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CONTENTS

Notation
N := {1, 2, 3, ...}, the set of positive integers
N0 := N ∪ {0}, the set of non-negative integers
R the set of real numbers
C the set of complex numbers
Ĉ := C ∪ {∞}, the extended complex plane
B(z, r) :={w ∈ C | |w − z| < r}, the open Euclidean disc

with radius r > 0 and center z ∈ C
D := B(0, 1), the (Euclidean) unit disc
Bn :={(z1, ..., zn) ∈ Cn |

∑n
k=1 |zk|2 < 1}, the Euclidean unit ball

Dn either Bn or the polydisc Dn = D× ...× D︸ ︷︷ ︸
n times

H(D,E) the set of analytic functions defined in a domain D ⊂ Cn and mapping
into the domain E ⊂ Cm

U(Dn) :={f ∈ H(Dn,Cn) | f is univalent}
S(Dn) :={f ∈ H(Dn,Cn) | f is univalent and f(0) = 0, Df(0) = In}
S∗(Dn) := the set of all f ∈ S(Dn) such that f(Dn) is starlike with respect to 0
Aut(Cn) :={f ∈ H(Cn,Cn) | f is biholomorphic}
idD := the identity idD : D → D, idD(z) = z for all z ∈ D, where D is an arbitrary domain
I(Dn) := the set of infinitesimal generators of semigroups in Dn
E(Dn) := the set of all f ∈ U(Dn) that can be embedded into a Loewner chain with range Cn

F (Dn) := the set of all f ∈ U(Dn) such that f(Dn) is a Runge domain
Ẽ(Dn) := the set of all f ∈ U(Dn) that can be embedded into a Loewner chain whose range

is biholomorphic to Cn

ḟt :=∂ft
∂t , the partial derivative with respect to the variable t

Dft := the partial derivative with respect to the variable z ∈ Cn

S0(Dn) the set of all f ∈ S(Dn) having parametric representation
H := {x+ iy ∈ C | y > 0}, the upper half-plane
H∞ the set of all holomorphic mappings f : H→ H with hydrodynamic normalization
Hu the set of all univalent f ∈ H∞
Hb the set of all f ∈ Hu such that H \ f(H) is bounded
gA the unique conformal mapping from H \A onto H with hydrodynamic normalization,

where A is a hull
hcap(A) the half-plane capacity of a hull A
C([a, b],R) the set of all continuous functions f : [a, b]→ R, a, b ∈ R with a < b

diam(A) := sup
z,w∈A

|z − w|, the diameter of a subset A ⊂ C
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Chapter 1

Introduction to Loewner theory

Loewner theory arose from an article by C. Loewner published in 1923 (see [Löw23]) and has
become a powerful tool in complex analysis. It consists of the study of biholomorphic mappings
by certain differential equations. These equations make it possible to use various techniques, e.g.
from control theory, in order to attack (extremal) problems concerning biholomorphic functions,
e.g. the famous Bieberbach conjecture.
Conversely, the Loewner differential equations can be used to provide relatively simple models for
the description of planar growth processes, such as Hele-Shaw flows. O. Schramm realized that,
in particular, those models are extremely useful for certain stochastic growth models of curves
in the plane. He invented the stochastic Loewner evolution (or Schramm-Loewner evolution,
SLE, see [Sch00]), which turned out to have striking applications, e.g. in statistical physics. O.
Schramm, G. Lawler and W. Werner investigated SLE in a series of articles. Among other things,
they used SLE to prove the Mandelbrot conjecture1, see [LSW01a]. Recently, two Fields medals
were awarded to W. Werner (2006) and S. Smirnov (2010) for their contributions to SLE and
related fields.

From a geometric or function theoretic point of view, Loewner’s differential equations arise from a
family {Dt}t≥0 of increasing (or decreasing) subdomains of C (or more generally: from a complex
manifold like Cn), i.e. Dt ⊆ Ds for t ≤ s. Suppose that all such domains are biholomorphically
equivalent to D, and, for every t ≥ 0, denote by ft : D → Dt a conformal map. Under some
conditions for the family {ft}t≥0, the map t → ft satisfies a differential equation, which allows
an effective analytic description of the growth process of the domains.
In fact, this construction still works for families of domains which are not biholomorphically
equivalent to one fixed domain. The case of an increasing family of multiply connected domains
was considered by Y. Komatu in 1943, see [Kom43] and [Kom50], and leads to so-called Komatu-
Loewner equations; see also [BF08], [CDMGb], [CDMGc] for some recent references.

In this work, we will only deal with the simpler case where all domains are biholomorphically
equivalent to one domain D. In Chapter 2 we will look at the several variable cases where D is
either the Euclidean unit ball or the polydisc and in Chapter 3 we will consider the case D = D.
In order to give some motivation for the problems we will talk about, we now give a short (and
certainly not comprehensive) historical overview over the classical Loewner equations as they
have been considered by Loewner, Pommerenke, Kufarev, et al.
Except for Example 1.2.2, we will not discuss SLE at all, as our work is only related to the deter-

1The Mandelbrot conjecture states that the boundary of a two-dimensional Brownian motion has fractal dimen-
sion 4/3.
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CHAPTER 1. INTRODUCTION TO LOEWNER THEORY

ministic setting and because this topic with all its applications is too extensive to be explained
in a few lines.

1.1 The radial Loewner equation and the Bieberbach conjecture
One of the most famous and useful results of complex analysis is the Riemann Mapping Theorem:
every simply connected domain Ω ( C is conformally equivalent to the unit disc D := {z ∈ D |z| <
1}, i.e. there exists a conformal (holomorphic and bijective) map f : D → Ω. This mapping is
unique if we require the normalization f(0) = z0, f

′(0) > 0, for some z0 ∈ Ω. Thus the set of all
simply connected, proper subdomains of C can be described (modulo translation and scaling) by
the class S of normalized univalent functions:

S := {f ∈ H(D,C) f(0) = 0, f ′(0) = 1, f univalent}.

Now it is of interest to find connections between analytic properties of a function f ∈ S and geo-
metric properties of its image domain f(D). Many results of this kind have been established since
the beginning of the 20th century. Exemplarily, we mention the characterization of normalized
starlike mappings: Denote by S∗ ⊂ S the set of all f ∈ S that map D onto a domain that is
starlike with respect to 02. Now the following characterization of S∗ is known: Let f ∈ H(D,C)
with f(0) = 0, f ′(0) = 1. Then f ∈ S∗ if and only if

Re
(
f(z)
zf ′(z)

)
> 0 for all z ∈ D. (1.1.1)

Every f ∈ S can be described by its power series expansion in 0 : If we write f(z) = z + a2z +
a3z

2 + ..., then all properties of f are encoded in the coefficients a2, a3, ...
In 1909, P. Koebe proved that S is compact with respect to the topology induced by locally
uniform convergence. Thus, for every n ≥ 2, there exists a universal bound for |an| w.r.t. the
class S. In 1916, L. Bieberbach proved that |an| ≤ 2 and he conjectured that

|an| ≤ n for all n ≥ 2.

C. Loewner found a proof for the case n = 3 in 1923, see [Löw23]. His article represents an
important step towards a proof of the Bieberbach conjecture and a remarkable contribution to
complex analysis in general, as he introduced a new method that has been extended to what
is now called Loewner theory. Loewner was inspired by the work of S. Lie and his idea was to
describe conformal mappings as “a concatenation of infinitesimal conformal mappings”. More
precisely, this means to represent a conformal mapping as (the first element of) the solution
of a non-autonomous version of the differential equation for one real-parameter semigroups of
holomorphic self-mappings of D (or any other domain).
In the following we briefly describe the setting of Loewner’s method, in which two differential
equations appear, an ordinary and a partial differential equation for conformal mappings that fix
the origin. Because of this normalization, these equations are nowadays called radial Loewner
ODE and radial Loewner PDE. Major contributions to the theory following Loewner’s original
setting were made by C. Pommerenke.
A mapping f : D × [0,∞) → C is called normalized Loewner chain if f(·, t) is univalent with
f(0, t) = 0, f ′(0, t)3 = et for all t ≥ 0 and f(D, s) ⊂ f(D, t), whenever 0 ≤ s ≤ t <∞.
In particular, the function f(·, s) is subordinated to f(·, t) when s ≤ t, and we can write

f(·, s) = f(ϕs,t(·), t)
2A domain D ⊂ C with 0 ∈ D is called starlike w.r.t. 0 if z ∈ D implies rz ∈ D for all r ∈ [0, 1].
3By f ′ we denote the partial derivative ∂f/∂z.
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1.1. THE RADIAL LOEWNER EQUATION AND THE BIEBERBACH CONJECTURE

where z 7→ ϕs,t(z) is a univalent mapping defined in D and bounded by 1. The “transition
mappings” ϕs,t have the normalization ϕs,t(z) = es−tz+ ... and from the definition it follows that

ϕs,τ = ϕt,τ ◦ ϕs,t for all 0 ≤ s ≤ t ≤ τ <∞.

This property shows that the family {ϕs,t}0≤s≤t, nowadays called evolution family, is connected
to semigroups of analytic self-mappings of D. Now, the following differential equations hold

ḟ(z, t) = f ′(z, t) · zp(z, t) (Loewner PDE), (1.1.2)
ϕ̇s,t(z) = −ϕs,t(z) · p(ϕs,t(z), t) (Loewner ODE), (1.1.3)

where p(z, ·) is measurable for every z ∈ D and the function p(·, t) is analytic and maps D into
the right half-plane with p(0, t) = 1 for every t ≥ 0. Because of the normalizations of f(z, t) and
ϕs,t, these equations are called radial Loewner equations.
Example 1.1.1. Let f ∈ S∗. Then f(z, t) := et ·f(z) is a normalized Loewner chain and it satisfies
(1.1.2) with p(z, t) = p(z) := f(z)

z·f ′(z) . Note that Re(p(z)) > 0 for all z ∈ D by relation (1.1.1).
Conversely, one can show that if p(z, t) does not depend on t, then a normalized Loewner chain
satisfying (1.1.2) has the property f(·, t) = et · f(·, 0). From this it follows immediately that
f(·, 0) ∈ S∗. F

One of the main problems in Loewner theory is to find connections between the function p(z, t)
and the corresponding evolution families and Loewner chains that satisfy the differential equa-
tions. Moreover, Loewner’s description of conformal mappings makes it possible to attack various
problems by the powerful methods of control theory.

Pommerenke showed that every f ∈ S can be embedded into normalized Loewner chains, i.e. for
every f ∈ S there exists a normalized Loewner chain f(z, t) with f = f(·, 0). Loewner showed
that this is true for all slit mappings and that the Loewner chain is uniquely determined in this
case, see [Löw23].

Theorem A. Let f ∈ S, such that f(D) = C \ Γ, where Γ is a Jordan arc. Then there exists a
uniquely determined normalized Loewner chain f(z, t) with f(·, 0) = f and

p(z, t) = 1 + κ(t)z
1− κ(t)z , (1.1.4)

where κ : [0,∞)→ ∂D is a continuous function, called driving function.

Remark 1.1.2. Clearly, the Loewner chain is uniquely determined as there is only one way to
erase the slit Γ. Let us have a look at another formulation of Theorem A:

There exists exactly one parameterization γ : [0,∞) → Γ of the slit Γ such that the normalized
conformal mappings ft : D → C \ γ[t,∞) satisfy the Loewner PDE (1.1.2) where p(z, t) has the
form (1.1.4).

Thus, even though there is no further assumption on the regularity of the slit Γ, there always
exists a parameterization such that the family {ft}t≥0 of conformal mappings is differentiable
with respect to t. In some sense, this problem is related to Hilbert’s fifth problem of finding
differentiable structures for continuous groups, see [Goo73].

Note that the set of all f ∈ S that map D onto C minus a slit is dense in S. In view of this,
Theorem A is quite useful, as certain extremal problems can be reduced to the study of slit map-
pings, which in turn can be described by those Loewner equations where p(z, t) has the simple
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CHAPTER 1. INTRODUCTION TO LOEWNER THEORY

form (1.1.4).

The Bieberbach conjecture was finally proven by L. de Branges in 1984. He used ideas related to
Loewner’s and methods from functional analysis. FitzGerald and Pommerenke gave a simpler,
purely function theoretic proof in [FP85].

1.2 The chordal case
Besides Pommerenke, several Soviet mathematicians, especially P. Kufarev, made important con-
tributions to Loewner theory, see, e.g., [Kuf43, Kuf47, KSS68]. In particular, they considered a
differential equation for certain univalent mappings f : H→ H, where we denote by H the upper
half-plane H = {z ∈ C Im(z) > 0}. Instead of fixing an interior point, as in the class S, they
considered mappings with hydrodynamic normalization, i.e. f(z) = z − c

z + O(1
z ) for a c ≥ 0 in

an angular sense. In other words, the following limit should exist and be finite:

∠ lim
z→∞

z (f(z)− z) = c ≥ 0.

If Γ ⊂ H is a slit, i.e. a simple curve such that H\Γ is simply connected, then there exists exactly
one conformal mapping fΓ : H→ H \ Γ with hydrodynamic normalization fΓ(z) = z − c

z + O(1
z )

and c =: hcap(Γ) is called the half-plane capacity of Γ. Kufarev et al. proved the following
counterpart to Theorem A, see [KSS68].

Theorem B. For every slit Γ with hcap(Γ) = 2T there exists a uniquely determined, continuous
function U : [0, T ]→ R such that the solution to

ġt = 2
gt − U(t) , g0 = idH, (1.2.1)

satisfies gT = f−1
Γ .

Remark 1.2.1. Again, the function U is called driving function of Γ and the differential equation
for gt is called chordal Loewner equation4. Thus, Theorem A as well as Theorem B can both be
stated roughly as

“For every slit there exists a unique, continuous driving function.”

Of course, the meaning of “slit” and “driving function” depends on the domain and the Loewner
equation under consideration.

Conversely, if one takes a continuous driving function and solves the Loewner equation (1.2.1),
then the solution is not necessarily describing the growth of a slit. The first example for such a
driving function was given by Kufarev (for the radial case) in [Kuf47].

The most famous example for a driving function U is certainly given by the following example.
Example 1.2.2. The case U(t) = B(κt), where B is a standard Brownian motion and κ ≥ 0, is
called chordal SLE 5. Here, the Loewner equation generates a random curve, which need not be
simple. More precisely, there are three different cases dependent on the choice of κ, see Figure
1.1:

4The name chordal is derived from the picture we get, when T → ∞ : The equation will produce a slit that
connects a point on the real axis to ∞, which is another boundary point of H on the Riemann sphere. In this case,
Γ looks like a chord within H. (Note that H looks like a disc on the Riemann sphere.)

5Similarly, radial SLE is obtained by putting κ(t) = eiB(κt) in (1.1.4).
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1.3. GENERALIZATION OF LOEWNER THEORY

• 0 ≤ κ ≤ 4 : The random curve is a slit with probability 1.

• 4 < κ < 8 : The random curve hits itself and R infinitely many often with probability 1.

• 8 ≤ κ : The random curve is spacefilling with probability 1.

F

0 ≤ κ ≤ 4 8 ≤ κ4 < κ < 8

Figure 1.1: The three cases of chordal SLE.

1.3 Generalization of Loewner theory
The invention of SLE by Schramm led to an explosion in the study of random planar curves
as well as of deterministic Loewner theory. In particular, F. Bracci, M. Contreras and S. Díaz-
Madrigal et al. generalized the basic notions of Loewner theory and derived Loewner equations
that contain the radial and chordal equations as special cases, see [BCDM12, CDMG10b]. They
gave more general definitions for Loewner chains and evolution families and showed that those
are connected to so called Herglotz vector fields by the Loewner differential equations.

Evolution familiesLoewner chains

Herglotz vector fields

Loewner ODELoewner PDE

Figure 1.2: The three basic notions of Loewner theory.

Moreover, they generalized and transferred these concepts from the case of a simply connected,
proper subdomain of C to (Kobayashi) hyperbolic complex manifolds, see [BCDM09]. As in the
case of almost every notion from one dimensional complex analysis that is transferred to the
higher-dimensional theory, also Loewner theory for several complex variables bares new phenom-
ena and problems. Special Loewner equations for complex variables were considered before by J.
Pfaltzgraff, T. Poreda, I. Graham, G. Kohr, M. Kohr and others.

9



CHAPTER 1. INTRODUCTION TO LOEWNER THEORY

1.4 Outline of the thesis
In this thesis, we study several embedding problems for Loewner chains and evolution families,
respectively. On the one hand, for a given set A of univalent mappings, embedding problems ask
for the characterization of the set of all Loewner chains whose first element is a function from the
set A. (Or: Describe the set of all evolution families {ϕs,t} such that ϕ0,1 ∈ A.)
Conversely, for a given a set L of Loewner chains, we might ask for a characterization of the
set of all univalent functions that can be the first element f0 of a Loewner chain {ft}t≥0 ∈ L.
(Or: Given a set E of evolution families, how can the set of all elements of the form ϕ0,1 be
characterized?)

The work at hand is divided into two parts. In Chapter 2 we describe the Loewner equa-
tions in the modern sense for the two most studied subdomains of Cn: the Euclidean unit ball
Bn := {(z1, ..., zn) ∈ Cn |z1|2 + ...+ |zn|2 < 1} and the polydisc Dn = {z ∈ Cn |z1|, ..., |zn| < 1},
and we prove a conjecture made in [GHKK12] about support points of the higher-dimensional
analog S0(Bn) of the class S. Before we actually prove the statement, we discuss the Runge
property of the image domains of all elements of S0(Bn) and some important implications. The
connections of Loewner chains to this property follows from a theorem by Docquier and Grauert
from the 1960’s and was established by Arosio, Bracci and Wold in [ABFW].

Chapter 3 focuses on two problems that come along with Theorem B. Firstly, we would like to
generalize Theorem B to several slits. Suppose we are given n disjoint slits. We should expect
to be able to derive a similar equation for the growth of n slits such that we can assign n unique
continuous driving functions to these slits. This will lead us to the problem of finding “constant
coefficients”. Roughly speaking, this means that we have to find a Loewner equation which
describes the growth of slits in such a way that each single slit grows with a constant speed.
The second problem asks for the converse of Theorem B. The theorem induces a mapping DR
from the set

{Γ Γ is a slit with hcap(Γ) = 2T} into the set {f : [0, T ]→ R f is continuous}.

The mapping DR is one-to-one but not surjective, as some simple examples show. We will have a
look at the problem how to characterize the image of DR and we will also consider this problem
for the case of several slits.

10



Chapter 2

On Loewner theory in the unit ball
and polydisc

2.1 Introduction
There are various ways to find “higher dimensional” analogs of classical complex analysis, and,
in particular, of univalent functions: The classical case of a holomorphic (univalent) function
f : D → C, where D ⊂ C is a domain, can be extended, e.g., in the following ways:

I Quaternionic analysis: Replace C by the skew field Q of all quaternions and consider dif-
ferentiable (and injective) functions f : D → Q, D ⊆ Q.

I Quasiregular maps: Replace C by Rn, n ≥ 2, and consider quasiregular functions f : D →
Rn, D ⊆ Rn. Injective quasiregular maps are called quasiconformal.

I Complex analysis in several variables: Consider holomorphic functions f : D → Cn, D ⊆
Cn, i.e. f depends holomorphically on each variable separately. The map f is called
univalent if it is holomorphic and injective.

Loewner theory has been generalized successfully to the third (and most studied) case, complex
analysis in several variables. In this chapter we will throw a glance at this theory and some
problems and differences that appear when n ≥ 2.
First we introduce some notations: For z, w ∈ Cn, we denote by 〈z, w〉 the Euclidean inner
product: 〈z, w〉 =

∑n
j=1 zjwj . Let ‖z‖ =

√
〈z, z〉 be the Euclidean norm of z and denote by

‖z‖∞ = maxj=1,...,n |zj | its maximum norm. Furthermore, if D,E ⊂ Cn are domains, we denote
by H(D,E) the set of all holomorphic functions from D into E.
Even though many phenomena and results from Loewner theory can be stated for complex mani-
folds with quite general assumptions, we will treat only two cases: In the following, we let the
standard domain Dn, n ≥ 1, be either

• the Euclidean unit ball: Dn = Bn := {z ∈ Cn ‖z‖ < 1} or

• the polydisc: Dn = Dn = {z ∈ Cn ‖z‖∞ < 1}.1

Looking for a Riemann Mapping Theorem in higher dimensions means trying to classify the
biholomorphism class

[D] := {E ⊂ Cn There exists a biholomorphic map f : D → E},
1More precisely, either Dn = Bn in the whole Chapter 2 or Dn = Dn in the whole Chapter 2. For example: the

set H(Dn,Dn) refers to H(Bn,Bn) or H(Dn,Dn).

11
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where D ⊆ Cn is a given domain. This task seems to be much harder compared to the case n = 1,
as a remarkable result by H. Poincaré shows: he proved that [Bn] 6= [Dn] for n ≥ 2, see [Poi07].
(This result is sometimes referred to as the “nonexistence of a Riemann mapping theorem” in
higher dimensions, which, however, is only half the story. There are also positive mapping results,
see [BBH+98], p. 30, or [GKK11].) In fact, many useful or beautiful theorems from classical com-
plex analysis don’t generalize to higher dimensions, which led to the introduction of many new
notions and tools in order to handle problems that only appear when n ≥ 2, like the famous Levi
problem.

However, there are many classical results concerning geometric and analytic properties of univa-
lent functions which have been transferred to the higher dimensional case. Let

U(Dn) := {f ∈ H(Dn,Cn) f is univalent}.

Furthermore, we define the following natural generalization of the class S:

S(Dn) := {f ∈ H(Dn,Cn) f is univalent and f(0) = 0, Df(0) = In}.

A collection of properties of univalent functions on Dn, like conditions for starlikeness, convexity,
etc., and many references can be found in Chapter 6 and 7 of [GK03]. Compared to the case
n = 1, the normalization f(0) = 0, Df(0) = In, is of much less use when n ≥ 2. This is due to
the fact that the automorphism group

Aut(Cn) := {f ∈ H(Cn,Cn) f is biholomorphic},

is much more complicated in this case. So the normalization f(0) = 0, Df(0) = In, “factors out”
Aut(Cn) if and only if n = 1, see [GK03], p. 210.

Proposition 2.1.1. S(Dn) is closed, but not compact for n ≥ 2.

Proof. The closedness of S(Dn) follows from Hurwitz’s theorem and the fact that the functionals
f 7→ f(0), and f 7→ Df(0) are continuous.
Let h : C → C be an entire function with h(0) = h′(0) = 0. Then, the function (z1, z2, ..., zn) 7→
(z1, z2, ..., zn+h(z1)) is a normalized univalent function on Cn. Its restriction to Dn clearly belongs
to S(Dn), but the set of all these functions is not a normal family.

When n ≥ 2, the class S(Dn) fails to share another important property with the class S:
An important fact from Loewner theory in one dimension is that every f ∈ S can be embedded in
at least one classical radial Loewner chain. Geometrically, this means that any simply connected,
proper subdomain of C can be spread biholomorphically to C. In Section 2.5, we will see that
this is not longer true for the class S(Dn) in higher dimensions.

One can use an analog to the radial Loewner equation to define the subclass S0(Dn) of all elements
of S(Dn) that have parametric representation, see Section 2.6. In particular, every element of
S0(Dn) can be embedded in a radial Loewner chain. This was done by T. Poreda for Dn = Dn and
by G. Kohr for the case Dn = Bn. This class shares many properties with the class S, especially
compactness. However, there are still many open questions concerning S0(Dn) – questions that
arise from drawing comparisons to the one-dimensional case, e.g. estimates on the coefficients of
the power series expansion in 0 – even though one can apply tools from Loewner theory by the
very definition of S0(Dn).

12
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In Sections 2.7 and 2.8, we answer two of those questions, namely two conjectures on support
points made in [GHKK12]. A crucial ingredient for the solution is the fact that each f ∈ S0(Dn)
maps Dn onto a Runge domain. In fact, this is true for a much larger class of univalent functions,
which, in turn, has quite interesting consequences for the general Loewner theory in higher
dimensions, see Section 2.5. In Sections 2.2 and 2.4 we recall the basic notions and results
concerning modern Loewner theory, as it was developed by F. Bracci, M. Contreras and S. Díaz-
Madrigal et al.

2.2 Herglotz vector fields, evolution families and Loewner chains
In this section, we introduce the three basic notions from modern Loewner theory: Herglotz vec-
tor fields, evolution families and Loewner chains, and we briefly describe their connections. The
definitions and theorems of this section are taken from [BCDM09] and [ABFW].

The fundamental concept of Loewner theory is the description of infinitesimal changes of biholo-
morphic mappings f : Dn → Cn by semigroups of holomorphic self-mappings of Dn.

Definition 2.2.1. A (continuous one-real-parameter) semigroup in Dn is a mapping Φt : [0,∞)→
H(Dn,Dn) with

(1) Φ0 = idDn ,

(2) Φt+s = Φt ◦ Φs,

(3) Φt tends to the identity idDn on compacta of Dn for t→ 0.

Given a semigroup Φt and a point z ∈ Dn, then the limit

G(z) := lim
t→0

Φt(z)− z
t

exists and the vector field G : Dn → Cn, called the infinitesimal generator of Φt, is a holomor-
phic function (see, e.g., [Aba92]). We denote by I(Dn) the set of all infinitesimal generators of
semigroups in Dn. For any z ∈ Dn, Φt(z) is the solution of the initial value problem

ẇt = G(wt), w0 = z. (2.2.1)

Now, the ordinary Loewner equation is the following generalized version of (2.2.1):

ẇt = G(wt, t), w0(z) = z ∈ Dn with G(·, t) ∈ I(Dn) for almost all t ≥ 0; (2.2.2)

i.e. for almost each t ≥ 0, the right side of the differential equation is an infinitesimal generator,
but it may change with t.

In modern Loewner theory the vector field (z, t) 7→ G(z, t) is required to be a so called Herglotz
vector field. This notion was introduced in [BCDM09] for general complete hyperbolic manifolds.

Definition 2.2.2. A Herglotz vector field of order d ∈ [1,+∞] on Dn is a mapping G : Dn ×
[0,∞)→ Cn with the following properties:

(1) The mapping G(z, ·) is measurable on [0,∞) for all z ∈ Dn.

(2) The mapping G(·, t) is holomorphic for all t ∈ [0,∞).

13
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(3) G(·, t) ∈ I(Dn) for almost all t ∈ [0,∞).

(4) For any compact set K ⊂ Dn and T > 0, there exists a function CT,K ∈ Ld([0, T ],R+
0 ) such

that ‖G(z, t)‖ ≤ CT,K(t) for all z ∈ K and for almost all t ∈ [0, T ].

Remark 2.2.3. In [BCDM09] and in some other early works, the definition of a Herglotz vector
field involves a condition on the function G(·, t) (for almost all t) using the Kobayashi metric of
Dn instead of property (3). In [AB11] (Theorem 1.1), however, it was shown that this condition
is equivalent to G(·, t) ∈ I(Dn).

One usually introduces a second time parameter s for the solution to the ordinary Loewner
equation in order to vary the initial condition, which leads to the definition of evolution families.

Definition 2.2.4. Let d ∈ [1,+∞]. A family {ϕs,t}0≤s≤t<∞ of univalent self-mappings of Dn is
called evolution family of order d if the following three conditions are satisfied:

(1) ϕs,s = idDn for all s ≥ 0.

(2) ϕs,t = ϕu,t ◦ ϕs,u for all 0 ≤ s ≤ u ≤ t <∞.

(3) For any compact subset K ⊂ Dn and for any T > 0 there exists a non-negative function
kK,T ∈ Ld([0, T ],R+

0 ) such that for all 0 ≤ s ≤ u ≤ t ≤ T and for all z ∈ K,

‖ϕs,u(z)− ϕs,t(z)‖ ≤
∫ t

u
kK,T (τ) dτ.

For Herglotz vector fields, we always get a unique solution of (2.2.2), which establishes a one-to-
one correspondence between Herglotz vector fields and evolution families, see Propositions 3.1,
4.1 and 5.1 in [BCDM09].

Theorem 2.2.5. (Herglotz vector fields and evolution families)
For any Herglotz vector field G(z, t) of order d on Dn there exists a unique evolution family
{ϕs,t}0≤s≤t<∞ of order d such that for all z ∈ Dn

∂ϕs,t(z)
∂t

= G(ϕs,t(z), t) for almost all t ∈ [s,∞) and ϕs,s(z) = z. (2.2.3)

Conversely, for any evolution family ϕs,t of order d, there exists a Herglotz vector field G(z, t) of
order d such that ϕs,t satisfies (2.2.3).

Definition 2.2.6. Let d ∈ [1,+∞]. A family {ft : Dn → Cn}t∈[0,∞) of univalent mappings is
called Loewner chain of order d if the following two conditions are satisfied:

(1) {ft}t≥0 has growing images: fs(Dn) ⊆ ft(Dn) for all 0 ≤ s ≤ t.

(2) For any compact set K ⊂ Dn and T > 0, there exists a function cK,T ∈ Ld([0, T ],R+
0 ) such

that
‖fs(z)− ft(z)‖ ≤

∫ t

s
cK,T (τ) dτ for all z ∈ K and 0 ≤ s ≤ t ≤ T.

A Loewner chain ft is called normalized if e−tft ∈ S(Dn) for all t ≥ 0.
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Thus, a Loewner chain spreads the initial domain f0(Dn) “biholomorphically” to the larger domain

R =
⋃
t≥0

ft(Dn).

R is called the Loewner range of the Loewner chain.
Loewner chains are described by the partial Loewner equation, which has the following form:

ḟt(z) = −Dft(z)G(z, t) for almost all t ∈ [0,∞), (2.2.4)

where G(z, t) is a Herglotz vector field. The important difference between the ordinary equation
is that we don’t know the possible initial values f0, i.e. we cannot prescribe an arbitrary univalent
function f : Dn → Cn. However, Herglotz vector fields also guarantee the existence of solutions
to the Loewner PDE in Dn (and more generally in complete hyperbolic starlike domains), see
[ABFW]:

Theorem 2.2.7. (Herglotz vector fields and Loewner chains)
For any Herglotz vector field G(z, t) of order d on Dn, there exists a Loewner chain {ft : Dn →
Cn}t≥0 of order d such that for all z ∈ Dn equation (2.2.4) is satisfied.
Furthermore, if R = ∪t≥0ft(Dn) and {gt}t≥0 is another solution to (2.2.4), then it has the form
{gt = Φ ◦ ft}t≥0 for a holomorphic map Φ : R → Cn. {gt}t≥0 is a family of univalent mappings
if and only if Φ is univalent.
Conversely, if {ft : Dn → Cn}t≥0 is a Loewner chain of order d, then there exists a Herglotz
vector field G(z, t) of order d on Dn such that {ft}t≥0 satisfies (2.2.4).

Finally, the following relation holds between evolution families and Loewner chains, see, e.g.,
[ABFW].

Theorem 2.2.8. (Evolution families and Loewner chains)
Let {ϕs,t}0≤s≤t<∞ be an evolution family of order d satisfying (2.2.3) with G(z, t). Any family
{ft : Dn → Cn}t≥0 of univalent mappings with

fs = ft ◦ ϕs,t, 0 ≤ s ≤ t,

is a Loewner chain of order d satisfying (2.2.4) with G(z, t).
Conversely, if {ft : Dn → Cn}t≥0 is a Loewner chain of order d satisfying (2.2.4) with G(z, t),
then ϕs,t := f−1

t ◦ fs is an evolution family of order d satisfying (2.2.3) with G(z, t).

Remark 2.2.9. Sometimes it is convenient to consider the inverse mappings of solutions to
(2.2.3) and (2.2.4), or “decreasing Loewner chains”, which lead to slightly modified differential
equations, again called Loewner equations in the literature. We will encounter such a modified
version in Chapter 3. Therefore, we mention two further Loewner equations at this point. Let G
be a Herglotz vector field, then we distinguish between the following four basic types.

Type Name Differential Equation

(I) ordinary Loewner equation ẇt(z) = G(wt(z), t)

(II) partial Loewner equation ḟt(z) = −Dft(z)G(z, t)

(III) reversed ordinary Loewner equation ẇt(z) = −G(wt(z), t)

(IV ) reversed partial Loewner equation ḟt(z) = Dft(z)G(z, t)
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We will not discuss the general reversed equations here. Instead, we refer to [CDMGa], where
the authors study relations between those equations and “decreasing Loewner chains” for the case
n = 1.

Many problems in Loewner theory ask for connections between properties of the three basic
notions we introduced in this section. For example, one may be interested in finding analytic
properties of a Herglotz vector field G(z, t) that imply a certain geometric property for the
domains ϕs,t(Dn), such as: ϕs,t has quasiconformal extension to the boundary ∂Dn, or, when
n = 1 : ϕs,t(D) is a slit disc, etc.
In Chapter 3, we will look at some problems of this kind for a particular type of Herglotz vector
fields in one dimension. Next we briefly describe the general situation for the case n = 1.

2.3 The one-dimensional case

Fortunately, the set I(D) of infinitesimal generators of the unit disc can be characterized com-
pletely by the Berkson-Porta representation formula (see [BP78]):

I(D) = {z 7→ (τ − z)(1− τz)p(z) τ ∈ D, p ∈ H(D,C) with Re p(z) ≥ 0 for all z ∈ D}.

Remark 2.3.1. Let p ∈ H(D,C) with Re p(z) ≥ 0 for all z ∈ D. Note that either p(z) ≡ ib, for
some b ∈ R or Re p(z) > 0 for all z ∈ D by the maximum principle. A useful description of the
second case is given by the Riesz-Herglotz representation formula for the Carathéodory class

P := {p ∈ H(D,C) Re p(z) > 0 for all z ∈ D, p(0) = 1}.

For any f ∈ H(D,C) with f/f(0) ∈ P there exists a probability measure µ on ∂D such that

f(z) = f(0) ·
∫
∂D

u+ z

u− z
dµ(θ) for all z ∈ D. (2.3.1)

Remark 2.3.2. If Φt is a semigroup on D such that Φt is not an elliptic automorphism of D for
all t > 0, then the point τ of its infinitesimal generator is the Denjoy-Wolff point of the semigroup,
i.e. limt→∞Φt(z) = τ for all z ∈ D.

Consequently, the ordinary Loewner equation for D reads

ϕ̇s,t = (τt − ϕs,t)(1− τt · ϕs,t) · p(ϕs,t, t), ϕs,s(z) = z ∈ D, t ≥ s, (2.3.2)

where the right side of the differential equation is a Herglotz vector field.

Assume that an evolution family ϕs,t does not contain automorphisms of D whenever s < t. It
has been proven that in this case all non-identical elements of ϕs,t share the same Denjoy-Wolff
point τ if and only if τt ≡ τ for almost all t ≥ 0, see [CDMG10a], p. 4. Therefore, one considers
the following two special cases:

τt ≡ τ0 ∈ D and τt ≡ τ0 ∈ ∂D.

Of course, we can assume without loss of generality that τ0 = 0 in the first and τ0 = 1 in the
second case. In modern literature, e.g. in [CDMG10a], the first case is called radial and the
second chordal. In the following we will use these terms in a different sense, namely only for
special cases where also the function p has further normalizations.
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• A Herglotz vector field that satisfies τt ≡ 0, Re p(z, t) > 0 and p(0, t) = 1 for all z ∈ D and
almost all t ≥ 0 is called radial (in the classical sense). In other words: z 7→ −G(z, t)/z ∈ P
for almost all t ≥ 0. Geometrically, a radial evolution family, i.e. an evolution family
ϕs,t satisfying the radial Loewner ODE, describes the growth of sets from ∂D to 0. It is
normalized by ϕs,t(0) = 0 and ϕ′s,t(0) = et−s. The radial Loewner PDE has the form

ḟt(z) = zp(z, t)f ′t(z) for all z ∈ D and for almost all t ≥ 0. (2.3.3)

Many important, well-known statements concerning the radial Loewner PDE can be found
in [Pom75], Chapter 6. We summarize some of them in the following Theorem.

Theorem 2.3.3. Every normalized Loewner chain {ft}t≥0 on D, i.e. e−tft ∈ S for all
t ≥ 0, satisfies (2.3.3). Conversely, every univalent solution to (2.3.3) is a normalized
Loewner chain. Furthermore, the following statements hold:

(a) If {ft}t≥0 is a normalized Loewner chain, then f = f0 has parametric representation,
which means that f can be calculated by the associated evolution family ϕs,t via

f = lim
t→∞

etϕ0,t,

see [Pom75], Theorem 6.3. Furthermore, the Loewner range of the chain is C.
(b) For every f ∈ S, there exists a normalized Loewner chain {ft}t≥0 such that f = f0,

see [Pom75], Theorem 6.1.
(c) For every f ∈ S that maps D onto C minus a slit, there exists exactly one normalized

Loewner chain {ft}t≥0 with f = f0 and p(z, t) has the form

p(z, t) = κ(t) + z

κ(t)− z , (2.3.4)

where κ : [0,∞) → ∂D is a continuous function (the so-called driving function), see
[Löw23].

• In the (classical) chordal case, we have τt ≡ 1 and the function p(z, t) satisfies further
technical assumptions. This case is treated in more detail in Chapter 3. Here we only look
at a special case that explains where the name “chordal” comes from: Let the Herglotz
vector field G(z, t) have the form

G(z, t) = (z − 1)2 · 1
1+z
1−z − iu(t)

,

where u(t) is a continuous, real-valued function. Every simple curve that grows from a point
p ∈ ∂D \ 1 to 1 within D – a “chord” joining p and 1 – can be described by an evolution
family that corresponds to a Herglotz vector field of this form, see Section 3.5. This is
comparable to the radial case of the form (2.3.4).

We have seen that the Loewner range of a normalized Loewner chain is always the whole complex
plane C. The following result handles the general case.

Theorem 2.3.4 (Theorem 1.6 and 1.7 in [CDMG10b]). Let G(z, t) be a Herglotz vector field on
D with evolution family ϕs,t. Then there exists a unique Loewner chain {ft}t≥0 with f0 ∈ S such
that its range R is either an Euclidean disc or the complex plane. Furthermore,
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(a) R = C if and only if for one z ∈ D (and thus for all z ∈ D),

β(z) := lim
t→∞

|ϕ′0,t(z)|
1− |ϕ0,t(z)|2

= 0.

(b) If R 6= C, then the Euclidean disc R has the form R = {z ∈ C |z| < 1/β(0)}.

2.4 The Loewner PDE and the range problem

Let G(z, t) be a Herglotz vector field on Dn. Recall that there exists a Loewner chain {ft : Dn →
Cn}t≥0 that satisfies the corresponding Loewner PDE (2.2.4) and that R =

⋃
t≥0 ft(Dn) is the

Loewner range of this chain.
If {gt : Dn → Cn}t≥0 is another Loewner chain on Dn satisfying the same PDE, then gt = Φ ◦ ft
with a univalent map Φ : R → Cn. Consequently, the biholomorphism class [R] of the Loewner
range is uniquely determined by the Herglotz vector field G(z, t) and we call [R] the Loewner
range of G(z, t).

Example 2.4.1. For n = 1, any Loewner range R of a Loewner chain is a union of increasing,
simply connected domains, and thus, R is simply connected too. Hence [R] = C or [R] = D,
where [R] = C if and only if R = C. F

This bivalence of the biholomorphism class [R] doesn’t hold in higher dimensions any longer: the
constant Loewner chain {idDn}t≥0 is an example for the case [R] = [Dn] and the case [R] = [Cn]
is given, e.g., by the Loewner chain {etidDn}t≥0. By combining these two cases, one easily obtains
examples for the ranges [R] = [Dn−kn × Ck], k = 0, ..., n ≥ 2. Thus the number of possible values
for [R] is greater than two for n ≥ 2. However, the following statement can be regarded as a
replacement for this two–valuedness.

Proposition 2.4.2. If the range R of a Loewner chain is a (Kobayashi) hyperbolic domain, then
it is biholomorphically equivalent to Dn.
In particular, if Dn = Bn, then [R] = [Dn] is impossible for n ≥ 2 and vice versa.

Proof. See Theorem 3 in [FS77].

Consequently, either [R] = [Dn] or R is not a hyperbolic domain. For more information about
Loewner ranges, we refer to [ABHK13].

The general problem of determining the Loewner range of a given Herglotz vector field seems to be
nontrivial. An example for sufficient conditions on the Herglotz vector field such that [R] = [Cn]
can be found in [Aro12], Theorem 1.4.
From Theorem 2.2.5 it follows that the biholomorphism class [R] of a Loewner range is also
uniquely determined by the corresponding evolution family ϕs,t. In Section 4 of [ABHK13] one
can find certain conditions on ϕs,t that determine [R], see also Theorem 2.3.4 for the case n = 1.
However, also from this point of view, it seems to be difficult to find out whether [R] = [Cn] or
not, as this problem is related to the so-called Bedford conjecture.

Example 2.4.3. Let {φt : Bn → Cn}t≥0 be a Loewner chain in the unit ball such that φt ∈ Aut(Cn)
for all t ≥ 0 and φ0(z) = z. Thus, this Loewner chain extends the unit ball to a domain Ω =⋃
t≥0 φt(Bn).

We assume the simplest case where t 7→ φ−1
t is a semigroup of automorphisms. Furthermore, we
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assume that φ−1
t converges in Bn locally uniformly to one point p ∈ Bn for t→∞. As p ∈ Ω, we

conclude that Ω is the basin of attraction of φ−1
1 with respect to p, i.e.

Ω = {z ∈ Cn φ−k1 (z)→ p for k →∞} ⊃ Bn.

Under certain conditions, e.g. the eigenvalues of (φ−1
1 )′(p) have modulus < 1, it is known that

[Ω] = [Cn], see p. 84 in [RR88]. This should still hold when φ−1
t is not necessarily a semigroup

but the domains φ−1
t (Bn) are shrinking ”uniformly“. F

More precisely, the Bedford conjecture is the following statement about a more general basin of
attraction, see [Pet07] and [Aro12].

Conjecture 2.4.4. (Bedford’s conjecture)
Let f1, f2, ... be a sequence of automorphisms of Cn that fix the origin. Suppose that there exist
a, b ∈ R with 0 < a < b < 1, such that for every z ∈ Bn and k ∈ N the following holds:

a‖z‖ ≤ ‖fk(z)‖ ≤ b‖z‖.

Then the basin of attraction {z ∈ Cn Fm(z) := (fm ◦ ... ◦ f1)(z) → 0 for m → ∞} is
biholomorphic to Cn.

An important question is, which elements of U(Dn) can be embedded in (i.e. can be the first
element of) a Loewner chain. However, if we have no further restrictions, this question is trivial,
as the constant Loewner chain f(·, t) = c satisfies the Loewner PDE with G(z, t) ≡ 0 for every
c ∈ U(Dn). Thinking of the classical case, where a simply connected domain is extended to the
whole complex plane, we might ask which univalent functions can be embedded in a Loewner
chain with Loewner range R satisfying R = Cn or more generally [R] = [Cn].
So let us define the following two subsets of U(Dn):

E(Dn) = {f ∈ U(Dn) There is a Loewner chain {ft}t≥0 with f0 = f and R = Cn},

Ẽ(Dn) = {f ∈ U(Dn) There is a Loewner chain {ft}t≥0 with f0 = f and [R] = [Cn]}.
When n = 1, these two sets are identical and by Theorem 2.3.3 (b) we have

E(D) = Ẽ(D) = U(D).

In higher dimensions, the elements of E(Dn) are connected to those f ∈ U(Dn) which map Dn
onto Runge domains. We will discuss this connection in the next section.

2.5 The Runge property
Let D ⊆ Cn be a domain. We let P(D,Cn) ⊂ H(D,Cn) be the set of all polynomials with the
topology induced by locally uniform convergence in D.
For n = 1, a version of the polynomial Runge theorem says that P(D,C) is dense in H(D,C)
whenever D is simply connected. In higher dimensions, this is no longer true and one calls D a
Runge domain if P(D,Cn) is dense in H(D,Cn). More generally, if A,B ⊂ Cn are domains with
A ⊂ B, then (A,B) is called a Runge pair if H(B,Cn) is dense in H(A,Cn). Thus, D is a Runge
domain if and only if (D,Cn) is a Runge pair.
Both the unit ball Bn and the polydisc Dn are simple examples of Runge domains, because they
are even domains of convergence (of a power series). However, the Runge property is not invariant
with respect to biholomorphic mappings. The first example was found by J. Wermer, see [Wer59].
He constructed a non-Runge domain which is biholomorphically equivalent to the bidisc D2. The
fact that also Cn can be mapped biholomorphically onto a non-Runge domain for n ≥ 2 readily
implies that the same is true for Dn:
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Proposition 2.5.1. For every n ≥ 2, there exists a non-Runge domain D which is biholomorphic
equivalent to Dn.

Proof. In [Wol08], E. Wold constructs a Fatou-Bieberbach domain E ⊂ C2 which is not Runge.
Let F : C2 → E be biholomorphic. For n ≥ 2 we define G : Cn → Cn, G(z1, z2, z3, ..., zn) :=
(F (z1, z2), z3, ..., zn). It is easy to see that also G(Cn) is not Runge. Now, write

G(Cn) =
∞⋃
k=1

G(k · Dn).

If G(k · Dn) was Runge for every k ≥ 1, then G(Cn) would be Runge as a union of increasing
Runge domains. Consequently, there exists k0 ∈ N such that D := G(k0 · Dn) is not Runge.

Now we rephrase the property that Dn is mapped biholomorphically by f onto a Runge domain
in terms of f .

Lemma 2.5.2. Let f ∈ U(Dn). The following statements are equivalent:

a) f(Dn) is a Runge domain.

b) There exists a sequence pk of polynomials with f−1 = lim
k→∞

pk locally uniformly on f(Dn).

c) For every g ∈ H(Dn,Cn) there exists a sequence pk of polynomials with g = lim
k→∞

(pk ◦ f)
locally uniformly on Dn.

When n ≥ 2, each of these statements is equivalent to:

d) There exists a sequence ϕk of automorphisms of Cn with f = lim
k→∞

ϕk locally uniformly on
Dn.

Proof. “a)⇒ b) :” This follows from the definition of the Runge property.

“b) ⇒ c) :” Let hk be a sequence of polynomials which approximate f−1 locally uniformly on
f(Dn) and let g ∈ H(Dn,Cn). As Dn is Runge, there exists a sequence qk of polynomials which
approximate g locally uniformly on Dn. Then qk ◦ hk ◦ f approximates locally uniformly the map
g ◦ f−1 ◦ f = g.

“c)⇒ a) :” First, note that locally uniform convergence of a sequence gk(w) in f(Dn) is equivalent
to locally uniform convergence of the sequence gk(f(z)) in Dn as f is biholomorphic. Now let
h ∈ H(f(Dn),Cn) and write h = (h◦f)◦f−1. Then h◦f ∈ H(Dn,Cn) and there exists a sequence
pk of polynomials with h ◦ f = lim

k→∞
pk(f) and thus h = lim

k→∞
pk locally uniformly in f(Dn).

Now let n ≥ 2 :

“a) ⇒ d) :” This follows from Theorem 2.1 in [AL92], which states that every biholomorphic
map from a starlike domain onto a Runge domain can be approximated by automorphisms of Cn,
when n ≥ 2.

“d)⇒ a) :” This direction is already mentioned as a remark at the end of page 372 in [AL92], see
also Proposition 1.2 (c) in [FR93] for a complete proof.

In [ABFW], a remarkable fact concerning solutions to the ordinary Loewner equation is shown.
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Theorem 2.5.3 (Proposition 5.1 in [ABFW]). 0
If ϕs,t is the solution to the ordinary Loewner equation (2.2.3), then ϕs,t(Dn) is a Runge domain
for all 0 ≤ s ≤ t.

This result follows directly from a much more general result of Docquier and Grauert in [DG60].
We will apply this result to show that every f ∈ E(Dn) maps onto a Runge domain. To show
this, we have to recall the definition of “semicontinuous holomorphic extendability” which was
introduced by Docquier and Grauert. We cite the English translation from [ABFW].

Definition 2.5.4. Let N ⊂ Cn be a domain and M ⊂ N be open and nonempty. Then M is
semicontinuously holomorphically extendable to N if there exists a family {Mt}0≤t≤1 of nonempty
open subsets of N with

(1) Mt is a domain of holomorphy for all t in a dense subset of [0, 1],

(2) M0 = M and ∪0≤t≤1Mt = N,

(3) Ms ⊆Mt for all 0 ≤ s ≤ t ≤ 1,

(4)
⋃

0≤t<t0 Mt is a union of connected components of Mt0 for every 0 < t0 ≤ 1,

(5) Mt0 is a union of connected components of the interior part of
⋂
t0<t≤1Mt for every

0 ≤ t0 < 1.

Docquier and Grauert showed:

Theorem 2.5.5 (Satz 19 in [DG60]). Let M,N ⊂ Cn be domains. If M is semicontinuously
holomorphically extendable to N, then (M,N) is a Runge pair.

Now we can prove the following denseness result, which implies a striking difference between the
cases n = 1 and n ≥ 2 for the class E(Dn). It follows more or less directly from Theorem 2.5.5 and
for sure, the authors of [ABFW] were aware of this statement. As it is not mentioned directly,
we also include a proof here.

Theorem 2.5.6. E(Dn) is a dense subset of F (Dn) := {f ∈ U(Dn) f(Dn) is a Runge domain}.
Furthermore, F (Dn) is a (relatively) closed subset of U(Dn).
In particular, for n ≥ 2, this implies

E(Dn) ( U(Dn).

Proof. For n = 1 we have F (D) = U(D). Let f ∈ U(D), then there exists a radial Loewner
chain {ft}t≥0 with f0 = (f − f(0))/f ′(0) ∈ S according to Theorem 2.3.3 (b). Hence {gt}t≥0 :=
{f ′(0)ft + f(0)}t≥0 is a Loewner chain with g0 = f. We conclude f ∈ E(D) and

E(D) = F (D).

Now let n ≥ 2, f ∈ E(Dn) and {ft}t≥0 be a Loewner chain with f = f0 such that⋃
t≥0

ft(Dn) = Cn. (2.5.1)

First we show that f(Dn) is a Runge domain:
For every s, t with 0 ≤ s ≤ t we have fs(Dn) ⊂ ft(Dn) and Theorem 2.5.5 implies that
(fs(Dn), ft(Dn)) is a Runge pair: The family {Mq}0≤q≤1 can be chosen as Mq = fs+q·(t−s)(Dn).
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Clearly, {Mq} satisfies the conditions (1), (2), (3) from Definition 2.5.4. Moreover, the continuity
of Loewner chains, i.e. property (2) in Definition 2.2.6, implies that⋃

0≤t<t0
Mt = Mt0 for every 0 < t0 ≤ 1 and

⋂
t0<t≤1

Mt = Mt0 for every 0 ≤ t0 < 1.

Thus, also conditions (4) and (5) in Definition 2.5.4 are satisfied.
Now we will show that (f(Dn),Cn) is also a Runge pair. This can be seen as follows:
Let g ∈ H(f(Dn),Cn) be arbitrary and let ε > 0 and K ⊂ f(Dn) be compact. We have to find a
function h ∈ H(Cn,Cn) with ‖g(z)− h(z)‖ ≤ ε for all z ∈ K.
First, as (f0(Dn), f1(Dn)) is a Runge pair, we can choose

g1 ∈ H(f1(Dn),Cn) with ‖g(z)− g1(z)‖ < 6ε
π2 for all z ∈ K.

Because of (2.5.1), we can find a strictly increasing sequence (km)m∈N0 of non-negative integers
with k0 := 0, such that

fkm−1(Dn) ⊂ fkm(Dn) for every m ∈ N.

Then we can choose gm for m ∈ N \ {1} inductively such that

gm ∈ H(fkm(Dn),Cn) and ‖gm(z)− gm−1(z)‖ < 6ε
π2m2 for all z ∈ fkm−2(Dn).

Thus, we have for all m ∈ N and z ∈ K :

‖g(z)− gm(z)‖ ≤ ‖g(z)− g1(z)‖+
∞∑
l=2
‖gl(z)− gl−1(z)‖ < 6ε

π2

∞∑
l=1

1
l2

= ε. (2.5.2)

For a fixed m0 ∈ N, the sequence {gm}m≥m0 is defined in fkm0
(Dn) and it is locally bounded.

Montel’s theorem gives us the existence of a subsequence that converges uniformly on compacta
to a function h ∈ H(Cn,Cn). (2.5.2) implies

‖g(z)− h(z)‖ ≤ ε for all z ∈ K.

So (f(Dn),Cn) is a Runge pair, i.e. f(Dn) = f0(Dn) is a Runge domain.

Next, let Φ ∈ Aut(Cn) and denote by φ the restriction of Φ to Dn. For t ≥ 0, define the
function ft : Dn → Cn by ft(z) = Φ(etz). Then {ft}t≥0 is a Loewner chain with f0 = φ and
∪t≥0ft(Dn) = ∪t≥0Φ(et · Dn) = Φ(Cn) = Cn and consequently φ ∈ E(Dn).
Lemma 2.5.2 implies that any f ∈ F (Dn) can be approximated by automorphisms of Cn when
n ≥ 2. So E(Dn) is dense in F (Dn).

Finally, we have to show that F (Dn) is (relatively) closed in U(Dn). Suppose fk is a sequence of
elements of F (Dn) with limit f ∈ U(Dn). Every fk can be approximated by automorphisms of
Cn. Hence, also f can be approximated by automorphisms of Cn and consequently f(Dn) is a
Runge domain according to Lemma 2.5.2.

Remark 2.5.7. Note that we use only one simple Herglotz vector field in the proof of denseness
of E(Dn) with respect to F (Dn) for n ≥ 2, namely G(z, t) = −z. Hence, the key argument is
Lemma 2.5.2 d), which has been one of the first results of what is now called Andersén-Lempert
theory. This theory treats general complex manifolds that have the so called density property (and
volume density property respectively), see the survey article [KK11] for further reading.
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Corollary 2.5.8. Ẽ(Dn) is a dense subset of F̃ (Dn) := {f ∈ U(Dn) (Ψ−1 ◦ f)(Dn) is a Runge
domain for some univalent Ψ : Cn → Cn,Ψ(Cn) ⊇ f(Dn)}.

Proof. Let f̃ ∈ Ẽ(Dn) with a Loewner chain {ft}t≥0, f0 = f, having a range R that is bi-
holomorphically equivalent to Cn. There exists a biholomorphic map Φ : R → Cn and then
f := Φ ◦ f̃ ∈ E(Dn). The previous Theorem implies that ((Φ−1)−1 ◦ f̃)(Dn) is a Runge domain.
Furthermore, let g ∈ F̃ (Dn) with a univalent Ψ : Cn → Cn such that (Ψ−1 ◦ g) maps Dn onto a
Runge domain. Then we can write Ψ−1 ◦ g = limk→∞ pk for a sequence pk of elements of E(Dn).
Consequently g = limk→∞Ψ ◦ pk and Ψ ◦ pk ∈ Ẽ(Dn) for every k ∈ N.

Conjecture 2.5.9. E(Dn) = F (Dn) and Ẽ(Dn) = F̃ (Dn) for all n ∈ N.

Remark 2.5.10. This first equality would imply in particular that every Runge domain biholo-
morphically equivalent to Dn would be semicontinuously holomorphically extendable to Cn. A
slightly weaker version of this statement is true indeed, see Satz 20 in [DG60].

Remark 2.5.11. L. Arosio, F. Bracci and E. F. Wold could show that any f ∈ F (Bn), such that
f(Bn) is a bounded strongly pseudoconvex C∞-smooth domain and f(Bn) is polynomially convex,
belongs to E(Bn), see Theorem 1.2 in [ABW].

2.6 The class S0(Dn)
Recall that the class S(Dn) is the set of all normalized univalent functions on Dn and that it is
not compact for all n ≥ 2.
In [Por87a], Poreda introduced the class S0(Dn) as the set of all f ∈ S(Dn) that have “parametric
representation”. Later, G. Kohr defined the corresponding subclass S0(Bn) for the unit ball, see
[Koh01], which has been extensively studied since its introduction.
First, one considers a special subset M(Dn) ⊂ I(Dn) of normalized infinitesimal generators on
Dn. We define

M(Bn) := {h ∈ H(Bn,Cn) h(0) = 0, Dh(0) = −In,Re 〈h(z), z〉 < 0 for all z ∈ Bn \ {0}}

and, in case of the polydisc,

M(Dn) := {h ∈ H(Dn,Cn) | h(0) = 0, Dh(0) = −In,Re
(
hj(z)
zj

)
< 0 when ‖z‖∞ = |zj | > 0}.

For n = 1, we have

M(D) = {z 7→ −zp(z) Re(p(z)) > 0 for all z ∈ D and p(0) = 1},

which is the set of all infinitesimal generators that correspond to the classical radial case.

We will see soon that there is a one-to-one correspondence betweenM(Dn) and the set S∗(Dn) ⊂
S(Dn) of all normalized starlike mappings in S(Dn), i.e. those mappings whose image domain
is starlike with respect to the origin. The following characterization of starlike mappings was
proven by Matsuno in 1955 for Dn = Bn, see [Mat55], and for Dn = Dn in 1970 by Suffridge, see
[Suf70].

Theorem 2.6.1. Let f : Dn → Cn be locally biholomorphic, i.e. Df(z) is invertible for every
z ∈ Dn, with f(0) = 0. Then the domain f(Dn) is starlike with respect to 0 if and only if the
function z 7→ −(Df(z))−1 · f(z) belongs toM(Dn).
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The following property shows a crucial difference between the class I(Dn) and its subsetM(Dn).

Theorem 2.6.2 (see Theorem 6.1.39 in [GK03]). M(Dn) is compact.

Thus, by Montel’s theorem, for every r ∈ (0, 1) there exists C(r) ≥ 0 such that ‖h(z)‖ ≤ C(r)
for all z ∈ r · Dn and h ∈M(Dn).
Consequently, a mapping G : Dn × R+ → Cn with G(·, t) ∈ Mn for all t ≥ 0 such that G(z, ·)
is measurable on R+ for all z ∈ Dn is automatically a Herglotz vector field of order ∞. The
corresponding evolution family ϕs,t is normalized by ϕs,t(0) = 0, Dϕs,t(0) = es−tIn.

For such Herglotz vector fields, one can compute a special solution to the Loewner PDE from the
evolution family ϕs,t, which directly leads to the definition of S0(Dn), see [GK03], Chapter 8 for
the case Dn = Bn and [Por87a] for Dn = Dn.

Theorem 2.6.3. Let G(z, t) be a Herglotz vector field with G(·, t) ∈Mn for all t ≥ 0. For every
s ≥ 0 and z ∈ Dn, let ϕs,t(z) be the solution of the initial value problem

∂ϕs,t(z)
∂t

= G(ϕs,t(z), t) for almost all t ≥ s, ϕs,s(z) = z.

Then the limit
lim
t→∞

etϕs,t(z) =: fs(z) (2.6.1)

exists for all s ≥ 0 locally uniformly on Dn and defines a univalent function there. Moreover,
fs(z) = ft(ϕs,t(z)) for all z ∈ Dn and 0 ≤ s ≤ t < ∞. {fs}s≥0 is a normalized Loewner chain
with the property that {e−sfs}s≥0 is a normal family on Dn. Finally,

ḟt(z) = −Dft(z)G(z, t) for all z ∈ Dn and for almost all t ≥ 0.

The first element f0 ∈ S(Dn) of the Loewner chain in the theorem above is said to have parametric
representation. It can be easily verified that e−sfs has parametric representation too for every
s ≥ 0.

Definition 2.6.4. S0(Dn) := {f ∈ S(Dn) f has parametric representation}.

The following characterization of the class S0(Dn) can be found in [GK03], Remark 8.1.7, in the
case of the unit ball. It is easy to see that it holds true for the polydisc too.

Proposition 2.6.5. f ∈ S0(Dn) if and only if there exists a normalized Loewner chain {ft}t≥0
with f = f0 such that {e−tft}t≥0 is a normal family on Dn.

Remark 2.6.6. There is also a more geometric characterization of the domains f(Dn), f ∈
S0(Dn), called asymptotic starlikeness. This notion was introduced by Poreda in [Por87b]. He
showed that this property is a necessary condition for a domain to be the image of a function
f ∈ S0(Dn). Under some further assumptions this condition is also sufficient. In [GHKK08],
Theorem 3.1, Graham, Hamada, G. Kohr and M. Kohr proved that f ∈ S0(Bn) if and only if
f ∈ S(Bn) and f(Bn) is an asymptotically starlike domain.

If f ∈ S(Dn), then f ∈ S∗(Dn) if and only if {etf}t≥0 is a normalized Loewner chain. In particular

S∗(Dn) ⊂ S(Dn).

The following example demonstrates that there is a one-to-one correspondence betweenM(Dn)
and S∗(Dn).
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Example 2.6.7. If f ∈ S∗(Dn), then −(Df)−1 · f ∈ M(Dn) by Theorem 2.6.1. The converse
relation is given by Theorem 2.6.3:
Let h ∈M(Dn) and denote by ϕs,t the evolution family that corresponds to the time-independent
Herglotz vector field G(z, t) := h(z). It has the property ϕs,t(z) = ϕ0,t−s(z) for all t ≥ s and
z ∈ Dn. Thus, if {fs}s≥0 is the Loewner chain from Theorem 2.6.3, then

fs(z) = lim
t→∞

etϕs,t(z) = es lim
t→∞

et−sϕ0,t−s(z) = es · f0(z).

Hence, f := f0 ∈ S∗(Dn) and

−(Df(z))−1f(z) = −(etDf(z))−1etf(z) = −(Dft(z))−1ḟt(z) = h(z).

F

Elements of the class S0(Dn) enjoy the following inequalities, which are known as the Koebe
distortion theorem when n = 1.

Theorem 2.6.8 (Corollary 8.3.9 in [GK03]). If f ∈ S0(Bn), then
‖z‖

(1 + ‖z‖)2 ≤ ‖f(z)‖ ≤ ‖z‖
(1− ‖z‖)2 for all z ∈ Bn.

In particular, 1
4Bn ⊆ f(Bn). (Koebe quarter theorem for the class S0(Bn).)

Theorem 2.6.9 (Theorem 1 and Theorem 2 in [Por87a]). If f ∈ S0(Dn), then
‖z‖∞

(1 + ‖z‖∞)2 ≤ ‖f(z)‖∞ ≤
‖z‖∞

(1− ‖z‖∞)2 for all z ∈ Dn.

In particular, 1
4D

n ⊆ f(Dn). (Koebe quarter theorem for the class S0(Dn).)

We summarize some consequences of Theorem 2.6.8 and 2.6.9 in combination with Theorem 2.5.6.

Corollary 2.6.10. Let n ≥ 2, f ∈ S0(Dn) and let {ft}t≥0 be a normalized Loewner chain with
f = f0 such that {e−tft}t≥0 is a normal family. Then

a)
⋃
t≥0 ft(Dn) = Cn, f(Dn) is a Runge domain and f can be approximated locally uniformly

by automorphisms of Aut(Cn).

b) S0(Dn) is a proper subset of S(Dn) ∩ F (Dn).

c) {idDn} ( S0(Dn) ∩Aut(Cn) ( S(Dn) ∩Aut(Cn).

Proof. Theorem 2.6.8 and 2.6.9 imply⋃
t≥0

ft(Dn) ⊇
⋃
t≥0

(
et

4 · Dn

)
= Cn.

Consequently, f ∈ E(Dn) and a) follows from Theorem 2.5.6.
b) : S0(Dn) is compact, but the set S(Dn) ∩ F (Dn) is not a normal family: Let g : C → C with
g(0) = g′(0) = 0 and let Fg(z1, ..., zn) := (z1, ..., zn−1, zn + g(z1)). Then Fg ∈ S(Dn) ∩Aut(Cn) ⊂
S(Dn) ∩ F (Dn), but the set of all Fg’s is not a normal family.
c) : S0(Dn) ∩Aut(Cn) is a normal family but we have seen that S(Dn) ∩Aut(Cn) is not normal.
Furthermore, there exists ε > 0 such that Fg ∈ S∗(Dn) ⊂ S0(Dn) for all g with |g(z)| ≤ ε for all
z ∈ Dn, which can be easily checked by using Theorem 2.6.1. Thus, S0(Dn) ∩ Aut(Cn) contains
infinitely many elements.

Question 2.6.11. Is S0(Dn) ∩Aut(Cn) dense in S0(Dn)?
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2.7 Support points of S0(Dn)

Let X be a locally convex C–vector space and E ⊂ X. The set exE of extreme points and the
set suppE of support points of E are defined as follows:

• x ∈ exE if the representation x = ta + (1 − t)b with t ∈ [0, 1], a, b ∈ E, always implies
x = a = b.

• x ∈ suppE if there exists a continuous linear functional L : X → C such that ReL is
nonconstant on E and

ReL(x) = max
y∈E

ReL(y).

The class S0(Dn) is a nonempty compact subset of the locally convex vector space H(Dn,Cn).
Thus the Krein–Milman theorem implies that exS0(Dn) is nonempty. Of course, suppS0(Dn) is
nonempty too: Let f = (f1, ..., fn) ∈ H(Dn,Cn) and f1(z1, ..., zn) = afz1 + bfz

2
1 + ... Then the

map f 7→ bf is an example for a continuous linear functional on H(Dn,Cn), which is nonconstant
on S0(Dn).

Extreme points as well as support points of the class S0(D1) = S map D onto C minus a slit
(which has increasing modulus when one runs through the slit from its starting point to ∞), see
Corollary 1 and 2 in [Dur83], §9.5. In particular, they are unbounded mappings. It would be quite
interesting to find similar geometric properties of extreme and support points of S0(Dn) when
n ≥ 2. However, it is not even known whether support points of S0(Dn) are always unbounded in
this case. In the following, we touch this question and our aim is to prove the following theorem
which is already known to be true for the case n = 1, i.e. for the class S.

Theorem 2.7.1. Let f ∈ suppS0(Dn) and let {ft}t≥0 be a normalized Loewner chain with f0 = f
such that {e−tft}t≥0 is a normal family on Dn, then e−tft ∈ suppS0(Dn) for all t ≥ 0.

The proof shows that a special class of bounded mappings cannot be support points – a class
which is actually conjectured to be the set of all bounded mappings in S0(Dn). Theorem 2.7.1
was conjectured in [GHKK12] for Dn = Bn, as the analogous statement for extreme points of
S0(Bn) could be shown there. It is also true for S0(Dn):

Theorem 2.7.2 (See [GHKK12]). Let f ∈ exS0(Dn) and let {ft}t≥0 be a normalized Loewner
chain with f0 = f such that {e−tft}t≥0 is a normal family on Dn, then e−tft ∈ exS0(Dn) for all
t ≥ 0.

Though the proof from [GHKK12] readily generalizes to S0(Dn), we will also give a proof for the
sake of completeness. Our proof for Theorem 2.7.1 generalizes ideas from a proof for the case
n = 1, which is described in [HM84].

First, we note the important fact that, given an evolution family ϕs,t associated to a M(Dn)–
Herglotz vector field and a G ∈ S0(Dn), then et−sG(ϕs,t) is also in S0(Dn), which is mentioned
in the proof of Theorem 2.1 in [GHKK12].

Lemma 2.7.3. Let G ∈ S0(Dn) and t ≥ 0. Furthermore, let {fu}u≥0 be a normalized Loewner
chain such that {e−ufu}u≥0 is a normal family and let ϕs,t be the associated evolution family.
Then et−sG(ϕs,t) ∈ S0(Dn) for every 0 ≤ s ≤ t.
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Proof. Let {G(·, u)}u≥0 be a normalized Loewner chain withG(·, 0) = G such that {e−uG(·, u)}u≥0
is a normal family and let F (z, u) : Dn × [0,∞)→ Cn be the mapping

F (z, u) =
{
et−sG(ϕs+u,t(z)), 0 ≤ u ≤ t− s,
et−sG(z, u+ s− t), u > t− s.

Then {F (·, u)}u≥0 is a normalized Loewner chain, F (·, 0) = et−sG(ϕs,t) and {e−uF (·, u)}u≥0 is a
normal family. Thus et−sG(ϕs,t) ∈ S0(Dn).

Proof of Theorem 2.7.2. Suppose that e−tft 6∈ exS0(Dn) for some t > 0. Then e−tft = sa+(1−s)b
for some a, b ∈ S0(Dn) with a 6= b and s ∈ (0, 1). As f = ft ◦ ϕ0,t, we have

f = s · (eta ◦ ϕ0,t) + (1− s) · (etb ◦ ϕ0,t).

The functions eta ◦ ϕ0,t and etb ◦ ϕ0,t belong to S0(Dn) according to Lemma 2.7.3. Thus, as
f ∈ exS0(Dn), they are identical and the identity theorem implies a = b, a contradiction.

Choosing G(z) = z in Lemma 2.7.3 shows that et−sϕt−s ∈ S0(Dn).

Lemma 2.7.4. Let ϕs,t be defined as in Lemma 2.7.3 and let h = et−sϕs,t ∈ S0(Dn). Furthermore,
let P : Cn → Cn be a polynomial with P (0) = 0, DP (0) = 0, then there exists δ > 0 such that

h+ εet−sP (es−th) ∈ S0(Dn) for all ε ∈ C with |ε| < δ.

Proof. Let gε(z) = z + εP (z). Obviously we have gε(0) = 0, Dgε(0) = In.
Now det(Dgε(z)) → 1 for ε → 0 uniformly on Dn, so gε is locally biholomorphic for ε small
enough. In this case, for every z ∈ Dn, we have:

[Dgε(z)]−1 = [In + εDP (z)]−1 = In − εDP (z) + ε2DP (z)2 + ... = In − ε (DP (z) + ...)︸ ︷︷ ︸
:=U(z)∈Cn×n

.

Write [Dgε(z)]−1gε(z) = z+εP (z)−εU(z)z−ε2U(z)P (z) = (In+εM(z))z, with a matrix-valued
function M(z).
Now we show that gε ∈ S∗(Dn) for |ε| small enough and we distinguish between the unit ball and
the polydisc.
Case 1: Dn = Bn :
Here,

〈
[Dgε(z)]−1gε(z), z

〉
= 〈(In + εM(z))z, z〉 and there is an δ > 0 such that In + εM(z) has

only eigenvalues with positive real part for all ε ∈ C with |ε| < δ. In this case we have

Re
〈

[Dgε(z)]−1gε(z), z
〉
> 0 ∀z ∈ Bn \ {0}

and thus gε ∈ S∗(Bn) ⊂ S0(Bn) by Theorem 2.6.1.
Case 2: Dn = Dn :
Let gj(z) be the j-th component of [Dgε(z)]−1gε(z). For ε → 0, the function gj(z)/zj converges
uniformly to 1 on the set K := {z ∈ Dn ‖z‖∞ = |zj | > 0}. Thus there exists δ > 0 such that

Re
(
gj(z)
zj

)
> 0 for all z ∈ K, j = 1, ..., n and all ε ∈ C with |ε| < δ.

Hence, gε ∈ S∗(Dn) ⊂ S0(Dn) for all ε small enough by Theorem 2.6.1.

From Lemma 2.7.3 it follows that et−sgε(ϕs,t) = et−sgε(es−th) = h+εet−sP (es−th) ∈ S0(Dn).
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The next Lemma shows that a special class of bounded mappings are not support points of
S0(Dn).

Proposition 2.7.5. Let ϕs,t be defined as in Lemma 2.7.3 and let h = et−sϕs,t ∈ S0(Dn). Then
h is not a support point of S0(Dn).

Proof. Assume that h is a support point of S0(Dn), i.e. there is a continuous linear functional
L : H(Dn,Cn)→ C such that ReL is nonconstant on S0(Dn) and

ReL(h) = max
g∈S0(Dn)

ReL(g).

Let P be a polynomial with P (0) = 0 and DP (0) = 0. Then h+ εet−sP (es−th) ∈ S0(Dn) for all
ε ∈ C small enough by Lemma 2.7.4.
We conclude

ReL(P (es−th)) = ReL(P (ϕs,t)) = 0,

otherwise we could choose ε such that ReL(h+ εet−sP (es−th)) > ReL(h).
Now ϕs,t(Dn) is a Runge domain by Theorem 2.5.3. Hence we can write any analytic function
g defined in Dn with g(0) = 0 and Dg(0) = 0 as g = limk→∞ Pk(ϕs,t), where every Pk is a
polynomial with Pk(0) = 0 and DPk(0) = 0, according to Lemma 2.5.2 c). The continuity of L
implies ReL(g) = 0. Hence ReL is constant on S(Dn), a contradiction.

Proof of Theorem 2.7.1. Let L be a continuous linear functional on H(Dn,Cn) such that ReL is
nonconstant on S0(Dn) with

ReL(f) = max
g∈S0(Dn)

ReL(g).

Fix t ≥ 0, then f(z) = ft(ϕ0,t(z)) for all z ∈ Dn. Define the continuous linear functional

J(g) := L(et · g ◦ ϕ0,t) for g ∈ H(Dn,Cn).

Now we have

J(e−tft) = L(f) and Re J(g) ≤ Re J(e−tft) for all g ∈ H(Dn,Cn).

Furthermore, Re J is not constant on S0(Dn): as etϕ0,t is not a support point of S0(Dn) by
Proposition 2.7.5, we have Re J(id) = ReL(etϕ0,t) < ReL(f) = ReJ(e−tft).

In view of Proposition 2.7.5, it is natural to state the following conjecture.

Conjecture 2.7.6. If f ∈ S0(Dn) is bounded, then f is not a support point of S0(Dn).

We note two further closely related problems.

Conjecture 2.7.7. If f ∈ S0(Dn) is bounded by M > 0 and G ∈ S0(Dn), then MG( 1
M f) ∈

S0(Dn).

Conjecture 2.7.8. (Conjecture 2 in [GHKK12]) If G ∈ S0(Dn) is bounded by M > 0, then
1
MG = ϕ0,t for some t ≥ 0 and some evolution family ϕs,t that corresponds to aM(Dn)–Herglotz
vector field.

The last problem should be the most difficult as we have seen that Conjecture 2.7.8 implies
Conjecture 2.7.7 (because of Lemma 2.7.3) and that Conjecture 2.7.7 implies Conjecture 2.7.6,
for we could replace ϕs,t by 1

M f in Lemma 2.7.4 and Proposition 2.7.5 provided that Conjecture
2.7.7 is true.
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Remark 2.7.9. The situation for extreme points is quite the same, see Proposition 1 in [GHKK12]
and its proof: It is known that et−sϕs,t cannot be an extreme point, but there could still be bounded
extreme points of S0(Dn). Also, already Conjecture 2.7.7 would imply that all extreme points are
unbounded mappings.

We finish this section by proving the following statement which touches Conjecture 2.5.9. (Note,
however, that the statement is weaker than the one mentioned in Remark 2.5.11.)

Proposition 2.7.10. Let f ∈ F (Dn) map a neighborhood U of Dn biholomorphically onto a
Runge domain. Then f ∈ E(Dn).

Proof. Obviously, the statement is true for f if and only if it is true for Df(0)−1(f − f(0)). So
assume that f(0) = 0, Df(0) = In.
Let φn be a sequence of automorphisms that approximate f locally uniformly on U with φn(0) =
0, Dφn(0) = In. Then, φn converges to f uniformly on Dn. Choose N ∈ N large enough so that
φ−1
N ◦ f is starlike on Dn. This can be done analogously to the proof of Lemma 2.7.4: Just write

(φ−1
n ◦ f)(z) = z +Gn(z). Then Gn(z)→ 0 uniformly on Dn.

Consequently, f is the first element of the Loewner chain {φN ◦ (et · φ−1
N ◦ f)}t≥0, hence f ∈

E(Dn).

2.8 A remark on the Roper–Suffridge extension operator
In this section we only consider the case Dn = Bn.
In order to get (nontrivial) examples for biholomorphic mappings for n ≥ 2, one can use extension
operators, which are mappings of the form Θ : E → U(Bk+m), E ⊂ U(Bk) and k,m ∈ N. One
example for such an operator is the classical Roper–Suffridge extension operator
Ψn : S → S(Bn) with n ≥ 2 and

Ψn(f)(z1, ..., zn) = (f(z1), z2

√
f ′(z1), ..., zn

√
f ′(z1)) (2.8.1)

(see Section 11.3 in [GK03]). Here, the branch of the square root is chosen such that
√

1 = 1. Ψn

has many nice properties:

(1) Ψn maps starlike / convex / Bloch mappings again onto starlike / convex / Bloch mappings
(see section 11.1 in [GK03]).

(2) It can easily be seen that Ψ(f)(Bn) is always a Runge domain by using Lemma 2.5.2 b),
i.e. by calculating Ψ(f)−1 and using the polynomial Runge theorem for the case of one
variable. In fact, even more is true: Ψn(S) ⊆ S0(Bn) for all n > 1 and Ψn preserves
normalized Loewner chains, i.e., for any normalized Loewner chain {ft}t≥0 on D, the family
{etΨn(e−tft)}t≥0 is a normalized Loewner chain on Bn (see Theorem 11.3.1 in [GK03] with
α = 1

2).

(3) If f ∈ S is unbounded / a support point of S, then Ψn(f) is also unbounded / a support
point of Ψn(S), because the first coordinate of Ψn(f)(z1, ..., zn) is just f(z1).

Since its introduction, many extension operators similar to Ψn have been found. Some of them
have been constructed in order to obtain geometric properties in the sense of (1), some others
can be used to extend Loewner chains, comparable to property (2).

Another way to extend Loewner chains is to extend Herglotz vector fields, and thus the Loewner
equations, directly. One can construct mappings ξ : E → I(Bk+m), E ⊂ I(Bk), and use them to
extend Herglotz vector fields on Bk to Herglotz vector fields on Bk+m.
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Example 2.8.1. If g(z, t) and h(z, t) are Herglotz vector fields on D, then (g(z1, t), h(z2, t)) is
a Herglotz vector field on B2. This follows immediately from the fact that (ψt(z1), φt(z2)) is a
semigroup on B2 when both ψt and φt are semigroups on D. F

Example 2.8.2. The mapping ξ :M1 →M2, −zp(z) 7→(
−z1p(z1),− z2

2 (p(z1) + z1p
′(z1) + 1)

)
, with (z1, z2) ∈ B2, produces infinitesimal generators on B2

(see, e.g., Theorem 7.1 in [ABHK13] and its proof). It corresponds to the Roper-Suffridge operator
Ψ2 in the following sense: If we take a semigroup Θt with infinitesimal generator G(z) = −zp(z)
in D and differentiate etΨn(e−tΘt) with respect to t, we get:

lim
t→0

etΨn(e−tΘt)(z)− z
t

= lim
t→0

(
Θt(z1)− z1

t
, z2

√
etΘ′t(z1)− 1

t

)

=
(
G(z1), z2

2 (G′(z1) + 1)
)

=
(
−z1p(z1),−z2

2 (p(z1) + z1p
′(z1) + 1)

)
.

F

Example 2.8.3. A similar, more abstract approach to find further examples for ξ-mappings by
extending semigroups in a unit ball to semigroups in a higher dimensional unit ball can be found
in [Eli11]. F

Property (3) of Ψn implies that there exist (infinitely many) unbounded support points of Ψn.
Now we will prove Conjecture 3.1 in [GKP07], which says that all support points of Ψn(S) are in
fact unbounded mappings. This, in turn, implies the following result.

Theorem 2.8.4. Let f ∈ S and F = Ψn(f). Also, let {ft}t≥0 be a normalized Loewner chain on
D with f0 = f and let Ft(z) = etΨn(e−tft)(z). If F ∈ supp Ψn(S), then e−tFt ∈ supp Ψn(S) for
all t ≥ 0.

In order to simplify notation, we only look at the Roper-Suffridge-Operator Ψ := Ψ2 :

Ψ(f)(z1, z2) =
(
f(z1), z2

√
f ′(z1)

)
.

Proposition 2.8.5. Let f ∈ S be bounded. Then Ψ(f) is not a support point of Ψ(S).
In particular, all support points of Ψ(S) are unbounded.

Proof. Let f ∈ S be bounded and let L : H(Bn,Cn)→ C be a continuous linear functional such
that ReL is nonconstant on Ψ(S) and

ReL(Ψ(f)) = max
G∈Ψ(S)

ReL(G).

For every n ≥ 1 there is an ε0 > 0 such that f + ε
n+1f

n+1 ∈ S, for all ε ∈ C with |ε| < ε0, as f is
bounded. It follows

Ψ(f + ε

n+ 1f
n+1)(z1, z2) =

(
f(z1) + ε

n+ 1f(z1)n+1, z2

√
f ′(z1)

√
1 + εf(z1)n

)
=(

f(z1) + ε

n+ 1f(z1)n+1, z2

√
f ′(z1) + εz2

√
f ′(z1)(1/2 · f(z1)n + ...)

)
=(

f(z1), z2

√
f ′(z1)

)
+ ε

( 1
n+ 1f(z1)n+1, z2/2

√
f ′(z1)f(z1)n

)
︸ ︷︷ ︸

=:Pn

+
(
0,O(|ε|2)

)
∈ Ψ(S).

30



2.8. A REMARK ON THE ROPER–SUFFRIDGE EXTENSION OPERATOR

If ReL(Pn) 6= 0, then we can choose ε such that ReL(Ψ(f + ε
n+1f

n+1)) > ReL(Ψ(f)), a contra-
diction. Hence

ReL
( 1
n+ 1f(z1)n+1, z2/2 ·

√
f ′(z1)f(z1)n

)
= 0 ∀n ≥ 1. (2.8.2)

Now we can repeat this argument for the ε–terms of higher order, because all coefficients of the
expansion

√
1 + x = 1 + 1

2x∓ ... are 6= 0, and we get

ReL
(

0, z2

√
f ′(z1)f(z1)jn

)
= 0 ∀j ≥ 2, n ≥ 1. (2.8.3)

Now consider an arbitrary function of the form (0, z2g(z1)) with g(0) = g′(0) = 0.Write z2g(z1) =
z2
√
f ′(z1) · g(z1)√

f ′(z1)
and approximate the second factor by a sequence of polynomials in f (see

Lemma 2.5.2 c)):

z2g(z1) = z2

√
f ′(z) ·

∑
k≥2

akf(z1)k =
∑
k≥2

akz2

√
f ′(z)f(z1)k.

By using (2.8.3), it follows

ReL(0, z2g(z1)) = 0 for all g ∈ H(D,C) with g(0) = g′(0) = 0. (2.8.4)

We can apply this to (2.8.2) for n ≥ 2 to get ReL (f(z1)n, 0) = 0 for all n ≥ 3, and by Runge
approximation it follows

ReL (g(z1), 0) = 0 for all g ∈ H(D,C) with g(0) = g′(0) = g′′(0) = 0. (2.8.5)

Now let H(z1, z2) = (h(z1), z2
√
h′(z1)) ∈ Ψ(S). If h(z) = z + a2z

2 + ..., then√
h′(z) =

√
1 + 2a2z + ... = 1 + a2z + ...

Thus (h(z1), z2
√
h′(z1)) = (z1 + a2z

2
1 + ..., z2 + a2z2z1 + ...) and with (2.8.4) and (2.8.5):

ReL(H) = d1 + d2 · a2 + d3 + d4 · a2

with d1 = ReL(z1, 0), d2 = ReL(z2
1 , 0), d3 = ReL(0, z2), d4 = ReL(0, z2z1). Finally, use (2.8.2)

with n = 1 to get
ReL

(
z2

1 , z2z1
)

= 0 ⇐⇒ d2 + d4 = 0,

which implies ReL(H) = d1 +d3. Hence, ReL is constant on Ψ(S) and Ψ(f) cannot be a support
point of Ψ(S).

Proof of Theorem 2.8.4. The proof is now quite the same as the proof of Theorem 2.7.1. We just
have to replace S0(Bn) by Ψ(S), see Remark 3.1 in [GKP07].

Remark 2.8.6. The corresponding statement of Theorem 2.8.4 for extreme points instead of
support points also holds true, see Theorem 3.1 in [GKP07].
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2.9 Further problems concerning the class S0(Dn)
2.9.1 Projections

It is possible to define counterparts to the extension operators of infinitesimal generators of the
last section, e.g. “projections” of the form Θ : E → I(D), E ⊂ I(Bn). One possibility is to use
the so-called Lempert projection devices, see [BCDM10], Section 1.3:
Let φ : D→ Bn be a complex geodesic, i.e. φ is holomorphic and preserves the Kobayashi metrics.
For the unit ball, φ just parameterizes the slice Bn ∩ {z + h(w− z) h ∈ C}, for two given points
z, w ∈ Bn, z 6= w.
Furthermore, let ρφ be the Lempert projection, which is in this case just the orthogonal projection
onto φ(D) and finally define ρ̃φ : Bn → D, ρ̃φ := φ−1 ◦ ρφ.
The triple (φ, ρφ, ρ̃φ) is called Lempert projection device. For a holomorphic vector field G : Bn →
Cn we define ξφ,G : D→ C by

ξφ,G(z) := Dρ̃φ(φ(z)) ·G(φ(z)).

The important connection to infinitesimal generators is given by the following result, see Propo-
sition 4.5 in [BCDM10].

Theorem 2.9.1. If G ∈ I(Bn), then ξφ,G ∈ I(D).

Together with this result, Lempert projection devices are a useful tool to study properties of
infinitesimal generators in the unit ball, see, e.g. [BSb], where a Julia-Wolff–Carathéodory type
theorem for infinitesimal generators in the unit ball is proven.
Example 2.9.2. A geodesic through 0 has the form φ(z) = z · w, with w ∈ ∂Bn. Here we get

ρφ(z) = 〈z, w〉 · w, ρ̃φ(z) = 〈z, w〉 and ξφ,G(z) = 〈G(z · w), w〉 .

If G ∈ M(Bn), then ξφ,G ∈ M(D). Furthermore, if G(z, t) is a Herglotz vector field on Bn with
G(·, t) ∈ M(Bn) for almost all t ≥ 0, then g(z, t) := ξφ,G(·,t)(z) is a Herglotz vector field on D
with g(·, t) ∈M(D) for almost all t ≥ 0. Thus we get a “projection” of the Loewner ODE

Φ̇s,t = G(Φs,t, t), Φs,s(z) = z ∈ Bn, (2.9.1)

to
ϕ̇s,t = 〈G(ϕs,t · w, t), w〉 , ϕs,s(z) = z ∈ D. (2.9.2)

F

Question 2.9.3. Define F ∈ S0(Bn) by F := limt→∞ e
tΦ0,t and fw ∈ S by fw := limt→∞ e

tϕ0,t.
How is F related to fw? For example: If F is unbounded, can we find w ∈ ∂Bn such that fw is
unbounded, too?

From Example 2.9.2 we immediately get the following result which generalizes the well-known
coefficient estimate of the class P.

Proposition 2.9.4. If G ∈M(Bn), then∣∣∣〈DkG(0)(w,w, ..., w), w
〉∣∣∣ ≤ 2

for all k ≥ 2 and w ∈ ∂Bn.
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Proof. For n = 1, we have the classical coefficient estimate for the Carathéodory class.
Now let n ≥ 2. In fact, it is enough to prove the inequality only for w = e1 = (1, 0, ..., 0): Let
G ∈ M(Bn) and let w ∈ ∂Bn. Consider the “rotation” H : Bn → Cn, z 7→ U∗G(Uz), where U is
a unitary matrix with Ue1 = w.2 Then H ∈M(Bn), and〈

DkH(0)(e1, e1..., e1), e1
〉

=
〈
U∗DkG(0)(Ue1, Ue1..., Ue1), e1

〉
=〈

DkG(0)(Ue1, Ue1..., Ue1), Ue1
〉

=
〈
DkG(0)(w,w..., w), w

〉
.

Now write G(z1, ..., zn) =

G1(z1, ..., zn)
...

Gn(z1, ..., zn)

 and G1(z1, 0, ..., 0) = −z1 + a2z
2
1 + a3z

3
1 + ...

We have to show that |an| ≤ 2 for all n ≥ 2. But as G1(z1, 0, ..., 0) = 〈G(z1e1), e1〉 , we know that
G1(z1, 0, ..., 0) = −z1p(z1) for a Carathéodory function p ∈ P. Thus the statement follows from
the case n = 1.

There is an unproven version of the Bieberbach conjecture for the class S0(Bn), namely:

Conjecture 2.9.5 (see [GK03], p. 343). If f ∈ S0(Bn), then∣∣∣∣ 1
k!
〈
Dkf(0)(w,w, ..., w), w

〉∣∣∣∣ ≤ k
for all k ≥ 2 and w ∈ ∂Bn.

Again, it is enough to prove this inequality only for w = e1 = (1, 0, ..., 0):
Let f ∈ S0(Bn) and let w ∈ ∂Bn. Consider the “rotation” g : Bn → Cn, z 7→ U∗f(Uz), where U
is a unitary matrix with Ue1 = w. Then g ∈ S0(Bn), because g = limt→∞ e

tΩ0,t, where Ωs,t is an
evolution family that corresponds to the Herglotz vector field (z, t) 7→ U∗G(Uz, t). Moreover,〈

Dkg(0)(e1, e1..., e1), e1
〉

=
〈
U∗Dkf(0)(Ue1, Ue1..., Ue1), e1

〉
=〈

Dkf(0)(Ue1, Ue1..., Ue1), Ue1
〉

=
〈
Dkf(0)(w,w..., w), w

〉
.

Let f ∈ S0(Bn) and write f(z1, ..., zn) =

f1(z1, ..., zn)
...

fn(z1, ..., zn)

 , and f1(z, 0, ..., 0) = z+a2z
2 +a3z

3 + ....

For w = e1, Conjecture 2.9.5 states |an| ≤ n for all n ≥ 2. This is already known for k = 2, see
Corollary 8.3.15 in [GK03], and we give a simple proof by the projection technique.

Proposition 2.9.6. Conjecture 2.9.5 holds for k = 2.

Proof. We only have to consider w = e1 and to simplify notation we only look at n = 2.
Let f = (f1, f2) = limt→∞ e

tΦ0,t, where Φs,t is an evolution family satisfying (2.9.1). Write
f1(z, 0) = z +

∑∞
k=0 akz

k and

G(z, t) =
(
−z1 +

∑
j+k≥2 gj,k(t)z

j
1z
k
2 )

−z2 +
∑
j+k≥2 hj,k(t)z

j
1z
k
2

)
, Φ0,t(z) =

(
a1,0(t)z1 +

∑
j+k≥2 aj,k(t)z

j
1z
k
2

b0,1(t)z2 +
∑
j+k≥2 bj,k(t)z

j
1z
k
2

)
.

2For A ∈ Cn×n, we denote by A∗ the adjoint matrix of A, i.e. its conjugate transpose.
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The projection of G(z, t) onto the geodesic through 0 and (1, 0) gives the Herglotz vector field

g(z1, t) = 〈G((z1, 0), t), (1, 0)〉 , i.e. g(z1, t) = −z1 +
∑
j≥2

gj,0(t)zj1.

Denote by ϕs,t the corresponding evolution family on D and write

ϕ0,t(z1) =
∑
j≥1

cj(t)zj1.

Let a2 = limt→∞ e
ta2,0(t). We have to show that |a2| ≤ 2. The Loewner ODEs for Φ0,t and ϕ0,t

immediately imply

a1,0(t) = e−t and ȧ2,0(t) = −a2,0(t) + g2,0(t)e−2t, a2,0(0) = 0,

as well as
c1(t) = e−t and ċ2(t) = −c2(t) + g2,0(t)e−2t, c2(0) = 0.

Thus a2 = limt→∞ c2(t) is the second coefficient of the function r := limt→∞ e
tϕ0,t, which belongs

to S and thus |a2| ≤ 2.

Remark 2.9.7. If f ∈ S with f(z) = z +
∑
k≥2 akz

k, then we have the additional information,
that |a2| = 2 if and only if f ∈ S is a rotation of the Koebe function. For f = (f1, , ..., fn) ∈ S0(Bn)
with f1(z1, 0, ..., 0) = z1 +a2z

2
1 + ..., the proof shows that |a2| = 2 if and only if the function r ∈ S

is a rotation of the Koebe function. Of course, many elements of S0(Bn) satisfy this.

Remark 2.9.8. There is also a similar conjecture for the class S0(Dn), see [GK03], p. 343:
Is it true that ∥∥∥∥ 1

k!D
kf(0)(w,w, ..., w)

∥∥∥∥
∞
≤ k

for all k ≥ 2 and w ∈ ∂Dn?

2.9.2 Generalization of slit mappings

Slit mappings play an important role in complex analysis. For example, as the set of those
elements of S that map D onto C minus a slit is dense in S, it is enough to solve extremal
problems for those slit mappings only. The set of support points as well as the set of extreme
points of S consists of slit mappings and the ubiquitous Koebe function is the simplest form of a
slit mapping (and the only starlike slit mapping in S). This led many people to the question:

Are there analogs to slit mappings in higher dimensions?

Of course, the answer depends on which property one would like to generalize.
In [MS01] and [MS07], J. Muir and T. Suffridge study biholomorphic mappings on the unit ball
whose image domains are unbounded convex domains that can be written as the union of lines
parallel to some vector. In [MS06], the same authors investigate properties of extreme points of
the set of all normalized convex mappings on Bn.
In contrast to such concrete geometric properties, one could also ask for mappings that can
be embedded in Loewner chains and have similar properties with respect to Loewner chains,
evolution families and infinitesimal generators:

(1) Which f ∈ S0(Dn) embed in only one normalized Loewner chain {ft}t≥0 such that {e−tft}t≥0
is a normal family? Compare with Theorem 2.3.3 (c).
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(2) Which mappings f ∈ S0(Dn) embed into a Loewner chain whose Herglotz vector field G(z, t)
satisfies G(·, t) ∈ exM(Dn) for all t ≥ 0?
Note that slit mappings satisfy this property according to Theorem 2.3.3 and the fact that

ex(M(D)) =
{
z 7→ −zu+ z

u− z
u ∈ ∂D

}
,

which can be easily derived from the Riesz-Herglotz representation (2.3.1).

(3) Characterize the set exM(Dn) for n ≥ 2.

It even seems to be hard to find examples of extreme points ofM(Dn).
In [Vod11], Proposition 2.3.5, M. Voda constructs some explicit mappings that belong to exM(Bn).
Furthermore, he shows that mappings of the form (z1, ...zn) 7→ (−z1p1(z1), ...,−znpn(zn)), with
p1, ..., pn ∈ P, never belong to exM(Bn), see Proposition 2.3.1 in [Vod11].

Finally we would like to point out that the evolution families of some Herglotz vector fields on Dn
show a similar behavior as evolution families on D that describe a slit connecting a point p ∈ ∂D
to 0. For every u ∈ ∂D, the function G(z) = −zp(z) with p(z) := u+z

u−z is an infinitesimal generator
of a semigroup on D. It has the property that

Re(p(z)) = 0 for all z ∈ ∂D \ {u}.

Slit mappings correspond to Herglotz vector fields of the form G(z, t) = −z u(t)+z
u(t)−z with a contin-

uous function u : [0,∞) → ∂D. In some sense, the function u corresponds to the tip of the slit.
We can solve the Loewner ODE in this case also for initial values on ∂D \ {u(0)}. The solution
may not exist for all t ≥ 0, as it can hit the singularity u(t) for some t ≥ 0.
If we pass on to the polydisc Dn, we can find similar Herglotz vector fields provided that we don’t
look at the whole boundary ∂(Dn), but at the so-called distinguished boundary (∂D)n.
Example 2.9.9. Let n = 2 and consider the function

Fg(z, w) :=
(
−z (1− z)(1− g(w))

1− zg(w) , 0
)
.

It can be easily checked that, if g ∈ H(D,D), then Fg ∈ I(D2).
For some special choices of g, the function Fg will have an analytic continuation to a “large”
subset A ⊂ (∂D)2 such that

Re (1− z)(1− g(w))
1− zg(w) = 0 for all (z, w) ∈ A.

Take, e.g., g(w) = ga(w) = a · w, a ∈ ∂D and define U = {(z, w) ∈ (∂D)2 azw = 1}. U is a
closed curve on the torus (∂D)2. Then we have ReFga(z, w) = 0 for all (z, w) ∈ (∂D)2 \ U . If
a : [0,∞)→ ∂D is a continuous function, then the evolution family corresponding to the Herglotz
vector field G((z, w), t) = Fga(t)(z, w) somehow describes the growth of a “slit surface” emerging
from the torus (∂D)2. F
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Chapter 3

The chordal multiple-slit equation

3.1 Hydrodynamic normalization

The solutions to the ordinary radial Loewner equation are univalent functions that belong to the
class

S≥ := {f ∈ H(D,D) f(0) = 0, f ′(0) ≥ 0, f is univalent}.

From a geometric, dynamical point of view, this equation describes families of compact sets that
grow from the boundary ∂D towards 0 within D.
What if we want to replace 0 by another “point of attraction” z0, meaning that we would like to
generate univalent functions f : D→ D with f(z0) = z0 and an additional condition for f ′(z0)?
The case z0 ∈ D \ {0} is not different from z0 = 0 at all, because we can always transfer the first
case into the second by applying an appropriate automorphism of D. The case z0 ∈ ∂D, however,
is different, as we have to assume that f(z0) can actually be defined, e.g. in the sense of a radial
limit. Without loss of generality we may assume that z0 = 1. Now, one usually maps the unit
disc conformally onto the upper half-plane by the Cayley map z 7→ iz+i

1−z and asks for univalent
functions of the form f : H → H with f(∞) = ∞ in a certain sense. The reason of using H
instead of D in this case is that such univalent mappings can be handled easier and lead to a
simpler differential equation.
In the simplest case, H \ f(H) is a bounded set. Then, f has a meromorphic continuation to a
neighborhood of ∞ with Laurent expansion f(z) = a−1z + a0 + a1

z + ...
In this case, f is said to have hydrodynamic normalization if a−1 = 1 and a0 = 0. In this case,
f(∞) =∞ and f is an automorphism of H if and only if f is the identity, as every automorphism
of H fixing ∞ is of the form z 7→ az + b, a > 0, b ∈ R.
More generally, a holomorphic function f : H→ H is said to have hydrodynamic normalization if
there exists c ≥ 0 such that f has the expansion f(z) = z− c

z +O(1
z ) in an angular sense, i.e. the

following limit exists and is finite:

∠ lim
z→∞

z (f(z)− z) = c ∈ R.

Let H∞ denote the set of all these functions and let l(f) := c. Furthermore we denote by Hu the
subset of all f ∈ H∞ that are univalent.
The class Hu can be seen as an analog of the class S≥ and l(f) is playing the role that f ′(0) is
playing for the class S≥.

It is known that every f ∈ H∞ has the following useful, so called Nevanlinna integral represen-
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tation (see Lemma 1 in [GB92]):

f(z) = z +
∫
R

1
x− z

dµ(x), (3.1.1)

where µ is a finite, nonnegative Borel measure on R. From this representation, it follows that
l(f) = µ(R) ≥ 0. Moreover, the following two properties hold:

• Semigroup property: If f, g ∈ H∞, then also f ◦g ∈ H∞ and l(f ◦g) = l(f)+g(f) (Theorem
1 in [GB92]).

• “Schwarz Lemma”: If f ∈ H∞, then Im(f(z)) ≥ Im z for all z ∈ H. Here, equality holds for
one point if and only if f(z) ≡ z.

We denote by Hb the set of all f ∈ Hu such that H\f(H) is bounded. A function f ∈ Hu belongs
to Hb if and only if the Borel measure µ in the Nevanlinna representation of f has compact
support.

In the rest of this chapter we will only deal with the class Hb. We will look at the so-called
chordal differential equation for this class and use l(f) - the so-called half-plane capacity - as a
time parameter for this equation.

3.2 Hulls and half-plane capacity
A bounded subset A ⊂ H with the property A = A ∩ H such that H \ A is simply connected
is called a (compact) hull. By gA we denote the unique conformal map gA : H \ A → H with
hydrodynamic normalization, which means g−1

A ∈ Hb, i.e.

gA(z) = z + b

z
+O(|z|−2), b > 0, for z →∞.

The quantity hcap(A) := b is called half-plane capacity of A. In some sense, hcap(A) is the size
of A seen from ∞. This can be made precise by a probabilistic formula that involves Brownian
motions hitting the hull A. It will be used in the proof of Lemma 3.6.12. The half-plane capacity
hcap(A) is comparable to the simpler geometric quantity “hsiz(A)”, introduced in [LLN09].

Theorem 3.2.1. (Theorem 1 in [LLN09]) Let A be a compact hull and

hsiz(A) = area

 ⋃
x+iy∈A

B(x+ iy, y)

 .
Then

1
66 hsiz(A) < hcap(A) ≤ 7

2π hsiz(A).

We summarize four basic properties of hcap in the following lemma.

Lemma 3.2.2. Let A,A1, A2 be hulls.

a) If A1 ∪A2 and A1 ∩A2 are hulls, then

hcap(A1) + hcap(A2) ≥ hcap(A1 ∪A2) + hcap(A1 ∩A2).
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b) If A1 ⊂ A2, then hcap(A2) = hcap(A1) + hcap(gA1(A2 \A1)) ≥ hcap(A1).

c) If A1 ∪A2 is a hull and A1 ∩A2 = ∅, then hcap(gA1(A2)) ≤ hcap(A2).

d) If λ > 0, then hcap(λ ·A) = λ2 · hcap(A) and hcap(A± λ) = hcap(A).

Proof. For a) and b) see [Law05, p. 71]. Now let A1 ∪ A2 be a hull such that A1 ∩ A2 = ∅.
Then b) implies hcap(A1) + hcap(gA1(A2)) = hcap(A1 ∪ A2), while a) shows hcap(A1 ∪ A2) ≤
hcap(A1) + hcap(A2). This proves c).
Finally, note that gλA(z) = λgA(z/λ) and gA±λ(z) = gA(z ∓ λ)± λ. This proves d).

Note that by Schwarz reflection, gA has an analytic continuation across R\A with gA(R\A) ⊆ R
and g−1

A is analytic at gA(x) for every x ∈ R\A. If we denote by µ the measure in the Nevanlinna
representation of g−1

A , then the Stieltjes inversion formula (see [RR94, Thm. 5.4]) shows that
gA(x) 6∈ supp(µA) for every x ∈ R\A.
The following lemma shows that gA is expanding outside the closed convex hull of A ∩ R and
nonexpanding in between points of R \A.

Lemma 3.2.3. Let A be a hull.

a) If A∩R is contained in the closed interval [a, b], then gA(α) ≤ α for every α ∈ R with α < a
and gA(β) ≥ β for every b ∈ R with β > b.

b) If the open interval (a, b) is contained in R\A, then |gA(β) − gA(α)| ≤ |β − α| for all
α, β ∈ (a, b).

Proof. a) Let α < a. If we denote by µA the measure in the Nevanlinna representation (3.1.1)
for f := g−1

A , then we obtain for z = gA(α):

gA(α) = f(gA(α))−
∫
R

1
x− gA(α) µA(dx).

Since the interval (−∞, gA(α)] has no point in common with supp(µA), we actually integrate over
a set for which the integrand is nonnegative, so gA(α) ≤ α. The proof of gA(β) ≥ β for every
β > b is similar.
b) Let α, β ∈ (a, b) and assume α ≤ β, so gA(α) ≤ gA(β). If we subtract (3.1.1) for z = gA(α)
from (3.1.1) for z = gA(β), then a short computation leads to

gA(β)− gA(α) = β − α+
∫
R

gA(α)− gA(β)
(x− gA(α))(x− gA(β)) µA(dx) .

Since the closed interval [gA(α), gA(β)] is disjoint from supp(µA), we integrate over a set for which
the integrand is nonpositive, so 0 ≤ gA(β)− gA(α) ≤ β − α.

3.3 The chordal Loewner differential equation for Hb

Next we would like to have an ordinary Loewner equation for evolution families with the property
that every element is contained in the class Hb.
For this, assume that ϕs,t is an evolution family in D which does not contain automorphisms
of D whenever s < t. Recall that all non-identical elements of an evolution family ϕs,t in D
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have the same Denjoy-Wolff point 1 if and only if the Herglotz vector field G(z, t) has the form
G(z, t) = (z − 1)2p(z, t),Re p(z, t) ≥ 0 for all z ∈ D and almost all t ≥ 0, see p. 16.
By conjugating the corresponding semigroup of an infinitesimal generator G of the form G(z) =
(z − 1)2p(z) with the Cayley transform C(z) = z−i

z+i , we obtain an infinitesimal generator G̃ for
H with G̃(z) = 2ip(C(z)), z ∈ H, i.e. we get exactly all functions that map the upper half-plane
onto the upper half-plane.

The next Theorem presents a Loewner equation of “type III” (see p. 15), i.e. a reversed Loewner
ODE, which generates functions whose inverses belong to Hb.

Theorem 3.3.1 (Theorem 4.6 in [Law05]). Suppose {µt}t≥0 is a family of Borel probability
measures on R such that t 7→ µt is continuous in the weak topology, and for each t, there is an
Mt < ∞ such that suppµs ⊂ [−Mt,Mt], s ≤ t. For each z ∈ H, let gt(z) denote the solution of
the initial value problem

ġt(z) =
∫
R

2
gt(z)− u

µt(du), g0(z) = z. (3.3.1)

Let Tz be the supremum of all t such that the solution exists up to time t and gt(z) ∈ H. Let
Ht := {z ∈ H Tz > t}, then gt is the unique conformal mapping of Ht onto H with hydrodynamic
normalization and gt(z) = z + 2t

z +O(|z|−2) for z →∞.

It is easy to see that the domains Ht are strictly decreasing, i.e. Hs ( Ht for all t < s and that
Ht = H\Kt for a (compact) hull Kt. Thus, equation (3.3.1) generates a family {Kt}t≥0 of strictly
increasing hulls with hcap(Kt) = 2t for all t ≥ 0.

Remark 3.3.2. In [Bau05], section 5, the author treats a more general equation and proves
a one-to-one correspondence between certain evolution families in the class Hu and measurable
families of probability measures on R.

Let us have a look at some examples for equation (3.3.1).

• A very important and simple case is µt = δU(t), i.e. µt is the point measure with mass 1 in
U(t), with U(t) being a continuous, real-valued function, called driving function. We call
the corresponding equation the chordal one-slit equation. For sufficiently regular driving
functions, the hulls will describe a slit, i.e. a simple curve growing from U(0) into H, see
Section 3.8.

• Let µt be a convex combination of n point measures, i.e. µt = λ1(t)δU1(t) + ...+λn(t)δUn(t),
where λ1(t), ..., λn(t) map into the interval [0, 1] and λ1(t) + ... + λn(t) = 1 for all t. In
this case, (3.3.1) will be called the chordal multiple-slit equation. We will discuss several
properties of this equation in the following sections.

• If every µt has a density with respect to the Lebesgue measure on R, then equation (3.3.1)
will generate some bubble- or tube-shaped hulls, see [Sol13] for examples.

Let {Kt}t≥0 be a family of hulls generated by equation (3.3.1) and the family {µt}t≥0 of probability
measures. There are four simple operations on {Kt} which can be translated into changes of
the family {µt} by calculating the changes of the half-plane capacity (Lemma 3.2.2) and the
corresponding conformal mappings, see also [LMR10], Section 2.1.
Let d > 0 and s > 0, then we have the following properties:

• Truncation: For t ≥ s, the hulls gs(Ks+t \Ks) correspond to the measures µt+s.
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• Reflection in iR: The reflected hulls −Kt correspond to the measures A 7→ µt(−A).

• Scaling: The scaled hulls dKt correspond to A 7→ µt/d2(d−1 ·A).

• Translation: The translated hulls Kt + d correspond to A 7→ µt(A− d).

3.4 The backward equation
A very useful tool to study the behavior of hulls generated by equation (3.3.1) is its corresponding,
so called backward equation. For a given time T, we can generate the inverse function g−1

T by
simply reversing the flow of 3.3.1, i.e. we consider the initial value problem

ḟt(z) =
∫
R

−2
ft(z)− u

µT−t(du), f0(z) = z ∈ H. (3.4.1)

For every z ∈ H, ft(z) is defined for all t ∈ [0, T ] and we have

fT (z) = g−1
T (z).

(However, ft(z) 6= g−1
t (z) for t ∈ (0, T ) in general.)

Note that equation (3.4.1) is of “type I”, i.e. it is just an ordinary Loewner equation for evolution
families.
We will need the following simple estimation for the imaginary part of hulls generated by equation
(3.3.1).

Lemma 3.4.1. Let {Kt}t∈[0,T ] be the family of hulls generated by equation (3.3.1) with 0 ≤ t ≤ T .
Then

max
z∈KT

Im(z) ≤ 2
√
T .

Proof. We consider the backward equation for fT = g−1
T . For any x0 ∈ R and y0 ∈ (0,∞) write

ft(x0 + iy0) = xt + iyt. (3.4.1) gives

ẏt =
∫
R

2yt
(xt − u)2 + y2

t

µT−t(du) ≤
∫
R

2yt
y2
t

µT−t(du) = 2
yt
.

Thus yt ≤
√

4t+ y2
0. Letting t ↑ T and y0 ↓ 0 gives yT ≤ 2

√
T .

Another simple application of equation (3.4.1) implies the following property for the class Hu.

Theorem 3.4.2. Let z0 ∈ H. Then

{f(z0) f ∈ Hu} = {z ∈ C : Im z > Im z0} ∪ {z0} .

Remark 3.4.3. By using the “Schwarz lemma” for the class H∞, see p. 38, it is immediate that

{f(z0) f ∈ Hu} ⊆ {f(z0) f ∈ H∞} ⊆ {z ∈ C : Im z > Im z0} ∪ {z0} .

Hence, Theorem 3.4.2 tells us that the set of values f(z0) for all univalent functions f ∈ H∞ is
the same as the set of values f(z0) for all f ∈ H∞. This is a significant difference to the unit
disc case, where the set of values f(z0) for all univalent functions f : D → D with f(0) = 0,
f ′(0) ≥ 0 is strictly smaller than the set of values f(z0) for all holomorphic functions f : D→ D
with f(0) = 0, f ′(0) ≥ 0, see [RSa], Section 1.
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Proof of Theorem 3.4.2. Fix z0 ∈ H and let z ∈ H with Im(z) > Im(z0). Now we look at equation
(3.4.1) with initial value z0 for the case µt = δU(t), where U is a real valued function, i.e.

ẇ(t) = −2
w(t)− U(t) , t ≥ 0 ,

w(0) = z0 ∈ H.
(3.4.2)

We need to find a driving function U such that the solution w(t) of (3.4.2) passes through z. We
separate into real and imaginary parts and write w(t) = x(t) + iy(t) and z0 = x0 + iy0. Now, we
claim that U can be chosen such that w(t) connects z0 and z by a straight line segment, i.e.

x(t) = c · y(t) + x0 − c · y0 ,

where
c = Re z − Re z0

Im z − Im z0
.

In order to prove this, we separate equation (3.4.2) into real and imaginary parts and obtain

ẋ(t) = 2(U(t)− x(t))
(U(t)− x(t))2 + y(t)2 , ẏ(t) = 2y(t)

(U(t)− x(t))2 + y(t)2 ,

with initial conditions x(0) = x0 and y(0) = y0. We now assume that x(t) and y(t) are related
by

U(t)− x(t) = c · y(t) .

Then we get the following initial value problem:

ẋ(t) = 2c
(1 + c2)y(t) , ẏ(t) = 2

(1 + c2)y(t) , x(0) = x0, y(0) = y0 ,

which can be solved directly:

y(t) =
√

4
1 + c2 t+ y2

0 and x(t) = cy(t) + x0 − cy0 , t ≥ 0 .

Hence if we now define

U(t) := cy(t) + x(t) = 2c
√

4
1 + c2 t+ y2

0 + x0 − cy0 ,

then by construction the solution w(t) = x(t) + iy(t) of (3.4.2) satisfies x(t) = cy(t) + x0 − cy0.
In particular, the trajectory t 7→ w(t) is the halfline starting at z0 through the point z, so
z ∈ {f(z0) f ∈ Hu}. This completes the proof of Theorem 3.4.2.

3.5 The one-slit equation
In the case µt = δU(t), with U(t) being a real-valued, continuous function, equation (3.3.1) becomes
the one-slit equation

ġt(z) = 2
gt(z)− U(t) , g0(z) = z. (3.5.1)

If γ : [0, T ] → H is a simple curve, i.e. a one-to-one continuous function, with γ(0) ∈ R and
γ((0, 1]) ⊂ H, then we call the compact hull Γ := γ(0, 1] a slit. The important connection
between slits and equation (3.5.1) is given by the following Theorem.
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Theorem 3.5.1 (Kufarev, Sobolev, Sporyševa). For any slit Γ with hcap(Γ) = 2T there exists
a unique, continuous driving function U : [0, T ]→ R such that the solution gt of (3.5.1) satisfies
gT = gΓ.

To the best of our knowledge the first proof of Theorem 3.5.1 is due to Kufarev, Sobolev, Sporyševa
in [KSS68]. A recent, English reference can be found in [Law05], p. 92f. We also refer to the
survey paper [GdM] for a complete and rigorous proof of Theorem 3.5.1 using classical complex
analysis.

So every slit can be represented as the solution to (3.5.1) with a unique driving function U . If γ
is the parameterization of Γ by half-plane capacity, i.e. hcap(γ(0, t]) = 2t for all t ∈ [0, T ], then
we have

gt = gγ[0,t] for all t ∈ [0, T ] and U(t) = lim
z→γ(t)

gt(z).

Remark 3.5.2. Theorem 3.5.1 has been generalized to a characterization of all hulls that cor-
respond to the one-slit equation with continuous driving functions. For an arbitrary hull K let
rad(K) = inf{r ≥ 0 ∃x ∈ R,K ⊂ B(x, r)}. The following statements can be found in [LSW01b],
Theorem 2.6 or [Law05], p. 96. Pommerenke considered the corresponding radial case already in
1966, see [Pom66], Theorem 1.
Let {Kt} be a family of hulls generated by equation (3.5.1). Let Kt,s = gt(Kt+s \Kt). Then Kt,s

has the local growth property:

lim
h↓0

sup
t+s∈[0,T ]

0<s≤h

rad(Kt,s) = 0.

Conversely, let {Kt} be a family of increasing hulls with hcap(Kt) = 2t satisfying the local growth
property. Then there exists a real valued, continuous functions U such that equation (3.5.1)
generates the hulls Kt. For each t, the value U(t) is the unique x ∈ R with {x} =

⋂
s>0Kt,s.

Let us have a look at a simple example.

Example 3.5.3. Consider a slit L that is a segment of a straight line with initial point 0. Denote
by φ the angle between R and L. The scaling property immediately implies that the driving
function U of L satisfies U(t) = c

√
t for some c ∈ R.

Conversely, let U(t) = c
√
t for an arbitrary c ∈ R. In this case, the one-slit equation (3.5.1)

can be solved explicitly and one obtains for the generated hull Kt at time t : Kt = γ[0, t] with

γ(t) = 2
√
t
(
π
φ − 1

) 1
2−

φ
π eiφ, i.e. Kt is a line segment with angle φ.

The connection between c and φ is given by

c(φ) = 2(π − 2φ)√
φ(π − φ)

, φ(c) = π

2

(
1− c√

c2 + 16

)
,

see Example 4.12 in [Law05]. F

We will now look at two problems coming along with Theorem 3.5.1. In the next two sections,
we will be concerned with these questions and we will derive some partial answers.

Firstly, we would like to generalize Theorem 3.5.1 to several slits. Suppose we are given n disjoint
slits. We should expect to be able to assign n unique continuous driving functions to those slits.
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However, for n ≥ 2, we also have to determine n − 1 coefficient functions that appear in the
multiple-slit equation; so:

How can Theorem 3.5.1 be generalized to the multiple-slit equation, so that
one can assign n unique continuous driving functions to n disjoint slits?

(3.5.2)

The second problem is to find a converse of Theorem 3.5.1. The latter induces a mapping from
the set

{Γ Γ is a slit with hcap(Γ) = 2T}

into the set
{f : [0, T ]→ R f is continuous}.

This mapping is one-to-one but not surjective, which was already known to Kufarev, see [Kuf47].
The following example shows that equation (3.5.1) does not necessarily produce slits even when
the driving function is continuous.
Example 3.5.4. Consider the driving function U(t) = c

√
1− t with c ≥ 4 and t ∈ [0, 1]:

The generated hull Kt is a simple curve for t ∈ [0, 1), but at t = 1 this curve hits the real axis at
an angle ϕ which can be calculated directly (see [LMR10], chapter 3):

ϕ = π − 2π
√
c2 − 16√

c2 − 16 + c
.

Its complement with respect to H has two connected components. If we denote by B the bounded
component, then K1 = B ∩H, see Figure 3.1, and consequently K1 is not a slit. F

Figure 3.1: Example 3.5.4 with c = 5.

Now, the following question nearly suggests itself:

Which driving functions let equation (3.5.1) generate slit mappings? (3.5.3)

We will look at necessary and sufficient conditions in section 3.8, also in the setting of the
multiple–slit equation.

3.6 Constant coefficients in the multiple-slit equation
Let us consider n slits Γ1, . . . ,Γn with pairwise disjoint closure and hcap(Γ1 ∪ ... ∪ Γn) = 2T . It
is not hard to show that there exist continuous functions γ1, ..., γn : [0, T ]→ C with γj(0, T ] = Γj
such that

44



3.6. CONSTANT COEFFICIENTS IN THE MULTIPLE-SLIT EQUATION

• the functions t 7→ hcap(γj(0, t]) are nondecreasing for all j = 1, ..., n,

• hcap(γ1(0, t] ∪ ... ∪ γn(0, t]) = 2t for every t ∈ [0, T ].

We call (γ1, ..., γn) a Loewner parameterization for the hull Γ1 ∪ ... ∪ Γn.
In this case, the conformal mappings gt := gγ1(0,t]∪...∪γn(0,t] satisfy the following chordal multiple-
slit equation

ġt(z) =
n∑
k=1

2λk(t)
gt(z)− Uk(t)

for a.e. t ∈ [0, T ], g0(z) = z, (3.6.1)

where
∑n
k=1 λk(t) = 1 for a.e. t ∈ [0, T ] and for a.e. t ∈ [0, T ], the coefficient function λk is given

by
λk(t) = 1

2
d

ds

∣∣∣∣
s=0

hcap(γk(0, t+ s] ∪
⋃
j 6=k

γj(0, t]),

see Theorem 2.1 in [RSb].

Again, Uk(t) is the image of γk(t) under the map gt and the functions t 7→ Uj(t) are called driving
functions. Roughly speaking, the coefficient function t 7→ λk(t) corresponds to the speed of the
growth of Γk.

Remark 3.6.1 (The multiple–slit equation in Mathematical Physics). We note that the multiple–
slit equation (3.6.1) has recently been used by physicists for the study of certain two–dimensional
growth phenomena. For instance, in [CM02] the authors analyze “Laplacian path models”,
i.e. Laplacian growth models for multi–slits. By mapping the upper half–plane conformally onto
a half-strip one obtains a Loewner equation for the growth of slits in a half–strip, which can be
used to describe Laplacian growth in the “channel geometry”, see [GS08] and [DV11]. Further-
more, equation (3.6.1) can be used to model so–called multiple Schramm–Loewner evolutions,
see [KL07] and [Car03], [BBK05], [Dub07], [Gra07].

If we compare the case n ≥ 2 in the multiple-slit equation to the case n = 1, then there are two
main differences:
Firstly, when n = 1 there exists exactly one Loewner parameterization, but when n ≥ 2, there
exist many as we can choose different “speeds” for the growth of the slits. Consequently, there
exist many choices for driving functions U1, ..., Un and nonnegative coefficient functions λ1, ...λn
with

∑n
k=1 λk(t) = 1 for all t such that equation (3.6.1) generates the hull Γ1 ∪ ... ∪ Γn, n ≥ 2.

It seems to be natural that the functions λj(t), Uj(t) can be made unique by requiring constant
growth speeds λj(t) ≡ λj .
Secondly, the differential equation (3.6.1) holds only for almost every t ∈ [0, T ]. For n = 1, how-
ever, we know by Theorem 3.5.1 that it actually holds for every t ∈ [0, T ].

In this section we show that there exists one unique Loewner parameterization such that equation
(3.6.1) holds for all t with constant coefficients.

Theorem 3.6.2. Let Γ1, ...,Γn be slits with disjoint closure and let hcap(Γ1 ∪ ... ∪ Γn) = 2T.
Then there exist unique λ1, ..., λn ∈ (0, 1) with

∑n
k=1 λk = 1 and unique continuous functions

U1, ..., Un : [0, T ]→ R, such that the solution of the chordal Loewner equation

ġt(z) =
n∑
k=1

2λk
gt(z)− Uk(t)

, g0(z) = z,

satisfies gT = gΓ1∪...∪Γn .
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Hence Theorem 3.6.2 provides a canonical way of describing multiple slits, as Theorem 3.5.1 does
for a single slit.

Remark 3.6.3. D. Prokhorov has proven the existence and uniqueness of constant coefficients
for the radial Loewner equation under the assumption that all slits are piecewise analytic, see
Theorem 1 and 2 in [Pro93]. This theorem forms the basis for Prokhorov’s study of extremal
problems for univalent functions in [Pro93] by using control-theoretic methods. We will use a
completely different method which shows that one can drop any assumption on the regularity of
the slits in order to generate them with constant coefficients. This method can also be applied to
prove the analog of Theorem 3.6.2 for the radial case, see Section 3.7.

Remark 3.6.4. It would be interesting to find an interpretation of the coefficients λ1, . . . , λn in
terms of geometric or potential theoretic properties of the slits Γ1, . . . ,Γn. Somehow they describe
the size of the slits relative to each other.

As in [Pro93], we only give the proofs for the case n = 2, because the general cases follow by
induction. In Section 3.6.1 we prove some auxiliary lemmas. The proof of Theorem 3.6.2 is
divided into two parts: proof of existence (Section 3.6.2) and proof of uniqueness (Section 3.6.4).
The latter uses a “dynamic interpretation” of the coefficients λj , which is proved in Section 3.6.3.
The proof of existence needs the fact that a certain set of driving functions is precompact, which
is proved in the next section.

3.6.1 A precompactness statement

Let Θ1,Θ2 be slits with disjoint closures and hcap(Θ1) = hcap(Θ2) = 2. In this section we will
prove the following technical result, which states that the set of driving functions for all Loewner
parameterizations of a subhull A of Θ1∪Θ2, hcap(A) = 2T, is a precompact subset of the Banach
space C([0, T ],R) (equipped with the maximum norm).

Theorem 3.6.5. Let A be a subhull of Θ1∪Θ2 with hcap(A) = 2T . For any Loewner parameter-
ization γ = (γ1, γ2) of A, we let gγt := gγ1(0,t]∪γ2(0,t] and U

γ
1 (t) = gγt (γ1(t)) and Uγ2 (t) = gγt (γ2(t))

be the driving functions for (γ1, γ2). Then the sets

{Uγ1 : [0, T ]→ R γ is a Loewner parameterization of A},

{Uγ2 : [0, T ]→ R γ is a Loewner parameterization of A}
are precompact subsets of the Banach space C([0, T ],R).

The proof requires a number of technical estimates for the half–plane capacities of two–slits and
their subhulls.
We start with a refinement of Lemma 3.2.2 c) for the case when the hulls are slits.

Lemma 3.6.6. Let Θ1 and Θ2 be slits with disjoint closures. Then there is a constant c > 0 such
that

c ≤ hcap(B ∪Θ2)− hcap(A ∪Θ2)
hcap(B)− hcap(A)

for all subslits A ( B ⊆ Θ1.

We note that a local version of Lemma 3.6.6 in the sense of

lim
hcap(B)↘hcap(A)

hcap(B ∪Θ2)− hcap(A ∪Θ2)
hcap(B)− hcap(A) > 0 for fixed A ,

has been proved by Lawler, Schramm and Werner [LSW01b, Lemma 2.8]. Our proof shows how
to obtain the global statement of Lemma 3.6.6 from this local version.
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Proof. Using gA∪Θ2 = g∆ ◦ gΘ2 for ∆ := gΘ2(A) and Lemma 3.2.2, it is easy to see that

hcap(B ∪Θ2)− hcap(A ∪Θ2) = hcap(gΘ2(B))− hcap(gΘ2(A)) . (3.6.2)

Let T := hcap(Θ1)/2 > 0 and let θ : [0, T ] → C be the parameterization of Θ1 by its half–plane
capacity. For fixed s ∈ [0, T ] let Ls := θ(0, s] and γ(s) := hcap(gΘ2(Ls)). Hence, in view of (3.6.2)
and since hcap(Ls) = 2s, all we need to show is that there is a constant c > 0 such that

c ≤ γ(s)− γ(τ)
s− τ

for all 0 ≤ τ < s ≤ T . (3.6.3)

In order to prove (3.6.3), we proceed in several steps.
(i) Fix τ ∈ [0, T ). For s ∈ [τ, T ] let

Ks := gLτ (Ls\Lτ ), K∗s := ggLτ (Θ2)(Ks)

b(s) := hcap(Kt) , b∗(s) := hcap(K∗s ) .

Then, by [LSW01b, Lemma 2.8], the right derivatives ḃ+(τ) and ḃ∗+(τ) of b and b∗ at τ exist and

ḃ∗+(τ) =
[
g′gLτ (Θ2) (gLτ (θ(τ)))

]2
ḃ+(τ) . (3.6.4)

Here,
gLτ (θ(τ)) := lim

z→θ(τ)
gLτ (z) ,

where the limit is taken over z ∈ H\Γτ . Now note that by Lemma 3.2.2 b),

b(s) = hcap(gLτ (Ls\Lτ ) = hcap(Ls)− hcap(Lτ ) = s− τ

and, in a similar way, b∗(s) = γ(s)−γ(τ). Therefore, (3.6.4) shows that the right derivative γ̇+(τ)
of the function γ : [0, T ]→ R exists for every τ ∈ [0, T ) and

γ̇+(τ) =
[
g′gLτ (Θ2) (gLτ (θ(τ)))

]2
. (3.6.5)

(ii) Next τ 7→ U(τ) := gΓτ (θ(τ)) is continuous on [0, T ) (see [Law05, Lemma 4.2]). Furthermore,
since Θ1 ∩ Θ2 = ∅, i.e., U(τ) 6∈ gLτ (Θ2), the function ggLτ (Θ2) has an analytic continuation
to a neighborhood of U(τ) and g′gLτ (Θ2)

(U(τ)) 6= 0, see [Law05, p. 69]. Since τ 7→ ggLτ (Θ2) is
continuous in the topology of locally uniform convergence, we hence conclude from (3.6.5) that
γ̇+ is a continuous nonvanishing function on the interval [0, T ).
(iii) From (ii) we see that γ : [0, T ] → R is continuous, has a right derivative γ̇+(τ) for every
point τ ∈ [0, T ) and γ̇+ : [0, T ) → R is continuous. By Lemma 4.3 in [Law05], γ : (0, T ] → R is
differentiable with γ̇(τ) = γ̇+(τ) for every τ ∈ (0, T ). Hence the mean value theorem shows that
(3.6.3) holds with

c := min
τ∈[0,T ]

[
g′gLτ (Θ2) (gLτ (θ(τ)))

]2
> 0 .

We shall need the following slight extension of Lemma 3.6.6.

Lemma 3.6.7. Let Θ1 and Θ2 be slits with disjoint closures. Then there exists a constant c > 0
such that

c ≤ hcap(B1 ∪B2)− hcap(A1 ∪A2)
hcap(Bj)− hcap(Aj)

, j = 1, 2 ,

for all subslits A1 ( B1 of Θ1 and A2 ( B2 of Θ2.
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Proof. It suffices to prove the lemma for j = 1. If we apply Lemma 3.2.2 b) for the hulls
B1 ∪A2 ⊆ B1 ∪B2 and then Lemma 3.2.2 a) for the hulls B1 ∪A2 and A1 ∪Θ2, we obtain

hcap(B1 ∪B2)− hcap(A1 ∪A2) ≥ hcap(B1 ∪A2)− hcap(A1 ∪A2)
≥ hcap(B1 ∪Θ2)− hcap(A1 ∪Θ2) .

Therefore, the estimate of Lemma 3.6.6 completes the proof of Lemma 3.6.7.

Let Γ be the union of two slits Θ1 and Θ2 with disjoint closures. Then gΓ extends continuously
onto each of the sides of Θ1 and of Θ2 and maps them into R. For every c ∈ Γ which is neither
the tip of Θ1 nor of Θ2, we write g+

Γ (c) for the image w.r.t the right side and g−Γ (c) w.r.t. the left
side, so that g−Γ (c) < g+

Γ (c).

Lemma 3.6.8. Let Θ1 and Θ2 be two slits which start at p1 ∈ R resp. p2 ∈ R such that p1 < p2
and Θ1 ∩Θ2 = ∅. Then

a) g−Θ1∪Θ2
(p1) ≤ g−B1∪B2

(p1) ≤ g+
B1∪B2

(p2) ≤ g+
Θ1∪Θ2

(p2), and

b) g−B1∪B2
(p2)− g+

B1∪B2
(p1) ≥ g−Θ1∪Θ2

(p2)− g+
Θ1∪Θ2

(p1)

for all subslits B1 ⊆ Θ1 and B2 ⊆ Θ2.

Proof. a) Let A1 := gB1∪B2(Θ1\B1) and A2 := gB1∪B2(Θ2\B2). Then A1 and A2 are two disjoint
slits which start say at a ∈ R resp. b ∈ R. Let A := A1 ∪ A2. Then A is a hull such that
A ∩ R ⊆ [a, b]. Now α := g−B1∪B2

(p1) ≤ a, so Lemma 3.2.3 a) implies gA(α) ≤ α. Since gΘ1∪Θ2 =
gA ◦ gB1∪B2 , this shows that g−Θ1∪Θ2

(p1) ≤ g−B1∪B2
(p1) and proves the left–hand inequality. The

proof of the right–hand inequality is similar.
b) Let A := gB1∪B2(Θ1\B1 ∪Θ2\B2). Then A is a hull with A ∩ R = {a, b} such that a < b and
a < g+

B1∪B2
(p1) ≤ g−B1∪B2

(p2) < b. Hence,

g−Θ1∪Θ2
(p2)− g+

Θ1∪Θ2
(p1) = gA(g−B1∪B2

(p2))− gA(g+
B1∪B2

(p1)) ≤ g−B1∪B2
(p2)− g+

B1∪B2
(p1)

by Lemma 3.2.3 b).

Lemma 3.6.9. Let Θ1 and Θ2 be slits with disjoint closures. Then there is a constant L > 0
such that

|gB1∪A2(b1)− gB1∪B2(b1)| ≤ L · | hcap(B2)− hcap(A2)|

for all subslits A2, B2 of Θ2 and every subslit B1 of Θ1 with tip b1 ∈ B1.

Proof. We assume A2 ⊆ B2. Then A := gB1∪A2(B2\A2) is a hull, so Lemma 3.2.2 b) shows
hcap(A) = hcap(B1 ∪ B2) − hcap(B1 ∪ A2). On the other hand, Lemma 3.2.2 a) applied to the
two hulls B2 and B1∪A2 gives hcap(B1∪B2)−hcap(B1∪A2) ≤ hcap(B2)−hcap(A2). Therefore,

hcap(A) ≤ hcap(B2)− hcap(A2) . (3.6.6)

Note that gB1∪B2 = gA ◦ gB1∪A2 , so the Nevanlinna representation formula (3.1.1) for hA := g−1
A

and w = gB1∪B2(b1) shows that

gB1∪A2(b1)− gB1∪B2(b1) = hA(gB1∪B2(b1))− gB1∪B2(b1) =
∫
R

dµA(t)
t− gb1∪B2(b1) . (3.6.7)
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Let Θ1 start at p1 ∈ R and Θ2 start at p2 ∈ R with p1 < p2. Then the interval (−∞, g−B1∪B2
(p2)]

is disjoint from the support supp(µA) of the measure µA, so for every t ∈ supp(µA), we have

t− gB1∪B2(b1) ≥ g−B1∪B2
(p2)− g+

B1∪B2
(p1) ≥ g−Θ1∪Θ2

(p2)− g+
Θ1∪Θ2

(p1) =: L−1 > 0

by Lemma 3.6.8 b). Hence (3.6.7) leads to

0 < gB1∪A2(b1)− gB1∪B2(b1) ≤ L
∫
R

dµA(t) = L hcap(A).

In view of (3.6.6) the proof of Lemma 3.6.9 is complete.

Lemma 3.6.10. Let Θ1 and Θ2 be slits with disjoint closures. Then there exists a monotonically
increasing function ω : [0,hcap(Θ1)]→ [0,∞) with lim

δ↘0
ω(δ) = ω(0) = 0 such that

|gA1∪A2(a1)− gB1∪A2(b1)| ≤ ω (| hcap(A1)− hcap(B1)|) (3.6.8)

for all subslits A1 and B1 of Θ1 with tips a1 ∈ A1 and b1 ∈ B1 and every subslit A2 ⊆ Θ2.

Proof. We first define ω(δ) for δ ∈ (0,hcap(Θ1)] by

ω(δ) := sup{g+
B1

(a1)− g−B1
(a1)} .

Here the supremum is taken over all subslits A1 ⊆ B1 of Θ1 such that hcap(B1)− hcap(A1) ≤ δ
and a1 is the tip of A1. Clearly, ω : (0, hcap(Θ1)] → (0,∞) is monotonically increasing and we
need to prove (i) the estimate (3.6.8) and (ii) limδ↘0 ω(δ) = 0.
(i) Assume A1 ⊆ B1. Consider the slit A := gA1∪A2(B1\A1), which starts at gA1∪A2(a1). Then
gB1∪B2 = gA ◦ gA1∪A2 , so Lemma 3.2.3 a) implies g−B1∪A2

(a1) = g−A(gA1∪A2(a1)) ≤ gA1∪A2(a1) ≤
g+
A(gA1∪A2(a1)) = g+

B1∪A2
(a1). Since we clearly also have g−B1∪A2

(a1) ≤ gB1∪A2(b1) ≤ g+
B1∪A2

(a1),
we deduce

|gA1∪A2(a1)− gB1∪A2(b1)| ≤ g+
B1∪A2

(a1)− g−B1∪A2
(a1) .

Since gB1∪A2 = ggB1 (A2) ◦ gB1 , Lemma 3.2.3 b) shows that

g+
B1∪A2

(a1)− g−B1∪A2
(a1) = ggB1 (A2)

(
g+
B1

(a1)
)
− ggB1 (A2)

(
g−B1

(a1)
)
≤ g+

B1
(a1)− g−B1

(a1) ,

so we get |gA1∪A2(a1)− gB1∪A2(b1)| ≤ ω(hcap(B1)− hcap(A1)), i.e. the estimate (3.6.8) holds.
(ii) Let c1 := hcap(Θ1)/2, denote by θ1 : [0, c1]→ C the parameterization of Θ1 by its half–plane
capacity and let U : [0, c1] → R be the driving function for the slit Θ1 according to Theorem
3.5.1. Let A1 ⊆ B1 be subslits of Θ1 and let a1 be the tip of Θ1. Then there are t, s ∈ [0, c1] with
t ≤ s such that θ1(t) = a1, θ1(0, s] = B1 and s − t = hcap(B1)/2 − hcap(A1)/2. Consider the
slit P := gA1(B1\A1), so P ∩ R = {U(t)} and g+

B1
(a1) − g−B1

(a1) is the Euclidean length of the
interval gP (P ). By Remark 3.30 in [Law05] there is an absolute constant M > 0 such that

g+
B1

(a1)− g−B1
(a1) ≤M · diam(P ) , (3.6.9)

where diam(P ) := sup{|p− q| : p, q ∈ P}. Define rad(P ) := sup{|z − U(t)| : z ∈ P}. Then, by
Lemma 4.13 in [Law05],

rad(P ) ≤ 4 max
{
√
s− t, sup

t≤τ≤s
|U(τ)− U(t)|

}

≤ 4 max
{
√
s− t, sup

|τ−σ|≤s−t
|U(τ)− U(σ)|

}
.
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Hence, if we define

%(δ) := max
{√

δ/2, sup
|τ−σ|≤δ/2

|U(τ)− U(σ)|
}

for δ ∈ [0,hcap(Θ1)] then rad(P ) ≤ 4%(hcap(B1) − hcap(A1)). Using the obvious estimate
diam(P ) ≤ 2 rad(P ), we obtain from (3.6.9) that g+

B1
(a1)−g−B1

(a1) ≤ 8M%(hcap(B1)−hcap(A1)).
Recalling the definition of ω(δ), this shows that

ω(δ) ≤ 8M%(δ) for all δ ∈ (0,hcap(Θ1)].

Since the continuous driving function U : [0, c1] → R is uniformly continuous on [0, c1], we see
that %(δ)→ 0 as δ ↘ 0, so lim

δ↘0
ω(δ) = 0.

Lemma 3.6.11. Let Θ1 and Θ2 be slits with disjoint closures. Then there exist constants c, L > 0
and a monotonically increasing function ω : [0, hcap(Θ1)]→ [0,∞) with lim

δ↘0
ω(δ) = ω(0) = 0 such

that

|gA1∪A2(a1)− gB1∪B2(b1)| ≤ ω

(1
c
| hcap(A1 ∪A2)− hcap(B1 ∪B2)|

)
+L

c
|hcap(A1 ∪A2)− hcap(B1 ∪B2)|

for all subslits A1 and B1 of Θ1 with tips a1 ∈ A1 and b1 ∈ B1 and all subslits A2, B2 of Θ2.

Proof. We can assume A1 ( B1 and A2 ( B2. Then

|gA1∪A2(a1)− gB1∪B2(b1)| ≤ |gA1∪A2(a1)− gB1∪A2(b1)|+ |gB1∪A2(b1)− gB1∪B2(b1)|
≤ ω(hcap(B1)− hcap(A1)) + L (hcap(B2)− hcap(A1)) .

by Lemma 3.6.10 and Lemma 3.6.9. Now the estimate of Lemma 3.6.7 completes the proof of
Lemma 3.6.11.

Proof of Theorem 3.6.5. Let A be a subhull of Θ1 ∪Θ2 and let (γ1, γ2) be a Loewner parameter-
ization for A. Let gt := gγ1(0,t]∪γ2(0,t]. Then

g−t (γ1(0)) ≤ Uγj (t) ≤ g+
t (γ2(0)) ,

so Lemma 3.6.8 a) implies

g−Θ1∪Θ2
(θ1(0)) ≤ Uγj (t) ≤ g+

Θ1∪Θ2
(θ2(0)) , j = 1, 2 .

This gives a uniform bound for Uγ1 (t) and Uγ2 (t). Since hcap(γ1(0, t]∪γ2(0, t]) = 2t, Lemma 3.6.11
implies

|Uγ1 (t)− Uγ1 (s)| = |gt(γ1(t))− gs(γ1(s))| ≤ ω
(2|t− s|

c

)
+ 2L

c
|t− s|

for all t, s ∈ [0, T ]. This shows that the driving functions Uγ1 for all Loewner parameterizations
(γ1, γ2) are uniformly equicontinuous on [0, T ]. By switching the roles of Uγ1 and Uγ2 , the same
result holds for the driving functions Uγ2 .
The statement of Theorem 3.6.5 now follows directly from the Arzelà–Ascoli theorem.
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3.6.2 Proof of Theorem 3.6.2, Part I (Existence)

Now we describe the setting we need for the proof of Theorem 3.6.2 when n = 2.

Let Γ1 and Γ2 be slits in H with Γ1 ∩ Γ2 = ∅.
We assume that hcap(Γ1 ∪ Γ2) = 2 and we let c1 = hcap(Γ1)/2 and c2 = hcap(Γ2)/2.

Furthermore we let Θ1, Θ2 be slits with Γj ⊂ Θj , Θ1 ∩ Θ2 = ∅, and hcap(Θ1) = hcap(Θ2) = 2.
We denote by θj(t) the corresponding parameterization of Θj by its half-plane capacity, so that
we have Γj = θj [0, cj ], j = 1, 2.
We want to find λ ∈ [0, 1] and two driving functions U1, U2, such that the two slits Γ1,Γ2 are
produced by the Loewner equation

ġt(z) = 2λ
gt(z)− U1(t) + 2(1− λ)

gt(z)− U2(t) , g0(z) = z. (3.6.10)

To begin with, we define a family of Loewner equations, indexed by (n, λ) ∈ N0 × [0, 1].
Let αn,λ : [0, 1]→ {0, 1}, be a function with

αn,λ(t) =
{

1 when t ∈ ( k
2n ,

k+λ
2n ), k ∈ {0, ..., 2n − 1},

0 when t ∈ (k+λ
2n ,

k+1
2n ), k ∈ {0, ..., 2n − 1}.

(3.6.11)

Now consider the (one–slit) differential equation

ġt,n(z) = 2αn,λ(t)
gt,n(z)− U1,n(t) + 2(1− αn,λ(t))

gt,n(z)− U2,n(t) , g0,n(z) = z. (3.6.12)

We want to let Θ1 (resp. Θ2) grow whenever αn,λ(t) = 1 (resp. αn,λ(t) = 0) and the one-slit case
gives us a uniquely determined driving function U1,n(t) (resp. U2,n(t)) there (which also depends
on λ). We extend U1,n(t) to all t ∈ [0, 1] by requiring that U1,n(t) is the image of the tip of the
part of Θ1 produced at time t for all t ∈ [0, 1]. Likewise, we extend U2,n, so that we get two
continuous functions defined on the whole interval [0, 1].
For t ∈ [0, 1] we have produced a hull Hn,λ,t having the form

Hn,λ,t = θ1[0, xn,λ,t] ∪ θ2[0, yn,λ,t],

where xn,λ,t ∈ [0, 1] depends continuously on λ.
For every n ∈ N0, we have xn,0,1 = 0 and xn,1,1 = 1 and consequently there is a λn with
xn,λn,1 = c1 according to the intermediate value theorem. The monotonicity of hcap, Lemma
3.2.2 b), implies yn,λn,1 = c2 so that Hn,λn,1 = Γ1 ∪ Γ2.

Thus we have a sequence of coefficient functions αn,λn and continuous driving functions U1,n, U2,n,
such that the solution of the one-slit equation (3.6.12) always generates the two slits Γ1 ∪ Γ2.

According to Theorem 3.6.5, both sequences U1,n and U2,n possess uniformly converging subse-
quences. Since (λn)n is a sequence of real numbers in the interval [0, 1], we can find a convergent
subsequence (λnk)k with limit λ := limk→∞ λnk , such that two sequences U1,nk , U2,nk converge
uniformly to U1 and U2 respectively. The functions U1 and U2 are continuous, too. Let gt be the
solution of

ġt(z) = 2λ
gt(z)− U1(t) + 2(1− λ)

gt(z)− U2(t) , g0(z) = z. (3.6.13)
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It is easy to see that∫ t

0
αnk(s)f(s) ds −→

k→∞
λ ·
∫ t

0
f(s) ds for any f ∈ C([0, T ],C) and t ∈ [0, 1]. (3.6.14)

By combining (3.6.14) with the uniform convergence of U1,nk , U2,nk , we conclude that for any
t ∈ [0, 1] we have∫ t

0

2αnk,λnk (τ)
z − U1,nk(τ) +

2(1− αnk,λnk (τ))
z − U2,nk(τ) dτ −→

k→∞

∫ t

0

2λ
z − U1(τ) + 2(1− λ)

z − U2(τ) dτ

locally uniformly in H. From this, it follows that gt,nk → gt locally uniformly for every fixed
t ∈ [0, 1] when k →∞, see [Rot98], Lemma I.37, or [RSb], Theorem 2.4. In particular,

g1 = lim
k→∞

g1,nk = lim
k→∞

gΓ1∪Γ2 = gΓ1∪Γ2 .

Finally, the last equation implies that λ 6∈ {0, 1}. This completes the proof of the existence
statement of Theorem (3.6.2).

3.6.3 The dynamic interpretation of the coefficients

Let Γ1 and Γ2 be slits with disjoint closures and hcap(Γ1 ∪ Γ2) = 2. We have proved in the last
section that there exist a constant λ ∈ (0, 1) and driving functions U1, U2 ∈ C([0, 1],R) such that
the solution gt to the chordal Loewner equation

ġt(z) = 2λ
gt(z)− U1(t) + 2(1− λ)

gt(z)− U2(t) , g0(z) = z , (3.6.15)

satisfies g1 = gΓ1∪Γ2 . Let γ1(t) and γ2(t) be the tip of the part of Γ1 and Γ2 respectively at time
t, so (γ1, γ2) is a Loewner parameterization of (Γ1,Γ2) with constant coefficients λ and 1− λ. In
this section, we will derive some properties of this Loewner parameterization (γ1, γ2).
In the following lemma we let B(z, r) := {w ∈ C |z−w| < r}, where z ∈ C, r > 0 and for A ⊆ C
we define diam(A) := sup

z,w∈A
|z − w|.

Lemma 3.6.12. Let x(t) = hcap(γ1(0, t]) and y(t) = hcap(γ2(0, t]). Then

x(t) + y(t)− 2t = O(t) for t→ 0.

Proof. First, we note that x(t) + y(t)− 2t ≥ 0 for all t because of Lemma 3.2.2 a).

We will use a formula which translates the half–plane capacity of an arbitrary hull A into an
expected value of a random variable derived from a Brownian motion hitting this hull. Let Bs be
a Brownian motion started in z ∈ H \A. We write Pz and Ez for probabilities and expectations
derived from Bs. Let τA be the smallest time s with Bs ∈ R∪A. Then formula (3.6) of Proposition
3.41 in [Law05] tells us

hcap(A) = lim
y→∞

yEyi[Im(BτA)].

Let %t = τγ1[0,t] and σt = τγ2[0,t]. Then we have (compare with the proof of Proposition 3.42 in
[Law05])

x(t) + y(t)− 2t = lim
y→∞

y
(
Eyi[Im(B%t);σt < %t] + Eyi[Im(Bσt);σt > %t]

)
.
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We will estimate the two expected values. First, Im(B%t) ≤ 2
√
t by Lemma 3.4.1 and we get

Eyi[Im(B%t);σt < %t] ≤ 2
√
t ·Pyi{B%t ∈ γ1[0, t];σt < %t}.

Now for t small enough there exists R > 0 such that

γ1[0, s] ⊂ B(Re(γ1(s)), R), γ2[0, s] ⊂ B(Re(γ2(s)), R),

γ1[0, t] ∩ B(Re(γ2(s)), R) = ∅, γ2[0, t] ∩ B(Re(γ1(s)), R) = ∅,

for all s ∈ [0, t].

A Brownian motion satisfying σt < %t will hit γ2[0, t], say at γ2(s) for some s ∈ [0, t], and has
to leave B(Re(γ2(s)), R) ∩H without hitting the real axis, see Figure 3.2. Call the probability of
this event ps. Then we have

Pyi{B%t ∈ γ1[0, t];σt < %t} ≤ Pyi{Bσt ∈ γ2[0, t]} · sup
s∈[0,t]

ps.

Lemma 3.4.1 implies Im(Bσt) ≤ 2
√
t and Beurling’s estimate (Theorem 3.76 in [Law05]) says that

there exists c1 > 0 (depending on R only) such that

ps ≤ c1 · 2
√
t.

(Note that Theorem 3.76 in [Law05] gives an estimate on the probability that a Brownian motion
started in D will not have hit a fixed curve, say [0, 1], when leaving D the first time. The estimate
we use can be simply recovered by mapping the half-circle D ∩ H conformally onto D \ [0, 1] by
z 7→ z2.)
We get the same estimates for Eyi[Im(Bσt);σt > %t] and putting all this together gives the
following upper bound for x(t) + y(t)− 2t:

x(t) + y(t)− 2t ≤ lim
y→∞

y
(
2
√
t · c1 · 2

√
t ·Pyi{Bσt ∈ γ2[0, t]}+ 2

√
t · c1 · 2

√
t ·Pyi{B%t ∈ γ1[0, t]}

)
= 4c1t · lim

y→∞
y
(
Pyi{Bσt ∈ γ2[0, t]}+ Pyi{B%t ∈ γ1[0, t]}

)
.

Here the limit exists and (see [Law05, p. 74])

lim
y→∞

yPyi{Bσt ∈ γ2[0, t]} ≤ c2 diam(γ2[0, t]) ,

lim
y→∞

yPyi{B%t ∈ γ1[0, t]} ≤ c2 diam(γ1[0, t])

with a universal constant c2 > 0. Finally diam(γj [0, t]) → 0 for t → 0 and j = 1, 2; see, e.g.,
Lemma 4.13 in [Law05]. Hence we have shown x(t) + y(t)− 2t = O(t).
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γ1[0, t] γ2[0, t]

B(Re(γ2(s)), R)

Figure 3.2: A Brownian motion with σt < %t.

The following lemma gives a dynamical interpretation of the weights λ and 1− λ.

Lemma 3.6.13. Let x(t) = hcap(γ1(0, t]) and y(t) = hcap(γ2(0, t]). Then x(t) and y(t) are
differentiable in t = 0 with

ẋ(0) = 2λ and ẏ(0) = 2(1− λ).

Proof. Let U1, U2 be the driving functions for the Loewner parameterization (γ1, γ2). Without
loss of generality we assume that Γ1 is the left slit, i.e. U1(t) < U2(t) for all t ∈ [0, 1].

(i) In a first step we prove x(t) ≥ 2λt for all t ∈ [0, τ ] with some τ > 0. Let n ∈ N and consider
the Loewner equation

ġt,n(z) = 2αn,λ(t)
gt,n(z)− U1(t) + 2(1− αn,λ(t))

gt,n(z)− U2(t) , g0,n(z) = z,

where αn,λ is defined as in (3.6.11). Let Kn,t, t ∈ [0, 1], be the corresponding family of hulls.
Similarly to Section 3.6.2, we have H \Kn,t → H \ (γ1(0, t] ∪ γ2(0, t]) for n → ∞ in the sense of
kernel convergence. Let z0 ∈ (U1(0), U2(0)) and denote by zn(t) the solution to

żn(t) = 2αn,λ(t)
zn(t)− U1(t) + 2(1− αn,λ(t))

zn(t)− U2(t) , zn(0) = z0.

It may not exist until t = 1, but during its interval of existence we have zn(t) − U2(t) < 0 <
zn(t)− U1(t) and

2
zn(t)− U2(t) ≤ żn(t) ≤ 2

zn(t)− U1(t) .

From this it follows that there exist τ,A,B > 0, independent of n, such that zn(t) exists until
t = τ and

max
s∈[0,τ ]

U1(s) < A < zn(t) < B < min
s∈[0,τ ]

U2(s).

Thus, for all n ∈ N and t ∈ (0, τ ], we can write Kt,n = Ct,n∪Dt,n, where Ct,n and Dt,n are disjoint
subhulls of Kt,n with

H \ Ct,n → H \ γ1(0, t], H \Dt,n → H \ γ2(0, t].
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The cluster sets1 of Ct,n and Dt,n with respect to gt,n are sets I1 and I2 respectively with I1 ⊂
(−∞, zn(t)) and I2 ⊂ (zn(t),+∞). Hence, Ct,n is the hull that is growing if and only if αn,λ(t) = 1.
Let xn(t) = hcap(Cn,t). Then we get

xn

(
k

2n
)

=
k∑
j=1

(
xn

(
j

2n
)
− xn

(
j − 1

2n
))

=
k∑
j=1

(
xn

(
j − 1 + λ

2n
)
− xn

(
j − 1

2n
))

≥
Lemma 3.2.2 c)

k∑
j=1

2
(
j − 1 + λ

2n − j − 1
2n

)
=

k∑
j=1

2λ
2n = 2λ · k2n

for all n ∈ N and k ∈ {1, ..., 2n} with k/2n ≤ τ .
As xn(t)→ x(t) for every t ∈ [0, τ ], we conclude that x(t) ≥ 2λt for any t of the form t = k/2n ≤ τ.
The set of all those t is dense in [0, τ ] and as x(t) is a continuous function, we deduce x(t) ≥ 2λt
for every t ∈ [0, τ ].
(ii) In a similar way as in step (i), now utilizing the Loewner equation

ḣt,n(z) = 2(1− αn,1−λ(t))
ht,n(z)− U1(t) + 2αn,1−λ(t)

ht,n(z)− U2(t) , h0,n(z) = z ,

we obtain y(t) ≥ 2(1− λ)t for all t ≥ 0 small enough.
(iii) Using the estimates in (i) and (ii), Lemma 3.6.12 gives

2λt ≤ x(t) ≤ 2λt+ O(t) for t→ 0,

i.e., ẋ(0) exists and ẋ(0) = 2λ. In the same way we obtain ẏ(0) = 2(1− λ).

Lemma 3.6.14. Let x(t) = hcap(γ1(0, t]). Then the function x : [0, 1] → [0,∞) is continuously
differentiable with

ẋ(0) = 2λ and ẋ(t) > 2λ for all t ∈ (0, 1] .
In addition,

ẋ(t) = 2λ
C(x(t), t) ,

with a continuous function C : {(x0, t) : 0 ≤ x0 ≤ t, 0 ≤ t ≤ 1} → (0, 1], which is continuously
differentiable w.r.t. t.

Proof. For j = 1, 2 denote by θj(s) the parameterization of Γj by its half–plane capacity. Let
t ∈ [0, 1] and let 0 ≤ x0 ≤ t. Then there exists a unique y0 ∈ [0, 1] such that θ1[0, x0] ∪ θ2[0, y0]
has half–plane capacity 2t. Apply the mapping A := gθ1[0,x0] on the two slits. We define χ(∆) :=
A(θ1(x0 + ∆)) for all ∆ ≥ 0 small enough. Then we have by Lemma 3.2.2 b), hcap(χ[0,∆]) =
hcap(θ1[0, x0 + ∆]) − hcap(θ1[0, x0]) = 2∆. Next we apply the mapping B := gA(θ2[0,y0]). Let
ψ(∆) := B(χ(∆)). Now we have

hcap(ψ[0,∆])
2∆ → B′(χ(0))2 for ∆→ 0,

see [LSW01b], Lemma 2.8. Note that B′(χ(0))2 depends on x0 and t only. So let us define the
function C(x0, t) := B′(χ(0))2. C has the following properties:

1If A is a hull and B ⊂ A ∪ R, then the cluster set of B with respect to gA is the set

{w ∈ H | There exists a sequence (zn)n, zn ∈ H \A, with zn → z0 ∈ ∂B and gA(zn)→ w}.
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• (x0, t) 7→ C(x0, t) is continuous: A and χ(0) depend continuously on x0. Furthermore, y0
depends continuously on the pair (x0, t), so B depends continuously on (x0, t) as well as
C(x0, t) = B′(χ(0))2.

• C is continuously differentiable with respect to t: For fixed x0, both the value y0 and the
mapping B are continuously differentiable with respect to t, see section 4.6.1 in [Law05].
Hence, as χ(0) is fixed, also B′(χ(0)) is continuously differentiable w.r.t. t.

• C(x0, t) ∈ (0, 1) for all 0 ≤ x0 < t ≤ 1: see Proposition 5.15 in [Law05].

Now we look at the case x0 = x(t). Then x(t + h) − x(t) = hcap(χ[0,∆(h)]) = 2∆(h) and we
know that

lim
h↓0

hcap(ψ[0,∆(h)])
h

= 2λ.

This follows by applying Lemma 3.6.13 to the slits gt(Γ1 \ γ1[0, t]) and gt(Γ2 \ γ2[0, t]). Thus

lim
h↓0

x(t+ h)− x(t)
h

= lim
h↓0

2∆(h)
h

= lim
h↓0

2∆(h) · hcap(ψ[0,∆(h)])
hcap(ψ[0,∆(h)]) · h = 2λ

C(x(t), t) .

Hence, the right derivative of x(t) exists and is continuous, so x(t) is continuously differentiable,
see Lemma 4.3 in [Law05], and

ẋ(t) = 2λ
C(x(t), t) .

3.6.4 Proof of Theorem 3.6.2, Part II (Uniqueness)

Let ν, µ ∈ [0, 1] be constant weights and U1, U2, V1, V2 : [0, 1]→ R be continuous driving functions
such that the solutions gt and ht of

ġt(z) = 2ν
gt(z)− U1(t) + 2(1− ν)

gt(z)− U2(t) , g0(z) = z, and

ḣt(z) = 2µ
ht(z)− V1(t) + 2(1− µ)

ht(z)− V2(t) , h0(z) = z,

satisfy g1 = h1 = gΓ1∪Γ2 .

Assume ν > µ. Let x1(t) and x2(t) be the half–plane capacities of the generated part of Γ1 at time
t with respect to gt and ht, and let y1(t) and y2(t) be the corresponding half–plane capacities of
Γ2. Then ẋ1(0) = ν > µ = ẋ2(0) by Lemma 3.6.13. Consequently, x1(t) > x2(t) for all t ≥ 0 small
enough. Since x1(1) = hcap(Γ1) = x2(1), there is a first time τ ∈ (0, 1] such that x1(τ) = x2(τ).
Then x1(t) > x2(t) for every t ∈ [0, τ), so ẋ1(τ) ≤ ẋ2(τ). On the other hand, Lemma 3.6.14
shows that

ẋ1(τ) = 2ν
C(x1(τ), τ) >

2µ
C(x2(τ), τ) = ẋ2(τ) ,

a contradiction. Hence we know that ν ≤ µ. By switching the roles of ν and µ, we deduce ν = µ.

Next, again with the help of Lemma 3.6.14, we see that both functions x1 and x2 are solutions
to the same initial value problem,

ẋ(t) = 2µ
C(x(t), t) , x(0) = 0 ,
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where (x0, t) 7→ 2µ/C(x0, t) is continuous, positive and Lipschitz continuous in t. However, the
solution to such a problem is unique according to Theorem 2.7 in [CP03]. Hence x1 = x2 and
also y1 = y2, so we have

H(t) := θ1[0, x1(t)] ∪ θ2[0, y1(t)] = θ1[0, x2(t)] ∪ γ2[0, y2(t)]

for all t. Using the geometric meaning of the driving functions, we finally get

Uj(t) = gH(t)(θj(x1(t)) = gH(t)(θj(x2(t)) = Vj(t)

for j = 1, 2. This completes the proof of the uniqueness statement of Theorem 3.6.2.

3.6.5 Some remarks

We finish Section 3.6 by noting some remarks about further conclusions revealed by the proof of
Theorem 3.6.2.
We start with a simple estimate for the constant coefficients as a consequence of Lemma 3.6.14.

Corollary 3.6.15. Given slits Γ1, ...,Γn with disjoint closures, then the corresponding coefficients
λ1, ..., λn from Theorem 3.6.2 satisfy

2T −
∑
m 6=k

hcap(Γm) < 2λkT < hcap(Γk).

Proof. By Lemma 3.6.14, hcap(Γk) >
∫ T
0 2λk ds = 2λkT.

Furthermore, 2λkT = 2T −
∑
m 6=k 2λmT > 2T −

∑
m 6=k hcap(Γk).

Next we note the - quite intuitive - “monotonicity” of the constant coefficients.

Corollary 3.6.16. Let Γ1, ...,Γn be pairwise disjoint slits with coefficients λ1, ..., λn and let
Γ ( Γk be a subslit of Γk. Denote by µ1, ..., µk the coefficients that belong to the configuration
Γ1, ...,Γk−1,Γ,Γk+1, ...,Γn. Then

λk > µk.

Proof. Let γ(t) be the parameterization of Γk that we obtain from producing Γ1, ...,Γn by the
multiple-slit equation with constant coefficients and let α(t) be the corresponding parameteriza-
tion of Γ obtained by the multiple-slit equation with constant coefficients for the configuration
Γ1, ...,Γk−1,Γ,Γk+1, ...,Γn. Furthermore, let x(t) = hcap(γ(0, t]) and y(t) = hcap(α(0, t]).
By Lemma 3.6.14 we know that x and y satisfy the initial value problems

ẋ(t) = 2λk
C(x(t), t) , x(0) = 0, ẏ(t) = 2µk

C(y(t), t) , y(0) = 0,

where C is continuous and continuously differentiable w.r.t. t.
Let 2T = hcap(Γ1 ∪ ... ∪ Γk−1 ∪ Γ ∪ Γk+1 ∪ ... ∪ Γn) and assume that λk ≤ µk. Then we have
x(t) ≤ y(t) for all t ∈ [0, T ], in particular x(T ) ≤ y(T ). But

2y(T ) = hcap(Γ) < 2x(T ).

A direct consequence of Theorem 3.6.2 is that infinite slits can be generated with arbitrary
constant coefficients:
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Corollary 3.6.17. Let γ1, ..., γn : [0, 1]→ H∪{∞} be n simple curves with γ1(1) = ... = γn(1) =
∞, γ1(0), ..., γn(0) ∈ R, γ1(0, 1) ∪ ... ∪ γn(0, 1) ⊂ H and γj [0, 1) ∩ γk[0, 1) = ∅ whenever j 6= k.
Then, for every (λ1, ..., λn) ∈ (0, 1)n with

∑n
k=1 λk = 1, there exist unique driving functions

U1, ..., Un : [0,∞)→ R such that equation (3.6.1) with T =∞ generates the curves γ1, ..., γn, i.e.
the generated hulls Kt satisfy ⋃

0≤t<∞
Kt =

n⋃
k=1

γk(0, 1).

Remark 3.6.18. In Theorem 3.6.2 we assumed that Γj ∩ Γk = ∅, j 6= k. In particular, all
slits have different starting points on the real axis. If we relax the latter condition and two (or
more) slits have a common starting point, then we should still find unique constant coefficients.
Also, our proof should still work in this case. However, this certainly requires some non-trivial
modifications, e.g. a generalization of Lemma 3.6.6.
Now suppose two slits intersect in finitely many points. Then we can reduce this case to the case
of slits intersecting only in their starting point, provided that one slit does not enclose the tip of
the other slit. Conversely, when the tip of one slit is enclosed by another slit, then these curves
can never be generated by a Loewner equation with constant coefficients, see [Gra07], Appendix.

Remark 3.6.19. Given two (or more) disjoint slits Γ1 and Γ2, how can we calculate the coefficient
λ corresponding to Γ1 and the driving functions U1 and U2? It seems that there is no way to
calculate λ by computing simple geometric quantities of the two slits. However, in principle, one
can use the proof of Theorem 3.5.2 to find a numerical approximation of λ as well as of U1 and
U2.
Conversely, given λ, U1 and U2, one can use the approximation∫ t

0

2λ
z − U1(τ) + 2(1− λ)

z − U2(τ) dτ ≈
∫ t

0

2αn,λ(τ)
z − U1(τ) + 2(1− αn,λ(τ))

z − U2(τ) dτ,

to solve the multiple-slit equation numerically by solving one-slit equations only. Some ways how
to solve the one-slit equation are explained in [Ken09] and [Ken07], see also [Tra] for a convergence
result concerning the simulation of SLE.
In numerical mathematics, such a method - dividing a vector field into a sum of “simple” vector
fields and integrating each of them separately - is usually called “splitting method”.

3.7 On constant coefficients in the radial multiple-slit equation

Already in 1936, E. Peschl considered the multiple–slit version of Loewner’s radial one-slit equa-
tion (1.1.4), see [Pes36], Section IV. He proved that for every disjoint union of n Jordan arcs
Γ1, . . . ,Γn in D\{0} such that D\Γ is simply connected, there are continuous parameter functions
λ1, . . . , λn : [0, T ] → R with λj(t) ≥ 0 and λ1(t) + . . . + λn(t) = 1 for every t ∈ [0, T ], and
continuous driving functions κj : [0, T ] → ∂D such that the solution wt to the radial Loewner
equation

ẇt(z) = −wt(z)
n∑
j=1

λj(t)
κj(t) + wt(z)
κj(t)− wt(z)

, w0(z) = z , (3.7.1)

has the property that wT maps D conformally onto D\(Γ1, . . . ,Γn).
Now one can also ask for the existence and uniqueness of constant coefficients for the slits Γ1, ...,Γn
in this radial case. As already mentioned, D. Prokhorov has proven the existence and uniqueness
of constant coefficients for several slits for the radial equation under the assumption that all slits
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are piecewise analytic.

It seems to be natural that one can apply the same idea of the proof of Theorem 3.6.2 here,
too, in order to show that one can drop any assumption on the regularity of the slits to generate
them with constant coefficients. On the other hand, we used several properties of the half-plane
capacity in the proof which seem not to have counterparts in the radial case at all.
The author of this thesis presented Theorem 3.6.2 and its proof during the Doc Course “Complex
Analysis and Related Areas” (IMUS 2013) in Sevilla. Another participant of this course was
Christoph Böhm, who was working on a radial multiple-slit equation for multiply connected
domains (a special case of a Komatu-Loewner differential equation). He realized how to change
the proof of Theorem 3.6.2 such that the technical difficulties can be handled in the radial case
(and even for multiply connected domains!) by using results from his own work. The result can
be found in the joint paper [BSa] and we cite the special case of a simply connected domain.
Let f : D \ (Γ1 ∪ . . . ∪ Γn) → D be the unique conformal mapping with f(0) = 0 and f ′(0) > 0,
then f ′(0) > 1 and the logarithmic mapping radius of D \ (Γ1 ∪ . . . ∪ Γn) is defined to be the real
number log f ′(0) > 0.

Theorem 3.7.1 (Corollary 2 in [BSa]). Let Γ1, . . . ,Γn be slits in D\{0} with disjoint closures and
let L be the logarithmic mapping radius of D\ (Γ1∪ . . .∪Γn). Then there exist unique λ1, ..., λn ∈
(0, 1) with

∑n
k=1 λk = 1 and unique continuous driving functions κ1, . . . , κn : [0, L] → ∂D such

that the solution of the Loewner equation

ẇt(z) = −wt(z)
n∑
j=1

λj
κj(t) + wt(z)
κj(t)− wt(z)

, w0(z) = z,

generates the slits Γ1, . . . ,Γn, i.e. wL maps D conformally onto D \ (Γ1 ∪ . . . ∪ Γn).

Remark 3.7.2. In Corollary 2 from [BSa], this statement is formulated for the corresponding
reversed Loewner ODE. In the simply connected case, however, the statement can be easily trans-
ferred from the reversed to the ordinary ODE and vice versa.

3.8 The simple-curve problem

Recall the simple-curve problem: Under which conditions does the multiple-slit equation 3.6.1
generate simple curves?

A sufficient condition for getting slits in the one-slit equation was found by J. Lind, D. Marshall
and S. Rohde. First we need the following two definitions.

Definition 3.8.1.

(1) A slit Γ is called quasislit if Γ is the image of the line segment [0, i] under a quasiconformal
mapping Q : H→ H with Q(H) = H and Q(∞) =∞.

(2) We let Lip
(

1
2

)
be the set of all continuous functions U : [0, T ] → R with |U(t) − U(s)| ≤

c
√
|s− t|, for a c > 0 and all s, t ∈ [0, T ].

A quasislit is a slit that is a quasiarc2 approaching R nontangentially, see Lemma 2.3 in [MR05].
2A quasiarc is the image of a line segment under a quasiconformal mapping.
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Together with the metric characterization of quasiarcs by Ahlfors’ three point property (also
called bounded turning property, see [LV73], Section 8.9 or [Ric66], Theorem 1), we obtain the
following geometric description of quasislits:
A slit Γ is a quasislit if and only if Γ approaches R nontangentially and

sup
x,y∈Γ
x 6=y

diam(x, y)
|x− y|

<∞, (3.8.1)

where we denote by diam(x, y) the diameter of the subcurve of Γ joining x and y.
Now the following connection between Lip

(
1
2

)
and quasislits holds.

Theorem 3.8.2. (Theorem 1.1 in [MR05] and Theorem 2 in [Lin05])0
If Γ is a quasislit with driving function U , then U ∈ Lip

(
1
2

)
. Conversely, if U ∈ Lip

(
1
2

)
and for

every t ∈ [0, T ] there exists an ε > 0 such that

sup
r,s∈[0,T ]
r 6=s

|r−t|,|s−t|<ε

|U(r)− U(s)|√
|r − s|

< 4,

then Γ is a quasislit.

In the following, we take a look at some necessary and sufficient conditions for the multiple-slit
equation to generate simple curves. In Section 3.8.5, we have a look at the following question:

Is the constant 4 in Theorem 3.8.2 sharp for generating quasislits? (3.8.2)

Finally, in Section 3.9 we will look for relations between the driving functions and the way how
the slits approach R.

3.8.1 Continuous driving functions

In the following, we will look at the multiple-slit equation

ġt(z) =
n∑
k=1

2λk(t)
gt(z)− Uk(t)

, g0(z) = z, t ∈ [0, T ], (3.8.3)

with the following assumptions:

(a) Each λk : [0, T ]→ [0, 1] is continuous and λk(t) ∈ (0, 1) for all t ∈ [0, T ].

(b)
∑n
k=1 λk(t) = 1 for all t ∈ [0, 1].

(c) The driving functions Uk : [0, T ]→ R are continuous and

(d) Uj(t) < Uk(t) for all t ∈ [0, T ] and 1 ≤ j < k ≤ n.

Condition (b) simply implies that the generated hulls Kt satisfy hcap(Kt) = 2t for all t ∈ [0, T ].
We are interested in those cases where equation (3.8.3) generates hulls that have exactly n con-
nected components. Assumption (d) is necessary for this case. Discontinuous driving functions
could also generate n connected components, but we will not consider this case. Property (a) is
not necessary either, but we want to exclude that a coefficient function λk(t) can be equal to 0
in a whole interval. Clearly, in this case, we could have less than n connected components.
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Lemma 3.8.3. Let {Kt}t∈[0,T ] be hulls generated by equation (3.8.3). Then there exists τ > 0
such that Kt falls into n connected components Ct1, ..., Ctn for all t ∈ (0, τ ], with Csj ⊂ Ctj for all
j = 1, ..., n and s ≤ t.
Furthermore, for every j = 1, ..., n, the family {Ctj}t∈[0,τ ] satisfies the local growth property and
x(t) := hcap(Ctj) is continuously differentiable with

ẋ(0) = 2λj(0) and ẋ(t) > 2λj(t) for all t ∈ (0, τ ].

Proof. The statements can be shown by using the same ideas we used in the proofs of Lemma
3.6.13 and Lemma 3.6.14. So we only sketch the steps and, in order to simplify notation, we let
n = 2.
First, consider the one-slit equation

ġt,n(z) = 2αn(τ)
gt,n(z)− U1(τ) + 2(1− αn(τ))

gt,n(z)− U2(τ) dτ, g0,n(z) = z ∈ H,

where αn(t) is a step function with

αn(t) =

1 when t ∈ ( k
2n ,

k+λ( k
2n )

2n ), k ∈ {0, ..., 2n − 1},
0 when t ∈ (k+λ( k

2n )
2n , k+1

2n ), k ∈ {0, ..., 2n − 1}.
(3.8.4)

Denote by Kt,n the generated hulls. Then we know that H \Kt,n → H \Kt for every t ∈ [0, T ].
As in the proof of Lemma 3.6.13, we conclude that there exists τ such that Kt,n consists of two
subhulls At,n, Bt,n for every t ∈ [0, τ ] and n ∈ N with As,n ⊂ At,n, Bs,n ⊂ Bt,n whenever s ≤ t
and At,n grows whenever αn(t) = 1, Bt,n grows whenever αn(t) = 0. From this it follows that Kt

consists of two disjoint subhulls Ct1, Ct2 for all t ∈ [0, τ ] with Csj ⊂ Ctj , s ≤ t, and H\At,n → H\Ct1,
H \Bt,n → H \Ct2 for n→∞. It is easy to verify that the family {Ctj}t∈[0,τ ] has the local growth
property. In particular, this shows that Ct1 and Ct2 are connected, so Kt has exactly two connected
components for all t ∈ (0, τ ].
Finally, by repeating the steps of the the proof of Lemma 3.6.14, we obtain that x(t) := hcap(Ctj)
is continuously differentiable with ẋ(0) = 2λj(0) and ẋ(t) > 2λj(t) for all t ∈ (0, τ ].

The global statement that also KT has n connected components is not true in general, as, for
example, Ct1 could hit Ct2 for some t ∈ [0, T ].

In Example 3.5.4, we have already seen that there are continuous driving functions that generate
curves hitting the real axis (or itself) at a certain time. From this time on, the hull is not a simple
curve any longer. There are further, more subtle obstacles preventing the one-slit equation from
producing simple curves as the following example shows.

Example 3.8.4. There exists a driving function U ∈ Lip
(

1
2

)
such that Kt is a slit γ(0, t] for

all t ∈ (0, T ) and for t → T the curve γ wraps infinitely often around, say, B(2i, 1). Hence
KT = γ(0, T ) ∪ B(2i, 1) is not locally connected, see Example 4.28 in [Law05]. F

In order to distinguish between these two kinds of obstacles, one has introduced two further
notions, which are more general than “the hull is a slit”.

Definition 3.8.5. Let {Kt}t∈[0,T ] be a family of hulls generated by the multiple-slit equation
(3.8.3). We say that {Kt}t∈[0,T ] is generated by curves, if there exist n continuous functions
γ1, . . . , γn : [0, T ]→ H, such that H\Kt is the unbounded component of H\ (γ1[0, t]∪ . . .∪γn[0, t])
for every t ∈ [0, T ].
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Remark 3.8.6. Several properties of hulls that are generated by curves are described in [Law05],
Section 4.4.

The second notion of “welded hulls” is discussed in the next section. We end this subsection by
a last example.
Example 3.8.7. It is possible to generate space-filling curves by the one-slit equation. The Hilbert
space-filling curve, e.g., can be generated by a driving function which is in Lip

(
1
2

)
, see Corollary

1.4 in [LR]. The corresponding hulls are generated by a curve, which is “self-touching everywhere”.
F

3.8.2 Welded hulls

First, we consider the backward equation to (3.8.3) with real initial values, i.e.,

ẋ(t) =
n∑
j=1

−2λj(T − t)
x(t)− Uj(T − t)

, x(0) = x0 ∈ R \ {U1(T ), ..., Un(T )}. (3.8.5)

Here, the solution may not exist for all t ∈ [0, T ]. If a solution ceases to exist, say at t = s, it will
hit a singularity, i.e. limt↑s x(t) = Uj(s), with at most two possibilities for j, depending on the
position of x0 with respect to U1(T ), ..., Un(T ).

Now assume that there are two different solutions x(t), y(t) with x(0) = x0 < y0 = y(0). If x(t)
and y(t) meet a singularity after some time, i.e. limt↑s x(t) = limt↑s y(t) = Uj(T − s) for some
s ∈ (0, T ], then x0 and y0 lie on different sides with respect to Uj(T ), i.e. x0 < Uj(T ) < y0.
Otherwise, the difference y(t)− x(t) would satisfy

ẏ(t)− ẋ(t) =
n∑
j=1

2λj(T − t)(y(t)− x(t))
(y(t)− Uj(T − t))(x(t)− Uj(T − t))

> 0

for all 0 ≤ t < s and thus, limt↑s(x(t)− y(t)) = 0 would be impossible.
Consequently, for any 1 ≤ j ≤ n and any s ∈ (0, T ], there are at most two initial values so that
the corresponding solutions will meet Uj(T − s).

Definition 3.8.8. Let {Kt}t∈[0,T ] be a family of hulls generated by the multiple-slit equation
(3.8.3). We say that {Kt}t∈[0,T ] is welded if for every j ∈ {1, ..., n} and every s ∈ (0, T ] there
exist exactly two real values xj0, y

j
0 with xj0 < Uj(T ) < yj0 such that the corresponding solutions

x(t) and y(t) of (3.8.5) with x(0) = xj0, y(0) = yj0 satisfy

lim
t↑s

x(t) = lim
t↑s

y(t) = Uj(T − s).

Before we give some explanations for this definition, we need the following characterization.

Proposition 3.8.9. The following statements are equivalent:

a) {Kt}t∈[0,T ] is welded.

b) For every τ ∈ [0, T ) there exists ε > 0 such that for all x0 ∈ R \ {U1(τ), ..., Un(τ)} the
solution x(t) of

ẋ(t) =
n∑
j=1

2λj(t)
x(t)− Uj(t)

, x(τ) = x0, (3.8.6)

does not hit U1(t), ..., Un(t) for t < T and satisfies |x(T )−Uj(T )| > ε for all j ∈ {1, ..., n}.
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Proof. a) =⇒ b) : Firstly, the solution x(t) to (3.8.6) exists locally, say in the interval [τ, T ∗),
T ∗ ≤ T. Now we know that there are xj0, y

j
0, j = 1, ..., n, such that the solutions xj(t) and yj(t) to

equation (3.8.5) with initial values xj0 and yj0 respectively hit the singularity Uj(τ) (at s = T − τ)
and xj0 < Uj(T ) < yj0. But this implies that x(t) can be extended to the interval [0, T ∗] with
|Uj(T ∗)− x(T ∗)| > ε, where ε := min{Uj(T ∗)− xj(T − T ∗), yj(T − T ∗)− Uj(T ∗)}.
b) =⇒ a) : Let s ∈ (0, T ] and τ = T − s. We set an := Uj(τ) − 1

n for all n ∈ N. The solution
xn(t) of (3.8.6) with initial value an exists up to time T . Hence we can define ξn := xn(T ) for all
n ≥ N and we have Uj(T )− ξn > ε. The sequence ξn is increasing and bounded above, and so it
has a limit x0 < Uj(T ). Then the solution x(t) of (3.8.5) with x0 as initial value satisfies

lim
t↑s

x(t) = lim
n→∞

an = Uj(τ) = Uj(T − s).

The second value y0 can be obtained in the same way by considering the sequence Uj(τ) + 1
n

instead of an.

Figure 3.3 shows an example of a situation for n = 2, where all solutions to (3.8.5) with initial
value in (U1(T ), U2(T )) will meet U2(t). So the whole interval (U1(T ), U2(T )) “belongs” to the
second slit.

gT

fT

U1(0) U2(0) U1(T ) U2(T )
b b b bbb

Figure 3.3: The left slit hits the right one at t = T.

Corollary 3.8.10. Let {Kt}t∈[0,T ] be generated by equation (3.8.3). If {Kt}t∈[0,T ] is welded, then
KT has n connected components.

Proof. Clearly, KT cannot have more than n connected components by Lemma 3.8.3.
Let N ∈ N and for j = 1, ..., n define p−j = Uj(0) − 1

N , p
+
j = Uj(0) + 1

N . We can choose N large
enough such that p−j+1 > Uj(0) and p+

j < Uj+1(0), for all j = 1, ..., n − 1. Furthermore, choose
ε > 0 so small that

p−1 + ε < U1(0) < p+
1 − ε < p+

1 + ε < U2(0) < ... < Un(0) < p+
n − ε.

Now solve equation (3.8.6) with τ = 0 and initial value x0 ∈ (p+
1 − ε, p

+
1 + ε). The solution x(t)

will always exist until t = T and the set E := {x(T ) | x0 ∈ (p+
1 − ε, p

+
1 + ε)} forms an open set.

Thus, the cluster set of KT with respect to gKT has at least two connected components, one lying
on the left side of E and one on the right side. If we pass on to the case x0 ∈ (p+

2 − ε, p
+
2 + ε),

we get one further connected component and so on.

Remark 3.8.11. The notion of welded hulls was introduced in [MR05] for the radial Loewner
equation. The chordal case is considered in [Lin05].
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As we have seen, welded hulls always have n connected components and, informally speaking, each
component has a left and a right side.
Assume that {Kt}t∈[0,T ] is welded. Let CT be the component of KT corresponding to Uj(0) and
let the interval I = [a, b] be the cluster set of CT with respect to gT , then a < Uj(T ) < b and
for every a ≤ x0 < Uj(T ) there exists Uj(T ) < y0 ≤ b such that the solutions to (3.8.5) with
initial values x0 and y0 hit the singularity at the same time. This gives a welding homeomorphism
h : [a, b]→ [a, b] by defining

h(x0) := y0, h(y0) := x0, h(Uj(T )) := Uj(T ).

If CT is a slit, then h is directly connected to “classical” welding (or sewing) homeomorphisms of
a Jordan domain and one can relate properties of h to properties of the slit. However, in general,
CT is not a slit and therefore h is only a “generalized welding” homeomorphism in the sense of
[Ham91], see also [Bis07].

The hull of Example 3.8.4, which is sketched in picture a) of Figure 3.4, is not generated by
a curve. Picture c) shows an example of a hull that is generated by a curve. Here, the curve
hits itself and the real axis and consequently, this hull is not welded. The hull in picture b), a
“topologist’s sine curve” approaching a compact interval on R, is neither welded nor generated
by a curve.

a) b) c)

Figure 3.4: Three cases of hulls that are not slits.

Proposition 3.8.12. Let {Kt}t∈[0,T ] be a family of hulls generated by equation (3.8.3). Then
KT is a union of slits with disjoint closures if and only if {Kt}t∈[0,T ] is generated by curves and
welded.

Proof. For the non-trivial direction of the statement, see Lemma 4.34 in [Law05].

A necessary condition

Next we derive a non-trivial, necessary condition for getting welded hulls from equation (3.8.3),
basically by using Example 3.5.4.

Proposition 3.8.13. Let {Kt}t∈[0,T ] be a family of hulls generated by the multiple-slit equation
(3.8.3). Assume there exists an s ∈ (0, T ] and j ∈ {1, ..., n} such that

lim inf
h↓0

|Uj(s)− Uj(s− h)|√
h

> 4
√
λj(s).

Then {Kt}t∈[0,s] is not welded.
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Proof. Without loss of generality we assume that s = 1 and Uj(1) = 0.
We know that there exists c > 4 and ε > 0 such that |Uj(1)−Uj(1−h)| = |Uj(1−h)| ≥ c

√
λj(1) · h

for all h ∈ [0, ε], i.e. |Uj(t)| ≥ c
√
λj(1) ·

√
1− t for all t ∈ [1− ε, 1]. We can assume that

Uj(t) ≥ c
√
λj(1) ·

√
1− t

for all t ∈ [1− ε, 1].

First, let n = 1. Then U1(t) ≥ c ·
√

1− t for all t ∈ [1− ε, 1].
As the driving function c

√
1− t generates a simple curve that finally hits R when t = 1, see

Example 3.5.4, we conclude that for any t0 ∈ [0, 1) there exists x0 = x0(t0) < c ·
√

1− t0 ≤ U1(t0)
such that the solution to

ẏ(t) = 2
y(t)− c

√
1− t

, y(t0) = x0, (3.8.7)

exists until t = 1 and satisfies y(1) = 0 = U(1).
Let τ ∈ [1− ε, 1) and consider the real initial value problem

ẋ(t) = 2
x(t)− U1(t) , x(τ) = x0(τ) < U1(τ).

Let y(t) be the solution to (3.8.7) with t0 = τ . As ẋ(t) ≥ ẏ(t) for all t ≥ τ where x(t) exists, we
conclude that, if x(t) exists until t = 1, then U1(1) ≥ x(1) ≥ y(1) = U1(1), hence x(1) = U1(1)
and the generated hulls {Kt}t∈[0,1] are not welded according to Proposition 3.8.9.

Now let n ≥ 2. In fact we can apply the same trick here. However, it remains to show that the
hulls of a multiple-slit equation are not welded provided that one driving function Uj has the
form

Uj(t) = c
√

1− t, c > 4
√
λj(1). (3.8.8)

Fix s ∈ [0, 1). For t ∈ [0, 1 − s], let At = gs(Ks+t \Ks). Furthermore, let dt = gAt . Assume that
s is so close to 1 that At has n connected components for all t ∈ [0, 1 − s]. Denote by Ct the
component that belongs to Uj and let x(t) = hcap(Ct). Furthermore, let lt = gCt and define Ht

by dt = Ht ◦ lt. The mappings lt satisfy a one-slit Loewner equation

l̇t = 2ẋ(t)
lt − Vs(t)

,

where x(t) is continuously differentiable with ẋ(0) = 2λj(s), see Lemma 3.8.3, and Vs is a contin-
uous driving function. This function Vs is related to Uj via

Vs(t) = H−1
t (Uj(s+ t)).

For s big enough, the function H−1
t can be extended to the lower half-plane by reflection and

to a fixed neighborhood N of {Uj(t + s) t ∈ [0, 1 − s]} for all t ≤ 1 − s. As the function
[0, 1− s]×N 3 (t, z) 7→ Fs(t, z) := H−1

t (z) is continuously differentiable, we have

Vs(1− s− h)− Vs(1− s) = ∂Fs
∂t

(1− s, Uj(1)) · (−h) + ∂Fs
∂z

(1− s, Uj(1)) · (Uj(1− h)− Uj(1))

+O(|h|+ |Uj(1)− Uj(1− h)|) = ∂Fs
∂z

(1− s, Uj(1)) · (c
√
h) + O(

√
|h|)
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for h ↓ 0. Thus

lim inf
h↓0

|Vs(1− s)− Vs(1− s− h)|√
h

=
∣∣∣∣∂Fs∂z

(1− s, Uj(1))
∣∣∣∣ · c > ∣∣∣∣∂Fs∂z

(1− s, Uj(1))
∣∣∣∣ · 4√λj(1).

Moreover, Fs(1− s, ·) converges uniformly to the identity for s→ 1. Thus, ∂Fs∂z (1− s, Uj(1))→ 1
for s→ 1. Hence, we can choose s ∈ [0, 1) so close to 1 that the driving function Vs satisfies

lim inf
h↓0

|Vs(1)− Vs(1− h)|√
h

> 4
√
λj(1).

By noting that ẋ(0) = 2λj(s) → 2λj(1) for s → 1, a simple time change for Vs shows that
we can apply the statement for n = 1 to Vs when s is close enough to 1, which shows that
{gs(Ks+h \Ks)}h∈[0,1−s] is not welded. Consequently, {Kt}t∈[0,1] is not welded.

If we want the driving functions Uj to generate welded hulls, then the condition of the previous
Proposition has to be violated. However, this can be done in two different ways.
First, Uj can be too smooth, as in Theorem 3.8.2.
A second, totally different possibility is represented by the behavior of a Brownian motion B(t).
In this case, we always find a sequence of points tn with tn → 1 and |B(tn)−B(1)|√

|tn−1|
> 4 (with prob-

ability one), but B(t) fluctuates so much that the inequality of Proposition 3.8.13 never holds.
Let’s state the contrapositive again:

If KT is welded (e.g., it consists of n disjoint simple curves) then, for every s ∈ (0, T ], and
j ∈ {1, ..., n}, we have

lim sup
h↓0

|Uj(s)− Uj(s− h)|√
h

≤ 4 (“regular case”), or

lim inf
h↓0

|Uj(s)− Uj(s− h)|√
h

≤ 4 < lim sup
h↓0

|Uj(s)− Uj(s− h)|√
h

(“irregular case”).

Next we will see that the regular case is close to being a sufficient condition for getting welded
hulls.

A sufficient condition for the regular case

In the following, we denote by Lipleft
(

1
2

)
the set of all “pointwise left 1

2 -Hölder continuous”
functions U : [0, T ]→ R, so that for every t ∈ (0, T ] there is a c > 0 and an ε > 0 such that

|U(t)− U(s)| < c
√
t− s for all s ∈ [t− ε, t].

An equivalent formulation is: For every t ∈ (0, T ], there exists c > 0 such that

lim sup
h↓0

|U(t)− U(t− h)|√
h

< c.

Analyzing the proof of Theorem 3.8.2 immediately yields that in the case n = 1, U1 generates
welded hulls if we assume that

lim sup
h↓0

|U1(t)− U1(t− h)|√
h

< 4 (3.8.9)
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for every t ∈ (0, T ]. By using techniques of [Lin05], we will prove the following statement which
generalizes the sufficient condition (3.8.9).

Theorem 3.8.14. Let {Kt}t∈[0,T ] be a family of hulls generated by equation (3.8.3). Suppose
that

lim sup
h↓0

|Uj(t)− Uj(t− h)|√
h

< 4
√
λj(t), (3.8.10)

for every j = 1, ..., n and t ∈ (0, T ], then {Kt}t∈[0,T ] is welded.

Remark 3.8.15. In particular, the “pointwise left 1
2 -Hölder continuous” condition (3.8.10) forces

KT to fall into n disjoint connected components.

Again, we will give the proof only for n = 2 in order to simplify notation. We begin with the
following lemma.

Lemma 3.8.16. Let λ > 0, 0 ≤ τ < 2
√
λ and hn be the following sequence of functions

h1 : R→ R, h1(x) = x,

hn+1 : {x ∈ R | hn(x) 6= 0} → R, hn+1(x) = x+ τ − 4λ
hn(x) for n ≥ 1.

Let xn denote the largest zero of hn. Then (xn)n is an increasing sequence that converges to
4
√
λ− τ. Furthermore, if hn(c) ≥ 0 for every n ∈ N, then c ≥ 4

√
λ− τ.

Proof. By induction, it can be shown that hn+1 maps (xn,+∞) strictly monotonically onto R.
Consequently, (xn)n is an increasing sequence. We prove that it is bounded above by 4

√
λ − τ

by showing hn(4
√
λ− τ) > 2

√
λ for all n ≥ 1 inductively: First,

h1(4
√
λ− τ) = 4

√
λ− τ > 4

√
λ− 2

√
λ = 2

√
λ,

and for n ≥ 1 we have

hn+1(4
√
λ− τ) = 4

√
λ− τ + τ − 4λ

hn(4
√
λ− τ)

> 4
√
λ− 4λ

2
√
λ

= 2
√
λ.

Hence xn converges to
x̃ ≤ 4

√
λ− τ. (3.8.11)

Obviously, we have hn(x̃) > 0 for all n. Now suppose hn(x̃) ≤
√
λ, then hn+1(x̃) = x̃+τ− 4λ

hn(x̃) ≤
x̃+ τ − 4

√
λ ≤ 0, a contradiction. Hence hn(x̃) >

√
λ.

Furthermore, we get from (3.8.11)

hn(x̃)− hn+1(x̃) = hn(x̃)− x̃− τ + 4λ
hn(x̃) ≥ hn(x̃)− 4

√
λ+ 4λ

hn(x̃)

= hn(x̃)2 − 4
√
λhn(x̃) + 4λ

hn(x̃) = (hn(x̃)− 2
√
λ)2

hn(x̃) ≥ 0.

It follows that the sequence hn(x̃) is decreasing and bounded below by
√
λ. It converges to h̃ with

h̃ = x̃+ τ − 4λ
h̃
.

So h̃ = x̃+τ±
√

(x̃+τ)2−16λ
2 and hence (x̃+τ)2 ≥ 16λ. As x̃must be positive, we conclude x̃ ≥ 4

√
λ−τ

and together with (3.8.11) this implies x̃ = 4
√
λ− τ .
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A great advantage of J. Lind’s proof in [Lin05] is the fact that we don’t have to work with
equation (3.8.3) for arbitrary initial values in the upper half-plane, but we can concentrate on
the real initial value problem

x(t0) = x0 ∈ R\{U1(t0), U2(t0)}, ẋ(t) = 2λ1(t)
x(t)− U1(t)+ 2λ2(t)

x(t)− U2(t) , t ∈ [t0, T ]. (3.8.12)

Lemma 3.8.17. Let j = 1 or j = 2 and Uj ∈ Lipleft
(

1
2

)
. Suppose that the solution x(t) of

(3.8.12) with initial value x0 ∈ R \ {U1(t0), U2(t0)} exists until t = T and x(T ) = Uj(T ). Then

lim sup
h↓0

|Uj(T )− Uj(T − h)|√
h

≥ 4
√
λj(T ).

Proof. We will assume that j = 2 and T = 1, and we start with the case U1(t0) < x0 < U2(t0),
so that for all t < 1 the solution satisfies U1(t) < x(t) < U2(t).
First we define

λs2 := min
t∈[s,1]

λ2(t).

Let S ∈ [t0, 1) be so close to 1, that

• x(t) − U1(t) > δ > 1
λS2

(U2(t) − x(t)) for a δ > 0 and all t ∈ [S, 1] (which can be achieved
because 1

λS2
is bounded and U2(t)− x(t) goes to zero when t→ 1) and

• |U2(1)− U2(t)| ≤ c
√

1− t for all t ∈ [S, 1].

Next we define ε := 2
δ

√
1− S and we can assume (by passing on to a larger S if necessary)

ε < 2
√
λS2 . (3.8.13)

Now x(t) is decreasing in [S, 1], since

ẋ(t) = 2λ1(t)
x(t)− U1(t) + 2λ2(t)

x(t)− U2(t) <
2

1
λS2

(U2(t)− x(t))
+ 2λS2
x(t)− U2(t) = 0.

We will now show by induction that

U2(t)− x(t) ≤ hn(c)
√

1− t for every n ∈ N, t ∈ [S, 1],

where hn is the function from Lemma 3.8.16 with λ = λS2 and τ = ε.
First we have

U2(t)− x(t) ≤ U2(t)− x(1) = U2(t)− U2(1) ≤ c
√

1− t = h1(c)
√

1− t.

Now assume the inequality holds for one n ∈ N. Then we have

ẋ(t) ≤ 2
δ

+ 2λS2
x(t)− U2(t) ≤

2
δ
− 2λS2
hn(c)

√
1− t

.

Integrating yields

x(1)− x(t) ≤ 2
δ

(1− t)− 4λS2
hn(c)

√
1− t ≤ (ε− 4λS2

hn(c))
√

1− t.
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This implies

U2(t)− x(t) ≤ U2(t)− U2(1) + (ε− 4λS2
hn(c))

√
1− t ≤ (c+ ε− 4λS2

hn(c))
√

1− t = hn+1(c)
√

1− t.

As U2(t)− x(t) is always positive, we conclude that hn(c) ≥ 0 for every n ∈ N and Lemma 3.8.16
tells us that

c ≥ 4
√
λS2 − ε.

Finally, sending S to 1 yields
c ≥ 4

√
λ1

2 − 0 = 4
√
λ2(1).

The case x0 > U2(t0) can be treated in the same way and in the case x0 < U1(t0), the solution
x(t) cannot fulfill x(1) = U2(1).

Consequently, if we have U1, U2 ∈ Lipleft
(

1
2

)
and

lim sup
h↓0

|Uj(t)− Uj(t− h)|√
h

< 4
√
λj(t) for all t ∈ (t0, T ], j = 1, 2,

then the solution for any x0 ∈ R \ {U1(t0), U2(t0)} will exist up to time t = T and x(T ) cannot
equal U1(T ) or U2(T ). In fact, there are even fixed intervals around U1(T ) and U2(T ) which
cannot be reached by x(T ) for any initial value x0.

Lemma 3.8.18. Let U1, U2 ∈ Lipleft
(

1
2

)
with

lim sup
h↓0

|Uj(t)− Uj(t− h)|√
h

< 4
√
λj(t)

for every t ∈ (t0, T ] and j = 1, 2. Suppose that x(t) is a solution of (3.8.12) with x0 ∈ R \
{U1(t0), U2(t0)}. Then there exists ε > 0 such that

|x(T )− U1(T )| > ε and |x(T )− U2(T )| > ε

for every x0 ∈ R \ {U1(t0), U2(t0)}.

Proof. In order to simplify notation, we let T = 1 in the proof.
We prove the statement by contradiction, hence we assume that for every
ε > 0 there is an xε0 ∈ R \ {U1(t0), U2(t0)} such that

|x(1)− U1(1)| ≤ ε or |x(1)− U2(1)| ≤ ε.

Without loss of generality we may assume that U1(t0) < xε0 < U2(t0) and
U2(1)− x(1) ≤ ε.
Now there is an ε > 0 such that for every ε ∈ (0, ε), the solution to the corresponding initial value
xε0 is decreasing in an interval [S0, 1] and x(t)− U1(t) > δ for all t ∈ [S0, 1] and a δ > 0.
From now on we require ε < ε and furthermore we assume that S ∈ [t0, 1) is so close to 1 that

• S ≥ S0,

• τ := 2
δ

√
1− S < 2

√
λS2 and

• |U2(1)− U2(t)| ≤ c
√

1− t with c < 4
√
λS2 − τ for all t ∈ [S, 1].
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Again, we denote by hn the sequence

h1(x) = x,

hn+1(x) = x+ τ − 4λS2
hn(x) for n ≥ 1.

Lemma (3.8.16) implies that there is an N ∈ N such that

hN (c) < 0. (3.8.14)

We take the smallest such N and assume that hn(c) > 0 for all n < N.
(If there is a n with hn(c) = 0, one can pass on to a slightly greater c.)
Next, define en by

e1 = ε,

en+1 = ε+ 4λS2 en
(hn(c))2 log

(
1 + hn(c)

en

)
for 1 ≤ n < N.

Inductively one can easily show that for every n ≤ N we have en > 0 and

lim
ε→0

en = 0. (3.8.15)

Now we prove by induction that

x(1)− x(t) ≤ en − ε+ (hn(c)− c)
√

1− t for all t ∈ [S, 1] and n ≤ N.

The case n = 1 states x(1)− x(t) ≤ 0 which is true because x(t) is decreasing. Next assume that
the statement holds for a n < N. Then

−x(t) ≤ −x(1)− ε+ en + (hn(c)− c)
√

1− t for all t ∈ [S, 1].

Consequently

U2(t)− x(t) ≤ U2(t)− U2(1) + U2(1)− x(1)− ε+ en − (c− hn(c))
√

1− t
≤ en + hn(c)

√
1− t for all t ∈ [S, 1],

which implies

ẋ(t) = 2λ1(t)
x(t)− U1(t) + 2λ2(t)

x(t)− U2(t) ≤
2
δ
− 2λS2
en + hn(c)

√
1− t

and integrating gives

x(1)− x(t) ≤ 2
δ

(1− t)− 4λS2
hn(c)

√
1− t+ 4λS2 en

(hn(c))2 log(1 + hn(c)
en

√
1− t)

=
(

2
δ

√
1− t− 4λS2

hn(c)

)
√

1− t+ 4λS2 en
(hn(c))2 log(1 + hn(c)

en

√
1− t)

≤ (c+ τ − 4λS2
hn(c) − c)

√
1− t+ 4λS2 en

(hn(c))2 log(1 + hn(c)
en

√
1− t)

= (hn+1(c)− c)
√

1− t+ ε+ 4λS2 en
(hn(c))2 log(1 + hn(c)

en

√
1− t)− ε.
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As hn(c) > 0 and en > 0 we conclude

x(1)− x(t) ≤ (hn+1(c)− c)
√

1− t+ ε+ 4λS2 en
(hn(c))2 log(1 + hn(c)

en
)− ε

= (hn+1(c)− c)
√

1− t+ en+1 − ε.

For n = N we get
x(1)− x(t) ≤ eN − ε+ (hN (c)− c)

√
1− t.

On the other hand,

x(1)− x(t) = x(1)− U2(1) + U2(1)− x(t) ≥ −ε+ U2(1)− U2(t) ≥ −ε− c
√

1− t.

Thus
hN (c)

√
1− S + eN ≥ 0.

Now we can send ε→ 0 and get hN (c) ≥ 0 by (3.8.15), a contradiction to (3.8.14).

Proof of Theorem 3.8.14. The statement follows directly from combining Proposition 3.8.18 with
Proposition 3.8.9.

A sufficient condition for the irregular case

For driving functions that are irregular in some points, it is somehow harder to find out whether
the generated hulls are welded or not. Here we derive a sufficient condition for a very special
case. This case will appear later in the proof of Theorem 3.8.26. In the following, we let n = 1,
though it is not difficult to generalize the statement to the general multiple-slit case.

Lemma 3.8.19. Let U : [0, 1] → R be continuous with U(1) = 0 and let {Kt}t∈[0,1] be the hulls
generated by the one-slit equation (3.5.1). Suppose that there are two increasing sequences sn, tn
of positive numbers with sn, tn → 1, such that for

Mn := max
sn≤t≤1

{U(t)} and Mn := min
tn≤t≤1

{U(t)}

the two inequalities

4(1− sn) + U(sn)2 − 2U(sn)Mn > 0 and 4(1− tn) + U(tn)2 − 2U(tn)Mn > 0

hold for all n ∈ N. If {Ks}s∈[0,t] is welded for all t ∈ (0, 1), then so is {Ks}s∈[0,1].

Proof. Let τ ∈ [0, 1) and x0 ∈ R \ {U(τ)}. By Proposition 3.8.9 we know that the solution x(t)
of the initial value problem

x(τ) = x0, ẋ(t) = 2
x(t)− U(t)

exists until t = 1 and we have to show that there is a positive lower bound for |x(1)−U(1)| which
is independent of x0.
Assume that x0 < U(τ). Then x(t) is decreasing and we have x(sm) < U(sm) with m := min{n ∈
N | sn ≥ τ}. The initial value problem

ẏ(t) = 2
y(t)−Mm

, y(sm) = x(sm),
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has the solution y(t) = Mm −
√

(Mm − x(sm))2 + 4(t− sm). Now we have

ẋ(t) ≤ 2
x(t)−Mm

for all t ∈ [sm, 1)

and x(sm) = y(sm). Consequently,

x(1) ≤ y(1) = Mm −
√

(Mm − x(sm))2 + 4(1− sm)

< Mm −
√

(Mm − U(sm))2 + 4(1− sm)︸ ︷︷ ︸
=:L1

< Mm −
√
M

2
m = 0.

The case x0 > U(τ) can be treated in the same way and gives a bound L2 > 0 for x(1) =
x(1)− U(1). Thus, the condition in Proposition 3.8.9 b) is satisfied for ε = min{−L1, L2} and it
follows that {Ks}s∈[0,1] is welded.

Corollary 3.8.20. If {Ks}s∈[0,t] is welded for all t ∈ (0, 1) and there are two increasing sequences
sn, tn of positive numbers with sn, tn → 1, and U(sn) ≤ U(1) ≤ U(tn) for all n, then {Ks}s∈[0,1]
is welded, too.

Proof. Without loss of generality we can assume U(1) = 0. We can apply Lemma 3.8.19 as

4(1− sn) + U(sn)2 − 2U(sn)Mn > −2U(sn)Mn ≥ 0 and

4(1− tn) + U(tn)2 − 2U(tn)Mn > −2U(tn)Mn ≥ 0.

3.8.3 Quasisymmetric weldings

Suppose that {Kt}t∈[0,T ] is a family of hulls generated by the multiple-slit equation and that it is
welded. In this case, KT has n connected components C1, ..., Cn. Denote by Ij the cluster set of
Cj with respect to gKT . Then Uj(T ) ∈ Ij and there exist welding homeomorphisms hj : Ij → Ij ,
j = 1, ..., n, in the sense of Remark 3.8.11.
We call hj quasisymmetric provided that there is a constant M ≥ 1 such that

1
M
≤ x− Uj(T )
Uj(T )− hj(x) ≤M

for all x > Uj(T ), x ∈ Ij , and
1
M
≤ hj(x)− hj(y)
hj(y)− hj(z)

≤M

for all x, y, z ∈ Ij with Uj(T ) ≤ x < y < z and y − x = z − y.
If we think of the “fundamental Theorem of conformal welding”, then one could hope to find an
affirmative answer to the following question:

Question 3.8.21. Is Cj a quasislit provided that hj is quasisymmetric?

However, we have the problem that we don’t know whether Cj is a slit or not, i.e. we would need
a uniqueness result for generalized conformal weldings that are quasisymmetric.

In [Lin05], Lemma 6, and [MR05], Lemma 2.2 respectively, it was shown for n = 1 that C1 = KT

is a quasislit if and only if h1 is quasisymmetric and C1 is a slit. This result readily generalizes
to the multiple-slit case.
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Lemma 3.8.22. Cj is a quasislit if and only if Cj is a slit and hj is quasisymmetric.
Proof. Let A = gCj (∪k 6=jCk) . By applying the function gA we can simply reduce the statement to
the case n = 1 : The hull Cj can be generated by the one-slit equation. Denote by h : [a, b]→ [a, b]
its (one-slit) welding homeomorphism. Now we have the following connection between h and hj :

h(y) = g−1
A (hj(gA(y))) for every y ∈ [a, b].

As gA is conformal in a neighborhood of [a, b], we conclude that h is quasisymmetric if and only
if hj is quasisymmetric. The statement follows now from the one-slit case, i.e. from Lemma 6 in
[Lin05].

3.8.4 The regular case and quasislits

Now we generalize Theorem 3.8.2 to the multiple-slit case and we start with the following state-
ment.
Lemma 3.8.23. Denote by {Kt}t∈[0,T ] the generated hulls by equation (3.8.3). Assume that KT

has n connected components C1
T , ..., C

n
T with Uj(0) ∈ CjT .

Assume there exists one j ∈ {1, ..., n} such that for every t ∈ [0, T ] there exists an ε > 0 such that

sup
r,s∈[0,T ]
r 6=s

|r−t|,|s−t|<ε

|Uj(r)− Uj(s)|√
|r − s|

< 4
√
λj(t), (3.8.16)

then CjT is a quasislit.
Conversely, if CjT is a quasislit, then Uj ∈ Lip

(
1
2

)
.

Proof. First, assume that condition (3.8.16) holds. Also Kt consists of n disjoint connected
components C1

t , ..., C
n
t for every t ∈ (0, T ], where we assume that Cjt corresponds to Uj . Now

assume that CjT is not a quasislit. Then, CjT does not approach R nontangentially or there exists
a point p ∈ CjT such that any neighborhood of p in CjT is not a quasiarc. Without loss of generality
we may assume that the quasislit property is violated in any neighborhood of CjT ∩ R = Uj(0),
i.e. we assume that any subhull of CjT is not a quasislit. Let x(t) = hcap(Cjt ). Let ht = g

Cjt
and

define Ht by gt = Ht ◦ ht. The mappings ht satisfy a one-slit Loewner equation

ḣt = 2ẋ(t)
ht − V (t) ,

where x(t) is continuously differentiable with ẋ(0) = 2λj(0), see Lemma 3.8.3, and V is a contin-
uous driving function. This function V is related to Uj via

V (t) = H−1
t (Uj(t)).

For all t small enough, say t < t′, the function H−1
t can be extended to the lower half-plane by

reflection and to a fixed neighborhood N of {Uj(t) t ∈ [0, t′]} for all t < t′. As the function
[0, t′)×N 3 (t, z) 7→ F (t, z) := H−1

t (z) is continuously differentiable, we have for all r, s ∈ [0, t′):

|V (r)− V (s)| ≤ |∂F
∂t

(r, U(r))| · |(r − s)|+ |∂F
∂z

(r, U(r))| · |(Uj(r)− Uj(s))|

+ O(|r − s|+ |Uj(r)− Uj(s)|) ≤ |
∂F

∂z
(r, U(r))| · |(Uj(r)− Uj(s))|+ O(

√
|r − s|)

for s → r. Moreover, ∂F
∂z (0, z) = 1 for all z ∈ N . Thus, for every ε > 0 we can find δ > 0 such

that for all r, s ∈ [0, δ], r 6= s, we have
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• |∂F∂z (r, z)| ≤ 1 + ε for all z ∈ N ,

• |Uj(r)−Uj(s)|√
|r−s|

< 4
√
λj(0).

Thus, for ε small enough, V satisfies

|V (r)− V (s)|√
|r − s|

< 4
√
λj(0)

for all r, s ∈ [0, δ], r 6= s. By Theorem 3.8.2 (where we have to change the time t → x(t)) we
conclude that Cjδ is a quasislit for all δ small enough, a contradiction.
Conversely, if CjT is a quasislit, then we can show in a similar way that Uj ∈ Lip

(
1
2

)
.

Theorem 3.8.24. Let U1, . . . , Un ∈ Lip
(

1
2

)
and assume that for every j ∈ {1, . . . , n} and every

t ∈ [0, T ] there exists an ε > 0 such that

sup
r,s∈[0,T ]
r 6=s

|r−t|,|s−t|<ε

|Uj(r)− Uj(s)|√
|r − s|

< 4
√
λj(t). (3.8.17)

Denote by {Kt}t∈[0,T ] the generated hulls by equation (3.8.3). Then KT consists of n disjoint
connected components C1, ..., Cn, and each Cj is a quasislit.

Proof. All driving functions satisfy the condition from Theorem 3.8.14. Hence we know that
KT consists of n disjoint connected components C1, ..., Cn. Every Cj is a quasislit by Lemma
3.8.23.

Remark 3.8.25. The condition in the last result can be weakened in the following way: If
(3.8.17) is satisfied for all j ∈ {1, ..., n} and only for all t ∈ (0, T ], then KT consists of n
connected components C1, ..., Cn (by Theorem 3.8.14) and every Cj is a slit. This can be seen
as follows: Let gt be the mapping from equation (3.8.3). By Theorem 3.8.24 we know that the
hull gε(KT \Kε) consists of n quasislits for every ε ∈ (0, T ). Thus, Cj \ A is a quasiarc for any
nonempty subhull A ( Cj. This implies that Cj can be parameterized by a continuous, injective
function γ : (0, 1] → H, where γ(1) is the tip of Cj . The local growth property of Cjimplies that
γ(t) can be extended continuously to t = 0 and γ(0) = Uj(0). Consequently, Cj is a slit (but not
a quasislit in general).

3.8.5 An example for the irregular case

Recall question 3.8.2: Is the local Hölder constant 4 in Theorem 3.8.2 also necessary for generating
quasislits? The answer is “no”: For any s ∈ [0, T ), the “right” pointwise Hölder norm, i.e. the
value

lim sup
h↓0

|U(s+ h)− U(s)|√
h

can get arbitrarily large, as the driving function U(t) = c
√
t shows; it generates a straight line

for every c ∈ R, see Example 3.5.3. Next we show that the “left” pointwise Hölder norm can also
become arbitrarily large within the space of all driving functions generating quasislits. To this
end, we will use Corollary 3.8.20 to construct a driving function that is irregular at one point and
generates a quasislit.
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Theorem 3.8.26. For every C > 0, there exists a driving function U : [0, 1]→ R that generates
a quasislit and satisfies

lim sup
h↓0

|U(1)− U(1− h)|√
h

= C.

Proof. Let C > 0. First we construct the driving function U , which is shown in Figure 3.5 for the
case C = 5.
We set U(rn) := 0 with rn := 1 − 1

2n for all n ≥ 0. The mean value of rn and rn+1 is equal to
wn := 1− 3

2n+2 and here we define

U(wn) := C

√
3

2n+2 for n ≥ 0.

Now we define U(t) for t ∈ [0, 1) by linear interpolation, so that

U(t) = C
√

3 · 2n+2 · (t− rn) for t ∈ [rn, wn] and
U(t) = C

√
3 · 2n+2 · (rn+1 − t) for t ∈ [wn, rn+1].

By defining U(1) := 0 we now have a continuous driving function and

lim sup
h↓0

|U(1)− U(1− h)|√
h

= lim
n→∞

|U(1)− U(wn)|√
1− wn

= lim
n→∞

C
√

3/2n+2√
3/2n+2 = C.

At each 0 ≤ t < 1, the hull Kt produced by this function will be a quasislit according to Theorem
3.8.2. Thus, we have to show that also K1 is a slit and that this slit is a quasiarc.

First, we know that {Kt}t∈[0,1] is welded: This follows directly from Corollary 3.8.20 by setting
sn := tn := rn.
If we scale our hull by 1√

2 , we end up with the new driving function Ũ : [0, 1/2] → R, Ũ(t) =
1√
2U(2t). However, this is again U(t), confined to the interval [1/2, 1], i.e. Ũ(t) = U(t + 1/2).

Geometrically, this means that g1/2(K1 \K1/2) is just the same as 1√
2K1, the original hull scaled

by 1√
2 .

If f := g−1
1/2, and Sn := K1−1/2n \K1−1/2n−1 , n ≥ 1, then we have

Sn+1 = f

( 1√
2
Sn

)
.

As the function z 7→ f( 1√
2z) =: I(z) is not an automorphism of H, the Denjoy–Wolff Theorem

implies that the iterates In = (I ◦ . . . ◦ I) converge uniformly on S1 to a point S∞ ∈ H ∪ {∞}.
S∞ = ∞ is not possible as the hull K1 is a compact set and the case S∞ ∈ R would imply that
K1 is not welded. Consequently S∞ ∈ H and K1 =

⋃
n≥1

Sn ∪ {S∞} is a simple curve whose tip is

S∞.

Now we show that this curve is a quasiarc.
For this, we will use the metric characterization of quasiarcs which says that K1 is a quasiarc if
and only if

sup
x,y∈K1
x 6=y

diam(x, y)
|x− y|

<∞,
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where we denote by diam(x, y) the diameter of the subcurve of K1 joining x and y.
For m ∈ N ∪ {0} we define Fm :=

⋃
k≥m Sk ∪ {S∞}. As Kt is a quasislit for every t ∈ (0, 1), it

suffices to show that
sup

x,y∈Fm
x 6=y

diam(x, y)
|x− y|

<∞ for one m ∈ N. (3.8.18)

The set Sn contracts to S∞ when n→∞, in particular diam(Sn)→ 0.
As I is conformal in B(S∞, ε) for ε > 0 small enough, there is an N = N(ε) ∈ N, such that
Sn ⊂ B(S∞, ε) for all n ≥ N .
S∞ is a fixpoint of I(z) and so |I ′(S∞)| < 1. Otherwise, I would be an automorphism of H.

Now, for x ∈ SN+n, n ≥ 0, we have I(x) ∈ SN+n+1 and

|I(x)− S∞| = |I(x)− I(S∞)| = |I ′(S∞)(x− S∞) +O(|x− S∞|2)|
= |I ′(S∞) +O(|x− S∞|)| · |x− S∞| = |I ′(S∞)||1 +O(|ε|)| · |x− S∞|.

Consequently we can pass on to a smaller ε (and larger N) such that dist(S∞, SN+n+1) ≤
c · dist(S∞, SN+n) with c < 1 and for all n ≥ 0. Hence SN+n ⊂ B(S∞, cnε).

Furthermore, for x, y ∈ FN+n we have

|I(x)− I(y)| = |I ′(x) +O(cnε)| · |x− y| = |I ′(S∞) +O(cnε)| · |x− y|.

Hence there exist positive constants a1, a2 with 1− a2c
n > 0 such that

(1− a2c
n)|I ′(S∞)||x− y| ≤ |I(x)− I(y)| ≤ (1 + a1c

n)|I ′(S∞)||x− y|. (3.8.19)

Thus
diam(I(x), I(y)) ≤ (1 + a1c

n)|I ′(S∞)|diam(x, y). (3.8.20)

Now we will show (3.8.18) for m = N. Let x, y ∈ FN with x 6= y. We assume that diam(x, S∞) ≥
diam(y, S∞). In particular, x 6= S∞ and thus there is a k ≥ 0 and an x̂ ∈ SN such that x = Ik(x̂).
Let ŷ ∈ FN be defined by y = Ik(ŷ). First note that

sup
a∈SN ,b∈FN

a6=b

diam(a, b)
|a− b|

=: E <∞,

for Kt is a quasislit for every t ∈ (0, 1). Now we get with (3.8.19) and (3.8.20):

diam(x, y)
|x− y|

= diam(Ik(x̂), Ik(ŷ))
|Ik(x̂)− Ik(ŷ)| ≤

(1 + a1c
k−1)|I ′(S∞)| diam(Ik−1(x̂), Ik−1(ŷ))

(1− a2ck−1)|I ′(S∞)||Ik−1(x̂)− Ik−1(ŷ)| =

= (1 + a1c
k−1)

(1− a2ck−1) ·
diam(Ik−1(x̂), Ik−1(ŷ))
|Ik−1(x̂)− Ik−1(ŷ)| ≤ ... ≤

≤
k−1∏
j=0

(1 + a1c
j)

(1− a2cj)
· diam(x̂, ŷ)
|x̂− ŷ|

≤
k−1∏
j=0

(1 + a1c
j)

(1− a2cj)
· E ≤ E

∞∏
j=0

1 + a1c
j

1− a2cj
=

= E
∞∏
j=0

(1 + a1c
j)/

∞∏
j=0

(1− a2c
j) <∞.

The two Pochhammer products converge because |c| < 1. Consequently, K1 is a quasislit.
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Figure 3.5: The driving function U from Theorem 3.8.26 with C = 5 (left) and the generated
quasislit (right).

Remark 3.8.27. The argument that U from the proof of Theorem 3.8.26 generates a slit holds
for a more general case:
Let U : [0, 1]→ R be continuous with U(1) = 0. Call such a function d–self–similar with 0 < d < 1
if V (t) := U(1− t) satisfies

d · V (t/d2) = V (t) for all 0 < t ≤ d2.

Every d–self–similar function can be constructed by defining V (1) arbitrarily, putting V (d2) =
d · V (1) and then defining V (t) for d2 < t < 1 such that V is continuous in [d2, 1]. Then, V is
uniquely determined for all 0 ≤ t ≤ 1. Now we have:
If U is d–self–similar such that it produces a slit for all 0 ≤ t < 1 and K1 is welded, then K1 is
a slit, too.

Example 3.8.28. There exists a driving function V : [0, 1] → R that is ”irregular“ at infinitely
many points and generates a quasislit:

Let U be the driving function from the proof of Theorem 3.8.26. We construct V : [0, 1]→ R by
sticking pieces of U appropriately together. For n ≥ 0 let

V (t) := U((t− (1− 1/2n)) · 2n+1)/
√

2n for t ∈ [1− 1/2n, 1− 1/2n+1],

and V (1) := 0. Then V is ”irregular“ at 1 − 1/2n for all n ≥ 1 and it produces a quasislit: The
hull generated at t = 1/2 is a quasislit by Theorem 3.8.26. Now one can repeat the proof of
Theorem 3.8.26 to show that the whole hull is a quasislit, too. F

Theorem 3.8.26 together with Theorem 3.8.2 suggests the following question: Does U generate a
quasislit if U generates a slit and U ∈ Lip

(
1
2

)
?

The answer is no: There are Lip
(

1
2

)
-driving functions that generate slits with positive area. These

slits cannot be quasislits as they are not uniquely determined by their welding homeomorphisms,
see Corollary 1.4 in [LR].
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3.9 Approach to R

Recall that a quasislit is a quasiarc in H that approaches R nontangentially. In this section
we take a closer look at the way how a hull generated by the multiple-slit equation approaches
the real axis. First we introduce two notions for a family {Kt}t∈[0,T ] generated by the chordal
multiple-slit equation (3.8.3).

Let ϕ ∈ (0, π). We say that Kt approaches R at x ∈ R in ϕ-direction if for every ε > 0 there is a
t0 > 0 such that the connected component of Kt0 having Uj(0) as a boundary point is contained
in the set {z ∈ H ϕ− ε < arg(z − Uj(0)) < ϕ+ ε}.

A further definition extends the “line approach” to a “sector approach”:
Kt approaches R at Uj(0) in a sector (or nontangentially) if there exist angles α, β ∈ (0, π) and
a t0 > 0 such that the connected component of Kt0 near Uj(0) is contained in

{z ∈ H α < arg(z − Uj(0)) < β}.

3.9.1 Sector approach

We start with a necessary condition for the sector approach of a family {Kt}t generated by
equation (3.8.3).

Proposition 3.9.1. If Kt approaches R at Uj(0) in a sector, then

lim sup
h↓0

|Uj(h)− Uj(0)|√
h

<∞.

Proof. By translation we can assume Uj(0) = 0. Let t0 > 0 be small enough such that the
connected component Ct of Kt near Uj(0) satisfies Ct ⊂ S := {z ∈ H α < arg(z) < π − α} for
an α ∈ (0, π/2) and all ∈ [0, t0].
For t ∈ (0, t0], let Gt = t−1/2Ct and Ht = t−1/2Kt. The monotonicity of hcap and the scaling
property imply

hcap(Gt) < hcap(Ht) = t−1 hcap(Kt) = 2.

Then we also have Gt ⊂ S for all t ∈ (0, t0]. From Lemma 3.4.1 it follows that

sup
t∈(0,t0)

max
z∈Gt

Im(z) < 2.

Let ∆ be the following (Euclidean) triangle with height 2:

α α

∆

0b

Figure 3.6: The triangle ∆.
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Then it follows that Gt ⊂ ∆ for all t ∈ (0, t0].
Now let c = limz→0+ g∆(z). If we denote by It the cluster set of Gt with respect to gGt , then
It ⊂ [−c, c]. Likewise, if we denote by Jt the cluster set of Gt with respect to gHt and

γt := max{| lim
z→0−

g∆∪Ht(z)|, | lim
z→0+

g∆∪Ht(z)|},

then Jt ⊂ [−γt, γt]. We have γt → c for t→ 0. As t−1/2U(t) ∈ Jt, we can conclude that

|t−1/2U(t)| ≤ γt

and consequently lim supt↓0 |t−1/2U(t)| ≤ c <∞.

The converse of Proposition 3.9.1 is wrong, as the following counterexample shows.

Proposition 3.9.2. There is a simple curve that does not approach R within a sector and its
driving function U satisfies

lim sup
t↓0

|U(t)− U(0)|√
t

<∞.

Proof. We construct the curve by connecting the set {i/2n n ∈ N0} of points with {1/2n +
i(1/2n)2 n ∈ N0}, namely: Start with i and connect it with 1 + i by a straight line segment.
Then connect 1 + i with i/2, i/2 with 1/2 + i(1/2)2, etc.
We get a simple curve γ that starts from the real line in 0 and does not approach R in a sector,
because the curve x → x + ix2 approaches R tangentially. Assume that γ(t) is parameterized
by half-plane capacity with driving function U : [0, T ] → R. Let δt = (t/T )−1/2γ(0, t], then
hcap(δt) = T/t · hcap(γ[0, t]) = T/t · 2t = 2T. By construction of γ we have

max
z∈δt

Im(z) � max
z∈δt

Re(z)

and as supt∈(0,1] maxz∈δt Im(z) <∞ by Lemma 3.4.1, we also have supt∈(0,1] maxz∈δt Re(z) <∞.
Hence, there exists R > 0 such that δt ⊂ B(0, R) for all t ∈ (0, 1] and thus there exists K > 0
with |(t/T )−1/2U(t)| = |gδt(“tip of δt”)| ≤ K.

Another example for this statement is the half-Sierpinski gasket described in [LR].

3.9.2 Line approach

Next we derive a sufficient condition for the hulls Kt to approach R in ϕ-direction.

Theorem 3.9.3. Let j ∈ {1, ..., n} and let {Kt}t∈[0,T ] be a family of hulls generated by equation
(3.8.3). Then Kt approaches R at Uj(0) in ϕ-direction provided that

lim
h↓0

Uj(h)− Uj(0)√
h

=
2
√
λj(0)(π − 2ϕ)√
ϕ(π − ϕ)

.

Proof. By translation we can assume that Uj(0) = 0.
We note that the following Loewner equation generates a straight line segment starting in 0 with
angle ϕ (see Example 3.5.3 and change the time t 7→ λ2(0)t):

ġt(z) = 2λj(0)
gt(z)− c

√
t
, with c :=

2
√
λj(0)(π − 2ϕ)√
ϕ(π − ϕ)

.
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Let L be the generated hull at time t = 1.
Now let d > 0, then the corresponding conformal mappings gt(z, d) for the scaled hulls dKt satisfy

ġt(z, d) =
n∑
k=1
k 6=j

2λk(t/d2)
gt(z, d)− dUk(t/d2) + 2λj(t/d2)

gt(z, d)− dUj(t/d2) , g0(z, d) = z. (3.9.1)

If we choose d large enough, the corresponding hull at t = 1 will always have n connected
components. Let Gd be the one near 0. We will have to look at the limit case d→∞.
First, let ht(z, d) be the solution of the Loewner equation

ḣt(z, d) = 2λj(0)
ht(z, d)− dUj(t/d2) , h0(z, d) = z,

and let Hd be the generated hull at t = 1. Choose an R > 0 and let DR := H ∩ {|z| < R}. If we
denote by g(·, d) Cara−→ g the Carathéodory convergence for Loewner chains3, defined in [Law05],
p. 114, then we have

g(·, d) Cara−→ g for d→∞ in DR if and only if h(·, d) Cara−→ g for d→∞ in DR.

This can be shown by using the fact that left summand of (3.9.1) converges uniformly to 0 on
DR × [0, 1] and that λj(t/d2) converges uniformly to λj(0), again on DR × [0, 1].

Now, the hulls Kt approach R at 0 in ϕ-direction if and only if H \Gd → H \L for d→∞ in the
sense of kernel convergence. Because of the above relation of g(·, d) to h(·, d), this is equivalent
to

H \Hd → H \ L for d→∞. (3.9.2)

Now suppose Uj(t) = c
√
t + O(

√
t), then dUj(t/d2) → c

√
t uniformly on [0, 1] for d → ∞. Uni-

form convergence of driving functions generally implies kernel convergence of the corresponding
domains by Proposition 4.47 in [Law05]. Consequently, H \Hd → H \ L for d→∞.

The converse of Theorem 3.9.3 is not true in general as the following example shows.4

Proposition 3.9.4. There exists a driving function U with

lim sup
t↓0

U(t)√
t
6= 0

such that the hulls Kt generated by the one-slit equation approach 0 in π
2–direction.

Proof. Consider the region R in H between the two curves

{x+ iy ∈ H x = y2} and {x+ iy ∈ H x = −y2}.

Any hull inside this region clearly approaches 0 in π
2 –direction. Now, for n ∈ N, let an be the

intersection point of Ln := {x + iy ∈ H x = −yn+2} and Cn := {x + 1
2n−1 i ∈ H} and let bn

3g(·, d) Cara−→ g(·) if for every ε > 0 and every S ∈ [0, T ], gt(z, d) converges to gt(z) uniformly on [0, S] × {z ∈
H dist(z,KS) ≥ ε}.

4The author would like to thank Huy Tran for pointing out the existence of such an example.

80



3.9. APPROACH TO R

be the intersection point of Rn := {x + iy ∈ H x = yn+2} and Cn. First, we construct a curve
γ̂ : [0, 1]→ C in the following way:
Connect 0 to a1 via L1 (i.e. by the subcurve of L1 connecting 0 to a1), then a1 to b1 via C1 and
b1 to 0 via R1. Assume that γ̂ : [0, 1/2]→ C describes this “triangle” T1.
Next we increase n and construct another triangle T2: connect 0 to a2 via L2, a2 to b2 via C2
and then b2 to 0 via R2. Now we may assume that γ̂ : [1/2, 3/4]→ C parameterizes this curve.
Now we continue inductively and obtain a sequence (Tn) of nested triangles, each parameterized
by γ̂ : [1− 1/2n−1, 1− 1/2n]→ C. As

diam(Tn)→ 0 for n→∞ and 0 ∈ Tn for all n ∈ N,

we can extend γ̂ continuously to the interval [0, 1] by requiring γ̂(1) = 0.
Now consider the curve γ̂(1−t) and let γ be a parameterization of this curve such that hcap(Kt) =
2t, where we denote by Kt the smallest hull containing γ[0, t].
The family {Kt}t satisfies the local growth property and thus, by Remark 3.5.2, it can be gener-
ated by the one-slit equation with a driving function U.
Finally, let t1 > t2 > t3 > ... be the decreasing sequence of zeros of γ(t). We have U(tn) =
limx↑0 gKtn (x) or U(tn) = limx↓0 gKtn (x). However, as Ktn is symmetric with respect to the
imaginary axis, we certainly have

2|U(tn)| = lim
x↓0

gKtn (x)− lim
x↑0

gKtn (x) =: π · capH(Ktn).

The quantity capH is introduced in [Law05], p. 73, see also the first equation on p. 74. There, it
is shown that there exists a constant c1 > 0 such that

capH(Ktn) ≥ c1 · diam(Ktn),

see (3.14) on p. 74 in [Law05]. As diam(Ktn) ≥ c2 ·
√

hsiz(Ktn) for another constant c2 > 0 and
hsiz(Ktn) ≥ c3 · tn for some c3 > 0 by Theorem 3.2.1, we arrive at

|U(tn)| = π/2 · capH(Ktn) ≥ c1 · π/2 · diam(Ktn) ≥ c1c2
√
c3 · π/2 ·

√
tn.

As U(tn) > 0 for infinitely many tn, we conclude

lim sup
t↓0

U(t)√
t
> c1c2

√
c3 · π/2.

Under some nice conditions, however, the converse of Theorem 3.9.3 is true. As the line approach
is equivalent to (3.9.2), we need an additional condition that ensures that the kernel convergence
of H \Hd implies convergence of the driving functions. The main ingredient for this purpose is
the following result by Lind, Marshall and Rohde.

Theorem 3.9.5 (Theorem 4.3 in [LMR10]). Let ε, c, R ∈ (0,∞) and let A1, A2 be two hulls with
diam(Aj) ≤ R. Suppose that there exists a hull B ⊃ A1 ∪A2 such that

dist(ζ,A1) < ε and dist(ζ,A2) < ε for all ζ ∈ B.

Suppose further that there are curves σj ⊂ H \ Aj connecting a point p ∈ H \ B to pj ∈ Aj with
diam σj ≤ cε < diamAj , for j = 1, 2. Then there exists a constant c0 depending on R only such
that

|gA1(p1)− gA2(p2)| ≤ 2c0
√
ε(
√
c+ ρĈ\B̃(p,∞)),

where B̃ = B ∪B′ ∪j Ij, B′ = {z | z ∈ B}, Ij are the bounded intervals in R \ B ∪B′ and
ρΩ(z1, z2) denotes the hyperbolic distance in Ω ⊂ Ĉ (with curvature −1).
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Whenever we can apply this Theorem to the hulls Hd and L, the converse of Theorem 3.9.3 holds.
Next we give a simple geometric condition for this case.

Theorem 3.9.6. Let j ∈ {1, ..., n} and let {Kt} be a family of hulls generated by equation
(3.8.3). Assume that Kt approaches R at Uj(0) in ϕ-direction. Furthermore, assume that there
exist τ > 0 such that the connected component Cτ of Kτ near Uj(0) is a slit having the property
that the orthogonal projection P : Cτ → {Uj(0) + reiϕ r > 0} is one-to-one. Then

lim
h↓0

Uj(h)− Uj(0)√
h

=
2
√
λj(0)(π − 2ϕ)√
ϕ(π − ϕ)

Proof. Note that we only have to show that limt↓0
Uj(t)√

t
exists or = ±∞. The relation between

the exact value of the limit and ϕ was already proven in Theorem 3.9.3. Assume that Uj(0) = 0
and let Hd and L be defined as in the proof of Theorem 3.9.3.
First we consider the case n = 1. Note that Hd is a part of Kt scaled by d in this case.

We know that
H \Hd → H \ L for d→∞ (∗)

and that the function P : Hd → {reiϕ r > 0} is one-to-one for all d large enough. Denote by T (d)
the tip of Hd and by T the tip of L. The Carathéodory convergence (∗) implies that P (T (d))→ T
and the injectivity of P |Hd that T (d)→ T. For a given ε > 0 with

2ε < |T | (∗∗)

there exists D > 0 such that

Hd ⊂ B := {z ∈ H |P (z)− z| < ε/3, 0 < |z| < |T |+ ε/3} for all d > D.

Furthermore we assume that D is so large that

|T (d)− T | < ε

3 for all d > D. (∗ ∗ ∗)

Now we would like to apply Theorem 3.9.5 with A1 = L, A2 = Hd and p1 = T, p2 = T (d) and B
as defined above. A simple geometric consideration shows that

dist(ζ, L) < ε and dist(ζ,Hd) < ε for all ζ ∈ B.

Next we let p = T + 4
3εe

iϕ ∈ H \ B. We can connect p to T by a straight line segment σ1. Then
diam(σ1) = 4/3ε <

(∗∗)
|T | = diam(A1). As P is one-to-one on Hd, we can construct a curve σ2

connecting p to T (d) in H \Hd with diam(σ2) ≤
(∗ ∗ ∗)

5/3ε = 2ε − ε/3 <
(∗∗)
|T | − ε/3 ≤ diam(A2).

Let c := gL(T ), then Theorem 3.9.5 implies

|gHd(T (d))− c| =
∣∣∣∣dU1

( 1
d2

)
− c
∣∣∣∣ ≤ 2c0

√
ε

(√
5/3 + %Ĉ\B̃(p,∞)

)
.

With the explicit formula for the hyperbolic metric of a disc (see Lemma 4.6 in [LMR10]) we
obtain

%Ĉ\B̃(p,∞) ≤ %Ĉ\B(0,|T |+ ε
3 )(p,∞) = 2 log(1 +

2(|T |+ ε
3)

ε
)

< 2 log(1 + 4|T |
ε

) = O(| log 1
ε
|) = O(ε−1/2) for ε→ 0.
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Thus |dU1( 1
d2 )− c| → 0 for d→∞, i.e. limt↓0

U1(t)√
t

= c.

Now let n ≥ 2. As in the proof of Theorem 3.8.23, for all t ∈ [0, τ ], we let Ct be the connected
component of Kt near Uj(0), ht = gCt , x(t) = hcap(Ct), gt = gKt and we define Ht by gt = Ht◦ht.
Then x(t) is continuously differentiable and ḣt = ẋ(t)

ht−V (t) with a driving function V. Our proof for
the one-slit case implies that limt↓0

V (t)√
x(t)

exists and from V (t)√
x(t)

= V (t)√
t
·
√

t
x(t) and ẋ(0) 6= 0, we

conclude that also limt↓0
V (t)√
t

exists. We have to show that the same is true for Uj .
The function [0, τ ] × U 3 (t, z) 7→ F (t, z) := Ht(z) is continuously differentiable, where U is
a sufficiently small neighborhood of 0 in C. For t small enough, we have V (t) ∈ U and from
Uj(t) = Ht(V (t)) for all t ∈ [0, τ ], we obtain

Uj(t) = Uj(t)− Uj(0) = ∂F

∂t
(0, 0) · t+ ∂F

∂z
(0, 0) · V (t) + O(|t|+ |V (t)|)

= ∂F

∂z
(0, 0) · V (t) + O(

√
t) = V (t) + O(

√
t) for t ↓ 0.

Thus, the limit limt↓0
Uj(t)√

t
exists whenever limt↓0

V (t)√
t

exists.

Remark 3.9.7. The condition of the injectivity of the projection on the line is satisfied, e.g.,
when arg γ(t) is continuously differentiable with (arg ◦γ)′(0) = ϕ, where γ parameterizes the slit
Cτ from Theorem 3.9.6; see [DWar], where the authors also derive further results concerning the
line approach.

3.10 Two further problems

The fact that we can assign unique driving functions to slits provokes several questions of the
form: How can property X of slits be related to property Y of the driving functions?

Exemplarily we mention the important property of smoothness, which has been discussed by
several authors for the one-slit case: In [Ale76], it is shown for the radial case that a slit is in
C1 provided that its driving function has a bounded derivative. C. Wong obtains several results
concerning the regularity of a generated slit in [Won] (for the chordal case). Heuristically, his
results can be summarized as: If the driving function is in Cβ, then the generated slit is in Cβ+1/2,
where β > 1/2, see [Won, p. 3].
The converse problem, i.e. finding properties of the driving functions of a smooth slit, is discussed
in [EE01] (for the radial case). The authors prove that a Cn slit has a Cn−1 driving function and
that an analytic slit has a real analytic driving function.

It would be interesting to find more relations of this type. Next we mention two further problems,
which are motivated by Theorem 3.6.2 and its proof.

3.10.1 Jordan hulls

We have seen how to generate given disjoint slits with constant speeds. The corresponding
Loewner equation then has a simple form because only the driving functions depend on time.
Furthermore, this equation is unique, so we exploited all degrees of freedom.
We call a compact hull K Jordan hull if the boundary ∂K is a Jordan curve and ∂K∩R = [a, b] is
a closed interval with positive length, i.e. a < b. Can we find a similar unique Loewner equation
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for Jordan hulls? Here, “similar” means that we think of K as a thickened slit. Let us assume
that hcap(K) = 2 and recall the general Loewner equation (3.3.1):

ġt(z) =
∫
R

2µt(du)
gt(z)− u

, g0(z) = z. (3.10.1)

We would like to find a family of measures {µt}t∈[0,1] of the form

µt(A) = µ(a(t) + c(t) ·A),

where µ is a probability measure, a : [0, 1]→ R is a continuous (“driving”) function with a(0) = 0
and c : [0, 1]→ [0,∞) is a continuous (“scaling”) function with c(0) = 1.
The initial values a(0) = 0 and c(0) = 1 are equivalent to µ = µ0. So, µt is nothing but µ stretched
and translated. We expect that suppµ ⊂ [a, b].
In fact, it is easy to find those measures: We can use the one-slit equation to generate the
boundary – either growing from a to b or from b to a – or the two–slit equation to generate the
boundary by two slits growing from a and b and meeting in the upper half–plane. In the latter
case, we have infinitely many possibilities as we can prescribe an arbitrary λ ∈ (0, 1) as the speed
for one of the slits.
The slit equations generate the hull in a quite “non-uniform” way, as they let the boundary grow
and then “fill up” the rest of K at the end. In other words, we always have suppµ ( [a, b]. This
leads to the following question.

Question 3.10.1. Let K be a Jordan hull with hcap(K) = 2. Can we find continuous functions
a : [0, 1]→ R, c : [0, 1]→ [0,∞) with a(0) = 0 and c(0) = 1 and a probability measure µ with

suppµ = K ∩ R

such that the solution of equation (3.10.1) with µt(A) = µ(a(t) + c(t) ·A) satisfies g1 = gK?
If they exist, are µ, a and c determined uniquely?
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3.10.2 A problem concerning multiple SLE

We mention one further problem that arises if one thinks of the proof of Theorem 3.6.2 and
multiple SLE, roughly speaking: Does bang-bang of single SLE(κ) converge to multiple SLE(κ)?
In [KL07] the authors define multiple SLE as a generalization of the stochastic Loewner evolution
(for one slit). Let us fix the points 0, 1 and ∞ and let κ ∈ [0, 4]. Multiple SLE(κ) from (0, 1)
to (∞,∞) within H can be viewed as a certain probability measure on the space of all pairs of
disjoint curves that connect 0 to ∞ and 1 to ∞ in H, see [KL07] for more details.
Fix n ∈ N and κ ∈ [0, 4]. We construct two random curves Γn and ∆n in the following way:

(1) Generate an SLE(κ) curve in H starting from 0 and going to ∞ by the stochastic Loewner
differential equation and stop it when it has half-plane capacity 1/n. Call this random curve
γ1.

(2) Next, construct an SLE(κ) curve within the domain H \ γ1 from 1 to ∞. Stop it when it has
half-plane capacity 1/n and call this curve δ1. Clearly, γ1 ∩ δ1 = ∅ w.p.1.

(3) Continue this process: γk+1 is a part of an SLE(κ) curve from the tip of γk to ∞ within
H \ (

⋃k
j=1 γj ∪

⋃k
j=1 δj) having half-plane capacity 1/n; and δk+1 is a part of an SLE(κ) curve

from the tip of δk to ∞ within H \ (
⋃k+1
j=1 γj ∪

⋃k
j=1 δj) also having half-plane capacity 1/n.

(4) Finally, let

Γn =
∞⋃
k=1

γk, ∆n =
∞⋃
k=1

δk.

γ1 δ1

b

b

b

b

b

b

b

γ2

γ3

γ4

δ2

δ3

Figure 3.7: Γn and ∆n.

Question 3.10.2. Does (Γn,∆n) converge to multiple SLE for n→∞ in some sense?
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