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Zusammenfassung 

Die meisten Organismen haben endogene Uhren entwickelt, mit deren Hilfe sie ihre 

Verhaltensweisen, ihren Metabolismus und auch ihre Physiologie an die periodisch 

wechselnden Umweltbedingungen auf unserer Erde anpassen können. Die sogenannten 

circadianen Uhren steuern dabei biologische Rhythmen, die an täglich wiederkehrende 

Umweltfaktoren angepasst sind. Schon seit Jahrzehnten wurden diese circadianen Uhren 

von Chronobiologen in verschiedensten Modellorganismen untersucht. Zu diesen gehört 

auch die Taufliege Drosophila melanogaster, welche im Rahmen dieser Doktorarbeit 

Verwendung fand. 

Anatomisch besteht die circadiane Uhr der Taufliege aus etwa 150 sogenannten 

Uhrneuronen, die sich im dorsalen und lateralen Protocerebrum der Fliege befinden. 

Diese können anhand ihrer Position im Gehirn, ihrer Morphologie als auch ihrer 

neurochemischen Eigenschaften charakterisiert werden. Es wurde bereits in früheren 

Arbeiten gezeigt, dass einige dieser Uhrneuronen jeweils ein oder mehrere Neuropeptide 

exprimieren, welche mit großer Wahrscheinlichkeit die wichtigsten Signalmoleküle der 

Uhr darstellen. Dabei ist der „Pigment Dispersing Factor“ (PDF) wohl das Neuropeptid, 

welches bisher in Bezug auf seine Funktion in der Uhr die größte Aufmerksamkeit fand. Es 

ist daher auch das Neuropeptid, das bei Weitem am besten untersucht ist. So wurde 

bereits gezeigt, dass PDF die Oszillationen der Uhrneuronen untereinander synchronisiert 

und auch in Ausgangssignalwegen der Uhr zu nachgeschalteten Gehirnregionen eine Rolle 

spielt. 

In Zusammenarbeit mit verschiedenen Kollegen, wurde im Rahmen dieser Doktorarbeit 

untersucht, welche Rolle drei andere Neuropeptide, welche in den Uhrneuronen 

exprimiert werden, in der Generierung von Verhaltensrhythmen spielen. Der Fokus lag 

dabei auf der Untersuchung des Neuropeptids F (NPF) des short Neuropeptids F (sNPF) 

und des Ion Transport Peptids (ITP). Wir konnten für manche dieser Peptide zeigen, dass 

ihre Verwendung im Uhrnetzwerk unterschiedlicher Drosophila-Arten konserviert zu sein 

scheint. Im Falle von PDF zeigten sich jedoch Unterschiede in der zellspezifischen 

Expression in Arten aus südlichen Breitengraden im Vergleich zu Arten aus nördlichen 

Breitengraden. Zusammen mit ergänzenden Verhaltensdaten anderer Arbeitsgruppen, 
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gehen wir davon aus, dass unterschiedliche Arten bestimmte Eigenschaften ihrer Uhr – 

wie etwa die Neuropeptid-Expression in bestimmten Zellen – verändert haben, um ihr 

Verhalten bestmöglich an ihr jeweiliges Habitat anzupassen. 

Des Weiteren wurde in dieser Arbeit die Aktivitätsrhythmik in Fliegen untersucht, in 

welchen gezielt bestimmte Neuropeptid-Systeme auf genetischem Wege - entweder 

durch Zellablation oder RNA-Interferenz (RNAi) - manipuliert wurden. Wir konnten zeigen, 

dass wohl keines der untersuchten Peptide eine ähnlich große Rolle für die 

Aktivitätsrhythmik spielt wie PDF. Aus früheren Arbeiten geht hervor, dass PDF sowohl für 

die Aufrechterhaltung eines Rhythmus in konstanter Dunkelheit (DD), als auch für die 

Generierung der Morgenaktivität und für die richtige Phasenlage der Abendaktivität in 

Licht-Dunkel Zyklen (LD) essentiell ist. Ergebnisse der vorliegenden Arbeit zeigen nun, 

dass NPF und ITP die Abendaktivität in LD fördern, dass sie jedoch nicht die einzigen 

Faktoren sind, die dies bewerkstelligen. ITP scheint außerdem Aktivität während der 

Nacht zu hemmen. Des Weiteren stellen ITP und möglicherweise auch sNPF eine 

schwache Perioden verkürzende Komponente in DD dar, ganz im Gegensatz zu PDF, 

welches eine Perioden verlängernde Wirkung besitzt. Jedoch scheinen weder ITP, NPF 

noch sNPF für die generelle Aufrechterhaltung eines Rhythmus in DD nötig zu sein. 

Vorhergehende Arbeiten wiesen bereits darauf hin, dass PDF wahrscheinlich rhythmisch 

an den dorsalen Nervenendigungen ausgeschüttet wird. Unsere jetzigen Ergebnisse 

zeigen desweiteren eine Oszillation in der ITP-Immunfärbung in den dorsalen 

Projektionen der ITP+ Uhrneuronen in LD, was auch auf eine rhythmische Ausschüttung 

dieses Peptids schließen lässt. Die rhythmische Freisetzung beider Peptide scheint für die 

Aufrechterhaltung eines Verhaltensrhythmus in DD wichtig zu sein, da eine konstant hohe 

Menge an ITP und PDF im dorsalen Gehirn den Freilauf-Rhythmus störten.  

Die live-Imaging Experimente dieser Arbeit zeigten, dass sNPF auf manche Uhrneuronen 

inhibitorisch wirkt – auch auf einige, die durch PDF aktiviert werden können. sNPF könnte 

also als Signalmolekül innerhalb des Uhrnetzwerkes fungieren. Auch NPF führte zu 

inhibitorischen Zellantworten, jedoch waren diese äußerst schwach und betrafen nur 

wenige Uhrneuronen, was darauf schließen lässt, dass dieses Peptid wahrscheinlich am 

Signalausgang der Uhr beteiligt ist. Es war uns bisher nicht möglich dieselben live-Imaging 

Untersuchungen auch für ITP durchzuführen, jedoch zeigten Überexpressionsstudien mit 
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verschiedenen Treiberlinien, dass auch ITP mit großer Wahrscheinlichkeit im 

Signalausgang der Uhr fungiert. 

Zusammenfassend lässt sich sagen, dass alle hier untersuchten Neuropeptide an der 

Kontrolle der rhythmischen Lokomotoraktivität von Drosophila melanogaster mitwirken. 

Dabei ist PDF eindeutig der dominierende Faktor, während die anderen Neuropeptide die 

Wirkung von PDF eher feinregulieren oder komplementieren. Aus den Daten kann 

geschlossen werden, dass die örtliche und zeitliche Funktionsweise dieser verschiedenen 

Peptide sehr komplex ist, um sowohl die Prozessierung von Signalen innerhalb des 

Uhrnetzwerkes als auch in den weitgehend noch unbekannten Ausgangswegen der Uhr zu 

gewährleisten. 
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Summary 

Organisms have evolved endogenous clocks which allow them to organize their behavior, 

metabolism and physiology according to the periodically changing environmental 

conditions on earth. Biological rhythms that are synchronized to daily changes in 

environment are governed by the so-called circadian clock. Since decades, 

chronobiologists have been investigating circadian clocks in various model organisms 

including the fruitfly Drosophila melanogaster, which was used in the present thesis. 

Anatomically, the circadian clock of the fruitfly consists of about 150 neurons in the 

lateral and dorsal protocerebrum, which are characterized by their position, morphology 

and neurochemistry. Some of these neurons had been previously shown to contain either 

one or several neuropeptides, which are thought to be the main signaling molecules used 

by the clock. The best investigated of these neuropeptides is the Pigment Dispersing 

Factor (PDF), which had been shown to constitute a synchronizing signal between clock 

neurons as well as an output factor of the clock. 

In collaboration with various coworkers, I investigated the roles of three other clock 

expressed neuropeptides for the generation of behavioral rhythms and the partly 

published, partly unpublished data are presented in this thesis. Thereby, I focused on the 

Neuropeptide F (NPF), short Neuropeptide F (sNPF) and the Ion Transport Peptide (ITP). 

We show that part of the neuropeptide composition within the clock network seems to 

be conserved among different Drosophila species. However, the PDF expression pattern 

in certain neurons varied in species deriving from lower latitudes compared to higher 

latitudes. Together with findings on the behavioral level provided by other people, these 

data suggest that different species may have altered certain properties of their clocks - 

like the neuropeptide expression in certain neurons - in order to adapt their behavior to 

different habitats. 

We then investigated locomotor rhythms in Drosophila melanogaster flies, in which 

neuropeptide circuits were genetically manipulated either by cell ablation or RNA 

interference (RNAi). We found that none of the investigated neuropeptides seems to be 

of equal importance for circadian locomotor rhythms as PDF. PDF had been previously 

shown to be necessary for rhythm maintenance in constant darkness (DD) as well as for 
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the generation of morning (M) activity and for the right phasing of the evening (E) activity 

in entrained conditions. We now demonstrate that NPF and ITP seem to promote E 

activity in entrained conditions, but are clearly not the only factors doing so. In addition, 

ITP seems to reduce nighttime activity. Further, ITP and possibly also sNPF constitute 

weak period shortening components in DD, thereby opposing the effect of PDF. However, 

neither NPF or ITP, nor sNPF seem to be necessary in the clock neurons for maintaining 

rhythmicity in DD. 

It had been previously suggested that PDF is released rhythmically from the dorsal 

projection terminals. Now we discovered a rhythm in ITP immunostaining in the dorsal 

projection terminals of the ITP+ clock neurons in LD, suggesting a rhythm in peptide 

release also in the case of ITP. Rhythmic release of both ITP and PDF seems to be 

important to maintain rhythmic behavior in DD, since constantly high levels of PDF and 

ITP in the dorsal protocerebrum lead to behavioral arrhythmicity. 

Applying live-imaging techniques we further demonstrate that sNPF acts in an inhibitory 

way on few clock neurons, including some that are also activated by PDF, suggesting that 

it acts as signaling molecule within the clock network and has opposing effects to PDF. 

NPF did only evoke very little inhibitory responses in very few clock neurons, suggesting 

that it might rather be used as a clock output factor. We were not able to apply the same 

live-imaging approach for the investigation of the clock neuron responsiveness to ITP, but 

overexpression of ITP with various driver lines showed that the peptide most likely acts 

mainly in clock output pathways rather than inter-clock neuron communication. 

Taking together, I conclude that all investigated peptides contribute to the control of 

locomotor rhythms in the fruitfly Drosophila melanogaster. However, this control is in 

most aspects dominated by the actions of PDF and rather only fine-tuned or 

complemented by the other peptides. I assume that there is a high complexity in spatial 

and temporal action of the different neuropeptides in order to ensure correct signal 

processing within the clock network as well as clock output. 
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1 Introduction 

1.1 A Rhythmic World 

Our world has several periodical characteristics, to which organisms ranging from 

primitive unicellular bacteria or protozoans up to plants and higher animals, including us 

humans, have adapted to. Thus, organisms have evolved biological rhythms in behavior, 

metabolism and physiology, which enable them to cope with their periodically changing 

environment. The research field of Chronobiology, which was founded by scientists like 

Halberg, Bünning, Aschoff and Pittendrigh, deals with the investigation of these biological 

rhythms since the 1930s. 

The most prominent rhythms on our planet are the daily changes in light and 

temperature that are mediated by the rotation of the earth around its axis. To anticipate 

these periodic environmental changes, organisms have evolved endogenous clocks, which 

are able to autonomously generate a rhythm of approximately 24 hours. These clocks are 

therefore also called circadian clocks (from lat. circa = approximately; dies = day; Fig. 1). 

Receiving sensory input from the environment in terms of so-called Zeitgebers like light, 

temperature, humidity, food or social contacts, the oscillation of the circadian clock is 

synchronized to exactly 24 hours. This process is called entrainment. In today´s modern 

world we sometimes experience a sudden phase shift in the occurrence of external 

stimuli, e.g. when travelling across time zones or even when changing from summer to 

winter time. The clock then needs to reentrain to the new environment, a phenomenon 

we know as jetlag. As soon as external Zeitgebers are completely absent, the oscillation of 

the clock would persist, but would free-run with its own endogenous circadian period 

length of approximately 24 hours. 

The anatomical localization of the circadian clock within different organisms added to the 

understanding of its general working mechanism. Thus, it was found that unicellular 

organisms and plants contain an autonomous clock in every cell, whereas the clock in 

higher animals can be located to particular parts of the central nervous system (CNS). In 

mammals the nucleus suprachiasmaticus (SCN) of the Hypothalamus was identified as the 

master circadian pacemaker center, whereas the accessory medulla, a small neuropil 

between the optic lobe and the central brain, was identified as such in most insects. 
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Although several additional tissues in the animal body contain so-called peripheral clocks 

which are able to maintain autonomous oscillations, they are always governed by the 

master clock in the brain. Through various output pathways, which are by far not fully 

understood, the circadian clock creates rhythms in behavior, which allow an organism to 

optimally time its activity within the 24 hour cycle. Thus, organisms have not only 

specialized for life in different spatial ecological niches, but also for life in temporal 

niches, being active either at night (nocturnal), during the day (diurnal) or at twilight 

(crepuscular). Further, the master clock coordinates daily rhythms in physiological 

processes, such as the core body temperature or hormone levels, as well as rhythms in 

metabolism either directly or indirectly through peripheral clocks (Fig. 1).  

 
Figure 1: Schematic overview of the clock system. The core clock in the brain receives input from the 
environment through Zeitgebers like light, temperature, humidity, food or social contacts. The endogenous 
circadian rhythm is thus synchronized to the environment (entrainment). Through different output 
pathways, the core clock regulates rhythms in behavior, physiology or metabolism either directly or by 
governing the action of peripheral clocks in various body tissues.  

 

But daily (also called diurnal) rhythms are not the only periodic changes occurring on our 

planet, which organisms have adapted to. The different seasons for example, which we 

experience every year, reflect an annual periodism in the change of average temperature 

and day length. Being able to anticipate seasonal changes in environment allows different 

organisms to time actions or processes, which are essential for survival. The right timing 

of flowering or growth in plants, and the right timing of reproduction, hibernation or 

migration in long-living animals would be examples for such adaptations. Further, there 

are organisms that have synchronized their behavior to lunar or also tidal rhythms, which 

both depend on the moon phases. How time measurement in these non-diurnal rhythms 

is achieved and whether the circadian clock plays a role in this mechanism is only at the 
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beginning of our understanding. The present thesis, however, will mostly deal with 

questions concerning diurnal rhythms. (reviewed by Helfrich-Förster, 2002, 2004) 

         

1.2 The Circadian Clock of Drosophila melanogaster 

The first experiments investigating circadian periodicity were conducted in plants 

followed by investigations in mammals including even humans. The discovery of the 

genetic basis of the circadian clock was, however, achieved by Konopka and Benzer in 

1971 through their work on the fruitfly Drosophila melanogaster. Applying an EMS-based 

mutagenesis screen, they were able to identify the first gene controlling circadian 

rhythms, which they called period. Following studies on mosaic flies carrying the per0 

mutation only in certain tissues and studies on anatomical brain mutants revealed that 

the circadian pacemaker center is located in the accessory medulla, a small neuropil in 

the lateral brain close to the optic lobes (Konopka et al., 1983; Helfrich, 1986; Dushay et 

al., 1989). This was in accordance with previous findings in the cockroach or the cricket 

(Page, 1982). The identification of more clock genes (see also below) and the generation 

of specific antibodies against their gene products allowed the identification and 

morphological characterization of the neuronal clock network as we know it today (e.g. 

Helfrich-Förster et al., 2007; for review see also Helfrich-Förster, 2002). Due to its genetic 

accessibility, short generation time, relative neuronal simplicity, and its numerous 

measureable clock output effects Drosophila serves as a model to study the circadian 

clock since the last forty years. 

     

Clock Neuron Network  

The clock of Drosophila consists of about 150 neurons in the lateral and dorsal brain, 

which are called clock neurons. These neurons can be divided into several clusters 

according to their location, size or neurochemical character (Fig. 2). The ventral lateral 

neurons (LNv) consist of four larger neurons, the so-called large LNv (lLNv), and five small 

neurons, the small LNv (sLNv). The latter group can be further divided into four sLNv, 

which express the neuropeptide Pigment Dispersing Factor (PDF) and are thus referred to 

be PDF-positive (PDF+; Helfrich-Förster, 1995), and a fifth sLNv, which is PDF-negative 



Introduction 

12 
 

(PDF-). Extensive neuroanatomical studies were conducted to reveal details of the 

projection pattern of these cells with the attempt to unravel the network properties of 

the neuronal clock system (Helfrich-Förster, 1995; Helfrich-Förster et al., 2007). According 

to these studies, the lLNv send fibers into the ventral elongation of the ipsilateral 

accessory medulla and arborize in the outer layer of the ipsilateral and contralateral 

medulla, thereby allowing a coupling of both brain hemispheres. The PDF+ sLNv also 

innervate the accessory medulla, but not its ventral elongation, and project into the 

dorsal protocerebrum through a prominent fiber bundle. The fifth sLNv was shown to 

have a similar projection pattern, innervating the center of the accessory medulla and the 

dorsal protocerebrum. The more dorsally located group of the dorsal lateral neurons 

(LNd) consists of six neurons of approximately the same size. They were shown to send 

out projections into the dorsal protocerebrum, which even reach to the contralateral 

side. Further, there are fibers splitting off of these projections, which run down 

innervating the ipsilateral accessory medulla. The last group of lateral neurons is the 

group of the lateral posterior neurons (LPN), of which the projection pattern is unknown 

so far. (Helfrich-Förster et al., 2007) 

 
Figure 2: Schematic overview of the neuronal clock network in the adult Drosophila brain. The clock 
neurons are divided into seven different clusters: the sLNv, lLNv, LNd and LPN in the lateral brain and the 
DN1, DN2 and DN3 in the dorsal protocerebrum. The DN1 can be further divided into DN1a and DN1p, 
while the sLNv can be divided into four PDF+ neurons and a fifth PDF- sLNv. (For details see text. Adapted 
from Helfrich-Förster et al., 2007) 
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The dorsal clock neurons (DN) can be divided into three groups: the DN1 (further 

separated into the more anterior DN1a and the more posterior DN1p), DN2 and DN3. All 

three groups project into the dorsal protocerebrum, while some of the DN1 and DN3 also 

arborize into the ipsilateral accessory medulla. Taking together, all clock neuron groups 

innervate the dorsal protocerebrum and most of them the accessory medulla, where their 

fibers largely overlap, allowing not only potential clock output at these sites, but also 

inter-clock-neuron communication. (Helfrich-Förster et al., 2007) 

 

Molecular Clock Mechanism 

The molecular mechanism of the clock consists of two interlocked negative and positive 

feedback loops, in which clock genes are transcribed rhythmically within the clock 

neurons and the resulting proteins influence their own transcription (Fig. 3). The key 

components in this machinery are the two clock proteins CLOCK (CLK) and CYCLE (CYC), 

which form heterodimers and act as transcriptional activators recognizing a certain DNA-

motif, the so-called E-box, in the promoter region of clock controlled genes (ccg; Fig. 3, 

Allada et al., 1998; Darlington et al., 1998; Rutila et al., 1998). Thus, CLK and CYC activate 

the transcription of the two clock genes period (per) and timeless (tim). Both mRNAs are 

then translocated to the cytoplasm, where they are translated and the PER and TIM 

proteins accumulate. PER and TIM form heterodimers, thereby enhancing PER protein 

stability (Price et al., 1998). The heterodimers enter the nucleus and inhibit their own 

transcription by an interaction between PER and CLK, which prevents the CLK/CYC dimer 

from further binding to the E-boxes (Lee et al., 1999). This oscillation is synchronized to 

the surrounding light-dark (LD) cycle by the action of the blue-light sensitive protein 

CRYPTOCHROME (CRY), which is expressed in most clock neurons (Emery et al., 1998; 

Yoshii et al., 2008). In the morning CRY is activated by light and leads to the degradation 

of TIM (Lin et al., 2001), which also destabilizes PER. Thus, the inhibiting action of PER and 

TIM decreases during the day together with PER/TIM protein levels and the CLK/CYC 

heterodimers can activate per and tim transcription again. During the night, when CRY is 

not activated, PER and TIM will again accumulate until the cycle restarts in the morning. 
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In the second feedback loop, the CLK/CYC heterodimer activates the transcription of the 

two clock genes vrille (vri) and Par domain protein 1 (Pdp1; Blau and Young, 1999; Cyran 

at el., 2003). Both VRI and PDP1 proteins then feed back to their own transcription by 

regulating the transcription of the clock (clk) gene, whereby VRI is repressing and PDP1 is 

activating. Thus, both feedback loops are interlocked on the level of clk expression, which 

is timed reciprocally to the per/tim expression in the 24 hour cycle.  

In fact, this description is a rather simplified representation of the whole mechanism, 

since there are more components involved regulating e.g. protein stabilities or 

interactions (especially different kinases and phosphatases; details were reviewed by 

Peschel and Helfrich-Förster, 2011). However, these details are of no particular relevance 

for the present thesis.  

 

 

 
Figure 3: Simplified model of the molecular clock mechanism of Drosophila. The transcription factors 
CLOCK (CLK) and CYCLE (CYC) activate the transcription of the clock genes period (per), timeless (tim), vrille 
(vri) and par domain protein 1 (pdp1) and other clock controlled genes (ccg). After translation, the clock 
proteins PER, TIM, VRI and PDP1 accumulate in the cytoplasm and feed back on their own transcription by 
influencing the action of CLK or the clk expression. The resulting oscillation in RNA and protein levels is 
synchronized to the 24 hour LD cycle by the action of the blue light photoreceptor Cryptochrome (CRY), 
which leads to TIM and PER degradation upon light stimulation. See text for details. 
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Behavioral Rhythms 

Drosophila melanogaster shows various measurable types of circadian behavior, like 

eclosion, feeding, courtship or oviposition. The most prominent, however, is the circadian 

rhythm in locomotor activity, which can be efficiently measured photoelectrically under 

various simulated light or temperature conditions. In constant darkness (DD) Drosophila 

maintains robust locomotor rhythms reflecting its endogenous period length of 

approximately 24 hours. In entrained conditions like an LD cycle Drosophila is a 

crepuscular animal, showing two robust activity peaks: a morning (M) peak and an 

evening (E) peak, which are separated by a midday siesta. In accordance with the 

proposed dual oscillator model by Pittendrigh and Daan (1976), who suggested that there 

are two different oscillators present in nocturnal rodents controlling M activity and E 

activity, Drosophila melanogaster was the first organism in which an M oscillator and E 

oscillator were anatomically attributed to different clock neuron clusters. Thus, it was 

shown that the four PDF+ sLNv mainly control the M activity, while three CRY+ LNd and 

the fifth PDF- sLNv control the E activity (Grima et al., 2004; Stoleru et al., 2004; Rieger et 

al., 2006; Picot et al., 2007; reviewed by Yoshii et al., 2012). However, further studies 

suggested that this regulation is rather plastic and depends on the environmental 

conditions (e.g. Rieger et al., 2009; Zhang et al., 2010).  

How sensitive the clock system is to environmental changes, which occur for example also 

in the course of annual seasons, is of growing interest in the research field and quite 

some work has been conducted recently (e.g. Yoshii et al., 2009; Rieger et al., 2012; Vanin 

et al., 2012; Menegazzi et al., 2013). Under long photoperiods, which would occur during 

summer time, the two activity peaks of Drosophila melanogaster move further apart 

tracking the timing of dusk and dawn, mediated by an acceleration of the clock in the M 

cells and a deceleration of the clock in the E cells (e.g. Rieger et al., 2007; Yoshii et al., 

2009). Vice versa, in shorter photoperiods M and E peak move closer together. However, 

these changes in phase angle between M and E peak were shown to have limitations, in 

that dusk and dawn under extreme photoperiods (e.g. LD 20:04 or LD 04:20) cannot be 

completely followed anymore. Rieger et al. (2012) nicely showed that wildtype Drosophila 

melanogaster strains deriving from more northern habitats were less limited in increasing 

their phase angle than flies from southern habitats, indicating that this behavior might be 
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based on adaptation to local conditions. Nevertheless, the general limitation in phase 

angle indicates that the M and E peak are coupled and not acting independently of each 

other (Rieger et al., 2003; 2012).  

   

1.3 Neuropeptide Circuits in Insects  

Insect Neuropeptides 

Neuropeptides are neuromodulatory molecules that can be found from the most 

primitive to highly evolved animal nervous systems. They are synthesized by neurons and 

endocrine cells and act on targets within the central nervous system or on peripheral 

targets, either by direct innervation or by release as hormones into the circulation. 

Neuropeptides arise through enzymatic cleavage of large precursor peptides 

(prepropeptides) that are encoded in the genome. The completion of the whole genome 

sequence of Drosophila allowed a good estimation of the actual number of putative insect 

neuropeptide precursors (Hewes and Taghert, 2001). Thus, around 25 of them have been 

identified so far, each of which giving rise to sometimes numerous different mature 

neuropeptide isoforms. Additional precursor genes were identified in other insect species 

through direct isolation. The prepropeptides enter the secretory pathway, during which 

they undergo maturation. This process includes cleavage of the precursor in smaller 

peptides as well as posttranslational modifications. The mature neuropeptides are then 

transported to their release sites in so called large dense cored vesicles. (Reviewed by 

Nässel, 2002 and Bendena et al., 2012) 

A general feature of insect neuropeptides is that different peptide types largely vary in 

their expression pattern and that the expression is usually restricted to distinct subsets of 

neurons or sometimes even single cells. This spatial specificity would indicate a rather 

narrow functional area for each neuropeptide. But in fact, most of them appear to be 

multifunctional. In contrast to classical neurotransmitters, which are released at synapses 

and directly act on ligand-gated ion channels, neuropeptides can be released also non-

synaptically on both axons and dendrites. This broadens their field of action, in that they 

can on one hand act on precise targets, when released at classical synapses. On the other 

hand the peptide containing vesicles are stored along the neuronal projections within 
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varicosities and can thus be released upon neuronal stimulation as local neurohormone 

with a broader distribution. (Reviewed by Nässel, 2002 and Bendena et al., 2012) 

 

Neuropeptide Signaling and Function 

Most neuropeptides, that have been studied so far, activate a large family of receptors, 

the so-called G-protein coupled receptors (GPCRs), which can be further divided into 

several subfamilies. GPCRs are composed of 7 transmembrane domains with an N-

terminal ligand binding site in the extracellular matrix as well as a cytoplasmic oriented C-

terminus that interacts with a GTP binding protein (G-protein). Through these G-proteins 

the receptor initiates a signal transduction cascade within the adenylate cyclase or the 

phospholipase c pathway, thereby regulating intracellular levels of either cyclic AMP 

(cAMP) or inositoltriphosphate (IP3), diacylglycerol (DAG), and calcium (Ca2+). 

Downstream processes of these signaling pathways include the activation of kinases or 

phosphatases, ion channel activation, protein synthesis or transcriptional regulation. Thus 

neuropeptides elicit rather slow responses, also considering that they are not always 

released in a localized fashion (synaptically), but travel longer distances to reach their 

target receptor, either as local neurohormone in a paracrine fashion or as neurohormone 

travelling within the circulation system. Neurons quite often express a neuropeptide 

together with a classical fast neurotransmitter that directly influences the opening or 

closing of ion channels in its target cell. The coexpressed neuropeptide can then modulate 

the cellular response through its activation of the corresponding GPCR. (Reviewed by 

Nässel, 2002 and Caers et al., 2012) 

About 44 genes encoding putative neuropeptide GPCRs were identified in the genome of 

Drosophila melanogaster (Hewes and Taghert, 2001). About three quarters of them have 

been assigned to their corresponding neuropeptides by now, while the remaining orphan 

receptors are still waiting for the identification of their ligands. In contrast to the 

expression patterns of different neuropeptides, which have been extensively 

characterized in most cases, much less is known about the precise expression pattern of 

most neuropeptide receptors. Antibodies are often not available and reporter lines are 

sometimes unspecific. Nevertheless, newly developed tools employing optogenetics or 
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electrophysiology are used nowadays to search for target sites of different neuropeptides 

or classical neurotransmitters in vivo.  

As mentioned earlier, most neuropeptides are multifunctional. The same peptide 

sometimes fulfills completely different tasks when acting in the central nervous system 

compared to the periphery. In general, neuropeptides are involved in the regulation of 

homeostasis, different developmental processes, neuronal modulation, and the 

coordination of various types of behavior. (Hewes and Taghert, 2001; Nässel, 2002; Caers 

et al., 2012)   

    

1.4 Neuropeptides Expressed in Drosophila Clock Neurons 

Neuropeptides are divided into families according to their structural relationship. Thus, a 

neuropeptide family usually consists of members with similar amino acid sequences. A 

nice overview of insect neuropeptide families and their functions is provided in relevant 

reviews, e.g. by Nässel (2002), Bendena et al. (2012) or Taghert and Nitabach (2012). 

Therefore, I will restrict my descriptions here to neuropeptides that are expressed in the 

clock neurons of Drosophila. 

 
Figure 4: Neurochemistry of the clock neurons of Drosophila melanogaster (reviewed by Peschel and 
Förster, 2011). Four sLNv and the lLNv express PDF (blue), while the fifth sLNv is PDF-. NPF is expressed in 
three LNd (red) and sNPF was found in the four PDF+ sLNv as well as in two NPF- LNd (yellow). ITP is 
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expressed in the fifth sLNv and in one NPF+ LNd (black). Further, IPNamide was found within the DN1a 
(purple) and there are hints for the presence of Acetylcholine in the sNPF+ LNd and the fifth sLNv (green).    

 

The neurochemical characterization of the Drosophila clock neurons is of great interest, 

since it is a first step towards understanding the network properties of the clock system 

as well as clock output pathways. Fig. 4 shows the neurochemistry of the different clock 

neurons as it was reviewed in Peschel and Helfrich-Förster (2011). As mentioned earlier, 

the large and small LNv express the neuropeptide PDF (Helfrich-Förster, 1995). Later 

Shafer et al. (2006) found the expression of IPNamide in the DN1a neurons. Further, three 

of the LNd were found to contain Neuropeptide F (Lee et al. 2006). And finally in 2009, 

the study by Johard et al. even added two more peptides: short Neuropeptide F (sNPF), 

which is expressed in all four PDF+ sLNv and in two NPF- LNd, and the Ion Transport 

Peptide (ITP), which was found in the fifth sLNv and in one NPF+ LNd. The same study 

revealed the presence of the Choline-Acetyltransferase in the fifth PDF- sLNv as well as in 

the two sNPF+ LNd, suggesting that these cells contain Acetylcholine (AcCh).   

In the following I will introduce those neuropeptides that were examined in the course of 

this PhD project.  

 

Pigment Dispersing Factor (PDF) 

Mature PDF is an 18 amino acid amidated neuropeptide and is related to a peptide family 

of crustaceans, the pigment dispersing hormones (PDH), which regulate the pigment 

migration in crab chromatophores (Rao and Riehm, 1993). However, PDF was found to 

fulfill no such function within insects, but to be an important component of the circadian 

clock. This was extensively shown for Drosophila melanogaster (e.g. Helrich-Förster 1995; 

Renn et al., 1999), but also in other insect species PDF was found in putative clock 

neurons (reviewed by Helfrich-Förster, 2009 and Tomioka and Matsumoto, 2010). The 

PDF receptor (PDFR) was discovered in 2005 and was shown to be expressed mainly in 

CRY+ clock neurons and in additional cells outside of the clock network (Hyun et al., 2005; 

Mertens et al., 2005; Im and Taghert, 2010; Im et al., 2011). Thus, most clock neurons in 

explanted adult brains respond to bath applied PDF with robust increases in cAMP (Shafer 

et al., 2008). It is further known that PDF has the ability to speed up the clock in certain 
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clock neurons while slowing it down in others (Yoshii et al., 2009). These studies assume 

that PDF acts as a synchronizing signal within the clock network. Recent work, however, 

identified PDF target sites outside of the clock network in the ellipsoid body, confirming 

the general opinion of PDF being also an important output factor of the circadian clock 

(Pírez et al., 2013). Impairment of the PDF/PDFR circuit leads to arrhythmicity or 

shortened free-running rhythms in DD, as well as to reduced M activity and advanced E 

activity in entrained conditions (Renn et al., 1999). PDF from the sLNv seems to be 

responsible for maintaining rhythmicity in general and for generating M activity, while 

PDF from the lLNv influences the length of the free-running period as well as the E peak 

timing in LD (Shafer and Taghert, 2009).  

 

Neuropeptide F (NPF) 

The first invertebrate NPF was found in a tapeworm and was thought to be related to the 

vertebrate Neuropeptide Y (Maule et al., 1991). More peptides identified in mollusks and 

insects followed. The mature Drosophila melanogaster NPF was characterized as a 36-

residue amidated peptide that is expressed in few neurons in the brain and in endocrine 

cells of the midgut in both larvae and adults (Brown et al., 1999). A receptor for 

Drosophila NPF, NPFR1, was identified by Garczynski et al. (2002) and in vitro studies 

showed that it acts via an inhibitory G-protein, thus inhibiting adenylate cyclase activity 

and likely also decreasing intracellular Ca2+ (Xu et al., 2010). NPFR1 was localized by in situ 

hybridization to neurons in the brain, ventral nerve chord and to midgut cells in larvae 

(Garczynski et al., 2002; Wu et al., 2003), and by GAL4 driven GFP expression to very few 

cells in the adult brain (Wen et al., 2005). Major functions of NPF signaling include the 

regulation of feeding and courtship behavior, metabolism, alcohol sensitivity, aggression 

as well as learning and memory (Shen and Cai, 2001; Wu et al., 2003, 2005; Wen et al., 

2005; Dierick and Greenspan, 2007). The discovery of NPF within three LNd clock neurons 

(Lee et al., 2006; Hamasaka et al., 2010) allowed the assumption that NPF might also be 

involved in the circadian system of the fly. Indeed, the ablation of the NPF+ neurons 

altered the phase and the shape of the E activity of male adult flies in entrained 

conditions (Lee et al., 2006). (For detailed review see Nässel, 2002 and Nässel and 

Wegner, 2011.)    
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short Neuropeptide F (sNPF) 

sNPFs were so far only found in arthropod species and are best characterized in insects. 

Many species express multiple isoforms of sNPF, which derive from one precursor that is 

encoded by one gene. In Drosophila four different amidated isoforms were predicted 

based on the genome data (sNPF-1, sNPF-2, sNPF-3 and sNPF-4), however biochemical 

analysis employing mass spectrometry revealed divergences of the actually occurring 

sNPF peptides in comparison to what was predicted. Especially sNPF-1 and sNPF-2 were 

shown to mainly occur in a much shorter truncated form (sNPF-14-11, reviewed by Nässel 

and Wegener, 2011). The expression pattern of sNPF is best characterized in Drosophila 

and is very broad in both larvae and adults. sNPF+ cells were identified in the brain (a 

large proportion within the mushroom bodies), the ventral nerve chord as well as some 

endocrine cells in the midgut in larvae (Veenstra, 2009). Also in adult flies, sNPF is present 

in a large number of cells including Kenyon cells of the mushroom body, olfactory sensory 

neurons, neurosecretory cells in the protocerebrum as well as many other unidentifiable 

interneurons (e.g. Johard et al., 2008; reviewed by Nässel and Wegener, 2011). The sNPF 

receptor (sNPFR1), which was first identified in Drosophila, seems to be expressed widely 

in the CNS and other tissues, although only little is known so far about details (Mertens et 

al. 2002, Feng et al. 2003, Reale et al., 2004). According to its relationship to the 

vertebrate NPY receptor and a study conducted on the sNPF receptor in Anopheles 

(Garczynski et al., 2007), the sNPFR1 of Drosophila is suggested to inhibit adenylate 

cyclase activity. The broad distribution of sNPF and its receptor suggests multiple 

functions in the brain, the gut and actions as endocrine hormone system. These functions 

include regulation of feeding and growth, metabolic stress, locomotion, learning and 

hormone release (Lee et al., 2004, 2008; Johard et al., 2008; Nässel et al., 2008; Kahsai et 

al., 2010a, b; Knapek et al., 2013). A function for sNPF in circadian rhythms was 

suggested, when Johard et al. (2009) discovered sNPF expression within certain clock 

neurons, although no experimental proof had been provided so far. (For detailed review 

see Nässel, 2002 and Nässel and Wegener, 2011.)     
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Ion Transport Peptide (ITP) 

ITP was first identified in the corpora cardiaca of the desert locust Schistocerca gregaria. 

It was shown to fulfill antidiuretic functions and to be related to crustacean 

hyperglycemic hormones (CHH; Audsley et al., 1992). Later the analysis of the Drosophila 

genome revealed a gene encoding a peptide that is structurally similar to the locust ITP 

and to CHH (Hewes and Taghert, 2001). The study of Dircksen et al. (2008) showed that 

long and short Drosophila ITP isoforms derive from alternative splicing of one itp gene, 

just like it had been shown before for locusts and moths (Meredith et al., 1996; Dai et al., 

2007). The short amidated isoform, ITP, stimulates chloride transport within the hindgut, 

while the two long carboxylated isoforms, ITP-L1 and ITP-L2, are thought to act as 

competitive inhibitors on the so far unknown ITP receptor (reviewed by Dircksen, 2009). 

Recent studies on Schistocerca gregaria ITP suggest signaling through a GPCR as well as a 

membrane bound guanylate cyclase, which increase intracellular cAMP and cGMP levels 

(Audsley et al., 2012). By immunohistochemical analysis and in situ hybridization ITP 

expression in Drosophila was localized to only few cells in larvae and adults (Dircksen et 

al., 2008). Among these are pars lateralis neurosecretory cells, which most probably 

release ITP into the haemolymph, hindgut innervating neurons in abdominal ganglia, and 

different types of interneurons, which include the fifth sLNv clock neuron and one LNd 

(Dircksen et al., 2008; Johard et al., 2009). Recently, a clock related function of ITP was 

proposed by Damulewicz and colleagues (Damulewicz and Pyza, 2011; Damulewicz et al., 

2013) for the regulation of circadian rhythms in morphological plasticity of lamina 

monopolar cells and the oscillation in abundance of the catalytic subunit of a 

sodium/potassium pump in glia cells of the lamina. However, no clock related function in 

behavior was so far shown for ITP.    

 

1.5 Aim of Study 

The general aim of this PhD project was to investigate possible yet unknown functions of 

different neuropeptides for the circadian clock of Drosophila melanogaster. Thereby, I 

focused on NPF, sNPF and ITP since they had been previously shown to be expressed in 

the lateral pacemaker neurons of the fly (LNs; Helfrich-Förster, 1995; Lee et al., 2006; 

Johard et al., 2009), which are important for rhythm generation in behavior.  
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One goal was to verify the neuropeptide expression pattern by immunohistochemistry in 

Drosophila melanogaster and to compare it in part among different Drosophila species to 

gain evolutionary insight into its importance for the clock system. Investigation of the 

neuropeptide PDF ought to be included in this study, since a recent work by Bahn et al. 

(2009) had shown remarkable differences in the PDF expression pattern of Drosophila 

virilis in comparison to Drosophila melanogaster. This part of the thesis also includes the 

characterization of the neuronal clock network of different Drosophila species in general 

as well as characterization of the CRY expression.  

The second and probably main aim of this thesis was the investigation of effects on 

circadian locomotor behavior, after manipulation of neuropeptide signaling by specifically 

directed RNA-interference (RNAi), cell ablation, the use of mutants or overexpression. 

Also here, effects of PDF are often co-examined, to reveal possible interactions between 

different neuropeptide signaling pathways. 

Using the example of Shafer et al. (2008), in which the effect of bath applied PDF on clock 

neurons had been investigated employing optogenetic second messenger sensors, the 

third goal of this thesis was to examine, whether the three peptides function in inter-

clock-neuron communication, i.e. targeting clock neurons. Part of this topic was 

consequently the examination of the expression pattern of the respective neuropeptide 

receptors within the clock network using available GAL4 lines and GFP reporters. 
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2 Material and Methods 

2.1 Material 

2.1.1 Fly strains 

In Table 1 all fly strains that were used in the course of this thesis are listed with 

information on source (from whom they were obtained) and literature reference. Flies 

were reared on cornmeal/agar medium containing 0.8% agar, 2.2% sugar beet molasses, 

8.0% malt extract, 1.8% yeast, 1.0% soy flour, 8.0% corn flour and 0.3% hydroxybenzoic 

acid. All flies were kept in LD 12:12 during the whole time of development either on 18°C 

for long-term maintenance or on 25°C before conducting experiments. Humidity was kept 

between 60 and 65%. 

Table 1: Fly strains used in this thesis. DSSC: Drosophila Species Stock Center, San Diego. BL: Bloomington 
Stock Center. VDRC: Vienna Drosophila RNAi Center. DGRC: Drosophila Genetic Resource Center, Kyoto 
Institute of Technology, Japan. 

Genotype Source Reference/Comments 

Wildtypes, Mutants and Balancer 

Canton S (CS) S. Schneuwly Lindsley and Grell, 1968; D. 
melanogaster 

D. simulans  

 

 

 

DSSC 

 

 

 

 

 

 

Drosophila species 

D. yakuba 

D. ananassae 

D. triauraria 

D. pseudoobscura 

D. willistoni 

D. virilis 

D. littoralis A. Hoikkala 

D. ezoana A. Hoikkala 

yw stock collection for control crosses 

w1118 stock collection for control crosses 



Material and Methods 

25 
 

w;CyO/Sco from BL #3703 Balancer 

w;+;TM6B/MKRS from BL #3703 Balancer 

w;CyO/Sco;TM6B/MKRS BL #3703 Double-Balancer 

GAL4/GAL80-driver and UAS-responder lines 

yw;pdf-GAL4;+ J. C. Hall Renn et al, 1999 

w;tim(UAS)-GAL4;+ M. W. Young Blau and Young, 1999 

w;tim-GAL4/CyO;+ M. Kaneko Emery et al., 1998 

yw;per-GAL4;+ M. Kaneko Plautz et al. 1997 

w;clk856-GAL4;+ O. T. Shafer Gummadova et al., 2009 

w;cry-GAL4#39/+ F. Rouyer Klarsfeld et al., 2004 

yw;snpf-GAL4;+(NP6301) DGRC  Nässel et al., 2008; Johard et 
al., 2009 

yw;snpfR1-GAL4 C. Wegener e.g. Hong et al., 2012 

yw;+;npf-GAL4 Prof. Jae H. Park Wu et al., 2003 

w;npfR1-GAL4 P. Shen Wen et al., 2005 

sNPFc00448, sNPFhypo O. T. Shafer Lee et al., 2008 

w;elav-GAL4/CyO;+ BL #8765 Dimitroff et al., 2012 

w;386y(amon)-GAL4 C. Wegener Taghert et al., 2001 

yw;+;cry-GAL802e3m/TM6B,D3 M. Rosbash Stoleru et al., 2004 

yw;pdf-GAL8096A M. Rosbash Stoleru et al., 2004 

w;UAS-hid14/CyO;+ H. Steller Zhou et al, 1997 

w;+;UAS-GFP-S65t BL #1522 Siegmund and Korge, 2001 

w,UAS-dicer2;+;+ VDRC #60012 Dietzl et al., 2007 

w;+;UAS-pdf-RNAi VDRC #4380 Shafer and Taghert, 2009 

w;+;UAS-npf-RNAi VDRC #108772 Hermann et al., 2012 

w;+;UAS-snpf-RNAiLee R. Costa Lee et al., 2008 

w;+;UAS-snpf-RNAiBloo BL #25867 Shang et al., 2013 

w;+;UAS-snpfR-RNAi BL #27507 - 

w;+;UAS-itp-RNAi VDRC #43848 Damulewicz and Pyza 2011 
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w;+;UAS-ITP2/TM3  present thesis 

w;UAS-Epac1camps50A;+ O. T. Shafer Shafer et al., 2008 

w;UAS-GCaMP3.0;+ O. T. Shafer Lelito and Shafer, 2012 

 

2.1.2 Antibodies 

Table 2 lists all primary and secondary antibodies that were used in this thesis and gives 

information on the exact Immunogen, the donor animal, dilution and reference. “Source” 

refers to the person from whom the antibody was obtained. Antibodies were stored at 

4°C or in 50% Glycerol at -20°C. For the working solution antibodies were diluted in PBT to 

the appropriate concentration. 0.02% NaN3 was added to primary antibody solutions to 

prevent bacterial growth. Like this it was possible to use the primary antibody solutions 

several times. Detailed production procedures of primary antibodies can be found in the 

material and methods sections of Hermann et al. (2012, 2013) and in other given 

references. 

Table 2: Primary and secondary antibodies used in this thesis. 

Prim. Antibody Immunogen Donor animal Dilution Reference/Source 

anti-TIM Polyhistidine fused TIM 
fragment expressed in E. coli 
(amino acids 222–577) 

rat, poly 1:1000 Sidote et al., 1998 
/ I. Edery 

anti-PDP1 GST-fused bacterially 
purified PDP1α 

rabbit, poly 1:1000 Cyran et al., 2003 / 
J. Blau 

anti-VRI Histidine fused VRI (coding 
region) expressed in Sf9 
insect cells 

guinea pig, poly 1:3000 Glossop et al., 
2003 / P. Hardin 

anti-CRY Polyhistidine fused full-
length Drosophila CRY 
expressed in E. coli 

rabbit, poly 1:1000 Yoshii et al., 2008 / 
T. Todo 

anti-PER Baculovirus expressed full 
length Drosophila PER 
protein 

rabbit, poly 1:1000 Stanewsky et al., 
1997 / R. 
Stanewsky 

anti-PDF-C7 amidated Drosophila PDF 
peptide 
(NSELINSLLSLPKNMNDA-
NH2) 

mouse, mono 1:1000 DSHB, J. Blau 
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nb33 (PDF) Drosophila melanogaster 
head extracts 

mouse, mono 1:100 Hofbauer et al., 
2009 / A. Hofbauer 

anti-βPDH βPDH conjugated to bovine 
thyroglobulin 
(NSELINSILGLPKVMNDA-
NH2) 

rabbit, poly 1:2000 Dircksen et al., 
1987 / H. Dircksen 

anti-NPF mature Drosophila NPF 
(SNSRPPRKNDVNTMADAYKF
LQDLDTYYGDRARVRFG-NH2) 

rabbit, poly 1:300 Shen and Cai, 2001 
/ J. Park 

anti-sNPFp part of the sNPF precursor 
protein 
(DPSLPQMRRTAYDDLLEREL) 

rabbit, poly 1:3000 Johard et al., 2008; 
Nässel et al., 2008 
/ J. Veenstra 

anti-ScgITP-C1 Gly-extended peptide of 
short ScgITP 
(GGGDEEEKFNQ) 

rabbit, poly 1:4000 Ring et al, 1998; 
Dircksen et al., 
2008 / H. Dircksen 

anti-ITP-R1 Drosophila melanogaster 
ITP specific C-terminal 
fragment 
CEMDKYNEWRDTL-NH2 

rabbit, poly 1:10000 Dircksen et al., in 
prep.; Hermann-
Luibl et al., 
submitted / H. 
Dircksen 

Sec. Antibody Immunogen Dilution Source 

Alexa Fluor 488 goat anti-rabbit   

 goat anti-guinea pig  

 

1:200 

 

 

Molecular Probes (Invitrogen) 
Alexa Fluor 555 goat anti-rabbit 

goat anti-rat 

Alexa Fluor 532 goat anti-rabbit 

Alexa Fluor 635 goat anti-mouse 

 

All further Material used for the experiments included in this thesis is listed in the 

Appendix.  
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2.2 Methods 

2.2.1 The GAL4/UAS System 

The most basic method in this thesis is the GAL4/UAS binary expression system, which 

was first described by Brand and Perrimon in 1993. This system can be used to direct the 

expression of certain gene constructs in a spatially controlled manner in vivo. The 

principle of this system involves two different transgenic fly lines, the so-called driver or 

GAL4-line, and the responder or UAS-line. The driver line contains the genetic sequence 

of GAL4, a transcriptional activator of yeast, which is cloned downstream of a particular 

promoter sequence of interest. By using tissue or cell specific promoter sequences the 

GAL4 expression can be directed to almost any anatomical structure in the animal. The 

responder fly line contains the so-called upstream-activating-sequence (UAS), which is the 

target sequence of the GAL4 transcriptional activator. This UAS sequence is cloned 

upstream of any kind of effector gene (e.g. reporter genes, RNAi constructs, cell death 

genes etc.). By crossing flies of the driver line with flies of the responder line, the resulting 

progeny contains both transgenic constructs. GAL4 will then be synthesized under the 

control of the tissue or cell specific promoter and will activate the expression of the 

effector gene by binding to the UAS sequence. Thus, this system allows the expression of 

an effector gene in any tissue or cell group of interest. (Fig. 5A) 

The work of Lee and Luo (1999) added another useful tool to the system – GAL80, 

another transcriptional regulator of yeast. In contrast to GAL4, GAL80 is an inhibitory 

element, which can bind to the active domain of the GAL4 protein, thereby preventing its 

binding to the UAS sequence. A third class of transgenic fly lines contains the GAL80 

sequence again under the control of a tissue or cell specific promoter. As soon as all three 

transgenic constructs (GAL4, UAS and GAL80) are combined in one fly, tissue specific 

GAL4 expression will activate the effector gene downstream of UAS, but only in cells in 

which GAL80 is not simultaneously expressed. In cells in which promoter activity allows 

both GAL4 and GAL80 expression, GAL4 activity will be inhibited and the effector gene 

will not be expressed. (Fig. 5B) 
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Figure 5: The GAL4/UAS System. (A) GAL4 is expressed under the control of a tissue specific promoter X. In 
presence of the UAS-sequence, GAL4 will bind to it and will activate the transcription of the effector gene Y. 
(B) In case a promoter Z allows in addition the expression of GAL80, it will bind to GAL4 and prevent the 
activation at the UAS-sequence. Thus, cells containing only GAL4 will express the effector Y, while cells 
containing both GAL4 and GAL80 will not. For details see text. 

 

2.2.2 Molecular Methods 

2.2.2.1 Generation of UAS-itp lines 

The whole process of generating the UAS-ITP lines will be described in the following. A list 

of all used kits and reagents can be seen in the Appendix of this thesis. 

RNA Extraction 

For RNA Extraction I used the ZYMO Quick-RNATM MicroPrep Kit. Five Drosophila 

melanogaster Canton S heads were quickly removed from the fly bodies on ice and were 

directly transferred into RNA Extraction Buffer. A hand-held electrical homogenizer was 

used to break up the heads. The washing and centrifugation steps were performed 

according to the manufacturer´s protocol. Finally the RNA was eluted from the column 

with 8µl of RNAse free water. 

Reverse Transcription (RT) 

For cDNA synthesis 6µl of the eluted RNA were treated with the QuantiTect Reverse 

Transcription Kit. First, 1µl of gDNA wipe-out was added to the RNA and was incubated at 

42°C for 2 min. Subsequently a mastermix containing 0.5µl Reverse Transcriptase Enzyme, 
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2µl of RT Buffer, 0.5µl of RT Primer Mix was added to the RNA and the sample was placed 

into a PCR machine to perform the following temperature steps: 42°C for 30 min, 95°C for 

3 min and subsequently cooling down to 4°C. The resulting cDNA sample was finally 

diluted 1:2 in water. 

ITP PCR 

To amplify full length itp cDNA, I used the ITP-PE primer pair (see table 11 in the 

Appendix) which would create restriction enzyme sites for EcoRI and XbaI. Primers were 

diluted to 5µM in water before use. Table 3 shows the contents of the PCR reaction and 

the PCR program of the Mastercycler gradient machine (Eppendorf). 

Table 3: PCR program applied for ITP PCR. 

PCR reaction PCR program 

1µl cDNA 90°C 30sec  

34x 
2µl 5µM ITP-PE Primer Mix (5´and 3´Primer) 62°C 20sec 

7µl water 72°C 20sec 

10µl VWR Taq DNA Polymerase Master Mix 72°C 5min 

20µl total 4°C hold 

  

Gel Electrophoresis and DNA Extraction 

The PCR products were then split up by agarose gel electrophoresis (1% gel) and the 

bands of the different itp isoforms were cut out from the gel with razor blades. The band 

of the ITP-PE isoform (~500kb) was used for the cloning procedure to generate the ITP-

pUAST vector. Therefore, the ITP-PE DNA was extracted from the gel slice using the 

innuPREP DOUBLEpure Kit. The procedure was done according to the manufacturer´s 

protocol and finally the DNA was eluted with 20µl of water. 

Amplification of the pUAST vector (Midi-Prep) 

To amplify the pUAST vector (containing an Ampicillin resistance gene and a mini-white 

gene (kindly donated by A. Fiala) for cloning, overnight cultures of pUAST containing E. 

coli were incubated at 37°C. The cultures were centrifuged and the pUAST DNA was 

extracted from the bacterial pellets using the SIGMA GenEluteTM Plasmid Midiprep Kit. All 
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steps were conducted following the manufacturer´s protocol and the elution volume at 

the end was 0.5ml. For DNA precipitation 0.5ml of the eluate were incubated at -20°C for 

30 min, after adding 150µl of Na-Acetate (pH 5.2) and 1000µl of isopropanol, and were 

subsequently centrifuged at 4°C for 30 min with maximum speed. The DNA pellet was 

washed with 800µl of 70% Ethanol (centrifugation at 4°C for 10 min), dried at 37°C for 30 

min, resuspended in 100µl of water and again incubated at 37°C for 10 min. DNA 

concentration was subsequently measured with a spectrophotometer Nanodrop 2000c 

(Thermo Scientific; Peqlab). 

Digestion with Restriction Enzymes 

To obtain sticky DNA ends for ligation the pUAST vector DNA and the ITP-PE cDNA were 

digested with the two restriction enzymes EcoRI and XbaI. The following Table 4 shows 

the contents of the digestion reactions. 

Table 4: Digestion reactions applied on pUAST vector and ITP cDNA. 

pUAST digest cDNA digest 

5µl pUAST DNA 20µl ITP-PE cDNA 

2µl EcoRI 2µl EcoRI 

2µl XbaI 2µl XbaI 

2µl Buffer (2x) 3µl Buffer (2x) 

9µl water 3µl water 

20µl total 30µl total 

 

Digestion reactions containing pUAST vector DNA and no restriction enzyme or either 

EcoRI or XbaI served as controls. All reactions were incubated at 37°C over night. A small 

part of the digestion reactions was then observed on a 1% agarose gel to confirm the 

success of the digestion. 

Phosphatase Reaction and Ligation 

Prior to ligation the digested pUAST and ITP-PE DNA were purified using the MSB®Spin 

PCRapace (250) Kit according to the protocol and the DNA concentration was measured 

using the Nanodrop. To prevent self-ligation of the pUAST vector 10µl of vector DNA 
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(~1µg) were incubated with 2µl of 10x Buffer, 1µl of Fast APTM Phosphatase and 7µl of 

water at 37°C for 10 min and subsequently at 75°C for 5 min. 1µl of phosphatase treated 

pUAST DNA (~50ng) was then incubated with 9µl of the digested ITP-PE DNA, 2µl of T4 

DNA Ligase Buffer, 1µl of T4 DNA Ligase and 7µl of water at 22°C (room temperature) for 

30 min. 

Transformation 

NEB 10-beta competent E. coli cells were incubated with the ligated ITP-pUAST vector for 

20 min on ice. Then the cells were heat shocked at 42°C for 1 min and afterwards bacteria 

were allowed to grow in 200µl of LB0 medium for 1 hour at 37°C to recover from the heat 

shock. Then the cells were dispersed on selective LBAmp plates to allow growth only to 

those bacteria, which had incorporated the vector with the Ampicillin resistance. The 

plates were then incubated at 37°C over night. 

Single colony PCRs 

Single bacterial colonies from the LBAmp plates were picked with pipette tips and were 

used to inoculate 500µl of liquid LBAmp medium. The cultures were then incubated for 30-

90 min at 37°C on a shaker. 5µl of each culture were then incubated at 95°C for 10 min to 

kill the bacteria. To test which bacterial clone contained the vector including the ITP-PE 

insert, PCRs were performed using the ITP-PE primers (Mastercycler gradient, Eppendorf). 

For this a mastermix containing 3µl of water, 2µl of 0.5M ITP-PE Primer Mix and 10µl of 

VWR Taq DNA Polymerase Master Mix was added to the 5µl of bacterial culture. The PCR 

reactions were running with the same PCR program as the ITP PCR, which was performed 

before to amplify the itp cDNA. All tested clones contained the ITP-PE insert. 

Amplification of the ITP-PE pUAST Vector 

Several tested bacterial clones were used to inoculate 70ml of LBAmp medium and were 

incubated over night at 37°C. After centrifugation the vector DNA was extracted from the 

bacterial pellets according to the protocol of the SIGMA GenEluteTM Plasmid Midiprep Kit. 

The DNA was precipitated as described above for the pUAST vector alone. A small sample 

of vector DNA was then digested with EcoRI and XbaI to verify again the presence of the 

ITP-PE insert on a 1% agarose gel.  
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Sequencing and Microinjection 

Four different ITP-PE pUAST vectors from four different bacterial clones were sequenced 

using the ITP-pUAST Fw Primer (Table 11 in the Appendix). After the sequence of the 

insert was verified, one of the four vectors (Fig. 6) was sent to BestGene for 

microinjection into w1118 flies. 10 different UAS-ITP lines were obtained from BestGene 

after three months. 

 
Figure 6: The ITP-PE pUAST vector. The vector contains a mini-white gene (w+) and five copies of the UAS-
sequence upstream of the ITP-PE sequence. 

 

2.2.2.2 qPCR to verify RNAi efficiency 

RNA Extraction 

For RNA extraction, flies were killed in liquid nitrogen and heads and bodies were 

separated by vortexing. Five heads were transferred into the RNA Extraction Buffer and 

homogenized. RNA was extracted according to the protocol of the ZYMO Quick-RNATM 

MicroPrep Kit. Three biological replicates were prepared for each genotype. 

Reverse Transcription 

The Reverse Transcription reaction was performed as described above. The obtained 

cDNA was diluted 1:5 in water and stored at -20°C. 
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qPCR 

All three biological replicates were tested at the same time in two technical replicates 

with the Primers of interest and Primers against the housekeeping protein Tubulin (Table 

11 in the Appendix). The RNA amount of interest was later calculated relative to the 

Tubulin-RNA amount (see below). qPCR reactions were performed in a Rotor-Gene Q PCR 

machine using the SensiFASTTM SYBR No-ROX Kit. The reaction components and the PCR 

program were as follows (Table 5). 

Table 5: PCR program used for qPCR. 

PCR reaction PCR program 

1µl cDNA 95°C 2min 

4µl 0.5µM Primer Mix (5´and 3´Primer) 95°C 5sec  

40x 
5µl water 60°C 2min 

10µl SensiFASTTM SYBR-Green No-ROX-Mix (2x) 72°C 15min 

20µl total 4°C hold 

 

qPCR Data Analysis 

Raw data were depicted as amplification curves showing the SYBR-Green fluorescence 

signal in each PCR cycle. A threshold for the fluorescence signal was set close to the base 

of the exponential amplification phase. Then the PCR cycle numbers at the threshold 

(cycle threshold, Ct) were extracted from the raw data for all samples. Within one 

biological replicate the Ct values of all technical replicates for Tubulin were subtracted 

from the Ct values of all technical replicates of interest. Since the obtained ∆Ct values are 

inversely correlated to the actual amount of RNA in the sample (high values mean that 

more PCR cycles were necessary to gain the same amount of amplicon, i.e. mean low RNA 

levels at the beginning) all ∆Ct values were subtracted from an arbitrary value, which was 

set higher than the highest ∆Ct value of the experiment. This was done to later depict 

high amounts of amplicon as high values in the histogram. Finally, the ∆Ct values of all 

technical replicates were pooled for each biological replicate. Values of the biological 
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replicates were averaged across genotypes and standard deviation and standard error 

were calculated. 

 

2.2.3 Immunocytochemistry 

2.2.3.1 Entrainment and Tissue Fixation 

For immunohistochemical analysis 5-7 days old flies were entrained in an LD 12:12 cycle 

for at least four days prior to dissection. The entrainment was done in light tight boxes 

equipped with white light LEDs (Lumitronix, LED-Technik, Hechingen, Germany), which 

were set to an intensity of 100 lux. 20-25 male flies were housed in glass vials with normal 

fly food (see above) during the whole time of entrainment. At the appropriate ZT or CT, 

the flies were transferred through a funnel into 4% PFA in PB with 0.1% TrX-100. This was 

done under red light illumination and samples collected at dark time points were 

wrapped in aluminum foil to prevent light exposure prior to fixation. Whole D. 

melanogaster flies were fixed for 2.5 hours at room temperature on a shaker, while 

fixation times in other Drosophila species varied from 2.5-4 hours (see Material and 

Methods of Hermann et al., 2013). GFP expressing flies were fixed in 4% PFA in PB 

without TrX-100 for 3 hours in the same way. After fixation time was reached, the flies 

were washed 3 times 10 min in PB.  

 

2.2.3.2 Staining protocol 

Adult brains were dissected from the whole fly in cold PB in a black block dish under a 

stereo microscope using two sharp forceps (Fig. 7A). After separating the head from the 

fly body the eyes, the head capsule and most of the trachea were removed from the 

brain. The brains were kept in PBT (0.5% TrX-100) until the dissection of all flies was 

complete. Short-cut pipette tips glued to a tissue mesh served as collection baskets, in 

which the brains of each genotype were transferred (Fig. 7B). These collection baskets 

optimally fit into the wells of 96-well plates, in which all following incubation and washing 

steps were conducted (Fig. 7C).  
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To change the incubation solution the basket was simply placed into the next well in a 

row and the new incubation solution was applied. First, the brains were incubated in the 

blocking solution (5% Normal Goat Serum (NGS) in PBT (0.5% TrX-100)) for two hours at 

room temperature or overnight at 4°C. Then the primary antibody solution containing 1-3 

different primary antibodies in the appropriate concentration and 5% NGS in PBT (0.5% 

TrX-100) was applied and the brains were incubated for 1-2 nights, depending on the 

primary antibody. Unbound antibody was then washed away by rinsing the brains 5 times 

for 10 min with PBT (0.5% TrX-100). Subsequently, fluorescence-conjugated secondary 

antibodies were applied in a concentration of 1:200 in PBT (0.5% TrX-100) containing 5% 

NGS for three hours at room temperature or overnight at 4°C. After washing the brains 

again 5 times with PBT (0.5% TrX-100), they were transferred into PBT with 0.1% TrX-100. 

The brains were then removed from the baskets and placed on SuperFrost glass slides in 

the same orientation along the anterior-posterior and dorsal-ventral axes. Excess buffer 

was removed and the brains were absorbed in a droplet of Vectashield, which was then 

covered by a thin glass slip. The cover slip edges were then sealed with Fixogum and the 

preparations were stored at 4°C. 

 
Figure 7: Tools for immunohistochemistry. (A) Flies were dissected with sharpened forceps within a black 
block dish containing PBS. (B) Brains were transferred into self-made collection baskets. (C) Baskets with 
brains were placed into 96-well plates, in which all washing and incubation steps were conducted. 

 

2.2.3.3 Microscopy and Image Analysis 

Imaging of immunofluorescent brains was conducted with two different confocal laser 

scanning microscopes. Images for the NPF-cell ablation experiments from Hermann et al. 

(2012) were taken with a Zeiss LSM 510 Meta (Carl Zeiss MicroImaging, Jena, Germany), 
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whereas for all other confocal images a Leica TCS SPE (Leica, Wetzlar, Germany) was used. 

In both cases I obtained confocal stacks with 2 µm layer thickness by sequentially 

scanning with two to three different laser lines to excite the fluorophores of the 

secondary antibodies in double and triple labeling. The three laser excitation channels 

with 488 nm, 532/555 nm and 635 nm where later depicted in green/yellow, magenta 

and cyan/blue, respectively. Image visualization and editing was done with the Zeiss LSM 

Image Browser (v. 4,2,0,121) for the Zeiss pictures and with the ImageJ distribution Fiji 

(http://fiji.sc/wiki/index.php/Fiji or http://rsb.info.nih.gov/ij/) for the Leica pictures. I 

cropped the stacks, compiled maximum projections, adjusted brightness and contrast, 

but applied no other manipulations on the images. 

To quantify the number of particular neurons, I investigated single optical layers of each 

stack in Fiji and counted the cells, after identifying them according to their location, 

immunostaining and morphology. Usually both hemispheres of 7-13 brains were analyzed 

in that way and the values were then averaged for each brain and across genotypes. For 

the quantification of the staining intensity a square shaped area of 9 pixels (3x3 pixels) 

was placed on the brightest spot of each cell of interest in the Fiji software and the 

average pixel intensity was measured in one focal plane. The cells of 5-7 different 

hemispheres were analyzed and the intensity values were first background corrected and 

then averaged for each neuronal group across genotypes.  

Quantification of staining in peptidergic neuronal projection terminals is described in 

Hermann-Luibl et al. (submitted; starting from page 153).  

 

2.2.4 Behavioral Assay 

2.2.4.1 Drosophila Activity Monitoring (DAM) System 

The behavioral assay performed in this thesis was exclusively the measurement of the 

flies´ locomotor activity in certain light conditions. This was done with the commercially 

available Drosophila Activity Monitoring (DAM) System from TriKinetics (Trikinetics, 

Waltham MA, USA). Being under CO2-anesthesia 3-5 days old flies were individually 

placed into glass tubes, which were filled by one third with food (2% agar, 4% sucrose; 

Fig. 8A) and closed on the other end with an air permeable plug. 32 of these glass tubes 
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were placed into each activity monitor in a way that the integrated infrared light beam 

was approximately in the middle of each tube (Fig. 8B). Moving back and forth within the 

glass tube the flies disrupt the infrared light beam when being active. The number of light 

beam disruptions per minute was then registered by the DAMSystem Collection Software 

for each fly and the raw data were read out as text files.  

To simulate certain light conditions for the flies, the activity monitors were placed into 

house-made light-tight boxes, which were equipped with white light LEDs (Lumitronix, 

LED-Technik, Hechingen, Germany; Fig. 8C). Light intensity and light sequence were set 

using the Lichtorgel software (G. Stöckl, Regensburg). To maintain constant temperature 

of 20°C during the experiment the whole recording system was installed either inside an 

incubator or in a climate chamber.  

In this thesis, I used only male flies for behavior experiments – if not explicitly stated 

otherwise (in Hermann et al., 2012). All experiments started with 7 days of LD 12:12 

followed by either constant conditions (DD for at least 14 days) or changing photoperiods 

(long days: 7 days LD 16:08, 7 days LD 20:04; short days: 7 days LD 08:16, 7 days LD 

04:20). Thus, flies were usually recorded for at least 21 days within one experiment. Light 

intensity during light phases of each experiment was set to 100 lux. 

 

 
Figure 8: Drosophila Activity Monitoring. (A) Flies were individually placed into glass tubes with sugar/agar 
food. (B) Tubes were placed into Drosophila Activity Monitors of TriKinetics with infrared light beams 
measuring individual beam crosses per minute. (C) Light boxes equipped with white light LEDs were used to 
simulate various light conditions. Temperature was kept constant at 20°C. 
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2.2.4.2 Data Analysis 

For data analysis the raw data text files were edited in Microsoft Excel. The data of the 

first day of the experiment were always discarded, because during this time the flies 

recover from the CO2-anesthesia and adapt to their new environment. Single fly 

actograms of the whole experiment were compiled using the software El Temps (Diez-

Noguera, Barcelona, 1999; upper limit 5) or the Fiji Plugin ActogramJ (Schmid et al., 

2011). To depict the flies´ locomotor activity under entrained conditions (LD), average 

activity profiles were calculated. For this, the activity of each minute during the last five 

days of each entrainment condition was averaged for each fly. The single fly data were 

then averaged for each genotype and finally the curves of the activity profile and the 

standard error of the mean (SEM) were smoothed by a moving average of 11 values. The 

average activity profiles were then normalized, whereby the highest activity count was 

set to 1. Average activity levels were calculated from mean activity counts of single flies in 

certain time intervals relative to the average beam crosses over the whole day, if not 

stated otherwise.  

DD data were used to determine the flies rhythmicity and internal free-running period of 

locomotor activity. The period length during 10 days in DD was determined by chi2-

periodogram analysis for each single fly. Values were then averaged across genotypes and 

standard deviation and standard error of the mean were calculated. 

For the sleep analysis, I used data that were collected during LD 12:12. Sleep was defined 

as the amount of time, in which the flies did not cross the infrared light beam for more 

than 10 consecutive minutes. Average sleep profiles were calculated as the mean sleep 

time during each hour of the day. Total sleep was calculated for daytime and nighttime 

during LD 12:12.   

  

2.2.5 Live Imaging 

2.2.5.1 The Epac1camps sensor and the GCaMP sensor 

Cellular excitation upon stimulation is reflected in rapid changes in intracellular Ca2+ 

and/or cAMP levels. Measuring cellular changes in cAMP or Ca2+ levels in vivo employing 
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optogenetic tools is a powerful way to investigate the responsiveness of single neurons to 

various stimuli.  

To examine neuronal cAMP responses to bath applied neuropeptides I used the 

ratiometric cAMP sensor Epac1camps. The core of this sensor is a truncated Epac protein 

(Exchange Protein Directly Activated by cAMP), which is fused to two fluorophores: cyan 

fluorescent protein (CFP) and yellow fluorescent protein (YFP). The Epac protein binds 

cAMP as a monomer and therefore shows quite rapid kinetics in its activation (Nikolaev et 

al., 2004). The truncated form of Epac present in this sensor is of advantage, because it 

contains only the cAMP binding site, thus decreasing the risk of any other cellular 

functionality. When intracellular cAMP levels are low, the two fluorophores are in close 

proximity (Fig. 9A). Excitation of CFP with light of 440 nm leads to high Fluorescence 

Resonance Energy Transfer (FRET) from CFP to YFP, resulting in low CFP and high YFP 

emission. When cAMP levels rise within the cell, a single molecule of cAMP will bind to 

Epac and cause a conformational change, whereby the two fluorophores move further 

apart (Fig. 9B). This leads to a loss in FRET with high CFP, but low YFP emission. 

  

Figure 9: The Epac1camps sensor. (A) At low intracellular cAMP levels, the two fluorophores CFP and YFP 
are in close proximity, resulting in high FRET upon excitation of CFP. (B) In the presence of cAMP, the Epac 
protein changes its conformation, thus CFP and YFP move further apart. This leads to a loss in FRET. 

 

For the investigation of intracellular Ca2+ levels, I used the GCaMP3.0 sensor (Tian et al., 

2009), which is a fusion protein of green fluorescent protein (GFP) and Calmodulin. In the 

absence of Ca2+, fluorescence of this sensor is only dim. When Ca2+ is present and binds to 

Calmodulin, GFP undergoes a conformational change, which increases its fluorescence. 

Expressed within cells, GCaMP fluorescence intensity thus directly reflects intracellular 

Ca2+ levels.   
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With the help of the GAL4/UAS system, both sensors can be expressed in the fly with any 

GAL4-line available (e.g. Shafer et al., 2008; Lelito and Shafer, 2012). In all imaging data 

shown in this thesis, I used a clk856-GAL4 line (Gummadova et al., 2009), which shows an 

expression pattern quite specific to the clock neurons (clk856G4>Epac1camps50A and 

clk856G4>GCaMP3.0; see also Yao et al., 2012).  

     

2.2.5.2 Dissection and Mounting 

5-7 days old male flies were anesthetized on ice and brains were quickly dissected in cold 

Hemolymph-like saline (HL3; Stewart et al., 1994). I carefully removed all parts of the 

retina, lamina and ocelli to exclude any neuronal responses upon light stimulation of the 

photoreceptive organs. The brain was then mounted in a 35 mm FALCON petri dish 

(Becton Dickenson Labware, Franklin Lakes, NJ) in 405µl of HL3 in the center of a ring 

shaped silicone insert, which was used to reduce the working volume to 450µl (Fig. 10A). 

Depending on which neurons were intended to be imaged, the brain was either mounted 

with the anterior side up (for sLNv, lLNv and LNd) or with the dorsal side up (for DN). The 

surface of the petri dish was adherent enough for mounting without the use of tissue 

glue. All brains were allowed to recover from the dissection and mounting at least 10 min 

prior to imaging. 

 

2.2.5.3 Confocal Live-Imaging and Applied Solutions 

For all imaging experiments present in this thesis, I used an Olympus FV1000 laser 

scanning confocal microscope (Olympus, Center Valley, PA; Fig. 10B) in the laboratory of 

Prof. Orie T. Shafer, which was equipped with a 60x (1.10 N/A W, FUMFL N) objective 

with a dipping cone (Olympus, Center Valley, PA; Fig. 10C) and a 20x (0.50 N/A W, 

UMPlan FL N) objective. The petri dish containing the brain was placed below the 

objective and the cells were first brought into focus with the help of epifluorescent 

illumination for GFP excitation. 

For cAMP imaging time lapse frames were scanned with a 440 nm laser at a 60x 

magnification and a frequency of 0.2 Hz for a total recording duration of 10 min. Regions 

of interest (ROI) were defined on single cell bodies in one focal plane, which was chosen 
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in the center of the somata of interest. The emission of CFP and YFP fluorophores was 

separated by a SDM510 dichroic mirror and the mean pixel intensities for each ROI were 

collected over time by the Olympus Fluoview software (v. 10). Clock neuron clusters were 

imaged separately in different brains, except for DN1a and DN1p, which were usually 

caught within the same frame. 

 

 
Figure 10: Confocal live-imaging Setup. (A) Brains were mounted in a petri dish with silicone insert. (B) 
Imaging was conducted using an Olympus FV1000 laser scanning confocal microscope (in the lab of Prof. 
Orie T. Shafer). (C) For single clock neuron imaging a 20x or 60x water objective was used.  

 

For Ca2+ imaging I scanned time lapse frames with a 488 nm laser at a frequency of 1 Hz. 

The total recording duration was 7 minutes. Regions of interest were defined in the same 

way as for cAMP imaging experiments. GFP emission was detected using standard GFP 

optics and the mean pixel intensity for each ROI was measured over time. Since the 20x 

objective was used in this case, several clock neuron clusters were usually imaged within 

one brain (e.g. sLNv, lLNv and/or LNd together).   

Applications of reagents were done using a 100µl pipette, adding 45µl of a 10x solution 

drop-wise between recording second 30 and 40, to end up with a 1x end concentration in 

450µl working volume. As positive controls I used the adenylate cyclase activator 

Forskolin in an end concentration of 20µM (in HL3 + 0.1% DMSO) for cAMP imaging and 

Carbamylcholine (Carbachol) in an end concentration of 10-4M for Ca2+ imaging. HL3 with 
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0.1% DMSO (end concentration) alone was applied as negative control (named HL3 in all 

figures). All peptides were weighed with a special accuracy weighing machine into low 

binding tubes, the small amount of peptide powder was then absorbed within a droplet 

of DMSO (end concentration 0.1%) and the solution was diluted in HL3 (end 

concentration of peptides, see Table 6). All concentrations given in figure legends refer to 

the end concentration after application. 

Table 6: Peptides used for live imaging experiments. 

Peptide 
Name 

Sequence End 
Concentration 

Source 

NPF H-SNSRPPRKNDVNTMADAYKFLQDLDTYYGDRARVRFG-NH2  

10-4M 

 

PolyPeptide 
Laboratories, San 
Diego 

sNPF-1 H-AQRSPSLRLRF-NH2 

sNPF-2 H-VFGDVNQKPIRSPSLRLRF-NH2 

PDF H-NSELINSLLSLPKNMNDA-NH2 10-5M 

 

2.2.5.4 Data Analysis 

For cAMP imaging experiments raw CFP and YFP fluorescence data were further 

processed in Microsoft Excel. CFP spillover into the YFP channel was measured as 0.444 

for the used imaging setup. Consequently, raw YFP intensities were corrected by 

subtracting the CFP spillover at each time point: YFPcorr=YFP-(CFP*0.444). Then both CFP 

and YFP intensity traces were normalized to the mean intensity during the first 20 

seconds of recording (baseline). Relative inverse FRET changes were then calculated as 

the ratio of normalized CFP/YFPcorr to directly reflect changes in cAMP and were 

transformed to percentaged traces of ratio change (∆ CFP/YFP). Traces for all regions of 

interest (ROIs) were averaged for the same cell group and stimulation, and the mean and 

standard error curves were finally smoothed by a moving average of 5. For quantification 

and statistical analysis of the cellular responses, maximal inverse FRET changes (∆max 

CFP/YFP) were calculated as the maximal (positive or negative) ratio deflection from 

baseline between recording second 30 and 300. For all cell groups positive and negative 

controls were conducted from neurons of at least 5 different brains, and data of peptide 

applications from at least 7 different brains.  
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Also for Ca2+ imaging we used Microsoft Excel to further process raw GFP fluorescence 

values. Single fluorescence values of each time point (Fn) were transformed into 

percentages of fluorescence change relative to baseline (F0) by the following equation: 

(Fn-F0)/F0)*100. Each neuronal trace thus depicts the percentage of fluorescence change 

from baseline (∆ F/F0), which directly reflects changes in intracellular Ca2+. Neuronal 

traces were averaged for the same cell group and treatment, and the mean and standard 

error curves were smoothed by a moving average of 5. For quantification and statistical 

analysis of the Ca2+ responses maximal changes in relative GFP fluorescence (∆max F/F0) 

were calculated as the maximal (positive or negative) fluorescence deflection from 

baseline after recording second 60. Data were obtained from at least 5 different brains 

for each cell group and treatment. 

 

2.2.6 In silico Analysis 

To compare neuropeptide and clock protein sequences among different Drosophila 

species for our publication Hermann et al. (2013), Dr. Pingkalai R. Senthilan performed in 

silico analyses using sequence data bases and software, which are available online. The 

details of the method can be obtained from the Material and Methods section of 

Hermann et al. (2013). 

 

2.2.7 Statistics 

Statistical analysis was done with the software SYSTAT (v 11.00.01, Systat 11, SPSS, 

Chicago, IL). Data were first tested for normal distribution applying a one-sample 

Kolmogorov-Smirnov test. Normally distributed data were subsequently tested for 

significant differences using a one-way ANOVA followed by a post-hoc pairwise 

comparison with Bonferroni correction. The equivalent for not normally distributed data 

was the Kruskal-Wallis test followed by Wilcoxon analysis. Data were considered as 

significantly different with p<0.05, indicated by *, and as highly significant with p<0.001, 

indicated by ** in most graphic charts. Otherwise significant differences are indicated by 

a letter code, in which different lettering reflects significances.   



Results 

45 
 

3 Results 

In the following, I will shortly describe the key findings of the publications included in this 

thesis as well as of a new manuscript, which has been submitted to the Journal of 

Neuroscience (3.1, 3.2 and 3.3). The full text versions of the papers and the manuscript 

can be read starting from page 109. In addition, I will present data obtained during this 

PhD project (3.4 and 3.5), which are so far not part of a manuscript. 

   

3.1 The Clock Network Is Conserved in Different Drosophila Species 
(Paper 1) 

In this study we were interested in the properties of the neuronal clock network in 

different Drosophila species. We chose 10 species with fully or partly sequenced genome, 

which were distributed along the Drosophila phylogenetic tree (including species of the 

subgenera Sophophora and Drosophila). In silico analyses of protein sequences revealed 

high similarity and identity values for canonical clock protein homologues (PER, TIM, VRI, 

PDP1 and CRY) of the different fly species. To investigate the morphology of the neuronal 

clock network, we immunostained brains of the different species with antibodies against 

VRI, PDP1 and CRY, and showed that all clock neuron clusters, that are described for 

Drosophila melanogaster, are also present in the investigated species. However, species 

of the Drosophila subgenus and Drosophila pseudoobscura did not express CRY in the 

lLNv. Since Bahn et al. (2009) had shown first results on the expression of PDF in 

Drosophila virilis and had found that these flies lack PDF in the sLNv we extended this 

study to the other species. In addition, we included the neuropeptide ITP into the 

investigation. Both mature peptides showed high sequence similarities and identities in 

the in silico analysis, indicating a high structural conservation within the Drosophila genus. 

Immunostaining with anti-ITP showed that the peptide is present in the fifth sLNv and in 

one LNd in all investigated species, like it was reported for Drosophila melanogaster 

(Johard et al., 2009). Anti-PDF staining revealed that investigated species of the 

Drosophila subgenus and Drosophila pseudoobscura have reduced PDF expression in the 

sLNv. Considering the flies´ natural habitat, we thus found that species distributed up to 

higher latitudes (investigated species of the Drosophila subgenus and Drosophila 
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pseudoobscura) lack CRY in the lLNv and PDF in the sLNv, which might be interpreted as 

an adaptation to cold temperatures and extreme photoperiods in the north.  

(For details see results section of Hermann et al., 2013.) 

 

 



Results 

47 
 

3.2 NPF+ Clock Neurons Modify E Activity and Free-Running Period 
(Paper 2) 

Based on previous studies, in which NPF+ neurons have been successfully ablated (Lee et 

al., 2006; Hamasaka et al., 2010), we aimed to investigate the role of NPF for circadian 

locomotor rhythms. First, we reevaluated the NPF expression pattern in adult Drosophila 

melanogaster brains using anti-NPF as well as npf-GAL4 (npfG4) mediated GFP 

expression. We found NPF expression in three LNd, which had been reported before (Lee 

et al., 2006), but identified in addition the fifth sLNv and 2-3 lLNv as NPF+. Lee et al. (2006) 

had shown that the ablation of the NPF+ neurons has an effect on the phase and the 

shape of the E activity in entrained conditions. We found in addition that NPF-ablated 

flies (npfG4>UAS-hid) significantly prolong their circadian free-running period in DD. To 

address these phenotypes to either the absence of the NPF+ clock neurons or NPF+ non-

clock neurons, we additionally introduced a cry-GAL80 (cryG80) construct to prevent cell 

ablation in all clock cells. Like this we were able to rescue the observed phenotypes, 

indicating that the NPF+ clock neurons are involved in the control of the E activity and the 

free-running rhythms in DD. Using pdfG80 instead of cryG80 we were able to only rescue 

the PDF+ clock neurons from the cell ablation. This experiment showed only partial rescue 

phenotypes in behavior. Thus, we conclude that the PDF- NPF+ clock neurons (the fifth 

sLNv and the NPF+ LNd) modify E activity and free-running period. 

To investigate whether the observed phenotypes derive from the absence of NPF itself or 

the absence of the whole neurons, we expressed a genetically encoded npf-RNAi 

construct in the clock neurons using tim(UAS)G4 and tested these NPF-knockdown flies 

under the same conditions as the NPF-ablated flies. We found no effect on locomotor 

rhythms. However, immunocytochemical analysis revealed that the RNAi-construct was 

not working efficiently and NPF was still detectable in the clock cells. Nevertheless, 

double knockdown of NPF and PDF seemed to slightly repress E activity compared to 

control flies and PDF-single-knockdown flies.  

(For details see results section of Hermann et al., 2012.) 
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3.3 ITP is a new functional clock neuropeptide (Paper 3, submitted) 

Previous studies had shown that the Ion Transport Peptide (ITP) is expressed in the fifth 

sLNv and in one LNd (Dircksen et al., 2008; Johard et al., 2009). Thus, we were interested, 

whether ITP plays a role in the control of circadian behavior. We first showed that ITP is 

continuously present in clock neuron cell bodies in LD, while its immunostaining cycles 

within the dorsal projections into the Pars intercerebralis (PI), indicating that ITP is 

released rhythmically there. Further, ClkAR mutants, but not per01 mutants showed 

reduced ITP immunostaining, indicating that the itp gene is under direct or indirect CLK 

control. 

We then employed a genetically encoded RNAi-construct to specifically knock down ITP 

only in the two ITP+ clock neurons and gave proof of its efficiency by 

immunohistochemistry. We found that ITP-knockdown flies were not impaired in the 

phasing of the activity peaks and their general ability to entrain to LD cycles of different 

photoperiods. However, the E activity of ITP-knockdown flies was reduced in amplitude 

when examined relative to the M peak amplitude and relative night activity was 

enhanced. Investigating free-running rhythms in DD we found that the knockdown of ITP 

in the clock neurons doesn´t affect rhythmicity in general, but significantly prolongs the 

flies´ free-running period. 

To investigate the effects of high amounts of ITP in the brain and to figure out putative 

regions of ITP action, we developed a UAS-ITP construct and ectopically expressed the 

peptide with different GAL4 (G4) driver lines. We found that flies get arrhythmic in DD 

and show a slight dampening of PER cycling within the sLNv and the LNd, when ITP is 

overexpressed with tim(UAS)G4. In addition, flies were similarly arrhythmic in behavior 

when ITP was overexpressed with another timG4 line. With all other tested driver lines, 

however, flies were behaviorally normal. Examining ITP immunostaining in overexpressing 

flies in detail, we tried to identify particular regions in the brain, where ITP+ projections 

seemed especially enriched in the arrhythmic overexpressing strains 

(tim(UAS)>ITP2/timG4>ITP2) in comparison to the rhythmic ones. We found that especially 

tim(UAS)G4>ITP2 and perG4>ITP2 have strong ITP staining in the clock neurons and their 

projections into the PI. Interestingly, we discovered that the rhythm in ITP-

immunostaining in the projections into the PI is lost in behaviorally arrhythmic 



Results 

49 
 

tim(UAS)G4>ITP2 flies, while it is still present in behaviorally rhythmic perG4>ITP2 flies. 

Further, in 60% of tim(UAS)G4>ITP2 flies the lLNv were sending misled fibers into the 

dorsal protocerebrum, in which PDF was expressed constantly high. Thus, we assume that 

constantly high levels of both ITP and PDF evoke arrhythmicity in tim(UAS)G4>ITP2 flies. 

When we knocked down ITP in conjunction with PDF, flies showed an advanced E peak 

phase in LD, which is typical for PDF-knockdown flies. Further, E activity was reduced 

relative to the M activity and night activity was enhanced, as it was observed in ITP-

knockdown flies. Thus ITP/PDF-knockdown flies showed both PDF-knockdown specific 

and ITP-knockdown specific characteristics in LD. In DD, ITP/PDF-knockdown flies showed 

enhanced activity levels and were almost completely arrhythmic or showed several free-

running components, which made the determination of the period length impossible. 

(For details see results section of Hermann-Luibl et al., submitted.)  
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3.4 The role of sNPF in circadian behavior 

sNPF is expressed in the sLNv and in two LNd 

The first part of this section deals with the reevaluation of the expression pattern of sNPF 

in adult Drosophila melanogaster brains. Since Johard et al. (2009) had shown that sNPF is 

expressed in certain clock neurons I focused on these cells in my investigation. First, I 

used a snpf-GAL4 (snpfG4) line and expressed a UAS-GFP reporter construct (Fig. 11A, B, 

C). GFP was broadly expressed within the brain showing especially strong signals in the 

mushroom bodies and the lateral brain (Fig. 11A). To visualize the clock neurons I 

counterstained GFP expressing brains with anti-TIM and anti-PDF. In accordance with 

Johard et al. (2009) the GFP signal overlapped with anti-TIM in two LNd (Fig. 11B) and 

with anti-TIM and anti-PDF in four sLNv (Fig. 11C).  

 
Figure 11: sNPF expression in clock neurons of adult Drosophila melanogaster brains. (A) Overview of 
snpf-GAL4 (snpfG4) mediated GFP expression in the whole brain. (B) Detailed view of LNd clock neurons. 
GFP expression (green) overlaps with anti-TIM staining (magenta) in two cells (asterisks). (C) Detailed view 
of sLNv, which express GFP and are colabeled with anti-TIM and anti-PDF (blue; asterisks). (D) Overview of 
anti-sNPFp (green) staining in the whole CS brain. (E) anti-sNPFp and anti-TIM (magenta) staining overlaps 
in two LNd (stars). (F) sLNv are stained with anti-sNPFp, anti-TIM and anti-PDF (blue). Scale bars = 10µm. 

 

To directly prove the presence of the sNPF peptide, I additionally stained Canton S (CS) 

brains with an antibody against part of the sNPF precursor peptide (sNPFp; Fig. 11D, E, F; 

Johard et al., 2008; Nässel et al., 2008). The anti-sNPFp staining showed similarly broad 
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staining as the GFP signal had revealed. Further, it overlapped with costained anti-TIM in 

two LNd (Fig. 11E) and with anti-TIM and anti-PDF in the sLNv (Fig. 11F). Thus, both GAL4 

driven GFP expression and antibody staining confirmed the sNPF expression pattern in 

the two clock neuron groups as it was shown by Johard et al. (2009).  

 

Expression of snpf-RNAiLee within clock neurons fails to knock down snpf 

expression 

With the attempt to investigate the role of sNPF in circadian behavior, I obtained a UAS-

snpf-RNAiLee construct (Lee et al., 2004) and expressed it under the control of tim(UAS)-

GAL4 (tim(UAS)G4) together with UAS-dicer2 (dcr2). With this combination I expected a 

knockdown of sNPF within the sNPF+ clock neurons. To verify this, I immunostained brains 

of putative sNPF-knockdown flies (tim(UAS)G4>dcr2;snpf-RNAiLee) with the sNPFp 

antibody and counterstained with anti-VRI and anti-PDF to identify the clock neurons. I 

immediately realized, that the knockdown was not complete and that there was still 

sNPF+ staining within the clock cells. To determine, whether there was at least a signal 

reduction, I quantified the staining intensity in the sLNv and the two LNd and compared it 

to the data of equally treated control flies (tim(UAS)G4>dcr2 and dcr2;snpf-RNAiLee). This 

quantification showed that there was no significant reduction of sNPF staining intensity in 

the sNPF-knockdown flies compared to controls (Fig. 12). I repeated this staining and 

quantitative analysis several times, but never found a significant reduction of sNPF within 

the clock neurons (data not shown). These results indicate that the UAS-snpf-RNAiLee 

construct is not working properly inside the clock neurons.  

Since these results were in conflict to the work of Lee et al. (2004), which had 

demonstrated the efficiency of the UAS-snpf-RNAiLee construct by qPCR, I also tried to 

verify the sNPF-knockdown on the RNA level. Therefore I expressed the RNAi-construct 

with the panneuronal driver line elav-GAL4 (elavG4) and performed qPCR analysis of adult 

male fly heads. Nevertheless, also this experiment did not prove the functionality of the 

snpf-RNAiLee construct (Fig. 13).  
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Figure 12: Quantification of sNPFp staining intensity in sLNv and LNd clock neurons in putative sNPF-
knockdown flies. Staining intensity in sNPF-“knockdown” flies (light gray) was not reduced in comparison to 
both control genotypes (darker gray bars) in sLNv and LNd. ** indicate p<0.001; n.s. = not significant; error 
bars depict SEM.  

 

 

 
Figure 13: qPCR data of putative sNPF knockdown flies using elav-GAL4 (elavG4) in comparison to 
controls. RNA was extracted from whole heads for qPCR analysis in two technical replicates for 3 biological 
replicates. Ct values of tubulin were subtracted from Ct values of snpf and the resulting ∆Ct values were 
subtracted from an arbitrary value (3) to depict lower RNA amounts as lower bars and higher RNA amounts 
as higher bars in the graph. Putative sNPF-knockdown flies and controls differed by less than 1 cycle, 
indicating that the sNPF-RNA levels were similar. I did not perform statistics on the data, since the n of the 
biological replicates is only 3. Error bars depict SEM.  

 

snpf-RNAiLee expressed in clock neurons decreases relative daytime activity in 

certain entrained conditions and increases nighttime activity 

Although the immunohistochemistry did not lead to satisfying results concerning the 

snpf-RNAiLee efficiency, I tested sNPF-“knockdown” flies and the respective controls (see 

above) in the locomotor activity assay. To investigate the flies´ behavior in entrained 

conditions, I monitored the different strains in LD conditions.  

Since effects on the activity peak timing can sometimes be better observed, when the 

peak does not occur exactly at the time of the light transition, I recorded the flies not only 
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in LD 12:12, but also in longer and shorter photoperiods (LD 16:08, LD 20:04; Fig. 14 or LD 

08:16, LD 04:20; Fig. 15). The normalized average activity profiles revealed no striking 

differences in general shape between sNPF-“knockdown” flies and controls in long days 

(Fig. 14) or short days (Fig. 15). The peak timing for example doesn´t seem to be affected 

by the expression of the snpf-RNAiLee construct. (Compare the E peak timing of the 

different genotypes in Fig. 14 and the M peak timing of the different strains in Fig. 15). 

 
Figure 14: LD behavior of putative sNPF-knockdown flies and controls in LD 12:12 and longer 
photoperiods. Average activity profiles were calculated for each genotype and light condition and were 
normalized to the highest activity value to better visualize the shape of the profile. No differences in the 
shape of the bimodal activity pattern of sNPF-“knockdown” flies and controls were visible in the different 
conditions. n = number of investigated flies; black areas indicate darkness, gray areas indicate light of 100 
lux; black line = mean, gray lines = SEM; T = 20°C. 

 

When examining activity levels during the light phase and the dark phase relative to the 

total activity of the flies over the whole day, I found that sNPF-“knockdown” flies are 

significantly less active during daytime compared to controls in LD 12:12 and in short 

photoperiods, however not in long photoperiods (Fig. 16). The relative nighttime activity 

showed the opposite: sNPF-“knockdown” flies were significantly more active during the 

night compared to control flies (Fig. 17). 
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Figure 15: LD behavior of putative sNPF-knockdown flies and controls in LD 12:12 and shorter 
photoperiods. Average activity profiles were calculated for each genotype and light condition and were 
normalized to the highest activity value to better visualize the shape of the profile. No differences in the 
shape of the bimodal activity pattern of sNPF-“knockdown” flies and controls were visible in the different 
conditions. n = number of investigated flies; black areas indicate darkness, gray areas indicate light of 100 
lux; black line = mean, gray lines = SEM; T = 20°C. 

 

snpf-RNAiLee expressed in clock neurons prolongs the free-running period in 

constant darkness 

Next, I tested the flies in DD after seven days of entrainment to LD 12:12, to determine 

the endogenous rhythm of sNPF-“knockdown” flies compared to controls. Representative 

single actograms of the three genotypes show, that the flies are normally rhythmic in DD 

(Fig. 18; see also Table 7). I found highly significant differences in the free-running period 

length, with sNPF-“knockdown” flies having longer rhythms than both controls (Fig. 18; 

see also Table 7). This effect was, however, not reproducible: in a second experiment with 

the same light condition and genotypes, the period length of sNPF-knockdown flies lay in 

between the period lengths of the two controls (sNPF-knockdown flies 23.9 h, GAL4-

control 24.3 h, RNAi-control 23.4 h).  
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Figure 16: Relative daytime activity levels of putative sNPF-knockdown flies (light gray) and controls 
(darker gray) in LD 12:12, long and short photoperiods. Activity levels were calculated as the average of 
beam crosses per minute during the light phase relative to the average of total beam crosses over the 
whole day. sNPF-“knockdown” flies show a relative reduction in daytime activity in LD 12:12 and shorter 
photoperiods. * indicates p<0.05; ** indicates p<0.001; n.s. = not significant; error bars depict SEM. 

 

snpf-RNAiLee expressed in PDF-knockdown flies reduces daytime activity and 

enhances nighttime activity 

To investigate possible interaction effects of sNPF and PDF, I investigated flies in which I 

expressed the snpf-RNAiLee construct, while simultaneously knocking down PDF. I 

recorded sNPF-“knockdown” flies, PDF-knockdown flies and sNPF/PDF-knockdown flies 

together with the respective control flies in LD 12:12 (Fig. 19). The normalized average 

activity profile of sNPF-“knockdown” flies showed again no difference in shape or peak 

timing compared to controls, while PDF-knockdown flies showed an advanced E activity 

as described previously (Fig. 19A; Renn et al., 1999). When expressing both RNAi 

constructs together, the flies still had an advanced E activity as it was seen in PDF-

knockdown flies (Fig. 19A). 
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Figure 17: Relative nighttime activity levels of putative sNPF-knockdown flies (light gray) and controls 
(darker gray) in LD 12:12, long and short photoperiods. Activity levels were calculated as the average of 
beam crosses per minute during the dark phase relative to the average of total beam crosses over the 
whole day. sNPF-“knockdown” flies show a relative increase in nighttime activity in all conditions. * 
indicates p<0.05; ** indicates p<0.001; n.s. = not significant; error bars depict SEM. 

 

 

 
Figure 18: Representative individual double plotted actograms of putative sNPF-knockdown flies and 
controls in LD 12:12 followed by DD. sNPF-“knockdown” flies have a significantly prolonged free-running 
period in DD. Black and white bars indicate the light regime in LD 12:12 (100 lux); T = 20°C. 
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Table 7: Rhythmicity data of putative sNPF-knockdown flies, sNPF/PDF-knockdown flies and controls in 
constant darkness. ** indicates p<0.001. 

genotype period (SEM) in h        

(n rhythmic flies) 
power (SEM) rhythmicity in % of 

all tested flies 

dicer2;tim(UAS)G4/+ 23.7 (0.05) (32) 22.8 (0.68) 100 

dicer2;+;snpf-RNAiLee/+ 23.5 (0.10) (27) 25.1 (1.54) 90 

dicer2;tim(UAS)G4/+;snpf-RNAiLee/+ 24.0 (0.06) (28) **1) 31.3 (1.80) 90 

dicer2;+;pdf-RNAi/+ 23.8 (0.06) (31) 36.1 (2.29) 100 

dicer2;tim(UAS)G4;pdf-RNAi/+ 23.7 (0.16) (10) 16.9 (0.79) 31** 

dicer2;tim(UAS)G4;pdf-RNAi/snpf-RNAiLee 24.4 (0.06) (29) *2) 22.2 (1.18) 94 

Data for tim(UAS)G4>dcr2, dcr2;pdf-RNAi and tim(UAS)G4>dcr2;pdf-RNAi are from Hermann-Luibl et al., 
submitted. 1) ** to dicer2;timG4/+ and dicer2;+;snpf-RNAiLee/+;  2) * to all genotypes, except dicer2;timG4; 
pdf-RNAi/+ 

 

I again calculated relative activity levels during the light phase and the dark phase of the 

different tested strains. sNPF-“knockdown” flies were again significantly less active during 

daytime than controls (Fig. 19B upper panel). PDF-knockdown flies showed a tendency 

towards a higher daytime activity level, which is not surprising, considering that the E 

peak is very much advanced in these flies. Nevertheless, when expressing the snpf-RNAiLee 

construct in addition, the daytime activity level was decreased to the same level as in 

sNPF-“knockdown” flies alone, although the much more efficient pdf-RNAi construct 

would rather increase daytime activity (Fig. 19B upper panel). When comparing nighttime 

activity levels of the different genotypes, we found again a significant increase in sNPF-

“knockdown” flies (Fig. 19B lower panel) as it had been the case in the previous long and 

short day experiments (Fig. 17). Further, sNPF/PDF-knockdown flies showed the same 

increase in nighttime activity as sNPF-“knockdown” flies alone, while nighttime activity in 

PDF-knockdown flies was not affected (Fig. 19B lower panel). 

Since I had found these differences in activity levels in sNPF-“knockdown” flies and 

sNPF/PDF-knockdown flies, we wondered, whether sleep would also be affected in these 

strains. Therefore I utilized the same data set that is depicted in Fig. 19 and calculated the 

average sleep for each hour in LD 12:12, whereby sleep is defined as the amount of time, 

in which the flies did not cross the infrared light beam for at least 10 minutes. The 

average sleep traces are quite similar in sNPF-“knockdown” flies compared to controls 
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during daytime, while sNPF/PDF-knockdown flies clearly show less daytime sleep (Fig. 

20A). In addition, both genotypes sleep less than the other strains especially in the 

second half of the night (Fig. 20A). 

 

 
Figure 19: Average activity profiles and relative activity levels of sNPF/PDF-knockdown flies and controls 
in LD 12:12. (A) Average activity profiles were calculated for each genotype and light condition and were 
normalized to the highest activity value to better visualize the shape of the profile. n = number of 
investigated flies; black areas indicate darkness, gray areas indicate light of 100 lux; black line = mean, gray 
lines = SEM; T = 20°C (B) Relative activity levels were calculated as the average of beam crosses per minute 
during the light phase (upper panel) or the dark phase (lower panel) relative to the average of total beam 
crosses over the whole day. ** indicates p<0.001; n.s. = not significant; error bars depict SEM. Data for 
tim(UAS)G4>dcr2, dcr2;pdf-RNAi and tim(UAS)G4>dcr2;pdf-RNAi are from Hermann-Luibl et al., submitted. 

 

To quantify this, I calculated the total amount of sleep during the day and the night in all 

genotypes. Total nighttime sleep was significantly decreased in sNPF-“knockdown” and 

sNPF/PDF-knockdown flies compared to the other genotypes, but the two genotypes did 

not differ from each other (Fig. 20B). Daytime sleep was unaffected in sNPF-“knockdown” 

flies, but was also significantly decreased in comparison to all other genotypes in 
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sNPF/PDF-knockdown flies (Fig. 20B). This was surprising, considering that lower daytime 

activity levels in sNPF/PDF-knockdown flies correlated with lower amounts of sleep.  

 

 
Figure20: Daily averaged sleep profile and total sleep of putative sNPF-knockdown flies and sNPF/PDF-
knockdown flies in LD 12:12. Sleep was defined as the average amount of time, in which the flies did not 
cross the infrared light beam for at least 10 consecutive minutes. (A) Daily average sleep profiles of putative 
sNPF-knockdown flies (red), PDF-knockdown flies (blue), sNPF/PDF-knockdown flies (magenta) and controls 
(different grays). sNPF-“knockdown” flies and sNPF/PDF-knockdown flies sleep less in the second half of the 
night and sNPF/PDF-knockdown flies also during the day. (B) Total amount of sleep during nighttime (full 
bars) and daytime (empty bars). sNPF-“knockdown” flies and sNPF/PDF-knockdown flies have a significantly 
decreased nighttime sleep compared to controls, while sNPF/PDF-knockdown flies have in addition 
decreased daytime sleep. ** indicates p<0.001, n.s. = not significant; error bars depict SEM. Data for 
tim(UAS)G4>dcr2, dcr2;pdf-RNAi and tim(UAS)G4>dcr2;pdf-RNAi are from Hermann-Luibl et al., submitted. 

 

In accordance with previous studies (Shafer and Taghert, 2009), PDF-knockdown flies 

showed very low percentages in rhythmicity, when recorded in DD (38% rhythmic flies; 

Table 7). Surprisingly, when coexpressing the snpf-RNAiLee construct, a high number of 

flies were again rhythmic (94%; Table 7). In addition, the free-running period of these flies 

was significantly longer than the period of the other genotypes, except of PDF-

knockdown flies, to which there was no statistical difference (Table 7). 

 

Alternative manipulations of the sNPF circuit had no or different effects on 

rhythmic behavior 

Since the knockdown of sNPF with the snpf-RNAiLee construct by Lee et al. (2004) was not 

efficient, but still showed some phenotypes in rhythmic behavior, we wondered, whether 
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the knockdown was too weak for detection. Therefore, I decided to test a second 

independent snpf-RNAi line, which I obtained from the Bloomington stock collection 

(snpf-RNAiBloo). I again expressed this construct with the tim(UAS)G4 line in the presence 

of UAS-dicer2 and tested the flies in locomotor activity experiments in LD cycles and 

constant darkness. In addition, I investigated the effects of an RNAi construct against the 

sNPF receptor, sNPFR1 (snpfR-RNAi) using the same driver line. Further, I used the 

hypomorph sNPF mutant, sNPFc00448, from now on referred to as sNPFhypo, in which overall 

sNPF levels should be lower compared to CS (Lee et al., 2008; Chen et al., 2013).    

 

 

 
Figure 21: Average activity profiles of putative sNPF-knockdown, sNPFR-knockdown, sNPFhypo flies and 
respective controls in LD 12:12. Activity profiles were calculated for each genotype and light condition and 
were normalized to the highest activity value to better visualize the shape of the profile. No obvious 
phenotypes were observed in LD behavior in any of the investigated genotypes. n = number of investigated 
flies; black areas indicate darkness, gray areas indicate light of 100 lux; black line = mean, gray lines = SEM; 
T = 20°C 
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Figure 22: Relative activity levels of putative sNPF-knockdown, sNPFR-knockdown, sNPFhypo flies and 
controls during day and night in LD 12:12. Activity levels were calculated as the average of beam crosses 
per minute during the light phase or the dark phase relative to the average of total beam crosses over the 
day. Experimental flies of RNAi-strains did not show significantly enhanced or reduced activity during the 
light phase or the dark phase. sNPFhypo flies showed significantly more relative activity during the day and 
less relative nighttime activity compared to CS. * indicates p<0.05; ** indicates p<0.001; n.s. = not 
significant; error bars depict SEM. 

 

When recording the flies in LD 12:12, I did not observe any phenotypes in sNPF-

knockdown, sNPFR-knockdown or sNPFhypo flies in comparison to the respective control 

flies with regard to the shape of the daily activity profile (Fig. 21). I then calculated the 

relative activity levels during the light phase and the dark phase (Fig. 22). Activity was not 
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significantly enhanced or reduced in both sNPF-knockdown flies and sNPFR-knockdown 

flies compared to controls; neither during daytime, nor nighttime. Also sleep was not 

affected in these genotypes (Fig. 23A, B). However, daytime activity was significantly 

increased in sNPFhypo flies compared to CS, which correlated with a decrease in sleep (Fig. 

23C, D). Nighttime activity in these flies was decreased compared to CS, but without 

affecting sleep (Fig. 23C, D).  

 

 
Figure 23: Sleep analysis in putative sNPF-knockdown, sNPFR-knockdown, sNPFhypo flies and controls in LD 
12:12. Sleep was defined as the average amount of time, in which the flies did not cross the infrared light 
beam for at least 10 consecutive minutes. (A) Daily average sleep profiles of putative sNPF-knockdown (red) 
and sNPFR-knockdown (blue) flies. No differences to control flies (grays) are observed. (B) Total amount of 
sleep during nighttime (full bars) and daytime (empty bars) of putative sNPF-knockdown and sNPFR-
knockdown flies. (C) Daily average sleep profiles of sNPFhypo (red) and Canton S control flies (gray). sNPFhypo 
flies sleep less than CS during daytime. (D) Total amount of sleep during nighttime (full bars) and daytime 
(empty bars). sNPFhypo flies show a significantly decreased daytime sleep compared to CS, while nighttime 
sleep is unaffected. ** indicates p<0.001, n.s. = not significant; error bars depict SEM. 
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The recording in DD showed that both sNPF-knockdown flies and sNPFR-knockdown flies 

are able to generate rhythmic behavior in constant conditions (Fig. 24, Table 8). 

Rhythmicity was, however, reduced in both genotypes (Table 8). I did not find a significant 

period lengthening with the snpf-RNAiBloo line, as it had been the case for the snpf-RNAiLee 

line. The expression of snpfR-RNAi within the clock neurons had also no effect on the 

period length. sNPFhypo flies showed no significant reduction in rhythmicity, but they had a 

significantly shortened free-running period compared to CS (Table 8). 

 

Figure 24: Representative individual double plotted actograms of sNPF-knockdown, sNPFR-knockdown, 
sNPFhypo flies and controls in LD 12:12 followed by DD. Both sNPF-knockdown flies and sNPFR-knockdown 
flies show normal rhythms in DD. Black and white bars indicated the light regime in LD 12:12 (100 lux); T = 
20°C. 

 

Taking together, the expression of snpf-RNAiLee within the clock neurons led to a 

lengthening of the free-running period in DD, a reduction in daytime activity and an 

increase in nighttime activity. The reduction in daytime activity seems to be independent 
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of sleep, while the increase in nighttime activity was accompanied by a reduction in sleep 

in these flies. Expression of the alternative independent snpf-RNAiBloo construct or a 

snpfR-RNAi construct had no significant effects on rhythmic behavior or sleep, except for 

a slight reduction of rhythmicity. In contrast, sNPFhypo flies showed enhanced daytime 

activity, reduced nighttime activity and a shortened free-running period in DD, which was 

exactly the opposite of what sNPF-knockdown flies with snpf-RNAiLee had shown. 

 

Table 8: Rhythmicity data of putative sNPF-knockdown, sNPFR-knockdown and sNPFhypo flies and controls 
in constant darkness. * indicates p<0.05 when comparing experimental flies to the respective controls. 

genotype period (SEM) in h       
(n rhythmic flies) 

power (SEM) rhythmicity in % of 
all tested flies 

dicer2;timG4/+ 24.3 (0.05) (31) 45.1 (2.38) 100 

dicer2;+;snpf-RNAiBloo/+ 23.6 (0.10) 23.6 (1.86) 91 

dicer2;timG4/+;snpf-RNAiBloo/+ 24.4 (0.16) (24) 18.5 (1.08) 77* 

dicer2;+;snpfR-RNAi/+ 23.6 (0.08) (25) 22.8 (1.15) 78 

dicer2;timG4;snpfR-RNAi/+ 23.7 (0.16) (17) 22.8 (1.62) 55* 

CS 24.6 (0.19) (29) 19.9 (1.13) 91 

sNPFhypo 23.7 (0.25) (26)* 26.8 (2.54) 84 
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3.5 Clock neuron responsiveness to bath applied peptides 

The aim of this part of the thesis was to investigate the effect of other neuropeptides 

(different from PDF) on cAMP and Ca2+ levels within single clock neurons. Explanted adult 

brains were treated with bath applications of peptides, as it was described for PDF by 

Shafer et al. (2008). I expressed the ratiometric cAMP sensor UAS-Epac1camps or the Ca2+ 

sensor UAS-GCaMP.3.0 with a clock neuron specific driver line, clk856-GAL4 (clk856G4), 

and recorded single neuronal CFP and YFP traces or GFP fluorescence, respectively. FRET 

changes for cAMP imaging and changes in GFP fluorescence for Ca2+ imaging were 

examined upon application of full length mature and amidated NPF (H-

SNSRPPRKNDVNTMADAYKFLQDLDTYYGDRARVRFG-NH2) and sNPF-1 (H-AQRSPSLRLRF-

NH2). Effects of sNPF-2 (H-VFGDVNQKPIRSPSLRLRF-NH2) were only investigated in cAMP 

imaging experiments. Unfortunately I was not able to test responses to ITP, since the 

mature peptide has a length of 73 amino acids, which makes peptide synthesis extremely 

difficult. The sLNv, lLNv, LNd, DN1a and DN1p were investigated for both cAMP and Ca2+ 

responses, while the DN3 cluster was only tested in cAMP imaging experiments. The DN2 

neurons were hard to distinguish from DN1 cells, so they were not included in this study.  

 

3.5.1 NPF Application 

cAMP 

All neuronal clusters responded to 20µM Forskolin with robust increases in cAMP 

(increase of inverse FRET values), proving that the neurons were functional after the 

dissection and mounting process (Fig. 25). Application of HL3 with 0.1% DMSO (named 

only HL3 in all figures) did not elicit responses in any of the neurons. When I applied NPF 

in a concentration of 10-4M (with 0.1% DMSO), I did not observe obvious FRET responses 

in any of the tested cell groups either (Fig. 25).  

To quantify the cellular responses, I calculated the maximal FRET changes from baseline 

level (∆max CFP/YFP) in positive and/or negative direction (Fig. 26). As expected, the 

maximal positive FRET change with Forskolin was significantly different from the HL3 

control in all tested cell groups. Since the NPF receptor (NPFR1) was shown to act through 

an inhibitory pathway in vitro (Garczynski et al., 2002), I would have expected to see 
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decreases in cAMP upon receptor activation and therefore calculated maximal FRET 

changes in negative direction, reflecting inhibitory reactions. When comparing maximal 

FRET changes between HL3 and NPF application, I found significant differences for the 

sLNv and lLNv. However, these differences were very close to the significance level and 

single neuronal YFP and CFP traces were not clearly showing a typical change, but were 

quite shaky (especially in the sLNv).  

 
Figure 25: Averaged clock neuron traces of inverse FRET changes reflecting changes in cAMP upon 
application of NPF. Pharmacons were applied on clk856G4>Epac1camps brains between recording second 
30 and 40. 20µM Forskolin served as positive control (blue), application of HL3 served as negative control 
(black). NPF was applied at a concentration of 10-4 M (red). Error bars depict SEM.  

 



Results 

67 
 

We wondered whether the Epac sensor was suitable to reliably measure inhibitory 

responses, therefore I tested a coapplication of NPF together with PDF as an excitatory 

stimulus on the sLNv (Fig. 27). The neurons showed robust increases in cAMP upon 

application of 10-5M PDF (Fig. 27; blue; in accordance with Shafer et al., 2008). 

Coapplication of 10-5M PDF together with 10-4M NPF showed the same increase in cAMP 

as the PDF application alone, although NPF was applied in a 10x higher concentration (Fig. 

27; red). 

 

 
Figure 26: Mean maximum inverse FRET changes in clock neurons upon application of Forskolin or NPF. 
Left of gray dashed line in each panel: comparison of maximum inverse FRET changes in positive direction 
after application of 20µM Forskolin (blue) or HL3 (black). Right of gray dashed line in each panel: 
comparison of maximum inverse FRET changes in negative direction after application of 10-4 M NPF (red) or 
HL3 (black). Data are calculated as the mean maximum deflection from baseline level from recording 
second 30 to 300 of the neuronal traces depicted in Fig. 25. * indicates p<0.05; ** indicates p<0.001; n.s. = 
not significant; error bars depict SEM. 
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Ca2+ 

Very recently, Lelito and Shafer (2012) showed that sLNv and lLNv clock neurons respond 

to application of the cholinergic agonist Carbachol with robust increases in cAMP and Ca2+ 

levels. I was able to reproduce the Ca2+ responses in both neuronal groups and observed 

in addition significant Ca2+ increases in the other clock neuron clusters (Fig. 28; blue). The 

quantification revealed that the responses were different from control HL3 application 

with high significance in all cell groups (Fig. 29; Carbachol blue, HL3 black). The 

application of 10-4M NPF showed small, but significant decreases in Ca2+ levels in lLNv, 

DN1a and DN1p (Fig. 28, Fig. 29, red). Since it was shown before, that the GCaMP sensor 

is insufficiently sensitive to detect inhibitory Ca2+ responses in imaging experiments 

(Lelito and Shafer, 2012), I again investigated application of NPF together with an 

excitatory stimulus (Fig. 28 and Fig. 29; magenta), to see whether coapplication would 

diminish the responses that are elicited by the excitatory stimulus. Therefore, I coapplied 

10-4M NPF together with 10-4M Carbachol. Compared to Carbachol alone, the 

coapplication of both compounds showed a significant reduction in the response 

amplitude only in the LNd and DN1p. 

 

 
Figure 27: Averaged inverse FRET changes in sLNv reflecting changes in cAMP upon coapplication of PDF 
and NPF. (Left) Inverse FRET traces of clk856G4>Epac1camps sLNv upon application of HL3  (black), 10-5 M 
PDF (blue) or 10-5 M PDF + 10-4 M NPF (red). (Right) Mean maximum inverse FRET changes (same color code 
as in left panel). ** indicates p<0.001; n.s. = not significant; error bars depict SEM.  
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Taking together, all clock neuron clusters responded to Forskolin with increases in cAMP 

and to Carbachol with increases in Ca2+. Further, NPF led to small decreases in cAMP in 

the LNv, but did not diminish PDF responses, at least not in the sLNv. Ca2+ levels were 

decreased in lLNv, DN1a and DN1p upon application of NPF, but only in DN1p, the 

response was strong enough to diminish excitatory neuronal responses to Carbachol.  

 
Figure 28: Averaged clock neuron traces of GCaMP fluorescence reflecting changes in Ca2+ levels upon 
application of Carbachol and/or NPF. Pharmacons were applied on clk856G4>GCaMP3.0 brains between 
recording second 30 and 40. Application of HL3 served as negative control (black). 10-4 M Carbachol (blue) 
or 10-4 M NPF (red) were applied separately or coapplied (magenta). Error bars depict SEM.    
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Figure 29: Mean maximum changes in GCaMP fluorescence upon application of Carbachol and/or NPF. 
Left of dashed line in each panel: comparison of maximum fluorescence change in positive direction after 
application of HL3 (black), 10-4 M Carbachol (blue) or 10-4 M Carbachol + 10-4 M NPF (magenta). Right of 
dashed line: comparison of maximum fluorescence change in negative direction after application of HL3 
(black) or 10-4 M NPF (red). Data are calculated as the mean maximum deflection from baseline level from 
recording second 60 of the neuronal traces depicted in Fig. 28. * indicates p<0.05; ** indicates p<0.001; n.s. 
= not significant; error bars depict SEM. 

 

3.5.2 sNPF Application 

cAMP 

I performed the same cAMP imaging experiments for the application of sNPF-1 and sNPF-

2 (Fig. 30). The neuronal traces for Forskolin and HL3 depicted in Fig. 30 are the same as 

depicted in Fig. 25. The mean inverse FRET traces show small rather transient decreases 
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in cAMP in the lLNv, and quite long lasting inhibitory responses in the DN1a and DN1p 

upon application of 10-4M sNPF-1 and/or sNPF-2 (Fig. 30; red and orange, respectively).  

 
Figure 30: Averaged clock neuron traces of inverse FRET changes reflecting changes in cAMP upon 
application of sNPF. Pharmacons were applied on clk856G4>Epac1camps brains between recording second 
30 and 40. Data after application of 20µM Forskolin (blue) and HL3 (black) are the same as depicted in Fig. 
25 and served as positive and negative controls, respectively. sNPF-1 (red) and sNPF-2 (orange) were 
applied at a concentration of 10-4 M. Error bars depict SEM. 

 

I again quantified the responses by calculating the maximal negative FRET changes (Fig. 

31). There was a significant difference between the applications of sNPF-1 and the HL3 

control in the lLNv. Both DN1a and DN1p responded significantly to sNPF-1, the DN1p in 
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addition also to sNPF-2. The inhibitory responses are in accordance with in vitro studies 

on the Anopheles sNPFR (Garczynski et al., 2007).  

 
Figure 31: Mean maximum inverse FRET changes in clock neurons upon application of sNPF. Comparisons 
of maximum inverse FRET changes in negative direction after application of HL3 (black), 10-4 M sNPF-1 (red) 
or 10-4 M sNPF-2. Data are calculated as the mean maximum deflection from baseline level from recording 
second 30 to 300 of the neuronal traces depicted in Fig. 30. Data for HL3 are the same as depicted in Fig. 26. 
* indicates p<0.05; ** indicates p<0.001; n.s. = not significant; error bars depict SEM. 

 

I further tested the coapplication of 10-5M PDF and 10-4M sNPF-1 on the DN1a and DN1p 

neurons (Fig. 32; red). PDF alone led to robust increases in cAMP, as expected (Fig. 32; 

blue; see also Shafer et al., 2008). Since sNPF had shown decreases in cAMP in these 

neurons, I expected that coapplication with PDF would possibly diminish the PDF 

response. However, there was no difference in the response amplitude between PDF 

application alone and PDF/sNPF coapplication.  
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Figure 32: Averaged inverse FRET changes in DN1a and DN1p reflecting changes in cAMP upon 
coapplication of PDF and sNPF-1. (Upper panels) Inverse FRET traces of clk856G4>Epac1camps DN1a and 
DN1p upon application of HL3  (black), 10-5 M PDF (blue) or 10-5 M PDF + 10-4 M sNPF-1 (red). (Lower 
panels) Mean maximum inverse FRET changes in DN1a and DN1p (same color code as in upper panels). ** 
indicates p<0.001; n.s. = not significant; error bars depict SEM. 

 

Ca2+ 

The same imaging data for Carbachol and HL3 applications that were depicted in the 

experiments with NPF (Fig. 28 and Fig. 29) severed as positive and negative controls in the 

experiments with sNPF-1. When sNPF-1 was applied in a concentration of 10-4M, no 

obvious effects on Ca2+ levels were visible in the average neuronal traces (Fig. 33; red). 

Statistical comparison of the maximal changes in fluorescence, however, revealed that 

sNPF-1 slightly decreased Ca2+ levels in the lLNv (Fig. 34; red). I again tested a 

coapplication of 10-4M Carbachol together with 10-4M sNPF-1 on the different clock 

neuron clusters (Fig. 33 and Fig. 34; magenta). Carbachol mediated increase in Ca2+ was 

reduced upon coapplication of sNPF-1 only in the LNd and DN1p, where sNPF-1 alone had 

no effect (Fig. 34). There was a tendency towards a reduction in the lLNv, but the 

difference was not significant (Fig. 34).  
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In summary, either sNPF-1 or sNPF-2 decreased cAMP levels within the lLNv, DN1a and 

DN1p, but did not influence DN responses to PDF. Further, sNPF-1 seems to slightly 

decrease Ca2+ levels in the lLNv and potentially also in the LNd and DN1p.  

 

 
Figure 33: Averaged clock neuron traces of GCaMP fluorescence reflecting changes in Ca2+ levels upon 
application of Carbachol and/or sNPF. Pharmacons were applied on clk856G4>GCaMP3.0 brains between 
recording second 30 and 40. Data after application of HL3 (black) and 10-4 M Carbachol (blue) are the same 
as depicted in Fig. 28. 10-4 M sNPF-1 (red) was applied either alone (red) or was coapplied with 10-4 M 
Carbachol (magenta). Error bars depict SEM. 
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Figure 34: Mean maximum changes in GCaMP fluorescence upon application of Carbachol and/or sNPF-1. 
Left of dashed line in each panel: comparison of maximum fluorescence change in positive direction after 
application of HL3 (black), 10-4 M Carbachol (blue) or 10-4 M Carbachol + 10-4 M sNPF-1 (magenta). Right of 
dashed line: comparison of maximum fluorescence change in negative direction after application of HL3 
(black) or 10-4 M sNPF-1 (red). Data for HL3 and Carbachol are the same as depicted in Fig. 29. Data are 
calculated as the mean maximum deflection from baseline level from recording second 60 of the neuronal 
traces depicted in Fig. 33. * indicates p<0.05; ** indicates p<0.001; n.s. = not significant; error bars depict 
SEM. 

 

3.5.3 NPFR1 and sNPFR1 expression 

To further strengthen the obtained imaging results, I aimed to characterize the expression 

pattern of both NPFR1 and sNPFR1 by GAL4 mediated GFP expression with regard to the 

clock network.  
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For the investigation of NPFR1, I obtained an npfR1G4 line that was used in the study of 

Wen et al. (2005). Wen and colleagues had shown that this GAL4 construct drives GFP 

expression in one neuron per hemisphere in the dorso-lateral protocerebrum as well as in 

some neurons in the subesophageal ganglion (SOG). Unfortunately, the very same GAL4 

line did not produce any GFP signal in my hands (data not shown).  

Investigation of GAL4 mediated GFP expression using an snpfR1G4 line (Hong et al., 2012) 

revealed a lot of staining in the whole brain (Fig. 35A). Especially the mushroom bodies 

and the ellipsoid body were strongly stained by GFP. When applying a costaining with 

anti-TIM, I did, however, not find any clear overlap with the GFP signal in any of the clock 

neuron groups (Fig. 35B, C). 

 
Figure 35: snpfR1-GAL4 (snpfR1-G4) mediated GFP expression in adult male brains. (A) The GAL4 line 
shows a broad expression pattern (green) within the whole brain with very prominent staining in the 
mushroom bodies and the ellipsoid body. Counterstaining with anti-TIM did not show a colabeling with the 
GFP signal in the dorsal clock neurons (B) or the lateral clock neurons (C). Scale bars = 10µm 
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4 General Discussion  

In this thesis, I have presented data characterizing the roles of the neuropeptides NPF, 

sNPF, ITP and PDF with regard to circadian behavior in Drosophila melanogaster. Parts of 

these data have been published or are currently submitted for publication and have 

therefore already been extensively discussed. (See full text papers and manuscript 

starting from page 109.) Nevertheless, I will again briefly discuss these data here in the 

context of unpublished results and the current literature, since some very recent 

publications were not yet taken into account in the previous discussion sections. 

 

4.1 Importance and Conservancy of Neuropeptides in the Clock 
System 

The accessory medulla and the dorsal protocerebrum represent the circadian pacemaker 

center in insect species, while the SCN fulfills the same function in mammals. 

Neuropeptides constitute the majority of signaling molecules within the mammalian SCN. 

The well characterized accessory medulla of cockroaches was further shown to be 

invaded mainly by peptidergic fibers. As described earlier, most of the clock neurons in 

Drosophila were shown to contain either one or multiple neuropeptides and to project 

into the accessory medulla or the dorsal protocerebrum, indicating that also in the fruitfly 

the circadian clock employs mainly neuropeptides as signaling molecules. (Reviewed by 

Helfrich-Förster, 2004, 2005) 

The best investigated neuropeptide fulfilling functions in the clock system of insects is 

PDF. Direct proof for its function in other insect species than Drosophila melanogaster is 

rare so far, however, its presence in putative pacemaker centers was shown for insects 

like cockroaches, crickets, blow-flies, blood sucking bugs and others (reviewed by 

Helfrich-Förster, 2009; Tomioka and Matsumoto, 2010). In our study of 2013 (Hermann et 

al., 2013) we had aimed to investigate the conservation of PDF and ITP within the clock 

network of different Drosophila species. By immunohistochemical and in silico analyses, 

we first of all showed that the morphology of the neuronal clock network and the 

structure of canonical clock proteins are highly conserved within the Drosophila genus. 

We further found high sequence similarities and identities of mature PDF and ITP 
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peptides of the different species, suggesting also a high structural conservation in the 

peptidergic systems. Bahn et al. (2009) had previously reported that Drosophila virilis 

lacks M activity in entrained conditions and had correlated this behavior with the lack of 

the sLNv clock neurons or the lack of PDF immunostaining within these cells, which are 

known to constitute the M oscillator in Drosophila melanogaster. We have shown with 

our immunohistochemical study that these flies do actually not lack the sLNv, but that 

PDF is not expressed in them. Further, other species of the Drosophila subgenus, 

presumably those that derived from habitats at higher latitudes on the northern 

hemisphere also showed a lack of PDF immunostaining in these cells. A recent study by 

Kauranen et al. (2012) reported the same for another northern fly species, Drosophila 

montana. Also here a reduction in M activity was observed, when flies were recorded in 

entrained conditions. Flies of the Sophophora subgenus that derived from more southern 

regions on the northern hemisphere showed normal PDF expression within the sLNv 

(Hermann et al., 2013) and seemed to show M activity in locomotor behavior (Saccon, 

2010 unpublished; Domnik, 2011 unpublished; Prabhakaran and Sheeba, 2012). All these 

results together suggest that PDF seems to be conserved in its function in promoting M 

activity. Further, species that are distributed in northern regions have probably evolved a 

reduction of PDF in the M cells to be able to avoid activity at times, when temperatures 

are too cold.  

ITP had been shown to be expressed in the fifth sLNv and one LNd in Drosophila 

melanogaster (Johard et al., 2009). According to previous studies, these neurons 

constitute the flies´ most important E oscillator neurons (Grima et al., 2004; Stoleru et al., 

2004; Rieger et al., 2006; Picot et al., 2007; Rieger et al., 2009). Our study showed that ITP 

is expressed in these two cells in all Drosophila species, we had investigated. Behavioral 

analyses further showed that all of these species have prominent E activity peaks (Saccon, 

2010 unpublished; Domnik, 2011 unpublished). This already suggests that the E neurons 

might promote E activity through an ITP mediated pathway. However, previous studies on 

ITP had not investigated its function in relation to circadian behavior. 

Whether the expression of other neuropeptides, which are present in the clock network 

of Drosophila melanogaster, is equally well conserved within the Drosophila genus has 

not been investigated in the course of this thesis. It has further not been investigated, 
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whether any of these neuropeptides are present in putative clock neurons of other insect 

species. Since NPFs and sNPFs have already been comparatively well described in their 

functions and structure (reviewed by Nässel and Wegener, 2011), and since fairly good 

antibodies are existing, both might be interesting tasks for future studies in this direction. 

(See also discussion section of Hermann et al., 2013) 

 

4.2 Neuropeptide F (NPF) 

Lee et al. (2006) were the first to investigate a possible role for NPF in circadian behavior, 

by ablating NPF+ cells and recording locomotor activity in these flies. In our work of 2012 

(Hermann et al., 2012), we aimed to refine previous findings of Lee et al. (2006) in both 

clock related behavior and NPF expression within the clock network of Drosophila 

melanogaster. 

 

NPF expression in the clock network  

Lee et al. (2006) had discovered NPF expression in a male-specific fashion within three of 

the LNd clock neurons, employing both GAL4 driven GFP expression and anti-NPF 

staining. A later study by Hamasaka et al. (2010) suggested that also the fifth sLNv might 

be NPF+, showing its occasional ablation, when the cell death gene head involution 

defective (hid) was expressed under the control of the npf promoter (npf-GAL4, from now 

on referred to as npfG4). In our study (Hermann et al., 2012), we employed the same 

npfG4 line the previous investigators had used and the same anti-NPF serum Lee et al. 

(2006) had applied. Besides the three LNd neurons, we were able to clearly identify the 

fifth sLNv as NPF+ as well as 2-3 of the lLNv both by GAL4 driven GFP expression and 

antibody staining. Our results are strengthened by our neuronal counting in NPF-ablated 

flies (npfG4>hid), in which the exact cell numbers were absent that had been shown to 

express NPF. Further, it was shown before that npf mRNA is enriched within the lLNv 

(Kula-Eversole et al., 2010). Differences in our findings compared to the previous studies, 

could possibly be explained by the fact that NPF immunostaining or GFP expression was 

clear, but quite weak especially in the lLNv and the detection thus probably largely 

depends on the sensitivity of the microscopic setup. A very recent study by He et al. 
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(2013a) even showed NPF immunostaining in the sLNv, but in this study a different NPF 

antibody was used, which could explain differences in the staining pattern. This finding is, 

however, not supported by the study of Kula-Eversole et al. (2010), which had reported 

that npf mRNA is not enriched in the sLNv. He et al. (2013a) further showed that NPF 

immunostaining is oscillating within cell bodies in LD, peaking at the end of the light 

phase. Kula-Eversole et al. (2010) had also reported a cycling in npf mRNA in the lLNv. 

  

The role of NPF in circadian behavior 

The most striking difference between our work on the NPF+ neurons (Hermann et al., 

2012) and the work of Lee et al. (2006) is that we were able to address the observed 

phenotypes in behavior to the ablation of the NPF+ clock neurons. Lee et al. (2006) had 

found subnormal E activity in NPF-ablated male flies and had addressed it to the absence 

of the NPF+ LNd, without discussing the possibility that also the NPF+ non-clock neurons 

might play a role in this effect. We have discovered a similar phenotype in LD with NPF-

ablated male and female flies showing a reduction in E peak amplitude at the very end of 

the light phase. In addition, we newly found that NPF-ablated flies significantly prolong 

their circadian free-running period in DD. When we employed a cry-GAL80 and a pdf-

GAL80 construct to rescue different subsets of clock neurons from the cell ablation, we 

were able to nail these phenotypes down to the lack of mainly the NPF+ PDF- clock 

neurons, meaning the fifth sLNv and three LNd, which were shown to partly constitute 

the E oscillator of the Drosophila clock (e.g. Grima et al., 2004; Stoleru et al., 2004). This 

experiment convincingly showed that the NPF+ non-clock neurons do not play a role in 

the observed clock-related phenotypes. Interestingly, when we ablated NPF+ and PDF+ 

neurons at the same time, we discovered additive effects in LD. The E peak phase was 

even more advanced than in PDF-ablated flies alone and was reduced in amplitude as it 

was the case in NPF-ablated flies. We concluded that PDF+ and NPF+ clock neurons are 

both necessary for the right phasing of the E activity, however, both neuronal types 

probably mediate this function through different mechanisms. While the ablation of the 

PDF+ neurons speeds up the clock in the E neurons (Lin et al., 2004; Yoshii et al., 2009), 

the ablation of the NPF+ neurons leads to a reduction of activity at the very end of the day 

and both these effects result in an earlier occurring E peak.  
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Another important aspect of our work (Hermann et al., 2012) in comparison to the work 

of Lee et al. (2006) is that we were trying to correlate the phenotypes we found to the 

lack of NPF itself. Since the NPF+ neurons were shown to contain e.g. also ITP (Johard et 

al., 2009), we assumed that these cells could also fulfill functions that are independent of 

the NPF signaling pathway. We tried to achieve this by expressing an npf-RNAi construct 

in the clock neurons and expected to find similar phenotypes, in case that NPF signaling 

was truly involved. However, we were not able to knockdown NPF completely by RNAi 

and consequently did not observe any phenotypes in behavior. Only when knocking down 

NPF together with PDF we observed a similar phenotype as in NPF/PDF-ablated flies, 

indicating a possible role for NPF in the control of the E activity. In accordance to this, the 

recent study of He et al. (2013a) demonstrated that a knockdown of NPF in all NPF+ cells 

(and also a knockdown of NPFR1 in NPFR1+ cells) using a different RNAi-construct also 

reduces E activity. The knockdown had, however, no effect on the free-running period in 

DD (He et al., 2013a). In consistence with our results, He et al. (2013a) had discovered the 

effect on the E activity in both male and female flies, indicating that this phenotype is not 

sex-specific. In a second recently published study, He et al. (2013b) further showed that 

NPF overexpression promotes sleep especially during the night in male flies. This is quite 

interesting, since it would mean that on the one hand NPF promotes activity late in the 

day to control the phasing of the E peak, while on the other hand it has the opposite 

effect during the night promoting sleep. Another recent study by Shang et al. (2013) had, 

however, demonstrated that activation of all NPF+ neurons does not affect sleep. 

Taking all results together I conclude that NPF - mainly deriving from the E oscillator clock 

neurons - seems to participate in the control of the E activity in both male and female 

flies, possibly by promoting activity late in the day, but that it doesn´t seem to be involved 

in the control of the free-running period (Lee et al., 2006; Hermann et al., 2012; He et al., 

2013a). Further, NPF might promote sleep during the night (He et al., 2013b). 

(See also discussion section of Hermann et al., 2012) 
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Clock neuron responsiveness to NPF 

After the characterization of the effects of NPF on behavioral rhythms (Hermann et al., 

2012; He et al., 2013a, 2013b), the question arises, whether NPF might mediate some of 

these effects by direct action on the clock system or by targeting other regions of the 

brain acting as output factor of the clock. In collaboration with Prof. Orie Shafer 

(University of Michigan, USA), I was able to investigate the effects of bath applied NPF on 

intracellular cAMP and Ca2+ levels in different clock neuron clusters, to shed some light on 

this question. The whole method employing the optogenetic sensors UAS-Epac1camps 

and UAS-GCaMP had been successfully applied in several previous studies on Drosophila 

adult brains (Shafer et al., 2008; Shang et al., 2011; Lelito and Shafer, 2012; Yao et al., 

2012), thus I assumed that this method was suitable for this purpose. The NPF receptor 

(NPFR1) had been shown to act through an inhibitory pathway in vitro (Garczynski et al., 

2002), thus I expected to see decreases in cAMP and/or Ca2+ upon application of NPF, in 

case that the receptor was present. The results showed that NPF evoked very small 

decreases in cAMP in the sLNv and lLNv and small decreases in Ca2+ in the lLNv, DN1a and 

DN1p. All responses were, however, quite weak (max. 5-10% for cAMP FRET responses 

and max. 25-30% for changes in GCaMP fluorescence reflecting Ca2+). Nevertheless, the 

Ca2+ responses in the DN1p seemed to be strong enough to significantly decrease 

excitatory responses, when NPF was coapplied with Carbachol. Thus, I assume that the 

DN1p, the sLNv and the lLNv are the most likely candidates to respond to application of 

NPF. Whether these responses occur directly through NPFR1 activation on the clock 

neurons or through the activation of NPFR1 on interneurons, which subsequently target 

the clock neurons, cannot be clarified with my data set. To answer this question, the 

experiments would have to be repeated in the presence of a blocker of neuronal firing 

(e.g. Tetrodotoxin). An alternative possibility would be to prove the presence of NPFR1 on 

the respective clock neurons. Previous studies had shown NPFR1 expression in larval 

brains and ventral nerve cords by in situ hybridization and antibody staining (Garczynski 

et al., 2002; Wu et al., 2003). Wen et al. (2005) had used npfR1G4 mediated GFP 

expression to show one neuron in the dorso-lateral protocerebrum and some neurons in 

the SOG to express NPFR1. I have used the very same npfR1G4 line with the attempt to 

investigate putative expression inside the clock system, but was not able to reproduce the 

data of Wen et al. (2005) in several trials (data not shown). The GAL4 construct did not 
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evoke GFP signals in my hands, not even at higher temperatures. He et al. (2013a) had 

recently claimed to observe NPFR1 immunostaining in DN1 and LNd clock neurons by 

staining with anti-NPFR1 on GFP expressing brains using clk8.0G4. However, the 

specificity of the antiserum was not convincingly proven in this study and the confocal 

pictures indicate that the colabeling of GFP and anti-NPFR1 signal is located in non-clock 

neurons, that lie close to the DN1 and LNd cells and that are included in some of the clk-

GAL4 lines. The study of Kula-Eversole et al. (2010) had reported that npfR1 mRNA is 

enriched within the sLNv and the lLNv, supporting my finding that both neuronal groups 

weakly respond to NPF. 

 

4.3 short Neuropeptide F (sNPF) 

sNPF is widely distributed in the nervous system of the fly and has been previously shown 

to fulfill functions like regulation of feeding and growth, metabolic stress, locomotion, 

learning and hormone release (Lee et al., 2004, 2008; Johard et al., 2008; Nässel et al., 

2008; Kahsai et al., 2010a, 2010b; Knapek et al., 2013; reviewed by Nässel and Wegener, 

2011). The discovery, that sNPF is expressed in the sLNv and two LNd clock neurons 

(Johard et al., 2009) had also suggested a possible clock-related function for the peptide, 

although no proof had been provided so far. Investigating locomotor activity in flies, in 

which the sNPF circuit was manipulated, I aimed to shed light on the putative role of the 

neuropeptide in circadian rhythms. 

 

The role of sNPF in circadian behavior 

The most important issue that needs to be discussed at the beginning of this section 

concerns the efficiency of the snpf-RNAiLee construct that I expressed using tim(UAS)G4 to 

knock down sNPF in the clock neurons. Lee et al. (2004) had described the creation of this 

construct and had proven its efficiency on the RNA level, when expressed in sensory 

neurons. However, my attempts to do so in case of the clock neurons gave different 

results. I assumed that immunohistochemistry would be the most direct way to verify a 

lack of the peptide within the clock neurons, which would be reflected by the loss of 

immunostaining. This had for example nicely been shown for the knockdown of PDF and 
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ITP (Shafer and Taghert, 2009; Hermann et al., 2012; Hermann-Luibl et al., submitted). 

However, since the signal given by the antibody certainly does not provide information 

about the absolute protein level within the cell, it might be that small decreases in 

peptide amount can just not be detected in this way. Thus, I tried to also investigate the 

RNAi efficiency on the RNA level expressing the construct with elavG4 and ensuring at the 

same time, that the primers were not recognizing the RNAi construct itself. But also this 

attempt did not show a reduction in expression level. Considering the fact that at least six 

other published studies had used this very same RNAi construct – although in most cases 

only vaguely verifying its efficiency - (Lee et al., 2004; Lee et al., 2008; Kahsai et al., 2010; 

Chen et al., 2013; Knapek et al., 2013; Shang et al., 2013), I nevertheless decided to 

present the behavioral data of sNPF-“knockdown” flies in this thesis. 

When recording sNPF-“knockdown” flies in LD cycles of different photoperiods, they 

showed a normal bimodal activity pattern in each condition. There was no sign, 

whatsoever, that flies had difficulties in entrainment, adapting to different photoperiods 

or the activity peak timing. The only differences I found were that relative activity levels 

during daytime were decreased compared to control flies, especially during short 

photoperiods. Sleep analysis showed, that total sleep was not significantly different from 

controls at that time, but was decreased during the night. This decrease in nighttime 

sleep correlated with a significant increase in relative nighttime activity. Two very recent 

studies of other groups produced completely contradicting results regarding the function 

of sNPF in sleep regulation: while Shang et al. (2013) claimed that sNPF is a sleep-

promoting factor, Chen et al. (2013) reported the opposite, showing that sNPF deficient 

flies sleep more. Shang et al. (2013) had demonstrated that activation of all sNPF+ 

neurons dramatically increases sleep. By selectively excluding different subsets of sNPF+ 

cells from this experiment, they were able to address this phenotype to the action of the 

sNPF+ sLNv, suggesting that sNPF deriving from the sLNv promotes sleep. They further 

showed that knockdown of sNPF via RNAi (using snpf-RNAiLee or snpf-RNAiBloo) in the sLNv 

leaves daytime sleep unchanged, while it significantly decreases nighttime sleep. This is in 

complete accordance with my findings for the sNPF-“knockdown” in LD. 

When I investigated flies in which sNPF was knocked down in conjunction with PDF, I 

found again a decrease of relative daytime activity and an increase of relative nighttime 
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activity. Since PDF-knockdown alone did not show these phenotypes, while sNPF-

“knockdown” did, I assume that this effect derives from the expression of the snpf-

RNAiLee construct. Both phenotypes were further accompanied by a decrease in daytime 

and nighttime sleep in PDF/sNPF-knockdown flies. PDF knockdown alone did not 

influence sleep, while sNPF-“knockdown” alone had also decreased nighttime sleep (see 

above). Thus, reduction of sleep in sNPF/PDF-knockdown flies at this time of the day most 

probably derives from the sNPF-“knockdown”. A reduction in daytime sleep was, 

however, neither observed in PDF-knockdown nor sNPF-“knockdown” flies. Thus, this 

effect could derive from the disruption of a putative interplay of both sNPF and PDF.  

Another phenotype observed in sNPF-“knockdown” flies in my experiments was a 

significantly prolonged free-running period in DD. This is quite interesting, considering 

that the sLNv clock neurons express both PDF and sNPF (Helfrich-Förster, 1995; Johard et 

al., 2009). Flies deficient of PDF signaling (Pdf01 mutants, PDF-ablated or PDF-knockdown 

flies) are either arrhythmic in DD or show a shortened free-running period (Renn et al., 

1999; Shafer and Taghert, 2009). Taking together, this means that the same subset of 

clock neurons, the sLNv, produces both a period lengthening factor (PDF) and a period 

shortening factor (sNPF). Shafer and Taghert (2009) had, however, shown that PDF from 

the lLNv is already sufficient to generate a wildtype like period length and had suggested 

that PDF from the lLNv might regulate both PDF and sNPF signaling of the sLNv to other 

clock neurons to control the period length. One could assume that a differentially timed 

production or release of the two peptides thus fine-tunes clock neuron synchronization or 

clock output. Though PDF was shown not to be expressed in a rhythmic manner, it was 

demonstrated that it is rather rhythmically released (Park et al., 2000), while there are 

indications that sNPF is rhythmically expressed within the sLNv (Kula-Eversole et al., 

2010).  

The additional investigation of the effects of another independent snpf-RNAiBloo construct 

and a snpfR1-RNAi construct using the same driver line as in the previous experiments 

(tim(UAS)G4), as well as the investigation of locomotor rhythms in the hypomorph 

sNPFhypo flies were conducted to possibly strengthen the previous findings. However, the 

results of these experiments were quite contradicting. Expression of the snpf-RNAiBloo 

construct did not show any phenotype in activity levels, free-running period and also not 
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in sleep. Shang et al. (2013) had found the decrease in nighttime sleep also with this RNAi 

line. Since they had further claimed, that sNPF promotes sleep through signaling from the 

sLNv to the lLNv (see also below), one would further expect a similar phenotype, when 

the sNPF receptor, sNPFR1, is knocked down within the clock neurons. However, also the 

expression of the snpfR1-RNAi construct did not show any significant phenotype, 

whatsoever. This was in accordance with Shang et al. (2013) showing that the expression 

of a dominant negative variant of the sNPFR1 in the clock neurons had also no effects on 

sleep. These results indicate that multiple sites in the brain are responsible for sNPF 

mediated sleep control. The sNPFhypo flies showed a reduction in sleep not during the 

night but during the day, which was accompanied by increased activity levels. Further, 

these flies showed a significantly shortened free-running rhythm in DD instead of a long 

period. A reason for these differences could be that in sNPFhypo flies overall sNPF levels 

are reduced (Lee et al., 2008; Chen et al., 2013), while in case of the knockdown only 

sNPF within the clock neurons is putatively affected. This could again indicate that also 

sNPF+ non-clock neurons contribute to the control of sleep and the free-running period. 

Taking together, the most critical point in these results is the functionality of the snpf-

RNAiLee construct. If one assumes that it is not functional, then the observed phenotypes 

could be off-target effects of the RNAi construct. The fact, that the second RNAi construct 

did not show the same phenotypes, would strengthen this possibility. When I blasted the 

sequence of the snpf-RNAiLee construct against the Drosophila genome, I found no 

matches with other gene sequences that were larger than ~25bp. It is, however, 

conceivable that also small matches could lead to a down regulation of the respective 

gene expression. If one believed all the previous studies that were employing this snpf-

RNAiLee construct and one assumed that it is functional, then my results support the 

findings of Shang et al. (2013), that clock neuron derived sNPF promotes sleep and they 

further indicate that sNPF has opposing effects to PDF in the control of the free-running 

period in DD.  

    

Clock neuron responsiveness to sNPF 

Again, I aimed to investigate whether sNPF has any effect on intracellular cAMP or Ca2+ 

levels within the clock neurons, to get an idea, whether it is involved in clock input, inter-
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clock neuron communication or clock output. In collaboration with Prof. Shafer, I decided 

to investigate the effects of bath applied sNPF-1 and sNPF-2. All four sNPF isoforms had 

been previously shown to activate sNPFR1 in cellular expression systems (Mertens et al., 

2002; Feng et al., 2003; Reale et al., 2004). Garczynski et al. (2006) had further reported 

that the longer sNPF isoforms (sNPF-1 and sNPF-2) had a higher affinity to the receptor 

than the shorter isoforms including the truncated sNPF-14-11. Thus, I assumed that the 

application of sNPF-1 and sNPF-2 might be most suitable for our purpose. 

My results showed that the lLNv, the DN1a and the DN1p respond to applications of sNPF 

with decreases in cAMP levels, while Carbachol mediated Ca2+ responses were reduced in 

the LNd and the DN1p. I had expected inhibitory responses according to previous studies 

by Garczynski et al. (2007) on the Anopheles sNPF receptor. The cAMP responses in the 

DN1 appeared quite long lasting in comparison to the rather transient cAMP responses in 

the lLNv, indicating either differences in the receptor amount, its sensitivity or differences 

in intracellular signaling components. It had been previously shown that the lLNv respond 

to application of Dopamine with robust increases in cAMP thereby promoting 

wakefulness (Shang et al., 2011). A recent study by the same group had further 

demonstrated that this Dopamine mediated excitatory response in the lLNv is diminished 

by coapplication of sNPF, supporting my finding (Shang et al. 2013). The authors thus 

concluded that the excitatory dopaminergic input to the lLNv on the one hand and the 

inhibitory input via sNPF from the sLNv probably coordinates the timing of sleep (Shang et 

al., 2013). 

The sLNv send very prominent projections into the dorsal protocerebrum that were 

previously shown to release PDF, which then evokes excitatory cAMP responses in the 

DN1 clock neurons (Park et al., 2000; Shafer et al., 2008). It is thus possible, that sNPF 

from the sLNv is released at the same or similar sites to act in an inhibitory way on the 

same cells to participate in the control of rhythmic parameters like the period length. My 

results indicate that sNPF indeed reduces cAMP levels within the DN1 clock neurons. 

When coapplied with PDF, sNPF – although applied in a 10x higher concentration - did not 

reduce the excitatory response mediated by PDF. This could be an indication that both 

peptides have to be released at different times in vivo, in order to enable sNPF to fulfill its 

inhibitory action. 
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Just like in the case of NPF, these experiments do not provide proof that the responses I 

observed within the clock neurons are direct cellular reactions to the application of sNPF. 

Again, usage of tetrodotoxin would allow the exclusion of a possible indirect response 

mediated by signaling via interneurons. Alternatively, I have investigated the expression 

pattern of a snpfR1G4 line using GFP (Hong et al., 2012). Clock neuron specific 

counterstaining with anti-TIM did, however, not reveal any colabeling inside the clock 

neurons. Since GAL4 lines do not always reflect the exact expression pattern of the 

respective genes, this result does not necessarily mean that there is no sNPFR1 

expression inside the clock neurons. Kula-Eversole et al. (2010) did further not find an 

enrichment of snpfR1 mRNA within the sLNv or the lLNv. However, these expression data 

were obtained relatively to the expression within all other brain neurons. Given the fact, 

that sNPFR1 seems to be very broadly expressed within the nervous system, it is quite 

reasonable that its mRNA was not especially enriched within the PDF cells and that it was 

therefore not discovered in this kind of expression study.   

 

4.4 Ion Transport Peptide (ITP) 

Previous studies had shown that ITP contributes to the regulation of circadian rhythms in 

cellular plasticity and the abundance of the catalytic subunit of a sodium/potassium pump 

in the lamina (Damulewicz and Pyza, 2011; Damulewicz et al., 2013). However, clock 

related functions of ITP on the behavioral level have been investigated for the first time in 

the course of this thesis and the resulting manuscript, which is currently submitted for 

publication (Hermann-Luibl et al., submitted). 

 

The role of ITP in circadian behavior 

Since ITP had been previously shown to be expressed not only in two clock neurons but 

also in non-clock cells (Dircksen et al., 2008), we employed a genetically encoded itp-RNAi 

construct, which enabled us to knock down ITP expression specifically within the two 

clock cells without affecting ITP in the other cells. The same RNAi construct had been 

successfully used in a recent study that was conducted at the same time as the present 

thesis (Damulewicz et al., 2013). Further, our immunohistochemical analysis confirmed 
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the high efficiency of this RNAi construct. Thus, I am quite confident that the effects we 

observed on the behavioral level are indeed deriving from a lack of ITP within the two 

clock cells. 

Our locomotor experiments in LD showed that ITP-knockdown flies can normally entrain 

to different photoperiods and are not at all impaired in activity peak timing. However, we 

did observe effects on the activity level. The E peak amplitude was reduced relative to the 

morning activity and nighttime activity was enhanced in these flies. As mentioned 

previously, the fifth sLNv and the ITP+ LNd constitute the flies´ most important E oscillator 

neurons (Grima et al., 2004; Stoleru et al., 2004; Rieger et al., 2006; Picot et al., 2007; 

Rieger et al., 2009). Further, ablation of these cells using npfG4 had also led to a reduction 

in E peak amplitude (Hermann et al., 2012). Thus, these cells clearly promote E activity 

and ITP signaling seems to be involved in this process, albeit possibly in conjunction with 

NPF (see above and Hermann et al., 2012). 

When recording ITP-knockdown flies in DD, we observed a slightly, but significantly 

prolonged free-running period. This effect was only very small and reminded us of a 

similar effect when the NPF+ neurons are ablated (Hermann et al., 2012). Since the 

knockdown of NPF had not resulted in a prolonged free-running period, we assume that 

this effect indeed derives from the knockdown of ITP. Thus, ITP seems to be a weak 

period shortening component in DD opposing the effect of PDF as a period lengthening 

factor on the behavioral level.  

To investigate possible interaction effects of ITP and PDF we simultaneously knocked 

down both peptides. Also this RNAi was very efficient as it was proven by 

immunohistochemistry. The behavior of ITP/PDF-knockdown flies in LD very much 

resembled the behavior of PDF-knockdown flies, showing a clearly advanced E peak 

phase. The E activity was, however, again reduced in amplitude relative to the M activity 

and nighttime activity was enhanced, similarly to ITP-knockdown flies. Thus, ITP/PDF-

knockdown flies combined both PDF-deficient and ITP-deficient characteristics in LD 

behavior. In addition, sleep was significantly reduced during daytime and nighttime in 

ITP/PDF-knockdown flies, which was not the case in the ITP- and PDF-single-knockdown 

flies, indicating that both peptides seem to cooperate in the control of sleep. 
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We had found only mild effects of ITP-knockdown on the free-running rhythm in DD (see 

above). Clearly, rhythmicity in general was not affected in these flies. PDF-deficient flies 

on the other hand are known to show only weak rhythms in DD, which run with a 

shortened period (Renn et al., 1999; Shafer and Taghert, 2009). Interestingly, when both 

peptides were knocked down, flies showed complex rhythms in DD with more than one 

free-running component, thus, having a more severe phenotype than the single-

knockdown flies. This indicates that PDF and ITP constitute the main output factors of the 

clock, which maintain rhythmicity in DD. 

 

ITP expression and putative target sites 

The severe reduction of ITP immunostaining in ClkAR mutants suggests that the itp gene is 

under CLK control. When we searched the upstream sequence of the itp gene, we did, 

however, not discover any indications for the presence of E-boxes whatsoever (data not 

shown). Thus, we assume that the clock controlled regulation probably occurs in an 

indirect way. However, ITP immunostaining did not cycle within the clock neuron cell 

bodies, meaning that the peptide is present in a high amount at all times of the day 

anyway. This indicates that a putative rhythm in itp expression and/or ITP stability is at 

least of such minor nature, that it is undetectable by immunohistochemistry. This is a 

quite similar situation as in the case of PDF. The only difference is that here E-boxes were 

indeed discovered in the upstream regulatory region of the pdf gene, but mRNA levels did 

nevertheless not cycle (Park et al., 2000). Further, PDF immunostaining was constantly 

high in the LN cell bodies, indicating that the amount of peptide did not significantly 

change in the course of the day. However, when Park and colleagues (2000) investigated 

PDF immunostaining in the terminals of the PDF+ dorsal projection, they discovered a 

cycling in staining signal peaking at the beginning of the light phase in LD. Staining was 

decreasing then during the rest of the light phase and stayed low in the first half of the 

night (Park et al., 2000). This decrease in immunostaining was interpreted as a loss in 

peptide amount, which would come about by the release of PDF from the dense cored 

vesicles (Park et al., 2000). Thus, PDF very likely acts in a rhythmic manner by being 

released rhythmically at the axon terminals.  
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We wondered, whether the same would be true for ITP, whether we would be able to 

detect rhythms in peptide release. Since the ITP+ projection pattern is, however, much 

more complex than the PDF+ projections, we were unsure at first, where to look at. We 

then decided to quantify the ITP immunostaining in the dorso-medial projection terminals 

that are close to the Pars intercerebralis (PI), since these were most consistently shaped 

and seemed to contain only fibers from the two ITP+ clock cells. We found that ITP 

immunostaining peaked in the middle of the light phase and in the middle of the dark 

phase and showed troughs at around lights-on and lights-off. Assuming that the peptide is 

released at the time, when staining intensity decreases, these results would indicate that 

ITP is released in the second half of the night and in the second half of the day. Since we 

had found effects on the E activity and the nighttime activity in behavior, we assume that 

ITP release in the second half of the day promotes E activity, while it may reduce activity 

during the night.   

Investigation of ITP target sites within the brain turned out to be extremely difficult. First 

of all, the ITP receptor is still unknown. We assume that it is quite probable that this 

receptor belongs to the family of GPCRs, but further information on its physiology is so far 

unpredictable. The only hints are provided by a recent study on Schistocerca gregaria ITP 

suggesting signaling through a GPCR as well as a membrane bound guanylate cyclase, 

which increase intracellular cAMP and cGMP levels (Audsley et al., 2012). Our live imaging 

assay would have offered a first opportunity to investigate the effects of ITP on 

Drosophila brain neurons in vivo. In collaboration with Prof. H. Dircksen (University of 

Stockholm) we aimed to synthetically produce Drosophila melanogaster ITP, which could 

have been used in this investigation. Unfortunately, the synthesis of this 73aa peptide 

turned out to be extremely difficult and time consuming, especially considering that the 

tertiary structure of the obtained peptide needs to be faultless in order to allow receptor 

activation. This was demonstrated by King et al. (1999), where it was shown that 

synthetically produced locust ITP is only biologically active in the gut of the insect, when it 

is properly folded. Thus, until now we were not able to produce enough ITP for the live 

imaging assay, but this will be one of our desired future goals. 

Aiming for an alternative way to identify possible target sites for ITP in the brain, we 

studied circadian behavior of flies, in which ITP was overexpressed with different driver 
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lines. This approach had been previously conducted by Helfrich-Förster et al. (2000) to 

identify putative target sites for PDF, before its receptor was even identified. Thus, we 

generated a UAS-ITP construct containing the sequence of the short itp isoform ITP-PE, 

which is thought to be expressed in the fly head (H. Dircksen, personal communication). 

Our results first of all showed that ITP can be ectopically expressed in quite a lot of 

neurons in the brain, including all clusters of clock neurons. This is quite remarkable, 

considering that the whole peptide processing machinery needs to be present in the cells 

to end up with the mature peptide, which is exclusively recognized by the antibody that 

we used (Dircksen et al., in prep.; Hermann-Luibl et al., submitted). Further, we showed 

that flies get completely arrhythmic when ITP is overexpressed with two different tim-

GAL4 lines, timG4 and tim(UAS)G4, while they are behaviorally normal with any of the 

other tested driver lines. Even overexpression with perG4 did not impair rhythmicity, 

although similar subsets of neurons should be targeted by this driver. Detailed 

comparative analysis of the ITP staining pattern in behaviorally rhythmic and behaviorally 

arrhythmic ITP-overexpressing flies did not give us any hints, in which brain regions ITP 

signaling might be especially enhanced in the behaviorally arrhythmic flies compared to 

the rhythmic ones. Since we had only looked at brains in this examination, we cannot 

exclude that there are differences in expression in certain regions in the body of the flies. 

However, we consider these putative differences as being of minor role in the control of 

rhythmic locomotor activity. The fact that the amplitude of PER cycling seemed to be 

dampened in the sLNv and the LNd in the overexpression flies using tim(UAS)G4 could 

indicate that ITP targets these clock neurons. Future live-imaging experiments could 

investigate, whether these two cell groups indeed respond to ITP. However, since there 

was still significant PER cycling present, but the flies were completely arrhythmic in DD, 

we assume that the major role of ITP lies in the output of the clock targeting other brain 

regions.  

Interestingly, we found that in behaviorally arrhythmic tim(UAS)G4>ITP2 flies the ITP 

cycling in the projection terminals in the PI was abolished, while it was still present in 

behaviorally rhythmic perG4>ITP2 flies. Further, PDF+ projections from the lLNv showed 

an abnormal pattern in the majority of the tim(UAS)G4>ITP2 flies, arborizing into the 

dorsal protocerebrum. Thus, we concluded that probably constantly high amounts of 

both ITP and PDF in the PI led to behavioral arrhythmicity in tim(UAS)G4>ITP2 flies. 
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(See also discussion section of Hermann-Luibl et al., submitted) 

 

4.5 Final Conclusions 

This PhD project had aimed to characterize the role of the neuropeptides NPF, sNPF and 

ITP in the circadian clock of Drosophila melanogaster. In collaboration with various 

helpful coworkers I have tried to exhaust the majority of available technical means to 

shed some light on this topic. I will draw my final conclusions of this work in the following. 

A first achievement was the verification and refinement of the neuropeptide expression 

pattern within the Drosophila melanogaster clock neurons. Thus, Figure 4 of the 

introduction section can be adapted taking the recent findings of the NPF expression 

(Hermann et al., 2012) into account (Fig. 36). I can further conclude that the usage of 

neuropeptides as signaling molecules within the clock network is probably conserved 

within the Drosophila genus and maybe even among other insect species, although the 

network properties seem to have adapted differently to different environmental 

conditions in order to allow the animal to time its activity to the most suitable time 

(Hermann et al., 2013). 

Knocking down a gene of interest in a spatially controlled manner via RNAi is nowadays 

probably the most elegant way to investigate the role of a certain protein or peptide in 

Drosophila. However, this approach is limited, in that the user depends on the 

functionality of the available RNAi constructs, which is probably up to various partly 

unknown factors. In the course of this thesis we were lucky having two very efficient RNAi 

constructs, pdf-RNAi and itp-RNAi, while the npf-RNAi and the snpf-RNAi constructs 

turned out to be only insufficiently functional. Thus, I would like to emphasize at this 

point that especially the results for the sNPF-knockdown should be regarded with care, 

since they very likely are the result of off-target effects of the RNAi construct. In case of 

NPF, we were able to draw further conclusions on its function from the cell ablation 

experiments. Such experiments were, however, not possible in the case of sNPF, since 

these flies would not be viable.  

The most general conclusion from this work – also with regard to the current literature - 

is that especially ITP, most probably NPF and potentially also sNPF play a role in the 
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control of locomotor rhythms. However, none of these peptides seems to be of equal 

importance as PDF. The observed phenotypes were all rather small, when the peptides 

were knocked down. This implies that the major clock derived signal controlling 

locomotor rhythms is mediated by PDF, while signaling through the other peptides 

probably only fine-tunes the actions of PDF. 

 

 
Figure 36: Updated neurochemistry of the clock neurons of Drosophila melanogaster. NPF (red) was 
newly discovered in the fifth sLNv and a subset of the lLNv in the course of this thesis. For further details, 
please refer to Figure legend 4 in the introduction section. 

 

In LD behavior, PDF is necessary to promote M activity and necessary for the right E peak 

phase in that it delays the E activity to the end of the day by decelerating the clock in the 

E cells (Renn et al., 1999; Shafer and Taghert, 2009; Yoshii et al., 2009). The latter effect is 

important in the adaptation to longer photoperiods, in which the E activity needs to be 

delayed in order to follow the delay of dusk. It is assumed that the control of the M 

activity derives from sLNv PDF, while the E peak timing is most probably controlled by PDF 

from the lLNv (Shafer and Taghert, 2009; Yoshii et al., 2009). The amplitude of the E 

activity, however, seems to be promoted by the actions of ITP and NPF from the E 

oscillator cells (Hermann et al., 2012; Hermann-Luibl et al., submitted). Since the ablation 

of the NPF+ cells – which includes also the ITP+ clock neurons – did not completely abolish 
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the E peak (Hermann et al., 2012), it is clear that ITP and NPF are not the only factors 

promoting E activity. Indeed, the two NPF- CRY+ LNd of the E oscillator are remaining, 

which could still fulfill this function. These neurons contain sNPF, but whether it indeed 

participates in the promotion of the E activity is unsure due to the inefficiency of the 

RNAi. 

It is further very clear that of the investigated neuropeptides PDF seems to be also the 

major factor that maintains rhythmicity under constant conditions. Flies with a disruption 

in PDF signaling get either arrhythmic in DD or show a shortened free-running rhythm in 

behavior (Renn et al., 1999; Shafer and Taghert, 2009). It is believed that PDF signaling is 

required to synchronize the oscillations of different clock neurons and that PDF is further 

able to decelerate or accelerate the clock in different clock neurons (Yoshii et al., 2009). 

Behavioral arrhythmicity in DD in PDF-deficient flies was shown to be mainly caused by a 

desynchronization of the oscillations in individual sLNv neurons, while the short free-

running period results from the lack of PDF-mediated deceleration of the clock in the 

majority of pacemaker neurons (Yoshii et al., 2009). Disruption of clock neuron mediated 

signaling via the other investigated neuropeptides did not affect behavioral rhythmicity in 

general, indicating that they are not required for maintenance of a free-running rhythm in 

DD (Hermann et al., 2012; Hermann-Luibl et al., submitted). However, knockdown of ITP 

and PDF together had shown a more severe phenotype in DD than the PDF-knockdown 

alone, and constantly high ITP levels in the dorsal protocerebrum had impaired 

rhythmicity, clearly indicating a certain importance of ITP for the free-running rhythm. 

Further, it seems that ITP and possibly also sNPF constitute period shortening 

components opposing the effect of PDF. Thus, one could imagine that in wildtype flies the 

period lengthening component (PDF) and period shortening component(s) (ITP, sNPF) are 

in balance resulting in a free-running period of about 24 hours in DD. Disrupting either 

PDF signaling or ITP/sNPF signaling results then in a shorter period or longer period, 

respectively. And disrupting both PDF and ITP signaling from the clock neurons leads to 

complete arrhythmicity or complex rhythms showing more than one free-running 

component. 

The question, whether this peptide mediated behavioral control is achieved via clock 

output pathways or signaling inside the clock network cannot yet be fully answered for 
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the different neuropeptides. Concerning the communication among clock neurons, it is 

very clear that also here PDF is the main signaling molecule. All clock neuron clusters, 

except the lLNv, had been shown to respond to applied PDF (Shafer et al., 2008) and 

further PDF is able to speed up or slow down the oscillation in certain clock neurons 

(Yoshii et al., 2009). Since PDF is intrinsic to the sLNv and lLNv in the adult brain and the 

neuronal responses had been shown to be PDFR dependent (Shafer et al., 2008) it is even 

clear in this case that there is indeed direct signaling from one set of clock neurons to 

others. Only few clock neurons were, however, responsive to sNPF and NPF, suggesting 

already that the function of both peptides in inter-clock neuron communication is of 

minor nature and that both might also be involved in clock output. The findings that PDF 

and ITP seem to be rhythmically released into the PI and the pars lateralis (PL; Park et al., 

2000; Hermann-Luibl et al., submitted) suggest that there are not only spatial differences 

in neuropeptide action but also temporal differences. The latter can be of special 

importance when the same cells receive both excitatory and inhibitory stimuli as it seems 

to be the case for some DN, which were shown to respond both to PDF (Shafer et al., 

2008) and sNPF, which very likely derive from the sLNv.    

Dissecting clock related neuronal connectivity is of growing interest in our field of study 

to understand the pathways of clock input, input processing within the network and 

subsequent neuronal output. Especially the latter will be an interesting subject of further 

investigation in future studies. This work has provided a basis for the investigation of 

neuropeptide mediated signaling within the clock network as well as for the effects of 

neuropeptide mediated behavioral output. 
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Abstract 

The clock network of Drosophila melanogaster expresses various neuropeptides, but a 

function in clock-mediated behavioral control was so far only found for the neuropeptide 

Pigment Dispersing Factor (PDF). Here we propose a role in the control of behavioral 

rhythms for the Ion Transport Peptide (ITP), which is expressed in the fifth sLNv, one LNd 

and in only few non-clock cells in the brain. Immunocytochemical analyses revealed that 

ITP, just like PDF, is most probably released in a rhythmic manner at projection terminals 

in the dorsal protocerebrum. Further, ITP expression is reduced in the hypomorph mutant 

ClkAR, suggesting that the ITP expression is regulated by CLOCK. Using a genetically 

encoded RNAi construct we knocked down ITP in the two clock cells and found that these 

flies show reduced evening activity, increased nocturnal activity and a longer circadian 

free-running period. Overexpression of ITP with two independent timeless-GAL4 lines 

completely disrupted behavioral rhythms, but only slightly dampened PER cycling in 

important pacemaker neurons, suggesting a role for ITP in clock output pathways rather 

than in the communication within the clock network. Simultaneous knockdown of ITP and 

PDF made the flies hyperactive and almost completely arrhythmic under constant 

conditions. Under light-dark conditions the double-knockdown combined the behavioral 

characteristics of the single-knockdown flies. In addition, it reduced the flies’ sleep. We 

conclude that ITP and PDF are the clock’s main output signals that cooperate in 

controlling the flies’ activity rhythms.  
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Introduction 

The fruit fly Drosophila melanogaster has served as model organism for the investigation 

of biological rhythms since decades. The master clock in the central brain of the fly 

consists of about 150 clock neurons, which can be divided into several subgroups: the 

sLNv, fifth sLNv, lLNv, LNd and LPN in the lateral protocerebrum, and the DN1, DN2 and 

DN3 in the dorsal brain (Helfrich-Förster et al., 2007). These neurons are characterized by 

cell autonomous molecular oscillations of different clock proteins, which constitute the 

core clock mechanism (reviewed by Peschel and Helfrich-Förster, 2011). The most 

prominent circadian output in the fly is the rhythm in daily locomotor activity, which 

consists of a morning (M) and an evening (E) activity bout. Previous studies had shown 

that the M activity is mainly controlled by the sLNv, while the fifth sLNv and three of the 

LNd constitute the E oscillator cells (Grima et al., 2004; Stoleru et al., 2004; Rieger et al., 

2006; Picot et al., 2007; reviewed by Yoshii et al., 2012). 

M and E oscillator cells express different neuropeptides that seem to be involved in 

communication pathways within the clock network as well as in output signaling 

pathways. (reviewed by Peschel and Helfrich-Förster, 2011). The neuropeptide Pigment 

Dispersing Factor (PDF), which is expressed in the sLNv and lLNv, was shown to act as a 

synchronizing signal between different clock neurons (Shafer et al., 2008; Yoshii et al., 

2009) and is important for the maintenance of rhythmicity in constant darkness (DD; 

Renn et al., 1999). In light-dark (LD) cycles, PDF was further shown to promote M activity, 

suggesting that it is the main output factor of the M oscillator cells (Renn et al., 1999; 

Shafer and Taghert, 2009). 

The E oscillator cells are more heterogeneous with respect to their neuropeptide 

expression. Some contain the long form of neuropeptide F (NPF), others its short form 

(sNPF) and few neurons express the Ion Transport Peptide (ITP; Johard et al., 2009; 

Hermann et al., 2012). So far, only few clock-related functions of these neuropeptides 

have been demonstrated (Hermann et al., 2012; Damulewicz et al., 2013) and it is not 

clear, which of them is the main output factor of the E cells to control rhythmic behavior. 

Here, we have investigated the role of ITP, which is expressed in the fifth sLNv and one 

LNd (Johard et al., 2009) and which has so far found most attention for its antidiuretic 

functions in the insect gut (Dircksen, 2009). Through RNA interference (RNAi) and 
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overexpression experiments we show for the first time that ITP participates in the control 

of locomotor rhythms. As part of the E oscillator neurons ITP promotes E activity and acts 

as a period shortening component in DD. We further demonstrate that its clock related 

functions may be mediated by rhythmic ITP release from the two clock cells into the Pars 

intercerebralis (PI), and that this occurs at different times than the PDF release. 

 

Material and Methods 

Fly stocks 

All fly stocks were reared on standard cornmeal/agar medium in a humidity controlled 

climate chamber in LD 12:12 at 25°C. As wildtype we used the lab strain Canton S (CS), 

and w1118 was crossed to GAL4- and UAS-lines to obtain heterozygous control flies. We 

further used the mutants, per01 and ClkAR (M. Rosbash, Brandeis University, USA), and for 

the RNAi experiments w1118;UAS-dicer2;+;+ (#60012), w1118;+;UAS-itp-RNAi (#43848) and 

w1118;+;UAS-pdf-RNAi (#4380), which were all obtained from the Vienna Drosophila RNAi 

Center (VDRC). The utilized driver lines were the following: yw;+;pdf-GAL4, w;tim-

GAL4/CyO and yw;per-GAL4 (all from J. C. Hall and M Kaneko, Brandeis University, USA), 

w;tim(UAS)-GAL4 (M. W. Young, Rockefeller University, USA), w;clk856-GAL4 (O. T. 

Shafer, University of Michigan, USA; Gummadova et al., 2009), w;cry-GAL4#39 (F. Rouyer, 

CNRS, France), w;elav-GAL4/CyO (Bloomington Stock Center, #8765), and 386y(amon)-

GAL4 (C. Wegener, University of Würzburg, Germany).  

Generation of UAS-ITP flies 

RNA was extracted from Drosophila melanogaster Canton S heads and was subsequently 

reversely transcribed into cDNA. The cDNA of the short ITP isoform (ITP-PE; DrmITP in 

Dircksen et al., 2008) was then amplified in its full length using a primer pair, which 

created EcoRI and XbaI restriction sites. (Forward primer from 5´ to 3´: ACG-AAT-TCG-TTT-

CTG-CCC-CAC-AAC-AAC-AC; Reverse primer from 5´ to 3´: TCC-TCT-AGA-ATC-GCA-CTT-

TAC-TTG-CGA-CC) The amplicon was ligated into the EcoRI-XbaI-digested pUAST vector 

(containing genes encoding Ampicillin resistance and mini-white; kindly donated by A. 

Fiala, University of Göttingen, Germany) and NEB 10-beta competent E. coli bacteria (New 

England BioLabs) were used for transformation with the ITP-pUAST vector. Positive clones 
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were selected on Ampicillin containing agar plates and one clone was chosen for vector 

amplification, sequencing and injection into w1118 flies by BestGene (BestGene Inc., 

Drosophila Embryo Injection Services, CA, USA). We obtained ten different red-eyed UAS-

ITP lines, in which the construct was inserted either on the second or on the third 

chromosome. 

Antibodies and Immunocytochemistry 

Immunohistochemical analysis was performed to investigate the ITP expression pattern in 

the brain of wildtype and overexpressing flies, to confirm RNAi efficiency and to quantify 

clock protein cycling and ITP staining intensity.  

The monoclonal mouse anti-PDF-C7 antibody was purchased from the Developmental 

Studies Hybridoma Bank at the University of Iowa (DSHB; investigator: Justin Blau, New 

York University). To counterstain all clock neurons we employed a polyclonal guinea pig 

antiserum against the clock protein Vrille (anti-VRI), which was described by Glossop et al. 

(2003) and kindly provided by Paul E. Hardin (Texas A&M University, USA). For the 

quantification of the PERIOD (PER) protein cycling we used a polyclonal rabbit anti-PER 

antibody (Stanewsky et al., 1997), which was a gift from R. Stanewsky (University College 

London, UK). 

The polyclonal rabbit anti-ITP antibody was commercially generated against the C-

terminal fragment of Drosophila melanogaster ITP, CEMDKYNEWRDTL-NH2, coupled to 

bovine thyroglobulin via maleimide coupling methodology. Rabbits were repeatedly 

injected subcutaneously and were terminally bled after 110 days. Immunocytochemistry, 

antisera titrations and analyses of specificity were performed as described previously in 

Dircksen et al. (2008), i.e. via dilution series, preabsorption controls, Western Blots and 

combined HPLC-ELISA analysis. 

The staining protocol for Drosophila melanogaster adult whole-mount brains was 

described in previous studies (Hermann et al., 2012, 2013). We used only male 3-5 days 

old flies, which were entrained for at least 4 days in LD 12:12, before they were collected 

at various Zeitgeber Times (ZTs) in LD or Circadian Times (CTs) on the third day in DD. 

Brains were embedded and confocal images were obtained using a Leica TCS SPE (Leica, 

Wetzlar, Germany) confocal microscope. Z-stack images were visualized and edited with 

the ImageJ distribution Fiji (http://fiji.sc/wiki/index.php/Fiji or http://rsb.info.nih.gov/ij/). 
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Stacks were cropped and compiled as maximum projections. Brightness and contrast 

were adjusted, but no other manipulations were performed on the images, if not 

explicitly stated otherwise. 

For intensity quantification, samples were processed in exactly the same way during the 

staining protocol and were scanned with identical laser settings. The quantifications were 

conducted in ImageJ (Fiji). For quantification of PER or ITP in cell bodies, a square shaped 

area of 9 pixels (3x3 pixels) was placed on each cell of interest and the average pixel 

intensity was measured in the brightest focal plane. Cells of at least 5 different 

hemispheres were analyzed and the intensity values were first background corrected and 

then averaged for each neuronal group and genotypes. For quantification of ITP and PDF 

in the terminals, we compiled maximum projections containing the PI and the Pars 

lateralis (PL) and removed all staining besides the ITP- and PDF-terminals in this area (see 

Fig. 1C). All resulting images were consequently of the exact same size and contained only 

a defined part of the staining in the dorsal terminals. We then set the background of each 

image to 0 and measured the total intensity of the whole image, which then reflected the 

staining intensity in the dorsal projection terminals. We quantified at least 10 brains for 

each time point and ITP and PDF were analyzed in the same specimens. 

Behavioral Assay 

For analysis of daily locomotor rhythms we used 3-5 days old male flies, which were 

recorded using the commercially available Drosophila Activity Monitoring (DAM) System 

by TriKinetics. The exact procedure was described in Hermann et al. (2012). Experiments 

were performed in light-proof boxes, which were equipped with a computer controlled 

white light LED system. The whole setup was located in a climate chamber with controlled 

humidity and constant 20°C. Light intensity during light phases was set to 100 lux. We 

recorded the flies in LD 12:12 for seven days, followed by at least 14 days of DD. 

Experimental genotypes were always recorded together with their respective control 

genotypes in the same box and at the same time. 

Analysis of LD behavioral data was performed using Microsoft Excel and the procedure of 

calculating normalized average activity profiles was in detail described in Hermann et al. 

(2012). Free-running period lengths in DD were determined using χ2-periodogram 

analysis and actograms were depicted using ElTemps (Diez-Noguera, Barcelona, 1999; 
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upper limit 5) and the ImageJ plugin ActogramJ (Schmid et al., 2011). Average activity 

levels were calculated from mean activity counts of single flies during daytime (ZT0 to 

ZT12) or nighttime (ZT12 to ZT24) relative to the average of activity counts over the whole 

day. We further calculated the average number of beam crosses during the evening (ZT06 

to ZT18) relative to the average activity during the morning (ZT18 to ZT06). Sleep amount 

was defined as the sum of time, in which the flies did not cross the infrared light beam 

within 10 consecutive minutes. We calculated average sleep profiles in 1-hour bins over 

the whole day and quantified total sleep during the light phase and the dark phase. 

Statistics 

Data were tested for normal distribution applying a one-sample Kolmogorov-Smirnov 

test. To test for significant differences in normally distributed data sets we then applied a 

one-way ANOVA followed by a post-hoc pairwise comparison with Bonferroni correction. 

Not normally distributed data were tested for significant differences with a Kruskal-Wallis 

test followed by pairwise comparison with Wilcoxon analysis. Percentages of rhythmicity 

were compared by a χ2 test. Data were considered as significantly different with p<0.05 

(*) and as highly significant with p<0.001 (**). Significances are either indicated by 

asterisks or by a letter code within all graphical charts.  

 

 

Results 

ITP peptide levels cycle in dorsal projection terminals  

ITP is expressed only in few brain neurons in the adult fly. The whole pattern was 

described in detail in Dircksen et al. (2008) and the original nomenclature of ITP-positive 

(ITP+) cells was mostly adopted into this work. We will, however, refer to the two ITP+ 

clock neurons as fifth sLNv and LNd, which were originally included in the ipc-3 neuronal 

group (Fig. 1A). According to this partly new nomenclature, the ITP+ cells in the brain can 

be divided into five groups: the two clock cells in the lateral brain, the ipc-1 in a posterior 

dorsal or medial position, the ipc-2 and the remaining ipc-3 cell(s) in the dorsal medial 

brain, and the ipc-4 in the dorsal central brain (Fig. 1A).  
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To investigate ITP peptide levels over the day, we immunostained brains of adult male CS 

flies every four hours in LD 12:12 with anti-ITP (Fig. 1A) and quantified the staining 

intensity in the cell bodies of the fifth sLNv and in the LNd (Fig. 1B). We did not see a 

significant cycling in staining intensity of the two cell bodies. Since the amount of PDF is 

also not cycling within the PDF+ cell bodies, but rather within the axon terminals in the 

dorsal protocerebrum indicating a rhythm in peptide release (Park et al., 2000), we 

pursued similar investigations concerning ITP. Male CS brains were immunostained every 

three hours in LD 12:12 and ITP staining intensity was quantified in the clock neuron 

terminals in the dorsal protocerebrum, which are close to the PI (Fig. 1C). We co-stained 

the same brains with anti-PDF and quantified also the PDF staining in the dorsal 

projection terminals of the sLNv. In accordance with Park et al. (2000), PDF 

immunostaining peaked at the beginning of the light phase, decreased during the rest of 

the day and was quite low during the night (Fig. 1D). ITP immunostaining in the projection 

terminals also showed significant differences during the LD cycle (Fig. 1D). The 

quantification revealed a peak in the middle of the light phase and a second peak around 

ZT20 during the night. Staining levels were minimal at around lights-on and lights-off. 

Decrease of immunostaining in the projection terminals may indicate a loss of peptide 

that is possibly mediated by peptide release from large dense core vesicles. Thus, our 

results suggest that PDF is released during the light phase, while ITP might be released in 

the end of the dark phase and the end of the light phase.  

 

ITP levels are reduced in clock neurons of the hypomorph ClkAR mutants  

The next question was, whether ITP expression is depending on clock functionality. To 

answer this, we analyzed ITP staining intensity in the clock cell bodies in different clock-

impaired mutants (Fig. 2A). We found that there is no difference in staining intensity in 

per01 flies in comparison to wildtype CS (Fig. 2B). However, per01 is thought to retain 

residual clock function, since only one of the two molecular feedback loops is impaired 

(Helfrich and Engelmann, 1987; Helfrich-Förster, 2001; Kempinger et al., 2009; Goda et 

al., 2011; Vanin et al., 2012; Bywalez et al., 2012; Menegazzi et al., 2012). In ClkJrk mutants 

clock function seems to be completely abolished (Allada et al., 1998); but besides its 

deficits in clock functionality, ClkJrk flies show strong developmental defects, which also 
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affect the presence of certain clock neurons (Park et al., 2000). We therefore decided to 

investigate ITP staining in the hypomorph clock mutant, ClkAR. Interestingly, we found that 

the ITP staining intensity in the two clock cells is significantly reduced compared to 

wildtype and per01, suggesting that ITP expression is under clock regulation (Fig. 2B; Note 

that both ITP+ clock cells are only faintly stained, but clearly present in ClkAR, Fig. 2A). 

When searching through the upstream region of the itp gene, we did not find any 

indications for the presence of E-boxes, whatsoever, indicating that ITP abundance is 

probably indirectly regulated by CLK. 

 

ITP knockdown affects LD locomotor activity, especially the activity level during the 

night and during the evening. 

In order to investigate the function of ITP for locomotor rhythms in the fly, we expressed 

a genetically encoded itp-RNAi-construct with the help of the GAL4/UAS system. We 

chose the very strong tim(UAS)-GAL4 line (tim(UAS)G4; described in Blau and Young, 

1999) to express both UAS-dicer2 (dcr2) and the RNAi-construct, to knock down ITP (itp-

RNAi) only in the ITP+ clock cells (ITP-knockdown). We used the same driver line to also 

manipulate PDF levels via pdf-RNAi (see below), as it was done previously (PDF-

knockdown; Shafer and Taghert, 2009; Hermann et al., 2012). To verify the RNAi 

efficiency, we stained adult male brains of the respective genotypes with anti-ITP and 

anti-PDF and counterstained with anti-VRI (Fig. 3). PDF and ITP staining was wildtype-like 

in tim(UAS)G4>dcr2 control flies (Fig. 3A) as well as in heterozygous RNAi-construct 

controls (dcr2;itp-RNAi and dcr2;pdf-RNAi; data not shown). ITP was, however, 

undetectable in both clock neurons in ITP-knockdown flies, but remained present in the 

ITP+ non-clock cells (Fig. 3B). PDF immunostaining was also completely lost, when pdf-

RNAi was expressed in the clock neurons (Fig. 3C). When itp-RNAi and pdf-RNAi were 

expressed together, neither PDF nor ITP was present in the clock cells (Fig. 3D; ITP/PDF-

knockdown). Thus, both RNAi constructs worked very efficiently, when expressed with 

tim(UAS)G4 inside the clock neurons. 

After assuring that the RNAi was working efficiently, we tested the locomotor rhythms of 

ITP-knockdown flies and corresponding controls in LD 12:12 cycles. We calculated 

normalized average activity profiles to better depict the general shape of the daily activity 
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pattern. The ITP-knockdown did not seem to have any severe effect on the shape of the 

bimodal activity profile (Fig. 4A). In particular the phasing of the activity peaks seemed to 

be normal. We also recorded these flies under longer and shorter photoperiods since 

changes in phase of M peak or E peak become more apparent, when the activity peaks do 

not occur at the exact time of the light transitions (e.g. Majercak et al., 1999, Rieger et al., 

2003). But also these experiments did not reveal any impairment in activity peak timing 

(data not shown). 

However, the knockdown of ITP had effects on relative activity levels. We calculated 

daytime and nighttime activity as the average number of beam crosses during the light 

phase and the dark phase relative to the average activity during the whole day (Fig. 4B). 

We found that ITP-knockdown flies show a significantly reduced relative daytime activity 

and a significantly enhanced nighttime activity. Furthermore, they seem to reduce E 

activity. When calculating the relation between average E activity (average beam crosses 

from ZT06 to ZT18) and average M activity (average beam crosses from ZT18 to ZT06), 

ITP-knockdown flies revealed a significant reduction in E activity relative to M activity (Fig. 

4C).  

 

ITP knockdown prolongs the free-running period in DD 

To judge the effect of the ITP-knockdown on the free-running rhythm, we recorded ITP-

knockdown flies together with their respective controls in LD 12:12 cycles followed by at 

least 2 weeks of constant darkness (DD). The ITP knockdown did not affect general 

rhythmicity of the flies, but slightly lengthened period (Table 1, see Fig. 8). We conclude 

that the presence of ITP is not necessary for maintaining rhythmicity under DD, but that 

ITP has a slight period shortening effect on the free-running period.  

 

Overexpression of ITP with timG4 impairs rhythmic behavior 

Though the presence of ITP seems not to be necessary for robust free-running rhythms, 

this does not exclude the possibility that ITP influences rhythmicity. High ectopic levels of 

PDF in the dorsal brain (close to its usual terminals) have been shown to disrupt the 

internal communication among the clock neurons causing complex rhythms up to 



Hermann-Luibl et al., 2013 (submitted) 

160 
 

arrhythmic behavior (Helfrich-Förster et al., 2000 and Wülbeck et al., 2008). Thus, we 

took a comparable approach as it was done for PDF and generated a UAS-ITP construct, 

which allowed the overexpression of ITP with different GAL4 (G4) lines. We chose several 

well-characterized driver lines that are specific to the neuronal clock system, but also 

broadly expressing drivers. The overexpression success was verified by antibody staining 

with anti-ITP (Fig. 5). 

In general, we were able to overexpress ITP ectopically with all driver lines that we used 

(Fig. 5, confocal images). Focusing on the clock neurons, we counterstained ITP-

overexpressing brains with anti-VRI and anti-PDF (data not shown) and found that all 

clock neuron clusters were able to synthesize ITP. Overexpression with pdfG4, cryG4#39 

and clk856G4 was rather specific to the neuronal clock network or a part of it (Fig. 5). 

Overexpression of ITP using tim(UAS)G4, timG4 or perG4 included not only clock neurons, 

but also structures like the antennal lobes, fan-shaped body or ellipsoid body (Fig. 5). The 

very broad driver lines elav-GAL4 and 386y(amon)G4 showed even more, close to 

panneuronal overexpression of ITP (Fig. 5). 

Interestingly, when we compared the locomotor rhythms in LD 12:12 and DD in the 

different ITP-overexpressing genotypes, we only found differences to control flies using 

tim(UAS)G4 and timG4. These phenotypes were severe and identical in both driver lines, 

in that flies barely showed any M and E activity bouts in LD and were almost completely 

arrhythmic in DD (Fig. 5, Table 2; tim(UAS)G4>ITP2 χ2=73,5097, p<0.0001; timG4>ITP2 

χ2=56,7964, p<0.0001). Overexpression with none of the other drivers had any effect on 

rhythmicity or period length. 

We first tested whether these arrhythmic phenotypes derive from a disruption of the 

molecular clock mechanism, possibly mediated by the direct action of ITP on the clock 

network. To do so, we immunostained brains of tim(UAS)G4>ITP2 flies and of the 

respective control genotypes with anti-PER every 4 hours in LD and the third day in DD. In 

LD, the oscillation in PER staining intensity in the different clock neuron clusters of 

tim(UAS)G4>ITP2 flies was not different from controls (Fig. 6), indicating that the PER 

protein cycling is completely normal in LD in ITP-overexpressing flies. In DD, the 

amplitude of PER cycling was already reduced in some clock neurons of the control flies, 

but remained clearly cyclic in the sLNv, the fifth sLNv, and the LNd (Fig. 6). In 
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tim(UAS)G4>ITP2 flies, we also found significant PER cycling in these three groups of clock 

neurons, but the cycling amplitude was decreased in the sLNv and the LNd compared to 

controls (Fig. 6). Thus, PER cycling in DD wasn´t completely abolished in ITP-

overexpressing flies, but slightly dampened in its amplitude. 

 

The rhythm of ITP and PDF release seems affected in behaviorally arrhythmic ITP-

overexpressing flies 

Since clock protein cycling within the clock neurons was not completely impaired in 

behaviorally arrhythmic ITP-overexpressing flies, we assume that ITP may mainly act 

downstream of the clock on behavior-controlling target structures inside the brain. 

To localize putative ITP targets, which could possibly be responsible for the severe 

phenotype in ITP-overexpressing flies using timG4 and tim(UAS)G4, we compared the 

anti-ITP staining pattern of these behaviorally arrhythmic flies with behaviorally rhythmic 

ITP-overexpressing flies. 386(amon)G4>ITP2 and elavG4>ITP2 flies showed high ITP 

expression virtually everywhere in the brain, whereby staining was especially high in the 

mushroom bodies and in the subesophageal ganglion (Fig. 5). perG4>ITP2 flies showed 

quite high ITP staining the central complex and the antennal lobes. Nevertheless, all these 

lines remained rhythmic, indicating that ITP does not evoke behavioral arrhythmicity by 

affecting these parts of the brain.  

We then focused on the comparison of the arrhythmic tim(UAS)G4>ITP2 flies with the 

rhythmic perG4>ITP2 flies, because these had a similar strong ITP expression in the clock 

neurons and especially in the PI projections, where we had discovered a daily rhythm in 

ITP staining. To investigate, whether this rhythm is disturbed in the behaviorally 

arrhythmic but still present in the behaviorally rhythmic flies, we immunostained the two 

genotypes plus their relevant controls with anti-ITP and anti-PDF at ZT20 (when ITP levels 

had been high and PDF levels had been low in wildtype flies) and ZT02 (when ITP levels 

had been low, but PDF levels high in wildtype flies). We found that all control flies showed 

the expected significant differences in ITP and PDF staining intensity (Fig. 7A, B). The same 

was true for the perG4>ITP2 flies; as expected these flies had very high ITP levels in the PI, 

but ITP-staining intensity was still cyclic (Fig. 7A). This was very different in 

tim(UAS)G4>ITP2 flies, in which we could not detect any significant difference in ITP 
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staining at the two time points. ITP remained always similarly high (Fig. 7A). We conclude 

that a constant high release of ITP into the PI may disturb circadian rhythmicity. 

Interestingly, PDF-cycling seemed also to be affected in tim(UAS)G4>ITP2 flies. The 

staining difference between ZT2 and ZT20 was smaller than in the other strains. PDF 

remained rather high in the middle of the night, when it was low in the controls (Fig. 6B). 

This may be partly caused by a changed projection pattern of the lLNv (Fig. 7C, D). In 

about 60% of tim(UAS)G4>ITP2 flies some fibers from the l-LNv followed the projections 

of the s-LNv into the dorsal brain and terminated in the PI (Fig. 7C). PDF in these terminals 

remained constantly high and may have diminished the PDF rhythm (compare Helfrich-

Förster et al., 2000; Wülbeck et al., 2008). Putatively, the arrhythmicity of 

tim(UAS)G4>ITP2 flies is caused by a combination of constant high ITP and PDF release 

into the dorsal brain. 

 

ITP/PDF-double-knockdown makes flies arrhythmic and hyperactive in DD 

Since the results with tim(UAS)G4>ITP2 flies already point to an interaction of ITP and PDF 

in the control of rhythmic behavior, we generated ITP/PDF-double-knockdown flies 

(tim(UAS)G4>dcr2;itp-RNAi/pdf-RNAi) and compared their rhythmic behavior with the 

single-knockdown flies. As mentioned earlier, the single ITP-knockdown had only mild 

effects on the free-running rhythms of the flies (Fig. 8): The percentage of rhythmic flies 

was the same as in the controls, only period was slightly but significantly longer (see also 

Table 1). In agreement with previous studies (Shafer and Taghert, 2009), the single PDF-

knockdown had much more severe effects on rhythmicity than the ITP-knockdown: 

tim(UAS)G4>dcr2;pdf-RNAi flies were to a significantly lower amount rhythmic compared 

to tim(UAS)G4>dcr2 (p<0.0001) and dcr2;pdf-RNAi (p<0.0001) flies, and the remaining 

rhythmic flies showed weak short free-running periods (Fig. 8, Table 1). This behavior 

largely mimicked that of Pdf0 mutants (Renn et al., 1999). The simultaneous knockdown 

of PDF and ITP further reduced rhythmicity (Fig. 8). Periodogram analysis revealed 

residual rhythms in only about 30% of the ITP/PDF-double-knockdown flies, and these 

were clearly different from the PDF-knockdown flies. Usually, the activity of the double-

knockdown flies was clustered in irregular activity bouts (Fig. 8C) with several rhythmic 

components appearing in the periodograms (not shown). Therefore, we could not 
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calculate an average period from the few rhythmic flies. Furthermore, the ITP/PDF-

double-knockdown flies showed a significantly higher activity level than all other lines 

(Fig. 8E). 

 

In LD, ITP/PDF-double-knockdown flies combine the behavioral characteristics of the 

single knockdown flies, but show in addition effects on sleep 

In LD conditions, the behavior of ITP/PDF-double-knockdown flies was less disturbed than 

under DD conditions. Most flies did still show a kind of M and E activity, though with 

clearly altered characteristics (Fig. 8, 9). Their E peak was advanced as that of single PDF-

knockdown flies (Fig. 9A, lower row right panel). Further, they revealed a reduced E peak 

and higher nocturnal activity as did single ITP-knockdown flies (Fig. 9B, C). Thus, the 

effects of the single-knockdowns seem to add up in the double-knockdown flies. 

Nevertheless, we did also observe effects that were not present in the single-knockdown 

flies: ITP/PDF-double-knockdown flies have a less pronounced siesta, which is the typical 

midday break in activity observed in wildtype flies. In the double-knockdown flies, the 

activity after lights-on decreases only slowly, whereas in all other genotypes (including 

ITP- and PDF-single-knockdown flies) the activity quickly decreases after the lights-on 

reaction and stays at a relatively low level until the beginning of the E activity. 

The lacking siesta and the higher nocturnal activity suggests that ITP/PDF-double-

knockdown flies do almost not sleep. To investigate this, we analyzed sleep in LD (Fig. 10) 

in the same data set that was used to calculate the LD activity profiles (Fig. 9). Neither 

ITP-knockdown nor PDF-knockdown alone did affect the sleep profile, but the 

simultaneous knockdown of ITP and PDF clearly reduced sleep during the siesta and 

during the night (Fig. 10A). Consequently, the total amount of sleep during the light and 

the dark phase was significantly reduced in ITP/PDF-double-knockdown flies, but in none 

of the other strains (Fig. 10B), although the ITP-knockdown flies showed higher nocturnal 

activity (see Fig. 4, 9).  
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Discussion 

In the present study, we show that the activity rhythms of fruit flies are not only 

dependent on the neuropeptide PDF (Renn et al., 1999), but also clearly affected by the 

neuropeptide ITP. ITP promotes E activity and may therefore act as an output signal of 

the E oscillator cells. Under DD conditions, ITP has a mild period-shortening effect. Thus, 

ITP somehow opposes the effects of PDF, which promotes M activity and has a 

predominantly period-lengthening effect under DD (Renn et al., 1999; Shafer and Taghert, 

2009). Nevertheless, the effects of ITP under DD are relatively mild as compared to PDF, 

which is necessary for robust rhythmicity. Notably, the double-knockdown of ITP and PDF 

completely disrupts circadian rhythmicity under DD, suggesting that the two 

neuropeptides are the clock’s main output factors essential for rhythmicity under 

constant conditions. The two neuropeptides are also important for normal LD rhythms, 

whereby they seem to control different behavioral aspects: Whereas PDF strongly 

influences the activity phase of the flies promoting their adaptation to long photoperiods 

(Yoshii et al., 2009), ITP has no such effects. ITP mainly influences the activity level of the 

flies, reducing nocturnal activity and enhancing diurnal E activity. Most interestingly, both 

peptides cooperate in controlling the flies’ sleep. Whereas the single-knockdown of either 

PDF or ITP did not affect sleep at all, the double PDF/ITP-knockdown strongly reduced 

sleep during the flies’ siesta and night. In the following we will discuss specific points in 

more detail. 

 

ITP´s rhythmic way of action 

In order to function in a circadian fashion, the synthesis of a neuropeptide, its stability or 

its receptor sensitivity can be under clock control. We have shown that ITP 

immunostaining is dramatically decreased inside the clock neurons in ClkAR mutants, 

suggesting that the transcription of the itp gene might be regulated by CLK in the ITP+ 

clock neurons. Park and colleagues (2000) found a similar reduction in PDF 

immunostaining in ClkJrk mutants and identified an E-box (CACGTG) within the upstream 

regulatory region of the pdf gene. Nevertheless, pdf expression was independent of this 

E-box and pdf-mRNA levels were not cycling. We did not find any indications for the 

presence of E-boxes in the upstream region of the itp gene, indicating that ITP abundance 
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is probably indirectly regulated by CLK as is PDF. Similar to what was found for PDF (Park 

et al., 2000), we did also not find any significant cycling in ITP staining intensity in clock 

neuron cell bodies, but significant oscillations in staining intensity in the projection 

terminals. This suggests that PDF and ITP are continuously produced but rhythmically 

released from the axon terminals. ITP peaks in the middle of the night and the middle of 

the day. Assuming that peptide release occurs, when staining intensity decreases, we 

propose that ITP is most probably released from the clock neurons in the second half of 

the night and the second half of the day. Simultaneous analysis of PDF staining intensity 

in dorsal projection terminals of the same brains showed that PDF appears to be released 

in the middle of the day coinciding with previous studies (Park et al. (2000). 

Notably, PDF and ITP appear not only to have different release times, but also different 

release sites. Whereas the PDF fibers terminate in the pars lateralis (PL) close to the 

calyces of the mushroom bodies (Helfrich-Förster and Homberg, 1993), most ITP fibers 

terminate medially to the PDF fibers in the PI (see also Johard et al. 2009). Both, the 

mushroom bodies and the PI have been previously shown to control sleep (Joiner et al., 

Pitman et al., 2006; Yuan et al., 2006; Foltenyi et al., 2007; Crocker, 2010). Thus, PDF and 

ITP may well interfere in the rhythmic control of sleep.  

 

Clock derived ITP promotes E activity and reduces nocturnal activity 

RNA interference in combination with the GAL4/UAS-system is a powerful tool to disrupt 

gene expression in a spatially specified way. Both the knockdown of ITP and the 

knockdown of PDF were very efficient in our experiments, leaving both peptides 

undetectable by the antibodies. To reduce ITP-knockdown exclusively in the clock 

neurons we used the tim(UAS)G4 line to drive the RNAi-construct, that left ITP levels in 

ITP+ non-clock neurons unaffected. It is worth to mention that the complete knockdown 

of ITP in all ITP+ neurons is lethal (data not shown), while ITP-knockdown only in the clock 

neurons didn´t seem to affect viability. 

We did not find any effects of ITP-knockdown on the timing of M and E activity bouts in 

LD, not even under long and short photoperiods (data not shown). Thus, ITP seems not to 

be involved in general entrainment mechanisms and the adaptation to changing 

photoperiods. We found, however, effects of ITP-knockdown on activity levels, especially 
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during the evening and the night. The E activity of a wildtype fly occurs mainly during the 

light phase before lights-off, while the M anticipation before lights-on constitutes a large 

portion of the fly´s M activity. Activity of ITP-knockdown flies was reduced during daytime 

and increased during nighttime relative to their overall average activity. In accordance 

with this, ITP-knockdown flies showed significantly less E activity in relation to their M 

activity compared to controls. Thus, we conclude that ITP, deriving from the E oscillator 

cells, normally promotes E activity and reduces nighttime activity. 

Knocking down ITP and PDF together phenocopied both characteristics of PDF-

knockdown flies and ITP-knockdown flies. On the one hand ITP/PDF-double-knockdown 

flies showed the same advance in E peak phase as it was typical for PDF-knockdown flies. 

On the other hand the E peak amplitude was decreased and nocturnal activity increased 

compared to PDF-knockdown flies as it was the case when ITP was knocked down alone. 

Thus, we conclude that PDF and ITP - independently of each other – control activity phase 

and levels, respectively. 

 

ITP shortens the circadian free-running period in DD 

In a previous study, we had shown that the ablation of the NPF+ clock neurons lengthens 

the circadian free-running period in DD and advances the E activity in LD (Hermann et al., 

2012). Knocking down NPF via RNAi was not completely efficient and had thus not shown 

any effect on LD or DD behavior (Hermann et al., 2012). The npfG4 line that we had used 

for the cell ablation experiments in this former study had included the two ITP+ clock 

neurons. Interestingly, we demonstrated now that the knockdown of ITP within these 

cells also slightly, but significantly prolongs the circadian free-running period in DD. This 

indicates that in fact the lack of ITP was probably responsible for the period lengthening, 

when the NPF+ cells were ablated. Thus, ITP normally acts as a period shortening factor, 

leading to a prolonged rhythm, when the ITP signaling is disrupted. Pdf01 or PDF-

knockdown flies on the other hand show shortened free-running rhythms in DD (Renn et 

al., 1999; Shafer and Taghert, 2009). Thus, both peptides have opposing effects on the 

period length, which could be a mechanism of fine-tuning clock neuron synchronization 

or rhythm output.   
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ITP might target mainly clock output sites to control rhythmic behavior 

The ITP-receptor and its expression pattern are so far unknown. Thus, it is unclear 

whether ITP works within the clock network as was revealed for PDF (Im and Taghert, 

2010) or on clock output sites. Here, we investigated whether ITP overexpression with 

timG4 and tim(UAS)G4 that led to behavioral arrhythmicity influenced the cycling of PER 

in the clock neurons. We found that solely PER cycling in the sLNv and the LNd seemed to 

be reduced in amplitude compared to control flies in DD, indicating a slow dampening of 

the circadian rhythm in these cells, which is possibly evoked by the action of ITP. 

However, tim(UAS)G4>ITP2 flies were already arrhythmic from the first day in DD. Since 

there was still PER cycling on the third day in DD, albeit with reduced amplitude, we 

assume that ITP has its main targets in the clock output pathways. 

Surprisingly, ITP could be highly overexpressed in the entire brain without provoking 

arrhythmicity indicating that the mushroom bodies, the central complex, the 

subesophageal ganglion, the antennal lobes and other brain regions do not contain ITP 

targets that are important for rhythmic behavior. Here, we show that a cyclic ITP release 

into the PI might be essential for behavioral rhythms, perhaps combined with a rhythmic 

PDF release into the PL, because both rhythms seemed to be disturbed in 

tim(UAS)G4>ITP2 flies. Future studies have to reveal which neurons in the brain express 

the ITP-receptor and whether the sLNv and the LNd - the molecular PER-cycling of which 

is reduced in tim(UAS)G4>ITP2 flies - are among them. 

Taking all findings together, this is the first study demonstrating a role of ITP in the 

control of behavioral rhythms in Drosophila melanogaster. We propose a role for ITP in 

the output pathway of the clock which is partly complementary and partly cooperative to 

PDF. 
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Figure legends 

Figure 1: ITP staining intensity in clock neuron cell bodies and projection terminals in LD 

12:12. (A) Anti-ITP staining on male Canton S brains at different ZTs in LD 12:12 (20°C). (B) 

Quantification of the ITP staining intensity at different ZTs in the fifth sLNv (upper panel) 

and the LNd (lower panel). We found no significant oscillation in staining intensity in the 

ITP+ cell bodies (fifth sLNv ANOVA F(6,65)=0.685; p=0.663; LNd ANOVA F(6,65)=0.484; 

p=0.818). (C) Terminals of the ITP and PDF clock neurons in the dorsal protocerebrum. 

The ipc-1, ipc-2 and ipc-3 neurons were removed for better clarity. The two ITP neurons 

(LNd and 5th sLNv, magenta) terminate predominantly in the Pars intercerebralis (PI), 

whereas the PDF-expressing sLNv (blue) terminate in the Pars lateralis (PL). The PDF 

terminals were maximally stained at ZT2 and the ITP terminals at ZT20. For quantification 

of staining intensity everything in the picture was erased except the terminals in between 

the yellow bars as indicated for PDF in the upper and for ITP in the lower picture. (D) ITP 

and PDF staining intensities in the terminals depicted in C. PDF staining intensity 

significantly peaks at ZT2, decreases during the rest of the light phase and remains low 

during the night (ANOVA F(7,111)=25.64; p<0.0001). Quantification of the ITP staining 

intensity revealed two statistically significant peaks: one around noon and one around 

midnight (ANOVA F(7,111)=8,86; p<0.0001). The troughs occurred at the time of lights-on 

and lights-off. Error bars depict SEM; small letters indicate significant differences between 

time points; black and white bars indicate light regime; scale bars = 10µm. 

 

Figure 2: ITP staining intensity in clock neuron cell bodies in Canton S (CS) compared to 

the clock mutants per01 and ClkAR. (A) Anti-ITP staining on male adult brains of CS, per01 

and ClkAR at ZT02 in LD 12:12. (B) Quantification of the ITP staining intensity in the fifth 

sLNv (left panel) and the LNd (right panel) in the different genotypes. Anti-ITP staining 

intensity was significantly reduced in both cells in ClkAR mutants compared to CS and per01 

(fifth sLNv ANOVA F(2,31)=30,469; p<0.001; LNd ANOVA F(2,33)=37,900; p<0.001). Error bars 

depict SEM; scale bars = 10µm; ** indicates p<0.001 in pairwise comparisons. 
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Figure 3: Immunohistochemistry on RNAi expressing flies to validate RNAi efficiency. 

RNAi constructs were expressed with tim(UAS)G4. Male adult brains were stained with 

anti-ITP (magenta), anti-VRI (green) and anti-PDF (cyan). (A) Control flies 

(tim(UAS)G4>dcr2) show wildtype-like expression pattern of ITP and PDF in the clock 

neurons. (B) ITP is undetectable in the fifth sLNv and the LNd in ITP-knockdown flies 

(tim(UAS)G4>dcr2;itp-RNAi), while it is still present in the ITP+ non-clock neurons (ipc-1). 

(C) PDF is undetectable in sLNv and lLNv in PDF-knockdown flies (tim(UAS)G4>dcr2;pdf-

RNAi). (D) Both ITP and PDF are undetectable in the clock neurons in ITP/PDF-double-

knockdown flies (tim(UAS)G4>dcr2;itp-RNAi/pdf-RNAi). Scale bars = 10µm. 

 

Figure 4: Locomotor activity of ITP-knockdown flies and controls in LD 12:12. (A) 

Average activity profiles were calculated for each genotype and light condition and were 

normalized to the highest activity value to better visualize the shape of the profile. No 

obvious differences in the shape of the bimodal activity pattern of ITP-knockdown flies 

(tim(UAS)G4>dcr2;itp-RNAi) were visible compared to controls. n = number of 

investigated flies; black areas indicate darkness, gray areas indicate light of 100 lux; black 

line = mean, gray lines = SEM. (B) Relative activity levels for day (left panel) or night (right 

panel) were calculated as mean beam crosses per minute during the light phase or the 

dark phase relative to the average of beam crosses during the whole day. ITP-knockdown 

flies (light gray) showed significantly less daytime activity in comparison to both controls 

(darker grays; Kruskal Wallis H(2)=37.637; p<0.001) and significantly higher nighttime 

activity (Kruskal Wallis H(2)=37.637; p<0.001). (C) When calculating mean E activity (ZT06 

to ZT18) relative to mean M activity (ZT18 to ZT06), ITP-knockdown flies show a reduction 

in relative E amplitude compared to both controls (Kruskal Wallis H(2)=30.345; p<0.001). T 

= 20°C; error bars depict SEM; * indicates p<0.05 and ** indicates p<0.001 in pairwise 

comparisons; n.s. = not significant. 

 

Figure 5: Overexpression of ITP with different driver lines. Confocal pictures depict anti-

ITP staining in heterozygous UAS-ITP2 controls (top) and ITP-overexpressing adult male 

brains. One individual representative double plotted actogram is depicted for each 

genotype (black line indicates the transition from LD 12:12 to DD). Overexpression of ITP 
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with tim(UAS)G4 and timG4 impaired rhythmicity, while overexpression with all other 

driver lines did not affect rhythmicity. T = 20°C; black and white bars indicate the light 

regime in LD 12:12 (100 lux); scale bars = 10µm.  

 

Figure 6: Period (PER) staining intensity in clock neurons in LD 12:12 and DD in ITP-

overexpressing flies and controls. Adult male brains were stained with anti-PER after 

entrainment to LD 12:12 (100 lux, 20°C). Flies were collected at different ZTs in LD 12:12 

and at different CTs on the third day in DD. CTs indicate the time points, when the light 

would have been on or off with respect to the previous LD cycle. Staining intensity in 

different clock neuron clusters was quantified in at least 5 brains per time point. PER 

cycling in behaviorally arrhythmic ITP-overexpressing flies (tim(UAS)G4>ITP2; light gray) 

did not differ from controls (darker grays) in any of the investigated clock neuron clusters 

in LD. PER protein was still clearly cycling in sLNv (tim(UAS)G4: ANOVA F(5,24)=27.114; 

p<0.001; UAS-ITP2: ANOVA F(5,24)=26.478; p<0.001), fifth sLNv (tim(UAS)G4: ANOVA 

F(5,24)=63.311; p<0.001; UAS-ITP2: ANOVA F(5,24)=14.065; p<0.001) and LNd (tim(UAS)G4: 

ANOVA F(5,24)=14.764; p<0.001; UAS-ITP2: ANOVA F(5,24)=43.876; p<0.001) in both control 

flies in DD. In ITP-overexpressing flies, we also found cycling in PER staining intensity in 

the sLNv (ANOVA F(5,23)=6.664; p<0.001), the fifth sLNv (ANOVA F(5,23)=20.428; p<0.001) 

and in the LNd (ANOVA F(5,23)=10.199; p<0.001), however the amplitude of these 

oscillations seemed to be slightly reduced. Black and light gray bars indicate the LD light 

regime; black and dark gray bars indicate subjective night and day in DD; error bars depict 

SEM. 

 

Figure 7: ITP and PDF cycling in the dorsal brain terminals in ITP-overexpression flies. (A) 

tim(UAS)G4>ITP2 flies lack a significant difference in ITP staining at ZT2 and ZT20 in the 

Pars intercerebralis (PI). (B) Also the difference in PDF-staining intensity between the two 

time points is reduced in tim(UAS)G4>ITP2 flies. (C) tim(UAS)G4>ITP2 flies show a higher 

percentage of aberrant PDF-fibers in the PI than the other fly strains (χ2=25.55; p<0.001). 

(D) Typical brain of a tim(UAS)G4>ITP2 fly stained with anti-PDF at ZT2 showing aberrant 

fibers stemming from the lLNv in the PI (cell bodies not in the picture).  
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Figure 8: Representative individual double plotted actograms of ITP-, PDF- and ITP/PDF-

knockdown flies and controls in LD 12:12 followed by DD. ITP-knockdown flies 

(tim(UAS)G4>dcr2;itp-RNAi) (B) have significantly longer free-running periods in DD as 

compared to the relevant controls (A) (Kruskal Wallis H(2)=15.447; p<0.001; pairwise 

comparisons: ITP-knockdown to timG4>dcr2 p<0.001; ITP-knockdown to dcr2;itp-RNAi 

p<0.05). Many of the PDF-knockdown flies (tim(UAS)G4>dcr2;pdf-RNAi) were arrhythmic 

in DD (D) (χ2=30.072; p<0.0001); the still rhythmic individuals free-run with a short period 

(B) that was significantly different from the relevant controls (A) (Kruskal Wallis 

H(2)=16.506; p<0.001; Wilcoxon pairwise comparisons: PDF-knockdown to 

tim(UAS)G4>dcr2 p=0.021; PDF-knockdown to dcr2;pdf-RNAi p=0.003). The majority of 

the ITP/PDF-double-knockdown flies (tim(UAS)G4>dcr2;itp-RNAi/pdf-RNAi) were 

arrhythmic (C right actogram, D) (χ2=19.354; p<0.0001). The remaining flies showed 

several free-running components in DD (C left actogram), the period of which was 

impossible to determine. Furthermore, all ITP/PDF-double-knockdown flies had a high 

activity level that was significantly different to all other genotypes (E) (Kruskal Wallis 

H(5)=54.746; p<0.001). Black and white bars indicate the light regime in LD 12:12 (100 lux, 

20°C). The control strains in (D) and (E) (dark gray bars) are in the following order from 

left to right: tim(UAS)G4>dcr2, dc2;itp-RNAi, dcr2;pdf-RNAi. Error bars depict SEM. 

 

Figure 9: Locomotor activity of ITP/PDF-double-knockdown flies and controls in LD 

12:12. (A) Average activity profiles were calculated for each genotype and were 

normalized to the highest activity value. PDF-knockdown flies (tim(UAS)G4>dcr2;pdf-

RNAi) show the typical advanced E activity and reduced M activity. The same phenotypes 

can be seen in ITP/PDF-double-knockdown flies (tim(UAS)G4>dcr2;itp-RNAi/pdf-RNAi). In 

addition, these flies show a less pronounced siesta compared to the other genotypes. n = 

number of investigated flies; black areas indicates darkness, gray areas indicates light of 

100 lux; black line = mean, gray lines = SEM; T = 20°C (B) Relative activity levels for day 

(left panel) and night (right panel) were calculated as mean beam crosses per minute 

during the light phase or the dark phase relative to the average of beam crosses during 

the whole day. Relative daytime and nighttime activities were significantly dependent on 

the genotype (day: ANOVA F(5,171)=16.787, p<0.001; night: ANOVA F(5,171)=27.802, 
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p<0.001). In particular, ITP/PDF-double-knockdown flies showed a slight reduction in 

daytime activity. The tendency towards reduced daytime activity in ITP-knockdown flies 

(tim(UAS)G4>dcr2;itp-RNAi) was similar to the results of Fig. 4B. Both ITP-knockdown flies 

and ITP/PDF-double-knockdown flies showed a significant increase in nighttime activity.  

(C) Mean E activity (ZT06 to ZT18) was calculated in relation to mean M activity (ZT18 to 

ZT06) as in Fig. 4C and was significantly dependent on the genotype (Kruskal Wallis 

H(5)=73,298, p<0.001). ITP-knockdown flies showed significantly less E activity than the 

controls and PDF-knockdown flies (compare also to Fig. 4C). E activity in ITP/PDF-double-

knockdown flies was similarly reduced. The control strains in B and C (dark gray bars) are 

in the following order from left to right: tim(UAS)G4>dcr2, dc2;itp-RNAi, dcr2;pdf-RNAi. 

Error bars depict SEM. 

 

Figure 10: Daily averaged sleep profile and total sleep of ITP/PDF-double-knockdown 

flies and controls in LD 12:12. Sleep was defined as the average amount of time, in which 

the flies did not cross the infrared light beam for at least 10 consecutive minutes. (A) 

Daily average sleep profiles of ITP-knockdown flies (red), PDF-knockdown flies (blue), 

ITP/PDF-double-knockdown flies (magenta) and controls (different grays). ITP-knockdown 

flies don´t show any differences in the sleep profile compared to controls. ITP/PDF-

double-knockdown flies clearly sleep less during the night and during the first half of the 

day. (B) Total amount of sleep during nighttime (full bars) and daytime (empty bars). ITP-

knockdown flies do not differ from controls in total sleep. ITP/PDF-double-knockdown 

flies show significantly decreased nighttime (Kruskal Wallis H(5)=38.709, p<0.001) and 

daytime (Kruskal Wallis H(5)=42.811, p<0.001) sleep compared to all other genotypes. * 

indicates p<0.05, ** indicates p<0.001, n.s. = not significant; error bars depict SEM. 
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FIGURE 1 
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FIGURE 2 

 

 

 

 

FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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FIGURE 8 
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FIGURE 9 

 

FIGURE 10 
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Table 1: Rhythmicity data of ITP-knockdown flies, PDF-knockdown flies and ITP/PDF-

double-knockdown flies and controls in constant darkness (DD). Percentage of 

rhythmicity and period lengths of ITP-knockdown flies and PDF-knockdown flies were 

statistically compared to the data of the two respective genetic controls. * indicate 

significant differences in period length (for statistical values, see Figure legend 8). ** 

indicate highly significant differences in the percentage of rhythmic flies (for statistical 

values, see Figure legend 8). 

Genotype period (SEM) in h       
(n rhythmic flies) 

power (SEM) % rhythmic flies 

tim(UAS)G4>dcr2 23.7 (0.05) (32) 22.8 (0.68) 100 

dcr2;itp-RNAi 23.9 (0.05) (28) 35.1 (2.00) 100 

tim(UAS)G4>dcr2;itp-RNAi 24.1 (0.08) (30)* 34.1 (1.96) 94 

dcr2;pdf-RNAi 23.8 (0.06) (32) 36.1 (2.29) 100 

tim(UAS)G4>dcr2;pdf-RNAi 23.4 (0.09) (19)* 16.4 (0.44) 59** 

tim(UAS)G4>dcr2;pdf-RNAi/itp-RNAi - (-) (8) - (-) 38** 
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Table 2: Rhythmicity data of ITP-overexpressing flies and controls in constant darkness 

(DD).  

Percentages of rhythmicity and period lengths of ITP-overexpressing strains were always 

compared with the respective GAL4-control and UAS-ITP2-control. ** indicate highly 

significant differences (tim(UAS)-G4>ITP2 χ2=73,5097, p<0.0001; tim-G4>ITP2 χ2=56,7964, 

p<0.0001). 

genotype period (SEM) in h       
(n rhythmic flies) 

power (SEM) % rhythmic flies 

UAS-ITP2/+ (ITP2) 23.4 (0.07) (30) 29.6 (1.2) 100 

tim(UAS)G4/+ 24.1 (0.04) (30) 39.9 (2.30) 97 

tim(UAS)G4>ITP2 25.0 (0.25) (2) 19.8 (2.16) 7** 

timG4/+ 24.6 (0.11) (23) 22.2 (1.18) 74 

timG4>ITP2 - (-) (0) - (-) 0** 

pdfG4/+ 24.4 (0.06) (30) 31.7 (1.59) 97 

pdfG4>ITP2 23.7 (0.10) (31) 21.4 (0.70) 97 

perG4 25.3 (0.16) (31) 32.1 (2.03) 97 

perG4>ITP2 23.7 (0.04) (29) 29.1 (1.66) 100 

clk856G4/+ 23.8 (0.04) (32) 41.0 (1.89) 100 

clk856G4>ITP2 23.3 (0.04) (32) 35.2 (1.82) 100 

cryG439/+ 25.2 (0.16) (24) 22.9 (1.60) 75 

cryG439>ITP2 23.9 (0.06) (26) 21.5 (1.21) 81 

elavG4/+ 23.7 (0.06) (25) 23.8 (1.73) 83 

elavG4>ITP2 23.6 (0.06) (20) 28.7 (2.53) 100 

386y(amon)G4/+ 23.1 (0.77) (31) 29.1 (2.04) 97 

386y(amon)G4>ITP2 23.5 (0.05) (27) 26.7 (1.19) 100 
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Appendix 

Additional Material 
 

Table 9: Buffers and Media. 

Buffer/Medium name Ingredients/Source 

TAE (Tris Acetate-EDTA) 0.5x, SIGMA-Aldrich (10x stock) 

Na-Acetate 3M, pH 5.2 

Phosphate Buffer (PB) 0.1 M Na2HPO4 / NaH2PO4; at the ratio of 4:1 for 
pH 7.2-7.4 

Phosphate Buffered Saline (PBS) 1x, pH 7.4,  SIGMA-Aldrich (10x stock) 

Phosphate Buffer + TrX-100 (PBT) 0.1M PB + TrX-100 (0.1% or 0.5%), pH 7.4 

Phosphate Buffered Saline + TrX-100 1x PBS + TrX-100 (0.1% or 0.5%), pH 7.4 

Na-Azide (NaN3) 0.02% in 1x PBS (from 2% stock, SIGMA-Aldrich) 

Squishing buffer 50 mM NaOH, 1 M Tris-HCl, pH 8.0 

Paraformaldehyde 4%, in 0.1M PBT (0.1% TrX-100) 

Hemolymph-like Saline (HL3)  70mM NaCl, 5mM KCl, 1.5mM CaCl2, 20mM MgCl2, 
10mM NaHCO3, 5mM trehalose, 115mM sucrose, 
5mM HEPES, pH 7.1 

TriKinetics medium 4% sucrose; 2% agar-agar (Danish) 

LB0 liquid medium 1% bacto-tryptone; 0.5% bacto-yeast extract; 1% 
NaCl; 0.3% NaOH; pH 7.0 

LBAmp liquid medium LB0 with 50-100 μg/ml Ampicillin 

LBAmp agar plates LBAmp liquid medium (100 μg/ml Ampicillin) with 
1.5% bacto-agar 
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Table 10: Commercially available kits used in this thesis. 

Kit Application Source 

ZYMO Quick-RNATM MicroPrep RNA extraction ZYMO Research Corporation 

gDNA wipe-out removal of genomic DNA QIAGEN 

VWR Taq DNA Polymerase Master 
Mix Kit 

PCR VWR 

QuantiTect Reverse Transcription Kit Reverse Transcription QIAGEN 

innuPREP DOUBLEpure Kit DNA extraction from agarose 
gel slices 

Biometra, analytikJena 

SIGMA GenEluteTM Plasmid Midiprep 
Kit 

Plasmid DNA extraction (midi-
preparation) 

SIGMA-Aldrich 

MSB®Spin PCRapace (250) DNA purification INVITEK 

SensiFASTTM SYBR No-ROX Kit qPCR BIOLINE 

 
Table 11: Primer pairs used for PCR and qPCR. 

Primer Sequence from 5´ to 3´ Application/Source 

ITP-PE Fw (5´) ACGAATTCGTTTCTGCCCCACAACAACAC ITP-PE cDNA cloning; SIGMA-Aldrich 

ITP-PE Rev (3´) TCCTCTAGAATCGCACTTTACTTGCGACC 

ITP-gene part Fw (5´) ATAAACTCGAGTGCCAGAGAATC sequencing of genomic itp gene part; 
SIGMA-Aldrich 

ITP-gene part Rev (3´) GCTTACCTTAGGCGCTTGTTTCG 

ITP-pUAST Fw (5´) CGCAGCTGAACAAGCTAAACAATC sequencing of ITP-pUAST vector; 
SIGMA-Aldrich 

sNPF Fw (5´) TCAGCTTTATGCTCGCTTGCCTC qPCR to determine snpf-RNAi 
efficiency; SIGMA-Aldrich 

sNPF Rev (3´) ACATAGAGGCCCCCGAAAGCTGTA 

Tub Fw (5´) TCTGCGATTCGATGGTGCCCTTAAC qPCR reference; SIGMA-Aldrich 

Tub Rev (3´) GGATCGCACTTGACCATCTGGTTGGC qPCR reference; SIGMA-Aldrich 
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Table 12: Other Reagents and Substances. 

Reagent Application Source 

pUAST vector UAS-line generation A. Fiala 

NEB 10-beta competent E. coli Transformation of large DNA 
plasmids 

New England BioLabs 

RNAse free water Molecular Biology SIGMA-Aldrich 

GelRed® Nucleic Acid Gel 

Stain 

DNA Staining in Gel 
Electrophoresis 

Biotium 

Medori Green Advanced DNA 
Stain 

DNA Staining in Gel 
Electrophoresis 

NIPPON Genetics EUROPE 

Isopropanol (100%) DNA precipitation SIGMA-Aldrich 

Ethanol (70%) DNA precipitation SIGMA-Aldrich 

Fast Digest® EcoRI Restriction Enzyme Fermentas 

Fast Digest® XbaI Restriction Enzyme Fermentas 

T4 DNA Ligase, 5u/µl DNA Ligation Fermentas 

Fast APTM Thermosensitive 
Alkaline Phosphatase 

Phosphatase Reaction Fermentas 

10x DNA Loading Dye Gel Electrophoresis  

GeneRuler 1kb DNA Ladder DNA Ladder Fermentas 

peqGOLD Universal Agarose Gel Electrophoresis Peqlab 

Normal Goat Serum 4% in PB/PBS, Blocking solution SIGMA-Aldrich 

Fixogum Removable cover slip sealing Marabu 

Vectashield mounting medium for 
fluorescence microscopy 

Vector Laboratories 

Dimethylsulfoxide (DMSO) peptide dilution SIGMA-Aldrich 

Forskolin positive control (cAMP Imaging) SIGMA-Aldrich 

Carbamylcholine (Carbachol) positive control (Ca2+ imaging) SIGMA-Aldrich 
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Abbreviations 

aa amino acid(s)      NGS Normal Goat Serum 
AcCh Acetylcholine      LED light emitting diode 
AMP Adenosine Monophosphate   LN Lateral Neurons 
BL Bloomington Stock Center   NPF Neuropeptide F 
°C degree Celsius     NPFR NPF receptor 
Ca2+ Calcium     PB Phosphate Buffer 
cAMP cyclic AMP      PBS Phosphate Buffered Saline 
cDNA complementary DNA    PCR Polymerase Chain Reaction 
CFP Cyan Fluorescent Protein    PDF Pigment Dispersing Factor 
CRY Cryptochrome     PDFR PDF receptor 
CT  Circadian Time    PDP1 Par Domain Protein 1 
DD constant darkness    PER Period 
∆ delta/difference     PFA Paraformaldehyde 
DGRC Drosophila Genetic Resource Center  + positive 
DN Dorsal Neurons    qPCR quantitative PCR 
DNA Deoxyribonucleic Acid    RNA Ribonucleic Acid 
DSSC Drosophila Species Stock Center   RNAi RNA interference 
E Evening      Rev Reverse 
e.g. for example      s second 
et al. et alii (and others)     SD Standard Deviation 
F Fluorescence      SEM Standard Error of the Mean 
FRET Fluorescence Resonance Engergy   sNPF short Neuropeptide F 
 Transfer      sNPFR sNPF receptor 
Fw Forward      TIM Timeless 
GFP Green Fluorescent Protein    TrX Triton-X 100 
GPCR G-protein coupled receptor    UAS Upstream Activating Sequence 
h hour       VDRC Vienna Drosophila RNAi Center 
ITP Ion Transport Peptide    VRI Vrille 
LD light/dark      YFP Yellow Fluorescent Protein 
M Morning      ZT Zeitgeber Time 
µm micrometer 
µl microliter 
ml milliliter 
min minute 
NaN3 Sodium Azide 
- negative 
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