave function and we have to re-define the ELF later on (chapter 6.2).
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1.6. ELECTRON LOCALIZATION FUNCTION

The basic definition of ELF starts from the Hartree-Fock probability of finding

two particles of the same spin σ at positions r1 and r2 in a multielectron system:

P σσ
2 (r1, r2) = ρσ(r1)ρσ(r2)− |ρσ

1 (r1, r2)|2 , (1.42)

where P σσ
2 (r1, r2) is the same-spin pair probability and ρσ

1 (r1, r2) is the σ-spin

one-body density matrix of the Hartree-Fock determinant:

ρσ
1 (r1, r2) =

σ∑

i

ψ∗i (r1)ψi(r2) (1.43)

Summation is restricted to orbitals of σ spin only. If an electron of spin σ is

located at r1 with certainty (r1 is called the reference point), then we can define

a conditional probability of finding a second σ-spin electron at position r2 by

dividing equation (1.42) by the total σ-spin density at r1:

P σσ
cond(r1, r2) =

P σσ
2 (r1, r2)

ρσ(r1)

= ρσ(r2)−
|ρσ

1 (r1, r2)|2
ρσ(r1)

(1.44)

It is necessary to mention here, that the HF density and density matrix are

invariant with respect to unitary transformations and thus the pair probabilities

are as well. If r1 = r2 the density matrix shows the following features:

ρσ
1 (r1, r1) = ρσ(r1) (1.45)

and
∫

|ρσ
1 (r1, r2)|2 dr2 = ρσ(r1) (1.46)
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1.6. ELECTRON LOCALIZATION FUNCTION

From that, it is easy to verify that the conditional probability of finding a

second electron at the reference point vanishes:

P σσ
cond(r1, r1) = 0 (1.47)

The total conditional probability is then given by:

∫

P σσ
cond(r1, r2) dr2 = Nσ − 1, (1.48)

where Nσ is the total number of electrons with σ-spin in the given system. Equa-

tion (1.47) is of course a consequence of the Pauli principle.

Becke and co-workers emphasized that very useful information is contained

in the short-range behaviour of the HF exchange correlation when r2 approaches

the reference point r1 [52,53]. Because of the Pauli principle one cannot examine

P σσ
cond directly, but Becke showed that the leading term of the Taylor expansion

of the spherically averaged conditional pair probability is given by [54]

P σσ
cond(r, s) =

1

3

[

τσ −
1

4

(∇ρσ)2

ρσ

]

s2 + . . . (1.49)

Here, the arguments (r, s) denote the spherical average on a shell of radius

s about the reference point r. τσ is the positive-definite kinetic energy density

which is defined by (further details are found in [55])

τσ =
σ∑

i

|∇ψi|2 . (1.50)

Here again the sum runs over all electrons with the same spin. The smaller

the probability of finding a second electron of the same spin near the reference

point gets, the more localized is the reference electron. That means, electron

localization is measured by the following expression:
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1.6. ELECTRON LOCALIZATION FUNCTION

Dσ = τσ −
1

4

(∇ρσ)2

ρσ

(1.51)

It can be shown that Dσ is nonnegative [56]. Dσ vanishes in the special case of

one-electron systems and therefore also vanishes in multi-electron systems where

regions are dominated by a single, localized σ-spin orbital. Equation (1.51) takes

small values when the reference electron is highly localized. Thus Becke and

Edgecombe defined the electron localization function (ELF) as:

ELF =
(
1 + χ2

σ

)−1
(1.52)

In above equation χσ = Dσ/D
0
σ and is normalized to the uniform electron gas

with a spin density equal to the local value of ρσ(r). Thus D0
σ takes the form:

D0
σ =

3

5

(
6π2
) 2

3 ρ
5
3
σ (1.53)

By its definition the ELF can only take values of 0 ≤ ELF ≤ 1. In chapter

6.2 we will redefine the ELF for exact wave functions and also introduce a similar

quantity for electrons with differents spins.
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Chapter 2

Numerical methods

2.1 Solving the time-dependent Schrödinger equa-

tion

In order to describe the dynamical changes in the probability density of a quantum

system, one has to find solutions to the time-dependent Schrödinger equation (in

atomic units):

i
∂

∂t
Ψ(t) = H Ψ(t) = (V + T ) Ψ(t) (2.1)

Here, H denotes the Hamiltonian which — if we neglect spin-orbit interactions

— has only contributions by the kinetic (T ) and potential energy (V ). Ψ(t) is

the time-dependent wave function. If we choose an infinitesimal time step dt, a

formal solution to above equation is [57]:

Ψ(t+ dt) = e−i(V +T )dt Ψ(t) (2.2)

The exponential is called the propagator of the system. As the kinetic en-

ergy operator contains derivatives with respect to the particle coordinates, one
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2.1. SOLVING THE TIME-DEPENDENT SCHRÖDINGER EQUATION

cannot apply the propagator directly to the wave function. Usually one chooses

a symmetric splitting of the evolution operator exp(−iHdt) that gives rise to a

third-order error in dt because of the non-zero commutator between T and V [58]:

e−iHdt = e−i V
2

dt e−iTdt e−i V
2

dt +O(dt3) (2.3)

In configuration space the wave function can be multiplied directly with the

terms only containing the potential energy, while the same holds true for the

kinetic energy term in momentum space. The two respresentations are connected

by a Fourier transformation:

Ψ̃(p) =
1√
2π

∫

e−ipxΨ(x) dx (2.4)

The split-operator method can easily be implemented if the wave function is

represented on a spatial grid of a finite number of points. In that case very

efficient Fast Fourier Transform (FFT) algorithms can be applied that scale with

N logN , where N is the number of grid points.

Throughout this work we employed the FFTW package by Matteo Frigo and

Steven G. Johnson [59], which adopts itself to the underlying hardware and is

one of the fastest FFT routines available nowadays.

2.1.1 Improving accuracy

Under certain conditions the second order accuracy of the split-operator (SPO)

algorithm is not sufficient anymore. Several attempts have been made to improve

its accuracy and we present two of them here. The advantage of a higher order

SPO scheme is the possibility to increase the time step without losing accuracy

in the propagation.
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Bandrauk and Shen proposed a splitting of the time evolution operator

exp(−iHdt) into seven exponentials to achieve an SPO scheme that is accurate

to third order [60] . The propagator takes the form:

e−iHdt = e−iγ T
2

dt e−iγV dt

·e−i(1−γ) T
2

dt e−i(1−2γ)V dt (2.5)

·e−i(1−γ) T
2

dt e−iγV dt e−iγ T
2

dt,

with γ = 1/
(
2− 21/3

)

Bandrauk and Shen were able to show that this propagator yields better

accuracy for time-dependent problems than the standard split-operator (equation

(2.3)) and produces better phases for time-independent problems.

A year earlier already Yoshida proposed a general scheme to construct higher

order propagators [61]. While one cannot find a closed, analytical form for the

higher order propagators, Yoshida found a fourth-order accurate splitting that

also contains seven exponentials:

e−iHdt = e−ix1
V
2

dt e−ix1Tdt

·e−i(x1+x0) V
2

dt e−ix0Tdt (2.6)

·e−i(x1+x0) V
2

dt e−ix1Tdt e−ix1
V
2

dt

Here, x0 = 2
1
3/(2− 2

1
3 ) and x1 = 1/(2− 2

1
3 ).

2.1.2 Obtaining eigenstates

One of the most useful features of the SPO algorithm is the possibility to calculate

highly precise eigenstates of a given potential. As we will see later on, it is
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inevitable for our discussion to know the electronic eigenstates of our system.

Kosloff introduced the so-called relaxation method [62] for that, which is based

on the split-operator algorithm. One starts from an nearly arbitrary1 function

Ψ(t = 0) and replaces the time in the propagator by t = −iτ (imaginary time

propagation). The time evolution over an infinitesimal time step dτ can be written

in terms of the eigenstates ϕn with eigenenergies En:

Ψ(τ + dτ) =
∑

n

〈ϕn|Ψ(τ)〉e−Endτϕn (2.7)

Applying the split-operator algorithm, as described in section 2.1, it follows

immediately from equation (2.7), that the state with the lowest eigenenergy suf-

fers least damping. This, of course, works only for a completely positive spectrum.

In order to converge the propagation, the wave function must be renormalized in

each time step. Using a sensible convergence criterion one obtains the normalized

ground state wave function. A ”good” convergence criterion is the eigenenergy

which can be calculated from the wave function and the wave function of a time

step earlier:

E0 = lim
τ→∞
− 1

2dτ
ln

{〈Ψ(τ + dτ)|Ψ(τ + dτ)〉
〈Ψ(τ)|Ψ(τ)〉

}

(2.8)

The relaxation method can be used to obtain higher states as well. However,

due to small numerical instablilities, it is necessary to project out the already

found lower states in each time step.

1The initial state must not be orthogonal to the ground state. Small numerical errors always

yield non-orthogonal contributions, though.
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2.2 Calculation of absorption spectra

By calculating the absorption spectrum of a molecule, we get information about

its eigenstates that may be populated via a spectroscopic transition. Let us first

regard a general wave packet Ψf(q, t) in an excited electronic state. As a wave

packet is a coherent superposition of eigenstates of the molecule, it may be written

in terms of eigenfunctions of the molecular Hamiltonian (in atomic units):

Ψf(q, t) =
vmax∑

v=0

cv ϕv(q) e
−iEvt (2.9)

Here q are the molecular degrees of freedom, v counts the eigenstates ϕv(q)

with energy Ev, and cv are the expansion coefficients. Now we fix the coefficients

cv by imposing as initial condition:

Ψf(q, t = 0) = Ψf(0) = µfiΨi(q) (2.10)

Thus the excited state wave packet resembles the initial state wave function

multiplied by the transition dipole function µfi. Using the orthonormality of the

basis set and the initial condition, the expansion coefficients can be expressed in

terms of the basis set functions:

cv = 〈ϕv(q)|µvi|Ψi(q)〉 (2.11)

Multiplying equation (2.9) with Ψf(0) from the left and integrating over all

coordinates, yields:
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S(t) = 〈Ψf(0)|Ψf(t)〉

=
vmax∑

v=0

cv〈Ψf(0)|ϕv(q)〉 e−iEvt (2.12)

=
vmax∑

v=0

|cv|2 e−iEvt

Here we used 〈Ψf(0)|ϕv(q)〉 = c∗v. S(t) is called autocorrelation function.

According to Fermi’s golden rule the absorption spectrum may be written

as [45]:

σ(ω) ∝
∑

f

|〈Ψi|µfi|Ψf〉|2 δ(Ei + ω − Ef ) (2.13)

The sum runs over all final states Ψf that are selected by the argument of the

delta function which ensures that only resonant transitions can occur. Replacing

the Dirac delta function by [63]

δ(Ei + ω − Ef) =
1

2π

∫

ei(Ei+ω−Ef )t dt, (2.14)

we can rewrite σ(ω) as:

σ(ω) ∝ 1

2π

∑

f

〈Ψi|µfi|Ψf〉〈Ψf |µfi|Ψi〉
∫

ei(Ei+ω)t dt

=
1

2π

∫

ei(Ei+ω)t
∑

f

〈Ψi|µfi| e−iEf tΨf
︸ ︷︷ ︸

=e−iHtΨf

〉〈Ψf |µfi|Ψi〉 dt (2.15)

=
1

2π

∫

ei(Ei+ω)t〈Ψi|µfie
−iHt

∑

f

|Ψf〉〈Ψf |
︸ ︷︷ ︸

=
�

µfi|Ψi〉 dt

=
1

2π

∫

ei(Ei+ω)t〈Ψi|µfie
−iHt|µfiΨi〉 dt

=
1

2π

∫

ei(Ei+ω)t〈µfiΨi|e−iHt|µfiΨi〉 dt
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In the last step of above derivation we replaced µfi by its complex conjugate,

which is possible because the dipole operator is self-adjoint. Taking a closer look,

one finds that the term in the bracket is nothing else than the above defined auto-

correlation function S(t). Thus, the absorption spectrum is directly proportional

to the Fourier transform of S(t):

σ(ω) ∝ 1

2π

∫

S(t) ei(Ei+ω)t dt (2.16)

We have found now a unique relation between the time-resolved molecular

motion in an excited state and the frequency-resolved absorption spectrum. S(t)

can easily be calculated in terms of the split-operator algorithm (see section

2.1) by solving the time-dependent Schrödinger equation with µfiΨi(q) as initial

function and propagating in the excited state potential. As Ψf(0) = µfiΨi(q) is

a real function, S(t) fulfills the symmetry relation:

S(−t) = S∗(t) (2.17)

This guarantees that σ(ω) is real as well. In practice one propagates the wave

packet starting from t = 0 up to a given time and then adds the negative branch

by copying the complex conjugate of the positive branch of the function.
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Chapter 3

Combined electron and nuclear

dynamics: A simple model

system

3.1 Introduction

In this chapter we introduce the simple model system that was developed by

Metiu and co-workers to describe charge-transfer processes [37, 38]. Within this

model system it is possible to characterize the coupled motion of a nucleus and an

electron simultaneously. The electron-nucleus interaction is parameterized in such

a way as to allow for an easy transition from an adiabatic (Born-Oppenheimer

type) behaviour to a situation where the motion of the particles is strongly cou-

pled. In this chapter our main interest focusses on the dynamical changes of

electron and nuclear probability densities that are introduced by a nonadiabatic

coupling.

As a first step we apply the Born-Oppenheimer approximation to our model

and solve the electronic Schrödinger equation for fixed nuclear geometry (chapter
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3.3). The resulting adiabatic potential curves and electronic eigenfunctions are

then used to calculate other quantities that are usually not easily available, e.g.

the diagonal and off-diagonal kinetic coupling elements and the transition dipole

moments. From the gathered data a prediction is made of what is to be expected

for the nuclear dynamics.

After that we illustrate by means of wave packet calculations the dynamical

changes of nuclear and electron density for the case of an adiabatic motion and

during a nonadiabatic transition (chapter 3.4). Furthermore, the influence of cou-

pling on the transport of electron density between different nuclei is characterized

with the help of time-dependent Laplacians.

The chapter closes with a short passage about reversing the Born-Oppenheimer

approximation and the resulting picture of electrons moving on potential energy

surfaces that are obtained from solving the Schrödinger equation for fixed electron

geometry (chapter 3.5). We close this chapter with a short summary.

3.2 The model Hamiltonian

We describe the coupled electronic-nuclear motion in a simple model system that

consists of three ions and one electron arranged in a line. Figure 3.1 illustrates the

situation: two ions are fixed at a distance of 10 Å, the third ion and the electron

are allowed to move on the internuclear axis. The masses of the ions are chosen

to be that of a proton, while all charges are Z = +1, respectively. The system

has two degrees of freedom: the position of the nucleus R and the position of the

electron x. The interaction of the electron with the nuclei is parameterized in

the form of screened Coulomb interactions. The Hamiltonian of the full system

then takes the form (in a.u.):
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H = −1

2

∂2

∂x2
− 1

2M

∂2

∂R2
+ V (x,R) (3.1)

Here M denotes the ion mass and V (x,R) are the particle interactions which

are of the form:

V (x,R) =
1

|RL − R|
+

1

|RR − R|
− erf(|RL − x|/Rf )

|RL − x|

− erf(|RR − x|/Rf )

|RR − x|
− erf(|R− x|/Rc)

|R− x| + E0 (3.2)

In the expression for the potential energy all electron-nuclei interactions are

cut off with error functions (erf). The value of E0 was chosen such that the

global minimum of the full potential was zero in all regarded cases. RL and

RR denote the positions of the fixed ions and were chosen to be -5 Å and +5

xx

RR

0 Å

+5 Å-5 Å

+ + +

--

Figure 3.1: Illustration of the geometry of the model system consisting of a central ion

and an electron which move between two fixed ions.
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Figure 3.2: Contour plot of the potential energy surface V (x,R) (Rc = 1.5 Å). The

contour lines have values of 0.25 eV, 0.5 eV and then rise between 1 to 10 eV in

increments of 0.1 eV.

Å, respectively. The parameter Rf which appears in the interaction between

electron and stationary ions was taken to be 1.5 Å. The interaction with the

mobile ion was determined by different values of the parameter Rc. Its influence

on the system will be discussed in detail in the next section.

A contour plot of the full potential is shown in figure 3.2. The symmetry of

the system allows for two stable ground state configurations: either the electron

is located between the left fixed and the moving ion with the moving ion shifted

closer to the left or the electron is right of the central nucleus which then is shifted

more to the right hand side. The first situation is illustrated in figure 3.1.
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3.3 Adiabatic approximation

In order to gain insight into the electronic structure of the model system, we

apply the Born-Oppenheimer approximation to the full Hamiltonian (eqn. (3.1)).

Within this approach one first solves the electronic Schrödinger equation (1.5)

for a fixed nuclear coordinate R. This leads to the following equation:

{

−1

2

∂2

∂x2
+ V (x,R)

}

ϕn(x,R) = Vn(R)ϕn(x,R) (3.3)

Here Vn(R) are the adiabatic potential curves corresponding to electronic state

n and the electronic eigenfunctions {ϕn(x,R)} define a complete orthonormal

basis set for all values of R. This basis set may be used to expand the total wave

function Ψ(x,R) as:

Ψ(x,R) =
∑

n

ψn(R)ϕn(x,R) (3.4)

As mentioned earlier, projection onto one electronic function ϕm(x,R) trans-

forms the Schrödinger equation into a set of coupled differential equations:

{

− 1

2M

∂2

∂R2
+ Vm(R)− E

}

ψm(R)

=
∑

n

{

T (1)
mn(R)

∂

∂R
+ T (2)

mn(R)

}

ψn(R) (3.5)

Applying the Born-Oppenheimer equation means that the right hand side of

equation (3.5) becomes zero, as the nuclear motion solely takes place in a fixed

electronic state (m). Vm(R) then acts as the potential energy operator for the

nuclear motion. Within this approximation diagonal correction terms T
(j)
mm(R) as

well as couplings to other electronic states T
(j)
mn(R) are neglected. These kinetic
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coupling elements are usually quite small, but play an important role when the

adiabatic curves get close to each other, as will be discussed in the next sections.

The explicit mathematical form of the coupling elements is

T (j)
mn(R) =

1

2M

∫

ϕm(x,R)
∂(j)

∂R(j)
ϕn(x,R) dx (3.6)

with j = 1, 2.

3.3.1 Adiabatic potential curves

Figures 3.3 and 3.4 contain the adiabatic potential curves, calculated for two

different values of Rc. The values of Rc were chosen in accordance to references

[37, 38]. In the first case [Rc = 1.5 Å, in the following referred to as Born-

Oppenheimer case] ground and first excited electronic state are clearly separated

by a large energy gap of ∆ = 1.28 eV. Intuitively, it is expected that the Born-

Oppenheimer approximation is valid in that case. However, taking a closer look

at figure 3.3 also shows that the n = 2 and n = 3 electronic states approach

each other closely at R = 0. This already questions the validity of the BO

approximation for higher electronic states. In the case of Rc = 2.5 Å ground and

first excited state are only separated by a gap of ∆ = 0.05 eV at the nuclear

position R = 0. The energy spacing corresponds to a period of magnitude τel =

2π/∆ = 82 fs for the electronic motion which is of the same order as a typical

vibrational motion. This situation should lead to a strong coupling between

electronic and nuclear motion (see section 1.2).

It should be noted here, that the model Hamiltonian allows for a facile tran-

sition between the two regarded cases by varying the parameter Rc. Mathe-

matically, the parameter changes the electron-moving ion attraction from strong

(Rc = 1.5 Å) to weak (Rc = 2.5 Å).
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Figure 3.3: Adiabatic potentials for the electronic quantum numbers n = 1 − 3 for

Rc = 1.5 Å.
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Figure 3.4: The same adiabatic potentials as above, but for Rc = 2.5 Å.
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3.3.2 Electronic eigenfunctions

In the last section we presented the adiabatic potential curves generated from

the model Hamiltonian. These eigenvalues and the corresponding eigenfunctions

were obtained by solving the electronic Schrödinger equation with the method

described in chapter 2.1.2. For a visualization it is easiest to consider the elec-

tronic basis functions ϕn(x,R) as functions of both, the electronic coordinate x

and the nuclear position R which serves as a parameter. The modulus squared

of the electronic ground state functions in the weak and strong coupling case are

displayed in figure 3.5. In the Born-Oppenheimer (BO) case (left part) the shape

of the wave function does not change much with varying nuclear position R, while

the center of the distribution shifts smoothly on the x-axis.

For Rc = 2.5 Å the strong nonadiabatic coupling between the ground and

first excited state leads to a rapid change of the electronic wave function in the

coupling region around R = 0 (figure 3.5, right part). This is the expected be-

haviour: the electronic function changes considerably as a function of the nuclear

coordinate in a region where the coupling cannot be neglected. Figure 3.6 shows
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Figure 3.5: Variation of the modulus squared of the electronic ground state eigenfunc-

tions |ϕ1(x,R)|2 with the nuclear coordinate R. The weak (left part) and the strong

(right part) coupling case are displayed.
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Figure 3.6: First (n = 2) excited state electronic wavefunctions for Rc = 1.5 Å (left

part) and Rc = 2.5 Å (right part).

the eigenfunctions for the first electronically excited state. Even for the BO case

(left part) the coupling to the n = 2 state leads to tremendous changes of the

electronic wave function around R = 0. The strong coupling case (figure 3.6)

exhibits a very complex coupling pattern.

In order to illustrate this situation even better, figure 3.7 shows cuts through

the ground and first excited state wave functions for several values of R in the

vicinity of R = 0. Panels (a) – (c) correspond to values of R = 0.05 Å, R = 0 Å

and R = −0.05 Å. In passing the barrier, the main maximum of ϕ1(x,R) shifts

from positive to negative x values. Simultaneously the minimum of ϕ2(x,R)

shifts from a negative to positive x coordinate. At the barrier R = 0, where the

adiabatic curves V1(R) and V2(R) are almost degenerate, the two wave functions

are symmetric and antisymmetric with respect to x = 0.

In conclusion, we have seen that the electronic eigenfunctions exhibit consid-

erable changes as a function of the nuclear coordinate in the presence of nonadi-

abatic coupling. It is to be exptected that this behaviour is also reflected in the

time-dependent changes of the electron density if the system gets perturbed by

the motion of the nucleus or by an external electric field.
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,R
)

Figure 3.7: Variation of the electronic eigenfunctions ϕn(x,R) in the vicinity of the

symmetric ion configuration R = 0. The ground and excited state wave functions are

shown for values of (a) R = 0.05 Å, (b) R = 0 Å and (c) R = −0.05 Å.

3.3.3 Kinetic coupling elements

As mentioned before, the kinetic coupling elements T
(j)
nm play a crucial role when

the BO approximation breaks down, as they couple nuclear and electronic motion.

They are usually difficult to obtain, but can be calculated exactly for our model

system. First, the diagonal elements T
(1)
nn are zero due to the normalization of the

adiabatic electronic basis functions. The other elements of first and second order

are displayed in figure 3.8 for the strong coupling case (Rc = 2.5 Å). Regarding the

off-diagonal couplings one finds that the first-order function (j = 1) is symmetric,

whereas for j = 2 it is antisymmetric with respect to R = 0. The symmetry of the

coupling elements stems from the inversion symmetry of the Hamiltonian itself

which is transferred to the electronic basis functions, i.e.:

ϕn(x,R) = (−1)(n+1)ϕn(−x,−R) (3.7)

This is illustrated in figures 3.5 and 3.6. One finds the following relations:
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Figure 3.8: Kinetic coupling elements obtained in the strong coupling case Rc = 2.5 Å.

T (j)
nm(−R) ∼ (−1)j 〈ϕn(x,−R)| ∂

j

∂Rj
|ϕm(x,−R)〉x

= (−1)j 〈ϕn(−x,−R)| ∂
j

∂Rj
|ϕm(−x,−R)〉x (3.8)

= (−1)n+m+j T (j)
nm(R)

The off-diagonal kinetic coupling elements show a strong variation as a func-

tion of the nuclear distance. We find that the function containing the second

derivative is of an overall much larger magnitude than the element T
(1)
12 . This is

— however — not true at the symmetric configuration R = 0, where T
(2)
12 vanishes

identically, see equation (3.8). The diagonal element T
(2)
11 is contained in the lower

panel of figure 3.8. We note, that the element T
(2)
22 in the region, as shown in the

figure, is equal to T
(2)
11 . This is due to the high barrier between the two wells of

the potential V (x,R) which are obtained for fixed R in the vicinity of R = 0. As

a consequence one finds approximately (see figure 3.7) ϕ2(x,R) = −ϕ1(−x,R)

which, in turn, produces equal matrix elements.
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3.3.4 Transition dipole moments

Figure 3.9 shows the transition dipole moments for a transition from the electronic

ground state to the first excited state for the Rc = 1.5 Å and Rc = 2.5 Å case.

They can be calculated from the electronic basis functions and are defined as

follows:

µ2←1(R) = 〈ϕ1(x,R)|µ|ϕ2(x,R)〉x (3.9)

Here, µ is the dipole moment operator and corresponds to µ = R − x (in

a.u.) within our model system. In this context, it is noteworthy that these

quantities are usually not easily accessible and are set constant in most numerical

applications (Condon approximation). For the weak coupling case (figure 3.9,

left panel) the transition dipole moment shows a modest variation with respect

to the nuclear position R. Remarkably is the rapid change in curvature around

R = ±1.25 Å. This can be understood from the fact that the electronic functions

ϕ2(x,R) change muchfaster as a function of R than the functions of the electronic

ground state (see figures 3.5, left panel and 3.6, left panel). This is a consequence
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Figure 3.9: The transition dipole moments for a 2← 1 transition µ2←1(R) =

〈ϕ1(x,R)|µ|ϕ2(x,R)〉. The weak (left panel) and the strong coupling case (right panel)

are displayed.
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of a coupling between states n = 2 and n = 3. In the case of strong nonadiabatic

coupling (figure 3.9, right panel) the variation with respect to R is nearly twice as

large as in the latter case and the transition dipole moment exhibits a minimum

at the coupling site around R = 0 Å.

Finally, we can conclude that the transition dipole moments reflect the be-

haviour of the corresponding electronic eigenfunctions: In presence of a strong

nonadiabatic coupling the transition dipole moment exhibits large variations with

respect to the nuclear coordinate (figure 3.9, right panel), whereas in the Born-

Oppenheimer case the changes are less pronounced. Still, due to a coupling of

states n = 2, 3 in that case, the transition dipole moment shows a double min-

imum structure. Furthermore, the often used Condon approximation which ne-

glects the dependency of the transition dipole moments on the nuclear geometry

does not apply in the presence of strong nonadiabatic coupling.

The data we have collected up to now allow us to predict some features of the

nuclear dynamics in the model system. First, in the Born-Oppenheimer case the

preparation of a localized wave packet in the electronic ground state will result in

a nuclear dynamics taking place exclusively in that electronic state. On the other

hand, if a strong coupling is present, the vibrational motion cannot be restricted

to a single electronic state. This implies that the BO approximation is not a good

description of the Rc = 2.5 Å case. In the following we will turn to the quantum

dynamics in our system, where we have to prove above predictions.

3.4 Quantum dynamics

3.4.1 Time-dependent electron and nuclear densities

We now turn to the quantum dynamics in our model system. In order to get

insight into the coupled electronic and nuclear dynamics, we solve the time-
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dependent Schrödinger equation using the Hamiltonian of equation 3.1 employing

first a cut-off parameter of Rc = 1.5 Å. The initial wave packet was restricted to

a certain electronic state and was of the form

Ψ(x,R, t = 0) = ϕ1(x,R)e−β(R−R0)2 , (3.10)

with the parameters β = 7.14 Å−2 and R0 = −0.9 Å. Thus, we start in the

electronic ground state (n = 1) with a Gaussian wave packet for the nuclear

degree of freedom. In the general case there exists a multiple component wave

function with the nuclear wave packet in state (n) as

ψn(R, t) = 〈ϕn(x,R)|Ψ(x,R, t)〉x (3.11)

These components can be used to calculate the populations in different states:

Pn(t) =

∫

|ψn(R, t)|2 dR (3.12)

In order to follow the motion of the nucleus and the electron we also calculate

the time-dependent electron and nuclear densities. They are defined as follows:

ρ(R, t) =

∫

|Ψ(x,R, t)|2 dx (3.13)

ρ(x, t) =

∫

|Ψ(x,R, t)|2 dR (3.14)

Figure 3.10 displays the dynamics of the nuclear and electron density. Due

to the special choice of the initial wave function the nuclear wave packet shows a

vibrational motion which is restricted to positions of R smaller than zero, i.e., it

moves in a single potential well and tunneling is negligible within the displayed
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Figure 3.10: Time-dependence of the nuclear and electronic density in the Born-

Oppenheimer case (Rc = 1.5 Å). The initial state is chosen such that the wave packet

dynamics is restricted to a single potential well.

time interval. The periodic changes of the nuclear density induce a temporal

variation of the electron density which takes place with the same period. In

other words, the electron density follows the displacement of the moving ion. In

the present case, the population P1(t) in the electronic ground state is equal to

one, so that the component |ψ1(R, t)|2 equals the nuclear density ρ(R, t). The

same applies if the initial conditions are modified such that the wave packet has

enough average energy to move over the symmetry point R = 0. This case, where

we used R0 = −4 Å as parameter in the representation of the initial wave packet,

is illustrated in figure 3.11. Initially, the nuclear density splits into a smaller

part which remains at negative values of R and a larger fraction moving over the

barrier. Already after about 100 fs, the density is completely delocalized and no

clear periodic motion can be distinguished at later times. On the other hand,

the electron density shows much clearer features. It follows the motion of the

nucleus changing its position from negative to positive x values. However, after

some time the electron density shows a bimodal distribution with maxima around

x = ±5.0 Å. Thus the nuclear motion induces an electron transfer between the

two potential wells. It is noteworthy that in the cases as discussed until now,
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higher electronic states are not populated, i.e., we have a Born-Oppenheimer

dynamics in the electronic ground state.
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Figure 3.11: Time-dependence of the nuclear and electronic density in the Born-

Oppenheimer case (Rc = 1.5 Å). The initial state is chosen such that the wave packet

is able to move between the two potential wells.

Now, let us turn to the strong coupling case (Rc = 2.5 Å). Here, the initial

state was again of the form given by equation (3.10) with the parameters β = 7.14

Å−2 and R0 = −3.0 Å. The nuclear density dynamics is displayed in the left part

of figure 3.12. A localized vibrational wave packet motion can be observed which

extends over the central potential barrier at R = 0. In comparison to the Born-

Oppenheimer dynamics shown in figure 3.11, the amplitude of the vibration is

much smaller. Also, the accumulation of electron density at positive values of the

coordinate x takes somewhat longer and no density is found around x = 0. This

stems from the fact that both, the n = 1 and n = 2 electronic basis functions

have a very small amplitude in this region (see figure 3.7).

The motion of the total nuclear density does not exhibit features of a nona-

diabatic transition. Therefore, we calculate the projections |ψn(R, t)|2, i.e., the

components of the nuclear wave function in the ground (n = 1) and first excited

(n = 2) electronic state. This is not necessary in the Born-Oppenheimer situa-

50



3.4. QUANTUM DYNAMICS

0

100

200

t [fs]

-4 -3 -2 -1 0 1 2 3 4
R [10-10 m]

ρ(R, t)

0

100

200

t [fs]

-10
-5

0
5

10
x [10-10 m]

ρ(x, t)

Figure 3.12: Time-dependence of the nuclear and electronic density in the strong cou-

pling case (Rc = 2.5 Å).

tion since there, as was stated above, the nuclear component in the ground state

is identical to the total nuclear density ρ(R, t). The time-evolution of the two

projections is displayed in figure 3.13. Starting in the electronic ground state

(left panel), the nuclear wave packet moves towards positive R values. After

about 25 fs, the probability density vanishes almost completely. Simultaneously,

density appears in the excited electronic state. The latter wave packet moves

outward reaching a turning point at R = 2 Å and returns until its magnitude de-

creases to zero. Naturally, due to norm conservation, the ground electronic state

is populated again. This finding is consistent with an interpretation based on the

adiabatic potential curves as displayed in figure 3.4: a wave packet, starting in

the n = 1 state moves towards the coupling region and a change of the electronic

state takes place. This process repeats itself as time goes on.

The obtained results can also be understood in terms of an electron trans-

fer process. In the Born-Oppenheimer case (figure 3.11), the vibrational motion

transfers electron density from negative to positive values of the electronic coor-

dinate. This transfer proceeds stepwise and without involving a change of the

electronic quantum number. At early times both, the nuclear and electron densi-
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Figure 3.13: Nuclear components |ψn(R, t)|2 in the electronic states n = 1 and n = 2,

as indicated (Rc = 2.5 Å).

ties, i.e., the entire wave packet Ψ(x,R, t), moves from one potential well to the

other. An alternative interpretation is in terms of an isomerization process: the

geometry of the ion chain changes since the middle ion oscillates between the two

stable ground state configurations. This, of course, goes along with an alternat-

ing bonding situation: the electron density binds the movable ion temporarily

to the left and then to the right ion which illustrates nicely that during an iso-

merization process electron density is transferred. At some point both stable

configurations are assumed with equal probability. However, this configuration is

not equilibrated; in contrary, as time proceeds, the initial wave packet is restored,

a phenomenon known as wave packet revival [64–68].

The situation is different in the case of strong coupling. Here the transfer of

density being located left of the middle ion to the region right of it goes in hand

with a nonadiabatic transition. This is documented in figure 3.14 which shows

various time-dependent functions. The upper panel contains the population P1(t)

in the lowest electronic state whereas the expectation value of the nuclear coordi-

nate is displayed in the lower panel of the figure. Additionally, the middle curve

shows the population
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Figure 3.14: Electron transfer dynamics in the strong coupling case: the upper panel

shows the population in the electronic ground state P1(t). In the middle panel the

population corresponding to positive values of the electronic coordinate x is shown

[see equation (3.15)]. The lower panel contains the expectation value of the nuclear

coordinate.

F (t) =

RR∫

0

ρ(x, t) dx (3.15)

which measures how much of the electron density is located at positive val-

ues of the electron coordinate, i.e, has been transferred into the region of the

second potential minimum. As it is suggested by the arrows in figure 3.14, the

population increases, when the lower electronic state is depopulated at the times

the nonadiabatic transition takes place. Likewise, if the back transition occurs,

another increase of F (t) can be observed. This stepwise electron transfer process

is efficient when the nuclear density is located in the vicinity of R = 0. As can

be taken from the temporal variation of the R expectation value, the transfer

occurs on the outward and inward motion of the nuclear density. Note that it
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takes several vibrational periods until a substantial amount of electron density is

accumulated in the right potential well.

The interpretation of the nuclear dynamics as an isomerization also differs

from what has been said above: for not too long time, the ion oscillates but the

electron remains, with a high probability, between the left and center nucleus.

This means that this, in fact, is not an isomerization process as might be inferred

from the nuclear density dynamics (figure 3.12) but is a simple vibrational motion

where the electron density does not follow the vibration and remains almost

stationary. This is in contrast to the BO dynamics taking place in a single

potential well (figure 3.10), where the density follows the vibrational motion.

3.4.2 Time-dependent Laplacians

Electron density is a rather insensitive quantity. Usually even low levels of theory

produce the same density as higher levels. Therefore, chemical bonding has been

investigated using various tools as applied to the electron density [51, 69]. One

quantity, as is often discussed, is the Laplacian of the density, which in our case

of a single electronic degree of freedom is

L(x, t) = ∆ρ(x, t) =
d2

dx2
ρ(x, t). (3.16)

Note that, whereas the conventional analysis does not include time, we here

deal with a time-dependent electron density. The negative time-dependent Lapla-

cian of the electron density is depicted in figure 3.15 for selected times dur-

ing the first vibrational period of the ionic motion. The over-the-barrier Born-

Oppenheimer casse [panels (a)] is compared to the strong coupling case [panels

(b)]. The usual interpretation is that regions, where −L(x) is positive, indicate

a concentration of electron density, whereas regions with a negative −L(x) char-

acterize areas with a depletion of electron density [69]. In the BO situation, the
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Figure 3.15: The time-dependent negative Laplacians of the electron density are dis-

played for selected times, as indicated. The Born-Oppenheimer case [panels (a)] is

compared to the strong coupling case [panels (b)].

concentration of the electron density is first limited to a small region of space

and exhibits a dynamics following the ionic motion (10, 20 and 30 fs). At a time

of 40 fs, where the nuclear density is very delocalized, one observes three regions

with enhanced electron concentration. These regions correspond to a sharing of

the electron density between the three ions with a separation by areas with sub-

stantial depletion. The strong coupling case, as depicted in panels (b) of figure

3.15, is characterized by an almost time-independent electron concentration at

negative values of the electron coordinate. The build-up of density at positive

values for times of 30 fs and 40 fs can hardly be seen.

Altogether, the time-dependent Laplacians illustrate the density dynamics

in a clearer way as the density itself, which is to be expected because of the

sensitivity of higher order derivatives to functional changes.
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3.5 Inverse Born-Oppenheimer approximation

When performing the Born-Oppenheimer approximation one usually takes it for

granted that the electrons move much faster than the nuclei. This leads to the

picture of nuclei moving on potential surfaces that are determined by the elec-

tronic structure of the molecule (see chapter 1.1). While this picture is reasonable

and has proven to be useful over the years, nothing prevents one to reverse the

procedure in a gedankenexperiment: Let us regard a total wavefunction Ψ(x,R)

that can be expanded into a basis of nuclear wave functions ψv(R, x), obtained

by fixing the electronic coordinate x.

Ψ(x,R) =
∑

v

ψv(R, x)ϕv(x) (3.17)

Here, x and R again denote the electronic and nuclear degrees of freedom,

ϕv(x) is an electronic wave function in a fixed vibrational state |v〉 and the nu-

clear wave function ψv(R, x) depends parameterically on the electronic coordi-

nate. The meaning of this expansion is not immediately clear, but the resulting

picture is about the following: Electrons move now on adiabatic surfaces for the

different vibrational states, obtained by solving the Schrödinger equation for fixed

electronic geometry. We will not go through all the mathematics here, as the the-

oretical description is analogous to the Born-Oppenheimer approximation, where

R and x have been exchanged.

From what has been said so far, the critic would naturally conclude that

such a kind of treatment is not physical. However, we can calculate the adiabatic

states that would result, if one solves the Schrödinger equation for fixed electronic

coordinate. The resulting curves for the already regarded cases (see section 3.3)

Rc = 1.5 Å (left panel) and Rc = 2.5 Å case (right panel) are shown in figure

3.16.
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Figure 3.16: Calculated adiabatic curves for fixed electronic coordinate x. The weak

(left panel) and the strong coupling case (right panel) are displayed.

The calculated potential curves exhibit two clear minima, one at positive,

the other at negative values of x. Looking at the Rc = 2.5 Å curves (left panel,

figure 3.16) the barrier between left and right potential well is approximately four

times as high as in the weak coupling case (right panel). This is in accordance

with the dynamical behaviour regarded in section 3.4, where the time-dependent

electron density remains nearly stationary during the vibrational motion of the

nucleus and only small amounts of density get transferred from the left to the

right fixd ion when the nucleus passes the coupling region around R = 0 Å.

The ground state energies are predicted as 0.81 eV (Rc = 1.5 Å) and 1.85 eV

(Rc = 2.5 Å), respectively, where the correct ground state energies are 1.64 and

1.90 eV. This discrepancy can easily be understood, if one concludes what kind of

interactions are neglected in this kind of treatment. As was mentioned earlier, the

BO approximation neglects coupling elements of the form (see equation (3.6)):

T (j)
mn(R) =

1

2M

∫

ϕm(x,R)
∂(j)

∂R(j)
ϕn(x,R) dx (3.18)

In our reversed Born-Oppenheimer picture these coupling elements then trans-
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form into:

T
(j)
vv′ (x) =

1

2me

∫

ψv(R, x)
∂(j)

∂x(j)
ψv′(R, x) dR (3.19)

Now the fundamental difference is immediately clear: Whereas in the usual

Born-Oppenheimer treatment the mass of the nuclei enters into the denominator

of the coupling elements which results in usually small numbers, the “reverse”

coupling elements are devided by the electron mass me. Thus the T
(j)
vv′ are at

least three orders of magnitude larger than the coupling elements in the Born-

Oppenheimer treatment. In other words one could say that the T
(j)
mn are negligibly

small within the BO picture, but that in the reversed treatment the neglect of

the coupling elements T
(j)
vv′ results in an unphysical description.

3.6 Summary

The purpose of this chapter was to characterize a combined electronic and nuclear

quantum dynamics. Therefore we performed calculations on a model system

incorporating a single electronic and nuclear degree of freedom. In order to

obtain as much information about the static properties of the system as possible,

we determined the electronic eigenfunctions, the adiabatic potential curves, the

kinetic coupling elements and the transition dipole moments between the ground

and first excited state. The potentials obtained for different parameterizations of

the particle interaction show, a larger gap or a close-lying avoided crossing. In

the latter case, this is accompanied by nonvanishing coupling elements.

The two cases, which are typical for a situation where the Born-Oppenheimer

approximation is valid and for the case of a strong nonadiabatic coupling which

results in the breakdown of adiabatic approximations, give rise to a different quan-

tum mechanical motion. The differences were illustrated employing solutions of
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the time-dependent Schrödinger equation which allow for the calculation of elec-

tronic and nuclear densities as a function of time. In the Born-Oppenheimer case,

the electron density follows the vibrational motion of the nucleus. Choosing the

initial condition for the two-dimensional wave packet such that an isomerization

process occuring between two potential minima takes place, the binding situation

first changes periodically. However, the transfer of electron density during the

motion of the nucleus results in an accumulation of density in different regions

of configuration space.

In the strong coupling case, neither the nuclear density nor the electron den-

sity (and thus the entire two-dimensional probability density) reflects directly the

influence of the nonadiabatic coupling. In calculating the nuclear components in

the ground and excited electronic state, the usual picture as it is obtained from

solutions of the nuclear Schrödinger equation involving coupled electronic states,

appears: during the transition, one component of the nuclear wave function van-

ishes whereas the other component simultaneously appears. In the particular

example we chose, the electron density initially remains stationary, although the

nuclear motion extends over a large interval of the nuclear coordinate. This is

remarkable, because the existence of a strong coupling suggests dramatic den-

sity changes taking place at times when the electronic transition occurs. At the

latter times, a small fraction of electron density is transferred between the ions

which then, at later times, leads as well to an accumulation of electron density

at positive and negative values of the electronic coordinate.

The concentration and depletion of electron density during the wave packet

motion can effectively be illustrated using time-dependent Laplacians. These

functions, which are often used to reveal properties of the electron density in

static problems, prove to be useful also in the analysis of dynamical processes.

The attempt to reverse the Born-Oppenheimer approximation by freezing

the electron coordinate and solving the nuclear Schrödinger equation leads to
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the unphysical picture of electrons that move on “nuclear” potential surfaces

belonging to different vibrational levels. From the energetics alone it is clear that

this results in a bad description as, e.g., an electronic excitation would take place

on a single potential energy surface and the vibrational motion of the nuclei would

not change. This is also clear if one considers the neglected coupling elements

which turn out to be rather large.
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Chapter 4

Electronic predissociation

4.1 Introduction

In this chapter we regard some distinct bonding situations that are often en-

countered in real molecules. A famous example for the breakdown of the Born-

Oppenheimer adiabatic approximation (see chapter 1.1) is the electronic predis-

sociation of molecules [8]. Two theoretical frameworks to describe such a decay

mechanism are commonly employed: Within the so-called diabatic picture [70]

this process takes place, when a bound (diabatic) potential energy curve V d
n is

intersected by another repulsive potential V d
m. Including an off-diagonal potential

element leads to a coupling of the bound states to the continuum, so that the

molecule dissociates. This effect is visible in the energy dependence of observables

such as absorption spectra [45] or scattering cross sections [71,72] in the form of

resonances. In the case of a small diabatic coupling (the “diabatic limit”), the

decay is associated with a long lifetime of the quasi-bound complex which, in

turn, means that the resonances have a small spectral width.

In the adiabatic picture one chooses a different physical description of a predis-

sociation. The adiabatic potential curves V a
n (R) are uniquely obtained from the
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solution of the electronic Schrödinger equation (equation (1.5)) for fixed nuclear

geometry R. In the case where nonadiabatic effects are large, an adiabatic curve

exhibits an avoided crossing (diatomic molecule) [73] or a conical intersection

(polyatomic molecule) [10] with the potential surface of another electronic state.

The interaction is provided by kinetic coupling elements containing derivatives of

the electronic wave function with respect to the nuclear coordinate. The case of

a strong coupling, corresponding to a large probability to change the adiabatic

electronic state, is identical to the case of a weak diabatic coupling which often

leads to confusion if the couplings and the zeroth-order picture of the description

are not accurately defined.

The above mentioned predissociation process can easily by studied within the

earlier introduced model system (chapter 3) and only minor modifications to the

Hamiltonian are necessary to generate the corresponding binding situation. We

focus our interest again on the quantum dynamics and we mainly illustrate the

nucleus mediated transient electronic structure during the molecular fragmenta-

tion. The next section describes the modifications to the model Hamiltonian of

chapter 3.2. The following section then deals with the resulting changes to the

dynamic behaviour.

4.2 Modifications to the model

We use the same model system already introduced in chapter 3.2 consisting of

three ions aligned in a row and a single electron. The Hamiltonian of the model

system (equation (3.1)) is modified as follows (in a.u.):

H = −1

2

∂2

∂x2
− 1

2M

∂2

∂R2
+ V mod(x,R), (4.1)
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where

V mod(x,R) =
Z1Z3

|RL − R|
+ Z2Z3

erf(|RR − R|/R23)

|RR − R|
− Z1

erf(|RL − x|/R1e)

|RL − x|

− Z2
erf(|RR − x|/R2e)

|RR − x|
− Z3

erf(|R− x|/R3e)

|R− x| + E0. (4.2)

In above equation Zn (n = 1−3) are the charges of the nuclei which follow the

numbering left ion (1), right ion (2) and moving ion (3). Contrarily to our former

model, we employ a screened Coulomb interaction between ions (2) and (3) which

is parameterized by an error function (erf). The same kind of functional form

is used to describe the ion-electron attraction. The repulsion between ions (1)

and (2) is omitted, as it just adds a constant energy shift to the Hamiltonian.

The positions of the fixed ions are chosen as RL = −5 Å and RR = +5 Å.

Various parameters allow for a manipulation of the interaction: The mass of the

moving ion M , the charges of the ions Zn (n = 1−3) and the screening radii Rne

(n = 1− 3). The constant E0 shifts the global minimum of the full potential to

0 eV.

Again, we solve for fixed nuclear geometry R the electronic Schrödinger equa-

tion to obtain the adiabatic potential curves and the corresponding electronic

eigenfunctions ϕn(x,R) in electronic state |n〉 (in a.u.):

{

−1

2

∂2

∂x2
+ V (x,R)

}

ϕn(x,R) = V a
n (R)ϕn(x,R) (4.3)

Also, to characterize the dynamics in the system, we solve the time-dependent

Schrödinger equation for the full Hamiltonian (4.1), applying the split-operator

formalism (see chapter 2.1). Furthermore, the time-dependent motion is ana-

lyzed by calculating the integrated nuclear and electron densities from the time-

dependent wave function (eqns. (3.13) and (3.14)). The nuclear densities in a

particular electronic state |n〉 (see eqn. (3.11)) are obtained by projecting the full
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wave function Ψ(x,R, t) onto the electronic basis functions defined in equation

(4.3).

4.3 Electronic structure

The functional form of the potential energy (equation (4.2)) allows us to modify

the particle interaction in a convenient way. In the following we show, that, using

this parameterization, it is possible to generate adiabatic potential energy curves

V a
n (R) for the nuclear motion describing various generic electronic structures

which also occur in diatomic molecules. In order to restrict the parameter space

the mass of the moving ion is fixed to the hydrogen mass and the stationary

ions (1) and (2) are kept at a distance of 10 Å (RL = −5 Å and RR = +5 Å).

The screening radii corresponding to the electron’s interaction with the fixed ions

were set to R1e = R2e = 1.5 Å. The charges are allowed to be non-integer values,

thus having the interpretation of effective charges.

Figure 4.1 displays the potential curves for the electronic ground (|1〉) and

first excited state (|2〉), calculated for different parameters. The upper panel a)

contains the case where the ground state potential exhibits a double-minimum

structure and the first excited state is separated by a larger gap of about 0.5 eV.

In calculating the curves, all charges were set to Zn = 1, the electron-nuclear

interaction was determined with R3e = 1.5 Å and the nuclear interaction of ions

(2) and (3) contained the parameter R23 = 1 Å. The plot illustrates the situation

where the adiabatic approximation between the nuclear and electronic degree of

freedom applies. This case was already investigated in detail in chapter 3.

A situation where the ground state is bound and the first excited state is

dissociative can be constructed by decreasing the repulsion between ions (2) and

(3). Therefore we set Z1 = Z3 = 1 and Z2 = 0.001. The resulting curves are
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Figure 4.1: Adiabatic potential energy curves for the electronic ground (solid line)

and first excited state (dashed line), calculated using different parameters entering into

the interaction potential of the model system. Panel a) shows the case of an electronic

ground state having a double minimum potential and an energetically seperated excited

state (Zn = 1, R3e = 1.5 Å, R23 = 1.0 Å). The case of a bound ground state and

dissociative first excited state is illustrated in panel b) (Z1 = Z3 = 1, Z2 = 0.001,

R3e = R23 = 1.5 Å). Panel c) contains curves where ground and excited state potentials

exhibit an avoided crossing which is typical for a predissociation process (Zn = 1,

R3e = 1.75 Å, R23 = 2.3 Å).

displayed in panel b) of figure 4.1. This is the typical situation of a bound-

to-free transition upon electronic excitation, as is already obtained in a simple

LCAO-approach to e.g. the H+
2 molecule using two basis functions.

Regarding panel c) of figure 4.1 the model interaction was modified such that

the lower and the upper adiabatic potential curves exhibit an avoided crossing
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4.4. PREDISSOCIATION DYNAMICS

around R = 0. Here the lower curve decreases in energy for distances of R larger

than R = 0, i.e. the system is not stable. This is the characteristic situation of

an electronic predissociation where a diabatic ‘quasi-bound’ initial state decays

via a coupling to a continuum. The construction of such a situation is possible

by setting all charges Zn = 1 and choosing R3e = 1.75 Å and R23 = 2.3 Å.

Altogether, we find from figure 4.1 that, within the parameterization of the

potential energy (equation (4.2)), it is possible to generate adiabatic potential

curves which are generic for ground and excited state configurations belonging to

a bound-bound, bound-free and quasi-bound nuclear dynamics.

4.4 Predissociation dynamics

In this section we take a look at the changes in the dynamical behaviour that are

caused by the modification of the model Hamiltonian. Our discussion focusses

on the system that exhibits predissociation (figure 4.1, panel c)). Usually nuclear

dynamics is treated by propagating wave packets on diabatic potentials, including

a potential coupling between the different states. Within our model system we

can abstain from that and regard the coupled electron-nuclear motion directly.

The initial wave packet was of the form

Ψ(x,R, t = 0) = e−β(R−R0)2 ϕ1(x,R), (4.4)

where β = 2.12 Å
−1

and R0 = −3.4 Å. The wave packet was initially located in

the electronic ground state. The time evolution of the nuclear density is displayed

in figure 4.2 (left panel). The initially localized Gaussian function moves towards

larger distances and spreads considerably during the first few fs. The spreading

proceeds and at 40 fs the density is almost totally localized at positive values of R.

At later times, probability density moves inward again, after it has been reflected
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4.4. PREDISSOCIATION DYNAMICS

on the right end of the grid. As the electronic ground state is dissociative and

the wave function is absorbed at the right grid boundary, this must be due to

nonadiabatic processes taking place. At about 80 fs the nuclear density shows a

larger maximum around R = 0.

Regarding the total nuclear density it is not possible to decide which elec-

tronic states participate in the predissociation process. Therefore, we regard the
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Figure 4.2: Time-dependent nuclear and electron densities during a predissociation

process. The original wave packet was located in the electronic ground state centered

left from the avoided crossing at R = 0. The detailed parameters are given in the text.
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Figure 4.3: Modulus squared of the projections of the total wave function Ψ(R, x, t)

onto the electronic ground (left panel) and first excited state (right panel).
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modulus squared of the projections ψn(R, t) (eqn. (3.11)), which are shown in

figure 4.3. Since the wave packet of equation (4.4) is, by definition, a ground

state function, the projection ψ1(R, t = 0) is identical to the total nuclear den-

sity ρ(R, t = 0), see figure 4.2. As is seen in the total density, the function moves

outward until it reaches the crossing region where the nonadiabatic coupling is

effective (∼ 20 fs). Then, part of the total density is transferred to the first elec-

tronically excited state (around 40 fs), the rest remains in the electronic ground

state. At a time of about 60 fs, the excited state density is reflected at the

outer potential wall, thus exhibiting an oscillatory structure which is caused by

the superposition of inward and outward moving components. There is, besides

the dissociative part, another ground state component seen at negative distances

which corresponds to a flux reflected at the potential barrier. Finally, at a time

of about 80 fs, a re-population of the electronic ground state occurs, but most

of the density remains in the excited state. The dynamics taking place at longer

times proceeds accordingly and is not shown here.

The nuclear wave packet dynamics for our model system is in accordance with

the general quantum mechanical description of a motion taking place on coupled

potential energy surfaces (see also references [74, 75]). The advantage here is

that we are in the position to simultaneously monitor changes of the electron

density, i.e. we might answer our initial question for the changes in the electronic

structure during a predissociation process. Figure 4.2 (right panel) displays the

electron density ρ(x, t). In order to analyze the electron density, it is necessary

to compare the density to the electronic eigenfunctions ϕn(x,R). The modulus

squared of the electronic ground and first excited state functions are plotted in

figure 4.4.

Now, in the beginning the nucleus is located around R = −3 Å and electron

density resembles that of the electronic ground state (ϕ1(x,R)). A little later

(around 20 fs), the mobile ion has reached the coupling region around R = 0,
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Figure 4.4: Electronic eigenfunctions for the predissociation case. The electronic

ground (left panel) and first excited (right panel) state are shown. The corresponding

adiabatic potential curves can be found in figure 4.1, panel c).

but still most of the population is in the n = 1 state. Accordingly, the electron

density is dominated by the features of the respective electronic wave function.

Even some time later (40 fs), where fragmentation has occured with a relatively

high probability the electron density does not exhibit any nodes from the excited

state electronic function. At 60 fs, however, the nodal structure of the excited

state function becomes visible in the electron density for positive values of x. As

most of the population stays in the excited electronic state, the electron density

at about 100 fs still shows the nodal structure of the excited state wave function.

Again, it follows from this analysis that the dynamics in the system is dominated

by a strong nonadiabatic coupling. We find the typical nuclear dynamics of

coupled electronic states, whereas the electron density exhibits a complicated

structure due to the mixing of ground and excited state properties due to the

coupled motion.
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4.5 Summary

In this chapter we showed that it is possible to modify our model system to

mimic distinct bonding situations that are often encountered in real diatomic

molecules. These situations can be characterized in terms of adiabatic potential

curves with bound and dissociative character. In the case of electronic predisso-

ciation, where the electronic ground state is dissociative in the asymptotic limit,

the adiabatic curves also exhibit an avoided crossing. Our model system has the

huge advantage that we are not restricted to a Born-Oppenheimer description

and thus, we need not apply a diabatic description for the nuclear dynamics. In

contrary, we could demonstrate how the character of the electron density changes

during the fragmentation. The nonadiabatic coupling mixes properties of ground

and excited state electronic wave functions, giving rise to a complicated transient

electronic structure of the system.
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Chapter 5

Spectroscopic transitions

5.1 Introduction

In chapter 3 we investigated the quantum dynamics in a simple model system

in the cases of weak and strong coupling. There, our interest was focussed on

the properties of time-dependent nuclear and electron densities. Chapter 4 then

attended the possibility to modify the original Hamiltonian (equation (3.1)) to

model various generic electronic structures. In particular we studied a predissoci-

ation case. In this chapter we turn to spectroscopic transitions, employing again

the model of chapter 3.2 to characterize the quantum dynamics in the case of the

interaction with weak and strong electric fields. The motivation for this study is

to investigate the influence of nonadiabatic coupling on spectral properties of a

system and to follow simultaneously electronic and nuclear motion in laser fields

without adopting approximations.

The interaction of an atom or molecule with a weak electric field is usually

described within first-order perturbation theory, as outlined in chapter 1.4. Es-

sentially, the interaction term is introduced (into the Hamiltonian) as a small

time-dependent perturbation. In the case of strong fields a perturbative treat-
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ment is no longer valid. The interaction with the electromagnetic field has to be

considered explicitly. This means, even within the Born-Oppenheimer picture the

adiabatic states are no longer decoupled and population transfer can occur. The

explicit coupling between the adiabatic states can be implemented in a similar

way as in the diabatic description of nonadiabatic coupling. In the latter case

the states are coupled by off-diagonal potential coupling terms, in the former the

field couples different states (see chapter 1.5). Fortunately, we are in the position

to omit the Born-Oppenheimer approximation in our model system, so that the

interaction term with the field can be included into the full model Hamiltonian.

Section 5.2 treats one-photon transitions in the weak field regime. The case of

strong fields and multiphoton processes is described in section 5.3.

5.2 One-photon transitions

5.2.1 Absorption spectra

In this section we treat one-photon electric dipole transitions within the frame-

work of first-order perturbation theory. Starting from the initial state ψi with

energy Ei, the absorption spectrum can be written according to Fermi’s golden

rule expression (see chapter 2.2):

σi(E) ∼
∑

f

|〈ψf |µ|ψi〉|2 δ(Ef − E), (5.1)

where |ψf〉 is a final state of energy Ef . The energy E = Ei +ω is the sum of the

inital state energy Ei and the photon energy ω and µ denotes the projection of the

dipole operator onto the polarization vector of the electric field. The expression

for the absorption spectrum can be recasted in a time-dependent form as [76]:
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σi(E) ∼
∫

eiEtci(t) dt, (5.2)

where the time-dependent correlation function ci(t) is defined as

ci(t) = 〈µψi|e−iHtµψi〉, (5.3)

and H denotes the Hamiltonian of the system.

In our model, the dipole operator is of the simple form (in a.u.)

µ = −x +R (5.4)

and thus is of odd parity.

3.5 4.5 5.5
E [EV]

0

a

σ

1,0

(1.5)

σ (2,E)

(E)

Figure 5.1: Upper panel: absorption spectrum for a cut-off parameter of Rc = 1.5 Å.

Only a restricted energy range between 3.5 and 5.5 eV is displayed. The lower panel

displays the spectrum as calculated within the adiabatic approximation.

We first treat the case where the parameter appearing in the electron-nuclear

interaction (equation (3.2)) has a value of Rc = 1.5 Å. Here, we find a ground
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state energy of E0 = 1.6488 eV. The absorption spectrum is plotted in figure 5.1,

upper panel, in an energy range around E = 4.5 eV. Many low intensity peaks are

seen for higher energies outside the displayed energy range. Additionally, there is

a single large peak at an energy close to E0 corresponding to a transition to the

first vibrationally excited state which is energetically almost degenerate with the

ground state. The absorption spectrum exhibits a clear vibrational progression.

However, there is a set of peaks with much smaller intensity.

In order to understand the structure of the spectrum, the latter was calculated

using the adiabatic approximation. Therefore the nuclear Schrödinger equation

(1.15) was solved employing the adiabatic potential curves Vn(R). The spectrum

takes the form

σa
n,v(m,E) ∼

∫

eiEtcan,v(m, t) dt, (5.5)

where E = En,v + ω contains the vibrational energy En,v in the electronic state

|n〉 and the autocorrelation function is

can,v(m, t) = 〈µa
mnψn,v|e−iHmtµa

mnψn,v〉. (5.6)

Here enters the initial vibrational wave function ψn,v(R), the nuclear Hamil-

tonian Hm of the final electronic state |m〉 and the transition dipole moment

µa
mn(R) = 〈ϕm(x,R)| − x +R|ϕn(x,R)〉. (5.7)

We calculated the initial wave function ψ1,0(R) in the electronic ground state

|1〉 with the eigenenergy of E1,0 = 1.6490 eV which is in very good agreement

with the numerically exact value. Using the electronic wave functions for the

ground and first excited electronic state, the transition dipole moment was de-

termined and found to be only weakly R-dependent in the region where ψ1,0(R)
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Figure 5.2: Adiabatic potential energy curves for the case Rc = 1.5 Å. Also shown is the

vibrational ground state in |1〉. The lines indicate the borders of the Franck-Condon

window for the electronic transition and the arrow marks the energetic position for a

vertical transition.

is localized. This means that the commonly employed Condon approximation,

which neglects the dependence of µmn on the nuclear coordinates, is valid in the

present case. The spectrum, as calculated within the adiabatic approximation,

is shown in figure 5.1, lower panel. The intensity distribution and the locations

of the peaks coincide with those of the high intensity lines in the numerically

exact spectrum σ0(E). However, the progression of smaller peaks is not found

within the adiabatic approximation. In order to understand the features of the

spectra we may regard the adiabatic potential curves Vn(R) (n = 1, 2) which

are displayed in figure 5.2 for negative values of R. Note that the potentials are

symmetric with respect to R = 0.

The vibrational ground state wave function ψ1,0(R) is also shown. The vertical

lines indicate the Franck-Condon window, i.e., the region where transitions from

the initial state are most likely to occur. The arrow starting at the maximum

of the vibrational function marks a vertical transition, in accordance with the
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Franck-Condon principle (see also section 5.2.2).

Regarding the absorption spectrum σ0(E) in figure 5.1, it is obvious that the

larger set of peaks correlate with an excitation into the second electronic state |2〉.
Within the adiabatic approximation, a transition to vibrational states in state |3〉
having energies in the displayed energy range, are not to be expected since the

vibrational wave functions have no overlap with the initial state. Thus, the small

set of peaks missing in the spectrum σa
1,0(2, E) are due to nonadiabatic effects.

Although the coupling between the excited electronic states |2〉 and |3〉 is weak

(see chapter 3), it induces a mixture of vibrational components corresponding to

different electronic states. It is this mixing which then results in the additional

peaks.
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Figure 5.3: Absorption spectrum for the case Rc = 2.5 Å.

Next, we regard the case Rc = 2.5 Å which induces a strong nonadiabatic

coupling between the two lowest electronic states (see chapter 3). The absorption

spectrum obtained from a two-dimensional time propagation is contained in figure

5.3. Several electronic bands with a vibrational progression can be identified, the

largest being centered around an energy of 4.8 eV. As for the case treated above,

76



5.2. ONE-PHOTON TRANSITIONS

−4 −3 −2 −1 0
R [10

−10
 m]

0

2

4

6

8

10

V
 [e

V
]

(2.5)

|1

|2

|3

Figure 5.4: Adiabatic potential curves for the case Rc = 2.5 Å. The Franck-Condon

window defined by the location of the inital wave function and the region for a vertical

transition are marked.

we calculated adiabatic potentials Vn(R) which, for quantum numbers n = 1− 3,

are displayed in figure 5.4. As was indicated earlier (chapter 3), a substantial

electron-nucleus coupling occurs in the region around R = 0 where the potential

curves for the two lowest states exhibit only a small energy gap of 0.05 eV.

The displayed Gaussian indicates the vibrational ground state wave function.

The lines mark the Franck-Condon window for transitions to excited electronic

states. From the figure one would expect a first absorption band centered around

an energy of ∼ 3.7 eV (|2〉 ← |1〉). This band indeed can be seen in the complete

absorption spectrum σ0(E) (figure 5.3), however, it appears with a very low

intensity compared to other bands, in particular to the next one corresponding

to a |3〉 ← |1〉 transition. Let us concentrate on the first absorption band which

may be determined using various levels of approximation. Within the adiabatic

approximation, we can calculate the spectrum for the |2〉 ← |1〉 transition using

equations (5.5) - (5.7). The result is diplayed in figure 5.5, lower panel. Neither

the line positions nor the vibrational spacing is comparable to the exact spectrum
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5.2. ONE-PHOTON TRANSITIONS

which is shown on an enlarged scale in the upper panel of the same figure. As

a conclusion, the strong nonadiabatic coupling of the two electronic states with

quantum numbers n = 1, 2 leads to a complicated spectrum and the adiabatic

approximation breaks down completely.
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Figure 5.5: Comparison of adiabatic (lower panel), diabatic (middle panel) and com-

plete absorption spectrum (lower panel) for the case Rc = 2.5 Å.

The electron-nuclei coupling can be introduced using a potential coupling be-

tween the electronic states. The concept behind this approach is that of “diaba-

tization” of electronic states, which, by definition, minimizes the kinetic coupling

elements appearing in the coupled Schrödinger equation for the nuclear wave

functions in different electronic states (equation (1.11)) [11]. The problem to

construct diabatic potential curves has been discussed extensively; see e.g. the

reviews [77, 78]. Here we take a simple approach: the intersecting (diabatic) po-

tentials are constructed starting with the adiabatic potentials V1 and V2. In the

coupling region around R = 0 we introduce a linear fit which connects the upper

potential for positive values of R continuously with the branch of the lower po-

tential for negative values of R. Likewise the two other branches are connected.
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5.2. ONE-PHOTON TRANSITIONS

This yields intersecting potentials V d
1 (R) and V d

2 (R). Using the diabatic and

adiabatic potentials we may determine potential coupling matrix elements V d
12

so that the diagonalization of the diabatic potential matrix yields the adiabatic

potentials. Further details on the diabatization is given in appendix A. In order

to calculate the spectrum, an initial nuclear wave function has to be propagated

with the Hamiltonian involving two coupled electronic states. In more detail, the

spectrum takes the form

σd
n,v(m,E) ∼

∫

eiEtcdn,v(m, t) dt, (5.8)

where E = ω + En,v and the autocorrelation function is

cdn,v(m, t) = 〈µd
mnψm,v|e−iHmntµd

mnψn,v〉. (5.9)

Here enters the vibrational Hamiltonian (for n = 1 and m = 2):

H21 =




T (R) + V d

1 (R) V d
12(R)

V d
21(R) T (R) + V d

2 (R)



 , (5.10)

where T (R) is the operator of the kinetic energy. Note that the nuclear wave

function consists of two components, i.e., ψnm(R, t) = (ψn(R, t), ψm(R, t)), where

the initial condition is ψnm(R, 0) = (0, µd
mnψn,v). Within the ideal diabatic rep-

resentation, the transition dipole moment µd
mn is a constant and we set it to

unity in what follows. The time propagation is performed as is described in ref-

erence [79]. The diabatic spectrum is shown in figure 5.5, middle panel. Here

we find a vibrational progression where the single lines coincide with those in

the complete spectrum σ0 (upper panel). This confirms that one indeed has to

consider the nonadiabatically coupled ground and first excited state in order to

find a reliable spectrum. Of course, since the diabatic transition dipole moment
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5.2. ONE-PHOTON TRANSITIONS

was set to unity, the intensity of the spectrum cannot be compared to σ0. As for

the intensity of the |2〉 ← |1〉 relative to the |3〉 ← |1〉 transition, we calculated

the transition dipole moments around distances of R = 1.5 Å, i.e., within the

Franck-Condon window for the electronic transitions. These moments vary only

weakly with the nuclear coordinate R. For the ratio of the square of the dipole

moments |µ31/µ21|2 we found a value of about 1600 which explains the intensity

variations in the spectral lines for the two transitions. The reason for the different

magnitude of the moments lies in the electronic wave functions which enter into

the calculation: whereas the function for n = 3 is located in the same region as

the ground state electronic function at negative values of x, the n = 2 function

is located almost exclusively at positive values of x and thus has small overlap

with the ground state (see also chapters 3.3.2 and 3.3.4).

It should be noted that the choice of diabatic states “is not unique and it is

up to each investigator to find the one that is most convenient for the problem

at hand” [37]. This can be illustrated by regarding the absorption spectrum in

the Rc = 2.5 Å case. Above we showed that the interpretation of the spectrum

at lower energies is possible within our choice of diabatic states. This, as well,

applies to the next intense absorption band appearing around 4.5 eV (see figure

5.3) which, by inspection of figure 5.4, can be identified as belonging to the

|3〉 ← |1〉 transition. Here the third diabatic curve, if constructed as described

above, will be the one intersecting the potential curve V d
2 (R) around R = −2.9

Å. Shin and Metiu constructed another set of three diabatic states. Whereas the

diabatic potentials for the two lowest states are identical to ours, the curve of the

third state (describing an “atomic” situation, where the electron interacts only

with the movable ion) differs substantially from the one of our third state. The

potential of the atomic like diabatic state crosses our curve V d
2 (R) at a distance

of R = −1.5 Å, i.e., in the Franck-Condon region for the |2〉 ← |1〉 transition (see

figure 5.4). This means that the |3〉 ← |1〉 absorption band cannot be described
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5.2. ONE-PHOTON TRANSITIONS

within the choice of the three diabatic states used in reference [37]. However, as

is discussed in detail by Shin and Metiu, valuable physical insight into the nature

of charge-transfer processed can be gained employing their set of electronic basis

states.

5.2.2 Electron and nuclear dynamics during spectroscopic

transitions

We turn now to the transient features of our system occuring during the in-

teraction of the particles with an external electric field. In particular, we are

interested in temporal changes of the vibrational and electronic parts of the wave

function. Equations (5.1) and (5.2) are based on first-order time-dependent per-

turbation theory. The first-order correction to the total wave function, created

by a perturbation W (t) is of the form (see chapter 1.4)

|ψ(1)(t)〉 =
1

i

t∫

−∞

e−iH(t−t′) W (t′) e−iHt′ |ψi〉 dt′. (5.11)

For dipole transitions induced by a field with carrier frequency ω, the inter-

action energy W (t) is

W (t) = −1

2
µ g(t) e−iωt, (5.12)

where we are interested in absorption processes. In the numerical example, the

pulse envelope g(t) is chosen as

g(t) =







e−β(t−t0)2 (t < t0),

1.0 (t ≥ t0).
(5.13)
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This is a Gaussian pulse which rises to its maximum at t = t0 and then re-

mains constant. The Gaussian was chosen to have a full-width-at-half-maximum

(FWHM) of 50 fs and a center at t0 = 50 fs.

Instead of following the time dependence of the wave function Ψ(1)(x,R, t),

we regard again the electron and nuclear densities defined as

−10 −5 0 5 10
x [10−10 m]

0.3 fs

0.5 fs

0.7 fs

0.9 fsρ(x,t)

−4 −2 0 2 4
R [10−10 m]

4 fs

20 fs

36 fs

56 fs(R,t)ρ

Figure 5.6: Dynamics of the excited state electronic density (left panels) and the nuclear

density (right panels), during a weak field excitation for the case of Rc = 1.5 Å. The

electron density becomes stationary within the first femtosecond of the excitation,

whereas it takes about 60 fs for the vibrational state to settle into a stationary state.

ρ(x, t) =

∫

|Ψ(1)(x,R, t)|2 dR, (5.14)

ρ(R, t) =

∫

|Ψ(1)(x,R, t)|2 dx. (5.15)

Figure 5.6 (left panels) displays the time-dependent electron density within

the first femtosecond of the field-system interaction (Rc = 1.5 Å). A photon
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energy of E = Ei + ω = 2.815 eV was chosen which corresponds to the largest

peak in the first absorption band occuring at a total energy of 4.464 eV (see

figure 5.1. At a time of 0.3 fs, the density resembles the density of the initial

state which is symmetric with respect to x and is approximately zero around

x = 0. With increasing time, a nodal structure builds up between the two

maxima (0.5 and 0.7 fs). Finally, at 0.9 fs, the outer maxima have reached

values which are smaller than the new maxima appearing in the intermediate

region. For longer times, the electron density does not change its form anymore,

only the norm increases. Thus, with respect to the electronic degree of freedom

a stationary state is obtained. The corresponding electronic eigenstate has to

be antisymmetric, thus, by inspection of figure 5.6, it has a single node, i.e.,

the electronic quantum number is n = 2 (in our notation where the symmetric

electronic ground state has the label n = 1). This, of course can directly be seen

in the complete wave function Ψ(x,R, t).

Next, we regard the nuclear densities which are displayed in figure 5.6, right

panels. The density at 4 fs has the structure of the initial vibrational state. With

increasing time, probability density builds up around the symmetry point R = 0.

At about 36 fs, a nodal structure appears which becomes more pronounced as

time elapses. Only minor changes are seen after 56 fs (not shown), so that the

stationary structure of the vibrational wave function is prepared within a time

scale of 60 fs.

A comparison of the electronic and nuclear densities in figure 5.6 documents

that the electronic motion proceeds on a much faster time scale than the nuclear

motion. Here we see the Franck-Condon principle at work, stating that, during

an electronic excitation process, the nuclei do not move [80]. Regarding the elec-

tronic and nuclear wave functions (or densities) this, more precisely, means that

during a field-induced transition, the electronic wave function becomes stationary

(in the sense that its structure remains the same and only its norm increases with
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time) on a very short time scale, whereas it takes much longer for the nuclei to

settle into a stationary state.

5.3 Strong-field dynamics

In what follows, we investigate the interaction of the electron/nuclei system with

a strong electric field. As already mentioned above, perturbation theory has to be

abandoned and the propagator now contains the Hamiltonian of the unperturbed

system and an additional interaction term as

W (x,R, t) = −µ(x,R)g(t)cos(ωt). (5.16)

In propagating the wave function with the time-dependent Hamiltonian, we

use small time steps ∆t = 0.01 fs so that, during a propagation step, the interac-

tion term can be approximated as being constant [81]. The numerical calculation

used a Gaussian pulse envelope with a FWHM of 50 fs, a frequency of ω = 2.65

eV and an intensity of 5 × 1012 W/cm2. Thus the field is in resonance with the

electronic transition |3〉 ← |1〉 in the case of Rc = 2.5 Å which is treated here.

In order to evaluate the efficiency of multiphoton transitions, we have used the

time-dependent wave function after the excitation pulse stopped at a time of

t0 = 150 fs to calculate a spectrum as

σ(E) =

∫

eiEt〈ψ(t0)|ψ(t0 + t)〉 dt. (5.17)

The first four high intensity bands of the spectrum are displayed in figure 5.7.

Additionally, the absorption band around 4.5 eV is included in an extra panel

on an enlarged scale. Many more peaks of lower intensity appear outside the

displayed energy range. The spectrum documents that the interaction with the
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Figure 5.7: Spectrum after strong-field excitation of the model system (Rc = 2.5 Å).

The band around 4.5 eV is depicted on an enlarged scale in the extra panel.

intense field leads to multiphoton transitions of high order so that many electronic

states are excited. Within each electronic state several vibrational states are

populated as is revealed by the vibrational fine structure of the spectrum (see,

e.g., the extra panel in figure 5.7).

The dynamics of the driven system is illustrated in figure 5.8. For the em-

ployed frequency, the optical cycle of the pulse is about 1.5 fs. Figure 5.8 (left

panels) shows that the electron density follows the periodic variation of the field.

Thus the quiver motion as is found for a free electron in an oscillating field is

seen here as well, but is modified by the presence of the field of the nuclei. On

the other hand, the much heavier nucleus cannot follow the fast field oscillations.

The time-evolution of the nuclear density is diplayed in figure 5.8 (right panels)

for various times during the external perturbation. From the irregular features of

the density it is to be expected (which is also evident from the spectrum in figure

5.7) that many vibrational states participate in the nuclear dynamics. This can

be further analyzed by regarding times, for which the interaction has stopped

so that an unperturbed time evolution takes place. Figure 5.9 documents that
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Figure 5.8: Electron and nuclear dynamics during the interaction with an intense laser

pulse. Whereas the electron density follows the optical period of the applied field, the

nuclear density exhibits a dynamics only after about 50 fs.

the field has prepared an electronic and vibrational wave packet: the electron, as

well as the vibrational density exhibit temporal changes. Here the time scale for

the electronic motion can be estimated by the energetic separation ∆Eel of the

absorption bands in figure 5.7. This yields a time scale of Tel = 2π/∆Eel ≈ 1.6

fs and indeed the variation of the electron density takes place on this time scale.

On the other hand, many vibrations with different level spacings ∆Evib are ex-

cited yielding times Tvib = 2π/∆Evib ranging from 30 to 100 fs. This leads to

the complicated vibrational dynamics as is documented in the nuclear densities

displayed in figure 5.9.

In atoms, electronic wave packets can be prepared by an external field and

their dynamics may be tracked in real time [82]. On the other hand, the discus-

sion of strong field interactions with molecular systems is centered around the
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Figure 5.9: Electron and nuclear dynamics after the interaction with an intense laser

pulse. The interaction has prepared a coherent superposition of electronic and vibra-

tional states. The fast motion of the electronic wave packet (left panels) and the slower

vibrational wave packet (right panels) can be distinguished.

production of nuclear (rotational-vibrational) wave packets; see, e.g. the review

by Giusti-Suzor et al. [83]. Here, we are able to follow the electronic and nuclear

wave packets simultaneously. This stresses the power of the employed model, with

respect to an analysis of quantum dynamics beyond adiabatic approximations.

It is clear that the quantum dynamics will be reflected in any kind of time-

dependent observable. As an example, we regard the expectation value of the

dipole moment defined as

µ(t) = 〈ψ(t)|µ|ψ(t)〉. (5.18)

Figure 5.10, lower panel, contains this quantity which exhibits very fast os-
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cillations and a more slowly varying amplitude. The period of the faster time

variation is about 1.5 fs., i.e., is equal to the time scale for the electronic mo-

tion Tel as estimated above. Then, the longer periods which are reflected in the

beating structure of the overall amplitude are due to the vibrational motion.

One has to keep in mind that the electronic motion here is much too fast to

be directly observed in an experiment owing to the limited time resolution. To

illustrate this point we regard the absolute square of the dipole moment which is

proportional, under certain conditions, to the intensity of the emitted radiation,

see reference [84]. Performing an average using a square window function of 10

fs yields the curve as displayed in the upper panel of figure 5.10. Now the fast

oscillations (for electronic coherences) are washed out and the remaining time

dependence can be assigned to the vibrational quantum dynamics.

5.4 Summary

The simplified description of the dynamics of an electron and a nucleus within our

model system allows for the characterization of the correlated dynamics during

and after the interaction with an external electric field. Employing adiabatic

potential energy curves it is possible to understand the structure of absorption

spectra as obtained in the limiting case of weak fields. For a small nonadiabatic

coupling, the adiabatically calculated spectrum is in excellent agreement with

the exact one. Still, the existence of even a weak coupling produces extra peaks

which cannot be explained within the adiabatic approximation. For a strong

coupling, the adiabatic approximation yields a spectrum which does not agree

with the exact spectrum. The introduction of a potential coupling and the thus

induced diabatic two-component wave packet motion can be used to calculate an

absorption spectrum in much better agreement.

The well-known Franck-Condon principle states that during an electronic
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Figure 5.10: Lower panel: expectation value of the dipole moment. The oscillations

reflect the combined vibrational and electronic dynamics. By using a time average of

the absolute square of the dipole moment, the electronic motion is averaged out and

the signal reflects exclusively the vibrational motion (upper panel).

transition the nuclei do not move. In terms of time-dependent electron and nu-

clear densities, we have illustrated this principle. Regarding the dynamics during

a laser excitation process we may state that within a very short time scale the

electronic part of the wave function reaches a stationary state in the sense that

its structure remains unchanged. During this short time interval, the nuclear

wave function indeed does not exhibit structural changes. Only at longer times

the nuclear wave function becomes stationary.

The interaction of the constraint particles with a strong laser pulse leads to the

excitation of many bound electronic and vibrational states. The electronic density

89



5.4. SUMMARY

shows that during the excitation process, the electron performs the classical-like

quiver motion induced by the fast variations of the field. The much larger mass of

the nucleus prevents that it follows the oscillations of the electric field. In general,

the interaction prepares an electronic and vibrational wave packet motion which

will — if properly detected — be seen in any observable depending on both the

electronic and nuclear coordinates or momenta.

90



Chapter 6

Localization in a two-electron

system

6.1 Introduction

In the last chapters we used a simple model of a moving ion and an electron

to determine the influence of nonadiabatic coupling on the electron density; we

investigated spectroscopic transitions in weak and strong electric fields and also

treated a predissociation case by slightly modifying the original model. In those

examples only one electron was involved and we did not need to pay attention to

the symmetry of the electronic wave function.

In this chapter we present an extension to the one-electron model. By adding

a second electron, complications arise, as the electronic wave functions must be

anti-symmetric with respect to exchange of the two electrons (Pauli principle).

Within the calculation, the total symmetry of the wave function is determined by

either choosing a symmetric or anti-symmetric coordinate-space wave function,

corresponding to the cases of anti-parallel and parallel spins, respectively.
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While the structure of the electron density gets more complex in a multi-

electron system, one also loses the ability to identify regions of localization of

single electrons. However, the concept of the electron localization function (ELF)

as introduced by Becke and Edgecombe [51] to “measure” localization of elec-

trons with identical spin has turned out to be extremely beneficial in chemistry.

The ELF was used to investigate the shell-structure of atoms and the bonding

situation in a variety of molecules an crystals. For a review see reference [85].

In order to deploy ELF to our system, one has to re-define it for an exact

wave function. This will be done in the next section. After that we introduce

the extended model Hamiltonian and finally provide an example of how the ELF

can be employed to investigate a time-dependent wave packet motion.

6.2 Definition of ELF for exact wave functions

In chapter 1.6 we defined the electron localization function in terms of a Hartree-

Fock wave function. This original definition by Becke and Edgecombe [51] is not

applicable to an exact wave function, but we follow the same strategy to adopt

the ELF to our needs. The probability density to find the two electrons with

spin σ and τ at positions x and y and the nucleus at position R is given by the

diagonal of the three-particle density matrix:

Dστ (x, y, R) = |Ψ(xσ, yτ, R)|2 (6.1)

In principle, one might investigate the correlation of all three particles, but

we focus our interest on the electrons here. An averaging over the nuclear degree

of freedom yields:

Dστ (x, y) =

∫

|Ψ(xσ, yτ, R)|2 dR (6.2)
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The conditional probability to find one electron with spin σ at x, if we know

with certainty that the other electron with spin τ is located at position y, is given

by

Pστ (x, y) =
Dστ (x, y)

ρτ (y)
, (6.3)

where ρτ (y) is the spin density which can be calculated from the full wave function

via integration:

ρτ (y) =

∫

|Ψ(xσ, yτ, R)|2 dR dx dσ (6.4)

At this point one has to distinguish between the cases of parallel (denoted

αα) and anti-parallel spin (αβ). It should be noted that we exclude cases where

spin polarization occurs, i.e. cases where the spatial wave functions of electrons

with different spin are not identical. This means ρσ(x) = ρτ (y) in all regarded

cases.

In the case of anti-parallel spins the coordinate-space wave function is sym-

metric with respect to an exchange of the electrons and the function

Pαβ(x) = Pαβ(x, x) (6.5)

is a direct measure for the localization of one electron. The interpretation is as

follows: Pαβ(x) is the conditional probability to find one electron at position x, if

we know with certainty that the other electron with opposite spin is at the same

place. If Pαβ(x) is small, the first electron is strongly localized, whereas for large

Pαβ(x) the probability density of the first electron is diffuse.

In the case of parallel spins Pαα(x, y) vanishes identically for x = y as a conse-

quence of the Pauli principle. Following the treatment of Becke and Edgecombe
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one transforms equation (6.3) to the relative coordinate s = x − y. For our lin-

ear model a spherical averaging around s = 0 is not necessary and Pαα(x, s) is

directly expanded into a Taylor-series around s = 0:

Pαα(x, s)|s=0 = P (x, 0) +
∂Pαα(x, 0)

∂s
s+

1

2

∂2Pαα(x, 0)

∂s2
s2 (6.6)

The first term is zero because of the Pauli principle. The linear term must also

vanish, as, according to Kato’s theorem [86,87], the many-body wave function Ψ

is proportional to s for small s, which means |Ψ|2, D and P are proportional to s2

in this limit. Thus, the first non-zero term of the expansion (6.6) is of quadratic

order and may be written as:

Pαα(x, s) =
1

2

∂2Pαα(x, 0)

∂s2
s2 = Cαα(x)s2 (6.7)

The quantity Cαα(x) enters directly into the definition of the electron local-

ization function (ELF) and one finds:

ELF(x) =
[

1 +
(
Cαα(x)/C0

αα(x)
)2
]−1

(6.8)

Here, C0
αα(x) is the Thomas-Fermi (TF) kinetic energy density with the same

local spin density ρα(x). The TF kinetic energy density of our system is given by

C0
αα(x) =

16

3
π2ρ3

α(x) (6.9)

and will be derived in appendix B.

6.3 The extendend model Hamiltonian

In this section we describe how an additional electron can be included into the

previously investigated model (chapters 3 – 5). Again three ions are aligned in a
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row, where the two outer nuclei are fixed at RL = −5 Å and RR = +5 Å, respec-

tively. The middle ion is allowed to move on the internuclear axis. Additionally,

now two electrons move on the same axis. The resulting Hamiltonian with three

degrees of freedom reads (in a.u.):

H(x, y, R) = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
− 1

2M

∂2

∂R2
+ V (x, y, R) (6.10)

Here, x and y denote the electronic coordinates, R is the position of the

nucleus. The mass M of the moving ion was chosen to be that of hydrogen. The

potential V (x, y, R) now takes the form:

V (x, y, R) =
1

|RL − R|
+

1

|RR − R|
+
erf (|x− y| /Re)

|x− y|

− erf (|RL − x| /Rf )

|RL − x|
− erf (|RR − x| /Rf)

|RR − x|
− erf (|R − x| /Rf)

|R− x|

− erf (|RL − y| /Rf )

|RL − y|
− erf (|RR − y| /Rf )

|RR − y|
− erf (|R − y| /Rf)

|R− y| + E0 (6.11)

The first three terms describe the Coulomb repulsion of the nuclei and the

electron-electron repulsion. It should be noted that the third term also was

screened by an error function in order to be consistent with the attractive in-

teractions (the two electrons must pass each other which is not possible for a

Coulomb repulsion). The other six terms describe the attraction between the

electrons and the ions. Again, screened Coulomb interactions are employed. The

charges of all ions were chosen to be one. Rf is a fixed cut-off parameter and was

chosen as 1.5 Å in all regarded cases. The distance Re in the third term allows

to switch between cases of weak and strong nonadiabatic coupling as in the case

of the simpler model (see chapter 3.3). The last term E0 is chosen such that the

global minimum of the potential is shifted to 0 eV.
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6.4 Adiabatic potentials and eigenfunctions

In the following we focus on the case of parallel spins (αα). We again apply

the Born-Oppenheimer approximation (see chapter 3.3) and solve the electronic

Schrödinger equation for fixed nuclear coordinate R, which takes now the form

(in a.u.):

{

−1

2

∂2

∂x2
− 1

2

∂2

∂y2
+ V (x, y, R)

}

ϕn(x, y, R) = Vn(R)ϕn(x, y, R) (6.12)
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Figure 6.1: Adiabatic potential curves in the spin-parallel case (αα) and Re = 1.5 Å

for the electronic quantum numbers n = 1− 4.

Figure 6.1 diplays the resulting adiabatic potential curves Vn(R) for parallel

electron spins and a parameter of Re = 1.5 Å. The adiabatic ground state po-

tential shows a double minimum structure as in the simpler model system. The
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6.4. ADIABATIC POTENTIALS AND EIGENFUNCTIONS

higher electronic states (n = 3, 4) exhibit avoided crossings at about R = ±2.5

Å.

The electronic eigenfunctions {ϕn(x, y, R)} define a complete orthonormal basis

set and we may use them to expand the full wave function as:

Ψ(x, y, R) =
∑

n

ψn(R)ϕn(x, y, R) (6.13)

The expansion coefficients ψn(R) depend on the nuclear coordinate and have

the meaning of nuclear wave functions. Integration over the modulus squared

of the expansion coefficients yields populations in different electronic states (see

chapter 3.4.

The electronic functions have to be anti-symmetric with respect to exchange

of x and y as the spin function is symmetric in the case of parallel spins. Figure

6.2 displays the electronic ground state wave functions for three different values

of R. The symmetrical configurations R = −3 Å and R = +3 Å (figure 6.2

upper and lower panel) lead to identical probability densities which is due to the

symmetry of the potential. The electrons have an equal probability to be located

around either of the fixed nuclei at ±5 Å. The wave functions are identical as

well, but this is only an artefact of a non-fixed phase factor during the numerical

calculation. The symmetric configuration (figure 6.2, middle panel) exhibits a

more complex structure: The probability density is concentrated around all three

ions, with regions of less density in between.

Figure 6.3 shows the electronic eigenfunctions for the first electronically ex-

cited state for a nuclear coordinate of R = −3, 0 and +3 Å (upper, middle and

lower panel). For R = ±3 Å the electrons have a higher probability to be close to

each other and are only located around one fixed ion. For the symmetric configu-

ration the electrons still have a certain probability to be located around all three

nuclei, but now an additional node appears perpendicular to the y = x diagonal.
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Figure 6.2: Electronic ground state functions in the spin-parallel case for fixed nuclear

geometry. Upper panel: R = −3 Å, middle panel: R = 0 Å, lower panel: R = +3 Å.

The cut-off parameter Re was chosen to be 1.5 Å.
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Figure 6.3: First electronic excited state functions in the spin-parallel case for fixed

nuclear geometry. Upper panel: R = −3 Å, middle panel: R = 0 Å, lower panel:

R = +3 Å. The parameter Re was chosen to be 1.5 Å.
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6.5 Quantum dynamics

In this section we give an example of how the previously defined electron lo-

calization function (see section 6.2) can be used to further characterize a time-

dependent vibrational motion in an excited electronic state. For that we in-

tegrate the time-dependent Schrödinger equation numerically by applying the

split-operator algorithm as described in chapter 2.1. The initial wave packet was

of the form

Ψ(x, y, R, t = 0) = e−β(R−R0)2 ϕn(x, y, R), (6.14)

where R0 = −2.7 Å and β = 0.2646 Å−2. In the presented example the wave

packet was initially located in the first electronically excited state, hence n = 2.

In the numerical calculation we used a grid spacing of ∆R = 0.047 Å (256

grid points from −6 to +6 Å) for the nucleus. The grids for the electrons had

a spacing of ∆x = ∆y = 0.078 Å (256 grid points from −10 to +10 Å). The

applied time step in the propagation was ∆t = 0.05 fs.

We again calculate the time-dependent integrated densities which are given by

ρ(x, t) =

∫

|Ψ(x, y, R, t)|2 dR dy,

ρ(R, t) =

∫

|Ψ(x, y, R, t)|2 dx dy. (6.15)

Figure 6.4 displays the calculated nuclear density ρ(R, t) (upper panel) during

the vibrational motion. The nuclear wave packet is initially localized in the left

half of the potential well and starts moving to the right side where it is repelled

by the right fixed ion at about 40 fs. The incoming and the outgoing (reflected)

parts of the nuclear wave packet give rise to a pronounced oscillatory structure.
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Figure 6.4: Time-dependent densities (upper and middle panel) and ELF (lower panel)

for a vibrational motion in the first electronic excited state for the case of parallel spins.

Re was chosen to be 1.5 Å.
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After that, the wave packet broadens substantially due to the anharmonicity

of the potential. The electron density ρ(x, t) (figure 6.4, middle panel) on the

other hand exhibits a very smooth structure during the vibrational motion of the

nucleus. At t = 0 the electron density is accumulated around the left fixed nucleus

and the moving ion and reflects the nodal structure of the electronic eigenstate

(see figure 6.3). After some time, as the nucleus crosses the origin at R = 0, the

initial density drops to zero and two new maxima occur around the right fixed

nucleus and the moving ion. This can be interpreted as a charge transfer from

the left fixed ion to the right one due to the motion of the nucleus. However,

this situation is not fully reversed at later times because of the broadening of

the nuclear probability density, so that the electron density has three maxima at

about t = 100 fs.

From the electron density alone it is not clear how many electrons are involved

in the charge transfer from the left to the right fixed ion. In order to shed

some light into the process we calculated the time-dependent electron localization

function ELF(x, t) [88] which is displayed in figure 6.4 (lower panel). Initially the

ELF shows two domains of highly localized electrons: One is located around the

left fixed ion at about x = −5 Å, the other is near the coordinate origin around

x = 0. The first domain vanishes completely during the vibrational motion of

the nucleus (it is restored at later times), while the second one is only slightly

modulated. Furthermore, as the mobile ion crosses the origin of the coordinate

system, a third domain, located at the right fixed ion (x = +5 Å), gets visible

which drops to zero again as the vibrational period completes.

The interpretation of the time-dependent ELF is not trivial, but the vanishing

of the first domain at x = −5 Å and the appearance of a third domain at x = +5

Å indicates that one electron must have been removed from the left fixed nucleus

and dragged to the right fixed ion as the ELF indicates localization of electron

pairs. Now, remembering the fact that the electron density in the left part of
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the potential drops to zero, one can conclude that both electrons participate in

the charge-transfer process. Further studies should be necessary to completely

understand the meaning of the time-dependent electron localization function,

but, nevertheless, it provides a useful tool to better understand the features of

electron and nuclear dynamics in terms of electron localization and correlation.

6.6 Summary

In this chapter we were able to show, how an additional electron can be included

into the previously studied simple model system in a straight-forward manner.

Complications arise from the fact that one has to explicitly deal with the con-

sequences of the Pauli principle. Also, the concept of “localizing” electrons by

calculating the electron density has to be given up. Instead, we re-defined the

electron localization function for an exact wave function. The ELF has proven to

be very useful in chemistry already and should be a valuable tool to investigate

time-dependent features of coupled electron and nuclear motion in more detail.

The main advantage of our definition of the ELF is the possibility to not only

treat the electronic ground state, but also excited states. Furthermore, restric-

tions imposed by the Born-Oppenheimer approximation can easily be removed.

Unfortunately, nowadays computing facilities limit the procedure to systems with

only a few degress of freedom. Future work will also have to consider the case of

anti-parallel electron spins where a quantity providing the same information as

ELF has to be defined. A proposal of how to define such a quantity is presented

in the next chapter.
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Chapter 7

Outlook: Electron localization in

the anti-parallel spin case

In chapter 6.2 we re-defined the electron localization function (ELF) in terms

of an exact wave function. This quantity provides useful information about the

localization of electrons in the case of parallel electron spins. However, it is not

possible to use the ELF in the case of anti-parallel spins in a two-electron system

as the conditional probability Pαβ(x) (eqn. (6.3)) vanishes in that case [51].

Returning to the derivation of the ELF for an exact wave function (chapter

6.2), the conditional probability to find one electron with spin σ at position x,

if we know with certainty that the other electron with spin τ is located at y, is

given by

Pστ (x, y) =
Dστ (x, y)

στ (y)
. (7.1)

In the case of anti-parallel spins (αβ) Pαβ(x, y) does not vanish if y → x

and thus the conditional probability is a direct measure for the localization of

one electron. Unfortunately, this relation is an indirect one: Pαβ(x, x), in the
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following denoted as Pαβ(x), is small, if the first electron is strongly localized

due to the Coulomb repulsion. In analogy to the definition of the ELF we may

define an anti-parallel spin electron localization function ALF(x) which identifies

regions in space where electrons of anti-parallel spin are localized:

ALF(x) =
[
1 + (Pαβ(x)/TTF(x))2]−1

(7.2)

Here, TTF(x) is again the Thomas-Fermi kinetic energy density in one dimen-

sion for the same spin density ρα(x). It takes the form

TTF(x) =
4

3
π2ρ3

α(x), (7.3)

where one allows the states to be doubly occupied.

In order to illustrate the “meaning of ALF” let us regard a numerical example:

We again employ the extended model Hamiltonian as described in chapter 6.3,

but now for the case of anti-parallel spins (αβ). The electronic wave function

has to be symmetric with respect to exchange of the electronic coordinates x

and y. Choosing Re = 2.5 Å leads to strongly coupled adiabatic states. Figure

7.1 displays the adiabatic potential curves of the lowest four electronic states.

Various avoided crossings occur between the ground and the first excited state,

but also between the second and third excited state.

It is to be expected that the time-dependent nuclear and electron dynamics

exhibit clear signs of nonadiabatic behaviour. We investigate this question by

solving the time-dependent Schrödinger equation numerically. The initial wave

packet is chosen as

Ψ(x, y, R, t = 0) = e−β(R−R0)2 ϕ2(x, y, R), (7.4)
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Figure 7.1: Adiabatic potential curves for the spin-parallel case (αβ) and Re = 2.5 Å.

The lowest four electronic states are displayed.

where ϕ2(x, y, R) are the electronic eigenfunctions of the first excited state, R0 =

−3.5 Å and β = 0.2646 Å−2, respectively. The grid was chosen as described in

chapter 6.5. The resulting integrated densities ρ(R, t) and ρ(x, t) are plotted in

figure 7.2.

The nuclear density ρ(R, t) (figure 7.2, left panel) exhibits the typical picture

of a vibrational motion where reflection at an outer turning point results in a

large dispersion. This behaviour can be understood, if one takes a look at the

populations of the participating electronic states. They are defined as

Pn(t) =

∫

|〈ϕn(x, y, R)|Ψ(x, y, R, t)〉x,y|2 dR, (7.5)

where 〈ϕn(x, y, R)|Ψ(x, y, R, t)〉x,y is the component of the full wave function in

electronic state n.

The calculated populations for n = 1, 2 are displayed in figure 7.3 and we
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Figure 7.2: Nuclear (left panel) and electron density (right panel) calculated for a

vibrational motion starting in the first electronically excited state for anti-parallel (αβ)

electron spins. Re was chosen as 2.5 Å.
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Figure 7.3: Time-dependent populations Pn(t) in the ground (n = 1) and first excited

(n = 2) electronic state.
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may now interpret the nuclear motion taking place: Initially the nuclear wave

packet is localized in the left well of the first electronically excited state. The

initial population in the n = 2 state corresponds to the norm of the full wave

function. After about 10 fs the wave packet reaches the first coupling region

between the ground and first excited state at about R = −1.5 Å (see figure 7.1).

A substantial amount of population is transferred to the electronic ground state,

where the motion proceeds until the moving nucleus reaches the second coupling

region around R = +1.5 Å at about 25 fs. Now the population gets partially back

transferred to the first excited state, where the nuclear wave packet gets repelled

by the right fixed ion at about 35 fs which gives rise to a strong oscillatory

structure in the nuclear density.

Taking a look at the time-dependent electron density (figure 7.2, right panel),

it seems as if hardly anything happens. The initial two maxima of the electron

density at x = ±5 Å are only slightly shifted by the motion of the nucleus.

This means, that the electron density exhibits little sign of the nonadiabatically

coupled motion that takes place.

In order to gain some insight into the electronic motion which is due to the

strong nonadiabatic coupling, we calculate the time-dependent ALF as defined

in equation (7.2).

The result is shown in figure 7.4. Initially the ALF(x, t) resembles the struc-

ture of the electron density ρ(x, t) (figure 7.2, right panel). Only some time later

the motion of the mobile ion introduces some shaping in the two localization

domains. At about 25 fs a considerable amount of population has been trans-

ferred to the electronic ground state (figure 7.3) and the right localization domain

around x = +5 Å has vanished nearly completely. We can understand this re-

sult, if we remember that the motion of the nucleus introduces fast changes in the

electronic structure and that the nonadiabatic coupling mixes electronic states.

By moving the nucleus from near the left fixed ion to the right fixed ion, the
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Figure 7.4: Time-dependent ALF in the case of Re = 2.5 Å. Details are given in the

text.

initially localized electrons get delocalized in the surroundings of the right fixed

nucleus. Simultaneously the localization domain at the left fixed ion gets more

compact. Another possible interpretation is in terms of an electronic wave packet

generated by the nonadiabatic coupling to the motion of the nucleus which leads

to dynamical changes in the localization of the electrons.

Concludingly, we might say, that the concept of electron localization can also

be defined in the case of anti-parallel spins through a quantity that is very similar

to the ELF. Into this ALF enters the conditional probability Pαβ(x) to find an

electron at position x, if we know with certainty that there is already another

electron with opposite spin, directly. In the regarded example the ALF shows

dynamical changes as a function of time due to a nonadiabatically coupled motion

of the moving ion and the electrons. On the other hand, the electron density does

not reflect these changes and we might conclude that the electron density is not

sensitive enough to reveal details of such processes.

As an outlook, motivated by the presented results, the “meaning of ALF”

has to be established by applying this new tool to other systems. The careful

examination of its static and dynamical features should provide a deeper under-
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standing of how electrons with anti-parallel spin are correlated and how electron

localization changes due to nuclear motion or due to an external perturbation.

This, of course, also applies to the time-dependent ELF that we introduced in

the last chapter.
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Within the framework of the Graduiertenkolleg 690 “Electron density” the sub-

ject of this work was to investigate the influence of nonadiabatic coupling on

the dynamical changes of electronic and nuclear density. Here we enter scientific

grounds which have not been cleared before: the properties of electron density

have neither been discussed in the non-stationary case, nor for excited electronic

states or for a coupled electron and nuclear dynamics. In order to remove these

restrictions, it is necessary to describe the quantum mechanical motion of all

particles in a system at the same level. This is only possible in very small sys-

tems. However, Shin and Metiu [37, 38] developed a model system that contains

all necessary physical ingredients to describe a combined electronic and nuclear

motion. It consists of only a single nuclear and electronic degree of freedom and

the particle interaction is parameterized in such a way as to allow for a flexible

switching between an adiabatic (Born-Oppenheimer type) and a strongly coupled

dynamics.

We started our investigations by determining the “static” properties of the

model system and calculated the electronic eigenfunctions, adiabatic potential

curves, kinetic coupling elements and transition dipole moments. The latter are

usually hardly accessible as one requires for their calculation the wave functions of

electronically excited states; they exhibit singularities in the presence of nonadi-

abatic coupling. The potentials obtained for different parameterization show two

distinct cases: In the first case the ground and first excited state are separated
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by a large energetic gap which is the typical Born-Oppenheimer case; the second

one exhibits an avoided crossing which results in a breakdown of the adiabatic

approximation.

Due to the electronic properties of the system, the quantum dynamics in

the two distinct situations is very different, which was illustrated by calculating

nuclear and electron densities as a function of time. In the Born-Oppenheimer

case, the electron density follows the vibrational motion of the nucleus. This

is illustrated by two examples: The first example exhibits a simple vibrational

motion taking place in one of the potential minima of the symmetric system. The

other example demonstrates an isomerization process between the two stable

ground state configurations and the time-dependent electron density reveals a

typical charge transfer dynamics between the left and right fixed nucleus.

In the strongly coupled case the wave packet does not exhibit features caused

by nonadiabatic coupling. However, a projection of the wave function onto the

electronic ground and first excited state yields components of the nuclear wave

function. One finds the usual picture obtained from solutions of the nuclear

Schrödinger equation involving coupled electronic states. Interestingly, the elec-

tron density initially remains stationary in our particular example. Although the

motion of the mobile ion extends over a large interval of the nuclear coordinate

only small portions of electron density are transferred between the outer ions.

Thus, the nuclear motion triggers charge transfer via nonadiabatic coupling.

The Laplacian of the electron density, which is often used in case of static

problems, was extended to a time-dependent density and proved to be useful

in the characterization of dynamical problems. We discussed the possibility to

reverse the Born-Oppenheimer approximation and solve the nuclear Schrödinger

equation for fixed electronic coordinates. This led to potential energy surfaces

for the motion of the electrons. However, the neglected kinetic coupling elements

between electronic and nuclear motion are much larger than those in the Born-
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Oppenheimer approximation, leading to an, in principle, unphysical description

of the regarded system.

The second part of this work showed that the model system can easily be

modified to mimic often found bonding situations in diatomic molecules. The

different situations can be characterized in terms of bound and dissociative adia-

batic potential curves. We focussed our investigation on the case of an electronic

predissociation: the electronic ground state is dissociative in the asymptotic limit

of large internuclear distances. At small distances the ground and first excited

state exhibit an avoided crossing leading to a “quasi-bound” situation. Such a

problem is usally tackled by solving the nuclear Schrödinger equation with cou-

pled potential surfaces in the diabatic description. This is not necessary within

our model system and we were able to demonstrate how the character of the

electron density changes during the fragmentation process. The nonadiabatic

coupling mixed the properties of different electronic states and gave rise to a

complicated transient electronic structure of the system.

In the third part we investigated, within our simple model, the influence of

external electric fields on the correlated dynamics of electron and nucleus. Em-

ploying adiabatic potential curves, the structure of absorption spectra can be un-

derstood within the weak-field limit. For the above described Born-Oppenheimer

case the adiabatically calculated spectrum was in very good agreement with the

exact one. Still, even the existence of a small nonadiabatic coupling produces

additional peaks in the spectrum unexplainable within an adiabatic description.

In the strongly coupled case the spectrum obtained from an adiabatic approxi-

mation was not able to resemble the exact one. A simple ad-hoc diabatization

yielded much better results.

Regarding the dynamics during a laser excitation process the electronic part

of the wave function reached a stationary state on a very short time scale (in the

sense that its structure did no longer change). The nuclear wave function stayed
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essentially frozen during this short time interval and only at longer times settled

into a stationary state. In terms of time-dependent electron and nuclear densities

this illustrates the famous Franck-Condon principle.

During the interaction with strong laser pulses many bound electronic and

vibrational states are excited. The electron density reflected the classical-like

quiver motion of the electron induced by the fast variations of the electric field.

The nucleus did not follow these fast oscillations because of its much larger mass.

The interaction produced an electronic and vibrational wave packet which should

in principle be visible in any observable depending on the electronic and nuclear

coordinates or momenta. This was demonstrated by means of the expectation

value of the dipole moment which characterizes the polarization in the system.

The last part of this work then extended the original model system by adding

another electron. This yields one nuclear and two electronic degrees of freedom.

Within the new model it is necessary to explicitly deal with the consequences of

the Pauli principle. The configuration space wave function is either symmetric

or anti-symmetric with respect to an exchange of the two electrons. This cor-

responds to anti-parallel or parallel electron spins, respectively. As before, the

parameterization of the particle interaction allows to switch between adiabatic

and strongly coupled electron-nuclear dynamics.

The advantage of the extended model is that it already contains the physical

properties of a many-electron system. Solving the time-dependent Schrödinger

equation for a typical vibrational wave packet motion clearly indicated that the

electron density is no longer suited to “localize” single electrons. The electron

localization function (ELF) has proven to be very useful in chemistry for the

description of bonding phenomena in molecules, clusters or intermetallic phases.

We re-defined the ELF for an exact wave function and investigated for a simple

wave packet dynamics in the case of parallel spins, how the ELF can be used

to further characterize coupled electron and nuclear motion. The ELF exhibited
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changes in the localization domains during this process and could in principle be

used to monitor the breaking and building of chemical bonds. The advantage of

our definition of the ELF is that we are not restricted to the electronic ground

state, but can also treat excited states. Furthermore, the restrictions imposed by

the Born-Oppenheimer approximation can easily be removed.

Finally, we gave an outlook of how to define electron localization in the case

of anti-parallel electron spins. We derived a quantity similar to the ELF denoted

anti-parallel spin electron localization function (ALF) and demonstrated that

the ALF allows to follow time-dependent changes of the electron localization

by a numerical example. The time-dependent ALF clearly showed how electrons

get delocalized by a coupled electronic and nuclear motion, whereas the time-

dependent electron density did not reflect these changes.

In the future it is necessary to extend the concept of time-dependent ELF

(and ALF) to more examples in order to gain an understanding of how dynam-

ical changes in the electron and nuclear density influences the localization of

the electrons. Nowadays, we are still rather limited in the number of degrees

of freedom we can treat exactly as was done within this work. Nevertheless, a

full understanding of time-dependent quantum processes can only be achieved by

treating all particles quantum mechanically. While computers become constantly

faster and acquire larger memory, the investigation of small model systems and

molecules can provide usefull information that can be generalized to larger sys-

tems. As the ELF is one of the most popular tools used by chemists to visualize

chemical bonding, the time-dependent ELF might be the tool to describe the

changes in electron localization during chemical reactions in the future. With

the emerging technologies to produce sub-femtosecond laser pulses which are,

in principle, able to time-resolve the motion of electrons the field of electron

dynamics has just begun.

115



Zusammenfassung

Gegenstand dieser Arbeit war es, im Rahmen des Graduiertenkollegs 690
”
Elek-

tronendichte“, den Einfluss nichtadiabatischer Kopplung auf die dynamischen

Änderungen von Elektronen- und Kerndichten zu untersuchen. An dieser Stel-

le betreten wir wissenschaftliches Neuland: Die Eigenschaften der Elektronen-

dichte wurden bisher weder für den nicht-stationären Fall, noch für angeregte

elektronische Zustände oder für eine gekoppelte Elektronen- und Kerndynamik

diskutiert. Um diese Einschränkung zu überwinden, ist es notwendig, die quan-

tenmechanische Bewegung aller Teilchen eines Systems auf dem gleichen Niveau

zu beschreiben. Dies ist nur für sehr kleine Systeme überhaupt möglich. Shin und

Metiu [37,38] entwickelten ein Modellsystem, das alle notwendigen Voraussetzun-

gen erfüllt, um eine gekoppelte Elektronen- und Kernbewegung zu untersuchen.

Das Modell enthält jeweils nur einen Freiheitsgrad für Kerne und Elektronen

und die Teilchenwechselwirkung ist so parametrisiert, dass ein flexibles Umschal-

ten von einer adiabatischen (Born-Oppenheimer-Fall) zu einer stark gekoppelten

Dynamik möglich wird.

Wir begannen unsere Arbeit mit einer Bestimmung der
”
statischen“ Eigen-

schaften des Modellsystems; so wurden elektronische Eigenfunktionen, adiabati-

sche Potentialkurven, kinetische Kopplungselemente und Übergangsdipolmomen-

te berechnet. Letztere sind selten verfügbar, da ihre Berechnung die Wellenfunk-

tionen elektrisch angeregter Zustände erfordert und sie im Falle nichtadiabati-

scher Kopplung Singularitäten aufweisen. Die Potentiale, die man für verschiede-
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ne Parametrisierungen erhält, zeigen zwei deutlich unterschiedliche Fälle: Im ers-

ten Fall, einer gültigen Born-Oppenheimer-Näherung, sind der Grund- und erste

angeregte Zustand durch einen großen Energieunterschied voneindander getrennt.

Der zweite Fall zeigt eine vermiedene Kreuzung, was zu einem Zusammenbruch

der adiabatischen Näherung führt.

Aufgrund der elektronischen Eigenschaften des Systems unterscheidet sich

die Quantendynamik in den beiden betrachteten Fällen grundlegend. Dies wurde

durch die Berechnung zeitabhängiger Kern- und Elektronendichten veranschau-

licht. Im Born-Oppenheimer-Fall folgt die Änderung der Elektronendichte der

Schwingungsbewegung des Kerns, was durch zwei Beispiele belegt wurde: Das

erste Beispiel zeigt eine einfache Schwingungsbewegung, die in einem der Po-

tentialtöpfe des symmetrischen Systems stattfindet. Das andere Beispiel stellt

eine Isomerisierung zwischen den zwei stabilen Grundzustandskonfigurationen

dar, und die zeitabhängige Elektronendichte lässt die typische Dynamik eines

Ladungstransfers zwischen Atomkernen erkennen.

Im Falle starker Kopplung zeigt das Wellenpaket keine Anzeichen einer nichta-

diabatischen Kopplung. Die Komponenten der Kernwellenfunktion im Grund-

und ersten elektronisch angeregten Zustand lässt sich jedoch durch Projektion

auf die zugehörigen Zustände berechnen. Man findet das übliche, aus der Lösung

der Schrödingergleichung der Kerne für gekoppelte elektronische Zustände, erhält-

liche Bild. Interessanterweise bleibt die Elektronendichte in unserem Beispiel an-

fangs stationär. Obwohl sich die Bewegung des Kernes über ein großes Inter-

vall der Kernkoordinate erstreckt, werden nur kleine Teile der Elektronendichte

zwischen den äußeren Kernen übertragen. Das heißt, die Bewegung des Kerns

verursacht einen Ladungstransfer aufgrund nichtadiabatischer Kopplung.

Die oft für zeitunabhängige Fragestellungen herangezogene zweite Ableitung

der Elektronendichte wurde auf eine zeitabhängige Dichte erweitert und erwies

sich ebenfalls zur Untersuchung dynamischer Prozesse als nützlich. Das
”
Umkeh-
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ren“ der Born-Oppenheimer-Näherung und Lösen der Schrödingergleichung der

Kerne für feste Elektronenkoordinaten ergab Potentialflächen für die Bewegung

der Elektronen. Allerdings sind die vernachlässigten Kopplungselemente zwischen

Elektronen- und Kernbewegung viel größer als die in der Born-Oppenheimer-

Näherung, was letztendlich zu einer nicht-physikalischen Beschreibung des be-

trachteten Systems führt.

Der zweite Teil der Arbeit zeigte, dass das Modellsystem leicht modifiziert

werden kann, um in realen Molekülen vorhandene Bindungsituationen zu simu-

lieren. Die verschiedenen Fälle sind durch gebundene und dissoziative adiabati-

sche Potentialkurven charakterisiert. Speziell untersuchten wir eine elektronische

Prädissoziation: Das bedeutet, dass der elektronische Grundzustand im asympto-

tischen Grenzfall großer Kernabstständee dissoziativ ist. Der Grund- und erste

angeregte Zustand besitzen für kleine Kernabstände eine vermiedene Kreuzung,

was zu einer Kopplung gebundener Zustände an das Kontinuum führt. Norma-

lerweise löst man in solch einem Falle die Schrödingergleichung der Kerne für ge-

koppelte Potentialflächen im diabatischen Bild. Innerhalb unseres Modellsystems

ist das nicht notwendig und wir konnten zeigen, wie sich die Elektronendichte

während des Fragmentierungsprozesses ändert. Die nichtadiabatische Kopplung

mischt die Eigenschaften der verschiedenen elektronischen Zustände und führt zu

einer komplizierten, transienten elektronischen Struktur.

Im dritten Teil der Arbeit untersuchten wir — wiederum in unserem Modell-

system — den Einfluss externer elektrischer Felder auf die korrelierte Elektronen-

und Kerndynamik. Unter Zuhilfenahme adiabatischer Potentiale kann die Struk-

tur von Absorptionsspektren für schwache Felder verstanden werden. Für den

oben beschriebenen Fall gültiger Born-Oppenheimer-Näherung, zeigte das adia-

batisch berechnete Spektrum sehr gute Übereinstimmung mit dem exakten. Den-

noch erzeugt schon eine kleine nichtadiabatische Kopplung zusätzliche Strukturen

im Spektrum, die im Rahmen einer adiabatischen Näherung nicht zu erklären
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sind. Im Falle starker nichtadiabatischer Wechselwirkung konnte ein aus einer

adiabatischen Rechnung gewonnenes Spektrum das exakte nicht reproduzieren.

Allerdings ist es möglich innerhalb eines einfachen Diabatisierungsschemas bes-

sere Ergebnisse zu erhalten.

Die Berechnung der Dynamik während einer Laseranregung ergab, dass der

elektronische Teil der Wellenfunktion schon nach sehr kurzer Zeit einen stati-

onären Zustand erreichte (in dem Sinne, dass sich seine Struktur nicht mehr

ändert). Die Kernwellenfunktion blieb in diesem kurzen Zeitraum mehr oder min-

der eingefroren und erst nach längerer Zeit erreichte auch sie einen stationären

Zustand. Im Sinne zeitabhängiger Elektronen- und Kerndichten veranschaulicht

dies das Franck-Condon-Prinzip.

Während der Wechselwirkung mit starken Laserpulsen werden viele gebunde-

ne elektronische und Schwingungszustände angeregt. Die Elektronendichte zeigte

die einer klassischen Bewegung sehr ähnliche, Zitterbewegung des Elektrons, die

durch die schnellen Änderungen des elektrischen Feldes hervorgerufen wird. Der

Kern folgte aufgrund seiner wesentlich höheren Masse diesen schnellen Oszilla-

tionen nicht. Die Wechselwirkung generiert ein Schwingungs- und elektronisches

Wellenpaket, was sich prinzipiell in jeder Observablen, die von der Kern- oder

Elektronenkoordinate oder deren Impulsen abhängt, widerspiegeln sollte. Der

Erwartungswert des Dipolmoments, der die Polarisierung im System beschreibt,

veranschaulichte dies.

Im letzten Teil dieser Arbeit erweiterten wir das ursprüngliche Modell durch

Hinzufügen eines zweiten Elektrons. Man erhält dadurch einen Kern- und zwei

elektronische Freiheitsgrade. Innerhalb des neuen Modells ist es allerdings nötig,

die Konsequenzen des Pauli-Prinzips direkt zu berücksichtigen. Die Wellenfunk-

tion im Ortsraum ist entweder symmetrisch oder anti-symmetrisch bezüglich des

Austauschs der beiden Elektronen. Dies entspricht anti-parallelen, bzw. paralle-

len Spins der Elektronen. Auch hier erlaubt die Parametrisierung zwischen einer
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adiabatischen und einer stark gekoppelten Elektronen- und Kerndynamik umzu-

schalten.

Der Vorteil des erweiterten Modells liegt darin, dass es bereits die physi-

kalischen Eigenschaften eines Mehrelektronensystems enthält. Die Lösung der

Schrödingergleichung für eine typische Schwingungsbewegung legte nahe, dass

die Elektronendichte sich nicht länger eignet, die Lokalisierung der Elektronen

zu charakterisieren. In der Chemie hat sich die Elektronenlokalisierungsfunktion

(ELF) zur Beschreibung der Bindungsituation in Molekülen, Clustern und in-

termetallischen Phasen als sehr nützlich erwiesen. Durch Neudefinition der ELF

für eine exakte Wellenfunktion, konnten wir für eine einfache Wellenpaketdyna-

mik im Falle paralleler Elektronenspins untersuchen, inwieweit sich die ELF eig-

net, eine gekoppelte Elektronen- und Kernbewegung genauer zu analysieren. Die

ELF zeigte die Änderung in den Lokalisierungsdomänen während eines solchen

Prozesses und sollte sich prinzipell dazu eignen, den Bruch und die Neubildung

chemischer Bindungen zeitaufgelöst zu beobachten. Der Vorteil unserer Definiti-

on der ELF ist, dass wir nicht auf den elektronischen Grundzustand beschränkt

sind, sondern auch angeregte Zustände betrachten können. Außerdem können die

Einschränkungen der Born-Oppenheimer-Näherung leicht überwunden werden.

Schließlich gaben wir einen Ausblick, wie Elektronenlokalisierung im Falle

anti-paralleler Spins definiert werden könnte. Die von uns abgeleitete Elektronen-

lokalisierungsfunktion für anti-parallelen Spin (ALF) erlaubt es, die zeitabhängi-

ge Änderung der Elektronenlokalisierung zu beobachten, wie wir an einem nu-

merischen Beispiel zeigen konnten. Die zeitabhängige ALF zeigte deutlich, wie

Elektronen durch eine gekoppelte Elektronen- und Kernbewegung delokalisiert

werden, wohingegen die zeitabhängige Elektronendichte diese Änderungen nicht

aufwies.

In der Zukunft wird es notwendig sein, das Konzept der zeitabhängigen ELF

(und ALF) auf weiter Beispiele auszudehnen, um ein Verständnis dafür zu ge-
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winnen, wie dynamische Änderungen in der Elektronen- und Kerndichte die Lo-

kalisierung von Elektronen beeinflusst. Wir sind heutzutage in der Anzahl der

Freiheitsgrade, die sich — wie in dieser Arbeit geschehen — exakt beschreiben

lassen, immer noch sehr eingeschränkt. Trotzdem lässt sich ein volles Verständnis

von zeitabhängigen Quantenprozessen nur dann erreichen, wenn alle Teilchen ei-

nes Systems quantenmechanisch behandelt werden. In der Zeit, in der Computer

schneller und schneller werden und immer mehr Speicher bekommen, kann die Un-

tersuchung kleiner Modellsysteme und Moleküle nützliche Informationen liefern,

die sich auf größere Systeme übertragen lassen. Da die ELF eines der beliebtesten

Werkzeuge der Chemiker zur Visualisierung der chemischen Bindung ist, könnte

die zeitabhängige ELF in der Zukunft das Werkzeug sein, mit dessen Hilfe sich

Änderungen in der Elektronenlokalisierung während chemischer Reaktionen be-

schreiben lassen. Mit den gerade aufkommenden Technologien der Erzeugung von

sub-Femtosekunden-Laserpulsen, die im Prinzip in der Lage sind, die Bewegung

von Elektronen zeitaufzulösen, ist das Forschungsgebiet der Elektronendynamik

gerade erst im Entstehen.
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Appendix A

Diabatization of two coupled

adiabatic potentials

In chapter 5.2 we described shortly how to transform two coupled adiabatic poten-

tial curves into a set of two diabatic potentials plus a potential coupling. Here, we

describe this procedure in more detail. Starting from the adiabatic curves V a(R)

(figure A.1) in the original model system described in section 3.2, calculated for a

cut-off parameter Rc = 2.5 Å, we introduce a linear fit to the adiabatic potential

curves of the two lowest electronic states at the coupling region at about R = 0

Å. This is done by connecting the left branch of the electronic ground state po-

tential with the right branch of the first electronically excited state curve and the

other way round.

The two resulting diabatic potential curves V d(R) are displayed in figure A.2.

The unitary transformation from the adiabatic to the diabatic representation

is chosen such that the non-adiabatic kinetic coupling elements are minimized.

As a result the potential operator matrix is no longer diagonal, but contains

off-diagonal coupling elements. The Hamiltonian takes the form
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Figure A.1: Adiabatic potential curves for the first two electronic states in the strong-

coupling case (Rc = 2.5 Å) with zoom into the coupling region around R = 0 Å. See

chapter 5.2 for details.
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Figure A.2: Diabatic potential curves for the first two electronic states in the strong-

coupling case (Rc = 2.5 Å) resulting from a linear fit in the coupling region around

R = 0 Å. See chapter 5.2 for details.
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Hd =




V d

1 (R) V12(R)

V12(R) V d
2 (R)



+




T1(R) 0

0 T2(R)



 . (A.1)

The potential matrix V is diagonal in the adiabatic representation. This

means that the unknown coupling element V12(R) can be calculated by solving

the following system of linear equations

∣
∣
∣
∣
∣
∣

V d
1 (R)− λ V12(R)

V12(R) V d
2 (R)− λ

∣
∣
∣
∣
∣
∣

= 0, (A.2)

where λ = V a
n (R) (n = 1, 2) are the adiabatic potential curves. It follows that

V12(R) takes the form:

V12(R) =

√
(

V a
2 (R)− V d

1 (R) + V d
2 (R)

2

)2

−
(
V d

1 (R)− V d
2 (R)

)2

4
(A.3)
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Appendix B

Thomas-Fermi kinetic energy

density in one dimension

In the definition of the ELF the Thomas-Fermi kinetic energy density of the

uniform electron gas serves as a normalization function. In order to derive this

quantity for a one-dimensional problem we follow the derivation given in reference

[89].

To calculate the kinetic energy density of uniformly distributed electrons in

one dimension, space is divided in small intervals of length l. Each interval

contains a fixed number of electrons ∆N (which may be different in different

intervals), but are restricted to spin σ (either only α or only β). Furthermore, it

is assumed that the electrons behave like independent fermions at the temperature

T = 0K. The intervals are all treated as being independent from each other.

The energy levels of a particle in a one-dimensional box are given by

ε(n) =
h2n2

8ml2
, (B.1)

where n = 1, 2, 3, ... and m is the mass. For large quantum numbers n the number

125



of distinct energy levels with energy smaller than ε can be approximated as

Φ(ε) =
n

2
=

l

2h
(8mε)

1
2 . (B.2)

The number of energy levels between ε and ε + δε is then

g(ε) =
d

dε
Φ(ε) =

l

4h
(8m)

1
2 ε−

1
2 . (B.3)

g(ε) is called the density of states. To calculate the total energy of an interval

with ∆N electrons, one needs the probability for a state with energy ε to be

occupied. This probability is given by the Fermi-Dirac distribution f(ε), where

µ is the chemical potential and β = 1/kT :

f(ε) =
1

1 + eβ(ε−µ)
(B.4)

f(ε) reduces to a step function at T = 0K:

f(ε) =







1, ε < εF

0, ε > εF






as β →∞ (B.5)

εF is the so-called Fermi energy. All states with energy smaller εF are occupied,

those with energy greater than εF are unoccupied. The Fermi energy is the

zero-temperature limit of the chemical potential µ.

The total energy of the electrons in an interval is the sum over all contributions

from different states:
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∆E =

∫

εf(ε)g(ε) dε

=
l

4h
(8m)

1
2

εF∫

0

ε
1
2 dε (B.6)

=
l

4h
(8m)

1
2

2

3
ε

3
2

F =
l

6h
(8m)

1
2 ε

3
2

F

Usually a factor of 2 enters here, because each level can be doubly occupied

by one electron with spin α and another with spin β. As we restrict the electrons

to only have spin α or β, we consequently omitted this factor. The Fermi energy

εF is related to the number of electrons ∆N in an interval by:

∆N =

∫

f(ε)g(ε) dε

=
l

4h
(8m)

1
2

εF∫

0

ε−
1
2 dε (B.7)

=
l

2h
(8m)

1
2 ε

1
2

F

Now taking the expression for εF from equation (B.7), the Fermi energy can

be eliminated from equation (B.6) leading to:

∆E =
l

6h
(8m)

1
2

(

2∆Nh

l(8m)
1
2

)3

=
lh2

6m

(
∆N

l

)3

(B.8)

Equation (B.8) is a relation between the total kinetic energy and spin density

ρσ = ∆N/l for each interval of length l. Summing up over all contributions from

different intervals, replacing l by a grid spacing ∆x and taking the limit l → 0

(∆x→ 0), we find (in a.u.):
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Tσ[ρ] = lim
∆x→0

∑ 2

3
π2ρ3

σ(x) ∆x

=
2

3
π2

∫

ρ3
σ(x) dx (B.9)

In our treatment the electron density and the two-body density matrix were

normalized to 1, i.e.,
∫
ρσ(x) dx = 1. However, integration of the electron density

over the complete space must yield the number of particles Nσ with spin σ [89]:

∫

ρσ(x) dx = Nσ (B.10)

As the TF energy is an integral over the third power of the electron density,

we can finally write the normalized TF energy density as

T 0
σ (x) =

2

3
π2N3ρ3

σ(x). (B.11)

For our system consisting of two electrons with the same spin N = 2 which yields

equation (6.9).
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[13] M. H. Beck, A. Jäckle, G. A. Worth, H.-D. Meyer, Physics Reports 2000,
324, 1.

[14] G. Worth, H.-D. Meyer, L. S. Cederbaum, J. Chem. Phys. 1996, 105, 4412.

[15] D. K. Remler, P. A. Madden, Mol Phys. 1990, 70, 921.

[16] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos,
Rev. Mod. Phys. 1992, 64, 339.

[17] E. Deumens, A. Diz, R. Longo, Y. Öhm, Rev. Mod. Phys. 1994, 66, 917.
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troskopie kleiner Moleküle mit kurzen und intensiven Laserpulsen, Disser-
tation, Universität Freiburg i. Br. 1995.

[45] R. Schinke, Photodissociation Dynamics, Cambridge University Press, Cam-
bridge 1993.

[46] Ch. Meier, V. Engel, Pump-Probe Ionization Spectroscopy of a Diatomic
Molecule: The Sodium Dimer as a Prototype Example, in: J. Manz, L. Wöste
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schüttelten...

Patrick Musch danke ich für das Korrekturlesen und für die endlosen Diskus-
sionen über Computer, Filme, Studenten und natürlich Programmieren. Für ihre
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1985–1994 Friedrich-Koenig-Gymnasium, Würzburg,
mathematisch-naturwissenschaftlicher Zweig

1994 Abiturprüfung
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