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Abstract

In this paper we study connectivity augmentation problems. Given a
connected graph G with some desirable property, we want to make G
2-vertex connected (or 2-edge connected) by adding edges such that the
resulting graph keeps the property. The aim is to add as few edges as
possible. The property that we consider is planarity, both in an abstract
graph-theoretic and in a geometric setting, where vertices correspond to
points in the plane and edges to straight-line segments.

We show that it is NP-hard to find a minimum-cardinality augmenta-
tion that makes a planar graph 2-edge connected. For making a planar
graph 2-vertex connected this was known. We further show that both
problems are hard in the geometric setting, even when restricted to trees.
The problems remain hard for higher degrees of connectivity. On the other
hand we give polynomial-time algorithms for the special case of convex
geometric graphs.

We also study the following related problem. Given a planar (plane
geometric) graph G, two vertices s and t of G, and an integer c, how many
edges have to be added to G such that G is still planar (plane geometric)
and contains c edge- (or vertex-) disjoint s–t paths? For the planar case
we give a linear-time algorithm for c = 2. For the plane geometric case
we give optimal worst-case bounds for c = 2; for c = 3 we characterize
the cases that have a solution.
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1 Introduction
Augmenting a given graph to increase its connectivity is important, for example, for making
communication networks resistant against node and link failures. The planar version of the
problem, where the augmentation has to preserve planarity, also has applications in graph
drawing [12]. Many graph-drawing algorithms guarantee nice properties (such as convex
faces) for graphs with high connectivity. To apply such an algorithm to a less highly connected
graph, one adds edges until one reaches the required level of connectivity, uses the algorithm
to produce the drawing, and finally removes edges that were added before. With each removal
of an edge, however, one might loose some of the nice properties (such as the convexity of
a face). Hence, it is natural to look for an augmentation that uses as few edges as possible.
Recall that a graph is c-vertex connected (or simply c-connected) if the removal of any subset
of c−1 vertices does not disconnect the graph. Analogously, a graph is c-edge connected if the
removal of any subset of c− 1 edges does not disconnect the graph. It is common to use the
term biconnected for 2-vertex connected and the term bridge-connected for 2-edge connected.

In this paper, we consider the following two problems.

Planar 2-Vertex Connectivity Augmentation (PVCA):
Given a connected planar graph G = (V,E), find a smallest set E′ of vertex
pairs such that the graph G′ = (V,E ∪ E′) is planar and biconnected.

Planar 2-Edge Connectivity Augmentation (PECA)
is defined as PVCA, but with biconnected replaced by bridge-connected.

The corresponding problems without the planarity constraints have a long history, both
for directed and undirected graphs. Eswaran and Tarjan [6] showed that the unweighted cases
can be solved in polynomial time, whereas the weighted versions are hard. Frederickson and
Ja’Ja’ [8] gave O(n2)-time factor-2 approximations and showed that augmenting a directed
acyclic graph to be strongly connected, and augmenting a tree to be bridge- or biconnected,
is NP-complete—even if weights are restricted to the set {1, 2}. Hsu [9] gave an O(m + n)-
time sequential algorithm for (unit-weight) 2-vertex connectivity augmentation that can be
parallelized well.

Kant and Bodlaender [12] showed that PVCA is NP-complete and gave 2-approximations
for both PVCA and PECA that run in O(n logn) time. Their 1.5-approximation for PVCA
turned out to be wrong [7]. Fialko and Mutzel [7] gave a 5/3-approximation for PVCA.
Kant [11] showed that PVCA and PECA can be solved in linear time for outerplanar graphs.

Provan and Burk [17] considered related problems. Given a planar graph G = (V,EG) and
a planar biconnected (bridge-connected) graph H = (V,EH) with EG ⊆ EH , find a smallest
set E′ ⊆ EH such that G′ = (V,EG∪E′) is planar and biconnected (bridge-connected). They
show that both problems are NP-hard if G is not necessarily connected and give O(n4)-time
algorithms for the connected cases.

We also consider a geometric version of the above problems. Recall that a geometric
graph is a graph where each vertex v corresponds to a point µ(v) in the plane and where

each edge uv corresponds to the straight-line segment µ(u)µ(v) connecting u and v. We are
exclusively interested in plane geometric graphs, that is, geometric graphs whose edges neither
cross each other nor contain vertices other than their endpoints. Therefore, in this paper by
geometric graph we always mean a plane geometric graph. Given a geometric graph G we
again want to find a (small) set of vertex pairs such that adding the corresponding edges to G
leaves G plane and augments its connectivity.

In this context, Rappaport [18] showed that it is NP-complete to decide whether a set of
line segments can be connected to a simple polygon, that is, geometric PVCA and PECA are
NP-complete. Abellanas et al. [1] gave worst-case bounds for geometric PVCA and PECA.
For geometric PVCA, they showed that n − 2 edges are sometimes needed and are always
sufficient. For geometric PECA, they proved that 2n/3 edges are sometimes needed and
6n/7 edges are always sufficient for graphs with n vertices. In the special case of plane
geometric trees (with n vertices) they show that n/2 edges are sometimes needed and that
2n/3 edges are always sufficient for PECA. Tóth [19] lowered the upper bounds to bn/2c for
n-vertex trees and 2n/3 + O(1) for arbitrary n-vertex plane geometric graphs. Al-Jubeh et
al. [2] characterized plane geometric graph that can be augmented to be 3-vertex or 3-edge
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problem planar outerplanar geometric convex

PVCA NPC [12] O(n) [11] NPC [Thm. 2] O(n) [Obs. 2]
PECA NPC [Thm. 1] O(n) [11] NPC [Thm. 2] O(n) [Thm. 4]

w-PVCA open O(n) [Obs. 2]
w-PECA

see above
open

see above
O(n2) [Thm. 5]

Table 1: Complexity of various versions of PVCA and PECA. NPC stands for
NP-complete; the prefix “w” indicates the weighted versions of the problems.

connected. They showed that if a plane geometric graph with n vertices can be augmented
to a 3-edge-connectivity, then at most 2n− 2 new edges are always sufficient and sometimes
necessary. Their augmentation algorithm runs in O(n log2 n) time. They further prove that,
if the input graph is already 2-edge-connected, then n− 2 new edges are always sufficient and
sometimes necessary for the augmentation to 3-edge-connectivity. In this case, their algorithm
runs in O(nα(n)) time, where α(n) is the inverse of the Ackermann function.

Our results. First we show that PECA is NP-complete, too. This answers an open
question posed by Kant [10].

Second, we sharpen the result of Rappaport [18] by showing that geometric PVCA and
PECA are NP-complete even if restricted to trees. Not unexpectedly, the problems remain
hard for higher degrees of connectivity: finding a minimum-cardinality augmentation that
makes a plane geometric (c − 1)-vertex connected graph c-vertex connected is also NP-hard
for c = 3, . . . , 5. The gadgets in our construction are such that they establish hardness for
both vertex and edge connectivity. Recall that any planar graph has a vertex of degree at
most 5 and hence is at most 5-connected.

Third, we give algorithms that solve geometric PVCA and PECA in polynomial time for
convex geometric graphs, that is, graphs whose vertex sets correspond to point sets in convex
position.

Table 1 gives an overview about what is currently known about the complexity of the
problems PVCA and PECA and their geometric variants.

Fourth, we consider a related problem, the geometric s–t path augmentation problem.
Given a plane geometric graph G, two vertices s and t of G, and an integer c > 0, is it
possible to augment G such that it contains c edge-disjoint (c vertex-disjoint) s–t paths? We
restrict ourselves to c ∈ {2, 3}. For c = 2 we show that edge-disjoint s–t path augmentation
can always be done and needs at most n/2 edges, where n is the number of vertices in the
graph G. We give an algorithm that computes such an augmentation in linear time. The tree
that yields the above-mentioned lower-bound of Abellanas et al. [1] also shows that our bound
is tight. For c = 3 we show that edge-disjoint s–t path augmentation is always possible, and
we give an O(n2)-time algorithm that decides whether a given graph has a vertex-disjoint s–t
path augmentation.

In this paper we use the term leaf for a degree-1 vertex in any graph, not only in a tree.

2 Complexity

In this section, we show that PECA is NP-complete. This settles an open problem posed
by Kant [12]. Kant proved that the minimum biconnectivity augmentation problem is NP-
complete and gave 2-approximations for both problems [12]. We also strengthen the result
of Rappaport [18] and show that geometric PECA and geometric PVCA are NP-complete
even in the case of trees. We also show hardness for the corresponding problems with higher
degrees of connectivity.
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2.1 Complexity of PECA
We start by settling the complexity of PECA. For our proof, recall that an embedding of a
planar graph is given by a circular ordering of the incident edges around each vertex.

Theorem 1 PECA is NP-complete.

Proof: PECA is in NP since, given a planar graph G and an integer k > 0, we can guess a
set E′ ⊆ V ×V of at most k non-edges of G and then test efficiently whether G+E′ is planar.

We prove the NP-hardness of PECA by reducing from the problem Planar3SAT, which
is known to be NP-hard [15]. An instance of Planar3SAT is a 3SAT formula ϕ whose
variable–clause graph is planar. Such a graph can be laid out (in polynomial time) such that
variables correspond to pairwise disjoint axis-parallel rectangles intersecting a horizontal line
and clauses correspond to non-crossing three-legged “combs” above or below that line [13],
see Figure 1.

x1 x2 x3 x4 x6x5

c1
c2

c3

c4

c5
c6

c7

Figure 1: Layout of the variable–clause graph corresponding to a planar 3-SAT
formula with variables x1, . . . , x6 and clauses c1, . . . , c7.

Note that if a graph G has k leaves, at least k/2 edges need to be added to bridge-connect
the graph. In case k/2 edges suffice, each of these edges connects two leaves and no two edges
are incident to the same leaf. In other words, the edges form a perfect matching of the leaves.
We now construct a planar graph Gϕ that can be augmented with a perfect leaf matching if
and only if ϕ is satisfiable. The graph Gϕ consists of so-called gadgets, that is, subgraphs that
represent the variables, literals, and clauses of ϕ, see Figures 2. The rough structure of Gϕ

follows the layout of the variable-clause graph depicted in Figure 1. For each gadget, we will
argue that there are only a few ways to embed and augment it with a perfect leaf matching.
Note that our construction connects variable gadgets corresponding to neighboring variables
in the layout of the variable–clause graph of ϕ. Hence Gϕ is always connected. Additionally,
we identify the left boundary of the leftmost variable gadget with the right boundary of the
rightmost variable gadget.

In the figure, leaves are highlighted by small black disks. All bends and junctions of line
segments represent vertices of degree greater than 1. The (black and dark gray) solid line
segments between adjacent vertices represent the edges of Gϕ; the thick dotted line segments
represent non-edges of Gϕ that are candidates for an augmentation of Gϕ. The set of black
solid edges forms a subgraph of Gϕ that we call the frame. The dark gray solid edges form
what we call I-shapes and Y-shapes, which connect singles leaves and pairs of leaves to the
frame, respectively. In Figure 2, we marked examples of I- and Y-shapes.

Consider the graph G′ϕ that we obtain from the frame by contracting all vertices of
degree 2. We claim that G′ϕ is 3-vertex connected. This is true since (a) the subgraph of G′ϕ
induced by the variable gadgets is 3-connected and (b) each subgraph induced by a clause
gadget and the three corresponding literal gadgets is also 3-connected and is attached to the
former (variable gadget) subgraph in six vertices.

Recall a classical result of Whitney’s [20], which says that a 3-connected planar graph has
a unique planar embedding. Hence, by the arguments above, G′ϕ has a unique embedding.
The same holds for the frame of Gϕ as it is a subdivision of G′ϕ. In other words, the embedding
of Gϕ is fixed up to the embedding of the I- and Y-shapes.
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Figure 2: Part of the graph Gϕ for a 3SAT formula ϕ that contains the clause
(x ∧ ¬y ∧ z). The augmentation (dotted edges) corresponds to the assignment
x = y = false and z = true.

We say that an augmentation of a gadget or of Gϕ is tight if the new edges form a leaf
matching and the resulting graph G′ is bridge-connected. It is easy to see that if Gϕ has a
tight augmentation, then Gϕ has an embedding such that the following two properties hold.

(P1) Each face contains an even number of leaves.

(P2) Each face that contains a Y-shape contains at least four leaves.

Note that in a tight augmentation, the two leaves of a Y-shape cannot be matched to each
other since the edge of the Y-shape that is not incident to a leaf would be a bridge.

Our variable gadget consists of two rows of square faces where the horizontal edge between
the two leftmost faces and the horizontal edge between the two rightmost faces is missing.
Effectively, the faces of a variable gadget form a cycle. Starting from the leftmost (rectangular)
face, we call the faces odd and even. To every interior vertical edge an I-shape is attached.
Due to (P1), the I-shapes can be matched in exactly two ways; either in the odd or in the
even faces. If the matching is in the even faces, then the corresponding variable is true, and
vice versa.

A literal gadget consists of a square face that lies immediately above or below the variable
gadget. A positive literal (such as the ones labeled with x in Figure 2) is attached to an even
face, a negated literal (such as the one labeled with ¬y in Figure 2) is attached to an odd face.
A literal gadget contains two Y-shapes, one attached to each of its two horizontal edges. Due
to (P2) these Y-shapes are embedded either both inside or both outside the literal gadget.
Again due to (P2) the Y-shapes must be embedded inside the literal gadget if no I-shapes
are embedded into the adjacent face of the variable gadget. In this case, the literal has the
value false. If two I-shapes are embedded into the adjacent face of the variable gadget, the
Y-shapes of the literal gadget can (but don’t have to) be embedded to the outside (see the
literal ¬y).

Finally, each clause gadget consists of a single rectangular face that contains a Y-shape.
If Gϕ has a tight augmentation, then, due to (P2), at least two other leaves are embedded
into every clause gadget face. This means that for each clause gadget, the Y-shapes of at least
one adjacent literal gadget are embedded to the outside. In other words, at least one of the
literals that make the clause is true. Hence, ϕ has a satisfying truth assignment.

Conversely, it is easy to see that if ϕ has a satisfying truth assignment, then all gadgets
have a tight augmentation and hence, so does Gϕ.
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(a) (b) (c)

Figure 3: Various variants of loopholes.

We use a constant number of vertices and edges for each literal and clause gadget, thus
our reduction—including the computation of the embedding of the variable–clause graph—is
polynomial. �

Note that the graph constructed in the proof is 2-edge connected if and only if it is
biconnected. Hence, our proof also shows that PVCA is NP-complete.

2.2 Geometric PVCA and Geometric PECA
Next we show that geometric PVCA and geometric PECA are NP-complete as well. With a
simple modification, it follows that the problems are even NP-complete if the input is restricted
to plane geometric trees. With another modification, we show hardness for the corresponding
problems for higher degrees of connectivity.

Note that we cannot recycle our proof of Theorem 1 to show hardness for the geometric
variants of the problems: there, we exploited that certain parts of the graph (the I- and Y-
shapes) could be embedded in different (but adjacent) faces. Here, we are given embedded
graphs; we cannot even move vertices or edges. To show hardness, we exploit this rigidity.
Our proof is again by reduction from Planar3SAT. Although the graph that we are about to
construct looks very different from the one we constructed in the proof of Theorem 1, similar
functional units (as the I- and Y-shapes) will play a role.

Theorem 2 Let G be a connected plane geometric graph with k leaves. It is NP-complete
to decide whether it is possible to augment G with k/2 edges such that G becomes bridge- or
biconnected.

Proof: For membership in NP we argue as in the proof of Theorem 1. To show the NP-
hardness of the two problems, we again reduce from Planar3SAT and construct a connected
plane geometric graph G consisting of gadgets that represent the variables, literals, and clauses
of the given planar 3SAT formula. Recall once more that we need to add at least k/2 edges
in order to make G bridge- or biconnected since every leaf must lie on a cycle afterwards and
must hence be incident to one of the added edges.

The basic building block of our gadgets is what we call a loophole. The default loophole,
depicted in Figure 3a, consists of an E-shaped cycle and two attached I-shapes that are placed
such that their leaves cannot see each other. (Recall that an I-shape is a leaf with its incident
edge.) In contrast, in a self-connecting loophole (see Figure 3b), the two leaves do see each
other. A skewed loophole is a loophole that misses one of the boundaries (Figure 3c). In the
terminology of the proof of Theorem 1, a default loophole corresponds to a Y-shape, and a
self-connecting loophole corresponds to a pair of I-shapes in the same face. Skewed loopholes
are similar to default loopholes; their shape differs to allow for certain connections without
crossings.

Again, all our gadgets are surrounded by walls, that is, by biconnected subgraphs that
ensure that the whole construction without the leaves is biconnected. In the figures, walls are
indicated by gray rectilinear polygons.

We are now ready to describe our variable gadget, see Figure 4. It consists of two parallel
rows of evenly spaced loopholes with the upper loopholes pointing downwards and the lower
ones pointing upwards. The lower row contains one loophole more than the upper one and
its two outermost loopholes are self-connecting. The rows are aligned so that every loophole
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(a) true

(b) false

Figure 4: Variable gadget without any adjacent literal gadgets; the two mini-
mum augmentations correspond to the values of the variable.

(except the first and last of the lower row) lies horizontally between two opposing loopholes—
which we call its partners—on the other row. The distances between the loopholes and the
two rows are chosen such that the I-shapes of each loophole can only be connected to the
leaves of its two partners on the other row without producing a crossing. As in the proof
of Theorem 1, we connect neighboring variable gadgets to ensure that the resulting graph is
connected.

For any minimum augmentation, the two I-shapes of a loophole on the upper row must
be connected to the two I-shapes of its left or right partner on the other row and the edges in
the augmentation have slope 1 or −1. By construction this choice has to be the same for each
loophole on the upper row, otherwise crossings would occur. On the lower row, depending on
the choice either the first or last loophole does not receive new edges and its I-shapes must
be connected. Hence, a variable has exactly two different minimum augmentations. The two
possible states are shown in Figure 4. We say that the variable is in state true if the edges
connecting loophole partners have slope 1 and false if they have slope −1.

Next we show how the state of a variable is transmitted to the gadgets that represent
the clauses in which the variable occurs. This is the job of the literal gadgets. Roughly
speaking, for each literal gadget we remove two wall pieces of the variable gadget, and attach
a self-connecting loophole on one side and a skewed loophole on the other side, see Figure 5.

If the literal is positive (as in the case of the upper left literal gadget in Figure 5), a leaf
in one of the two loopholes can be connected to a leaf in the other loophole if and only if the
new edges in the variable gadget all have slope 1. If the literal is negated (as in the case of the
lower right literal gadget in Figure 5), leaves of the two loopholes can only be interconnected
if the new edges in the variable gadget all have slope −1.

In this way, the leaves of the skewed loophole can be matched to the leaves of the corre-
sponding self-connecting loophole if and only if the value of the variable satisfies the corre-
sponding literal. Otherwise, leaves of the skewed loophole have to be connected to a vertex
inside the clause gadget, which we present next.

The clause gadget consists of a square that contains a loophole and two L-shaped wall
parts that occupy the corners opposite of the loophole, see Figure 6. On three sides, the square
is connected via literal gadgets to the gadgets of the three variables that form the clause in the
given planar 3SAT formula. Each literal gadget contains two I-shapes that are positioned such
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true

false

(a) state true

true

false

(b) state false

Figure 5: Variable gadget (middle gray) with two adjacent literal gadgets (light
gray). The upper left literal gadget transmits the logical value of the variable,
whereas the lower right literal gadget transmits the negation of that value.
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(a) state false (b) state true

Figure 6: Clause gadget (middle gray) with the three adjacent literal gadgets
(light gray). If all literals are false, the leaves in the clause gadget (or some other
leaves) must be matched to non-leaves, or a leaf receives more than one new
edge (a). If at least one literal is true, there is an augmentation that matches
all leaves to other leaves. The right figure (b) depicts the situation where the
literals corresponding to the left and the right gadget are true and the literal
corresponding to the middle gadget is false.

that they see (a) each other, (b) the two I-shapes inside the square, and (c) the two I-shapes
of the skewed loophole where the literal gadget is attached to a variable. It is not hard to see
that if any of the skewed loopholes is matched to leaves in the variable gadget, then the two
I-shapes in the literal gadget are free to connect to the two I-shapes in the square. Only if all
three skewed loopholes are matched to I-shapes in their literal gadget, then the two I-shapes
in the center square require an additional edge.

As in the proof of Theorem 1 we use a constant number of vertices and edges for each
literal and clause gadget, thus our reduction—including the computation of the embedding of
the variable–clause graph—is polynomial. �

By a simple trick we can slightly strengthen the result of Theorem 2.

Corollary 1 It is NP-complete to decide whether a plane geometric tree with k leaves can
be augmented to be bridge- or biconnected with k/2 edges.

Proof: The proof is by reduction from the previous case. Let G be a connected plane
geometric graph with kG leaves. We now show how to remove cycles from G. Since the
construction leaves G connected, the resulting graph is a tree.

To reduce the number of cycles we replace an arbitrary edge that lies on a cycle by
the construction shown in Figure 7. Note that we can make the spiral in the center of the
construction so small that is does not prevent any connections in the remainder of the graph.
We iterate this construction until there are no cycles left. The resulting graph is a tree T .
Let kT be the number of leaves of T . It is clear that for each of the new leaves (in the spiral
centers) there is only one way to connect to another leaf, namely to the one that restores the
cycle we removed before. Hence, T can be augmented with kT /2 edges if and only if G can
be augmented with kG/2 edges.

The reduction can be performed in polynomial time since we introduce at most one spiral
per edge of G, each consisting of a constant number of edges. The length of the shortest new
edge of T is roughly proportional to the smallest distance among the vertices of G. �

We now generalize the proof of Theorem 2 to show that for any 2 ≤ c ≤ 5, it is NP-hard
to augment a plane geometric graph to be c-connected by adding a given number of edges.
Note that any planar graph has a vertex of degree at most 5, so planar graphs are at most
5-connected. To show that our construction has the desired properties, let us make some
simple observations.
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. . . . . .
u v

Figure 7: Construction that removes a cycle, locally leaves only one possibility
to augment, and does not interfere with the remainder of the graph with respect
to augmentation.

v
(a)

v
(b)

Figure 8: Subdivision of a loop-
hole into rectangular blocks.

Figure 9: Adding edges to leaves in the
second step of the construction of Gϕ

(here with c = 5).

Observation 1 Let G be a graph with vertices u and v. Then the following properties hold:

(i) If G− u is c-connected and u has degree at least c, then G is c-connected as well.

(ii) If G−{u, v} is c-connected and vertices u and v have degree at least c−1 but no common
neighbor, then G+ uv is c-connected.

Proof: For showing property (i), suppose that S is a separator of G with |S| < k. Since S is
no separator in G − v, S splits off only v from G. Hence, S contains all neighbors of v, and
thus |S| ≥ k. Contradiction.

Similarly, for property (ii), suppose that S is a separator of G+ uv with |S| < k. Since S
is not a separator of G, S splits off u or v from G + uv. This, however, is not possible since
both u and v have degree at least c in G+ uv and since their neighborhoods are disjoint. �

To generalize the proof of Theorem 2 to higher degrees of connectivity, we make the
graph Gϕ (c− 1)-connected in two steps.

First, we temporarily remove all I-shapes from Gϕ, subdivide the walls of the loopholes
as in Figure 8 into gray rectangles, and replace each gray rectangle in Figures 5 and 6 by a
copy of the graph depicted in Figure 10a. We stick two building blocks together by identifying
the five vertices on the edge of one block to the five corresponding vertices on the edge of the
other block. Call the resulting graph G1

ϕ.
Second, we treat the former I-shapes of Gϕ. We connect each leaf of Gϕ by (c − 2)

additional edges to the boundary of G1
ϕ such that no two leaves have a common neighbor, see

Figure 9. We call the resulting graph G2
ϕ. We now show that G2

ϕ does the job.

Theorem 3 It is NP-hard to decide the following question: given integers 2 ≤ c ≤ 5 and k ≥
1 and a (c− 1)-connected plane geometric graph G, can G be augmented to being c-connected
by adding at most k edges?

Proof: We again reduce from Planar3SAT, along the lines of the proof of Theorem 2. We
first show that G2

ϕ is (c− 1)-connected.

In order to see this, we claim that G1
ϕ is 5-connected. The walls of G1

ϕ are made from
copies of our basic building blocks. Such a block is 5-connected for two reasons; (a) it consists
of four copies of the smaller 5-connected graph, a sub-block, depicted in Figure 10b, whose
5-connectivity we have verified by a computer program and (b) two neighboring sub-blocks lie
in the same 5-connected component. To see (b), consider the five portals that we define on the
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(a) (b) (c)

Figure 10: A building block (a), a 5-connected sub-block with 33 vertices (b),
proof that a building block is 5-vertex connected (c).

boundary of each sub-block, see the black squares in Figure 10c. Each vertex in a sub-block has
five vertex-disjoint paths to its portals, which are connected to the corresponding portals of the
neighboring sub-block via (possibly trivial) pairwise vertex-disjoint paths. Observations (a)
and (b) plus symmetry show our claim.

Given that G1
ϕ is 5-connected and c ≤ 5, property (i) of Observation 1 yields that G2

ϕ is

(c − 1)-connected. Note that the leaves of Gϕ and the degree-(c − 1) vertices of G2
ϕ are in

one-to-one correspondence. Let K be their number. Clearly, in order to make G2
ϕ c-connected,

we need at least K/2 new edges. We claim that the graph G2
ϕ that we have constructed above

can be made c-connected by adding K/2 edges if and only if Gϕ can be made biconnected by
adding K/2 edges.

If G2
ϕ can be made c-connected by adding K/2 edges, then these edges form a matching

of the vertices of degree c− 1. This matching can also be added (in a plane fashion) to Gϕ.
Now we turn to the other direction. If Gϕ can be made biconnected by adding K/2

edges, we add the corresponding edges to G2
ϕ. We have shown above that G1

ϕ is 5- and thus
c-connected. Now property (ii) of Observation 1 yields that each of the remaining vertices lies
in the same c-connected component as G1

ϕ. This finishes the proof of our claim.
Clearly, our reduction is polynomial. �

Using the same graph G2
ϕ in the reduction, we can prove the statement for edge connec-

tivity, too.

Corollary 2 Given integers 2 ≤ c ≤ 5 and k ≥ 1 and a (c−1)-edge connected plane geometric
graph G, it is NP-hard to decide whether G can be augmented to being c-edge connected by
adding at most k edges.

3 Convex Geometric Graphs
In this section we show that geometric PVCA and geometric PECA can be solved in poly-
nomial time for connected convex geometric graphs, that is, for graphs whose vertices are
in convex position. We focus on augmenting a given connected convex geometric graph to
bridge- and biconnectivity. Note that every convex geometric graph is outerplanar and hence
contains a vertex of degree at most 2, which prevents higher connectivity.

We first consider the very simple problem of biconnecting a convex geometric graph, see
Section 3.1. Then we give an algorithm that computes an edge set of minimum cardinality
that bridge-connects a convex geometric graph, see Section 3.2. Finally, in Section 3.3 we
consider a weighted version of bridge-connectivity augmentation. We give an algorithm that
computes a minimum-weight augmentation in a connected n-vertex convex geometric graph
in O(n2) time.
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We assume that for a geometric graph the edges incident to a vertex are ordered clockwise.
If this information is not provided, we can easily compute it in O(n logn) time.

3.1 Biconnecting Convex Geometric Graphs
Consider an arbitrary connected convex geometric graph G. Suppose that there are two
consecutive vertices u and v on the convex hull that are not connected by an edge. Since G is
connected, adding the edge uv creates a new face F . It is not hard to see that every vertex of
F − {u, v} disconnects G. Hence, in a biconnected convex graph all edges of the convex hull
must be present.

On the other hand if all edges of the convex hull are present, then the graph is biconnected.
Hence, it suffices to add all edges of the convex hull that are not already in G to make G
biconnected. This is also the minimum number of edges that must be added. As the convex
hull of the point set can be computed in linear time if G is connected [16], convex geometric
graphs can be augmented to biconnectivity in linear time. We summarize this brief discussion.

Observation 2 Let S be a set of n points in the plane, and let G = (S,E) be a connected
convex geometric graph. There is an efficient algorithm that computes a minimum-weight
set E′ of edges such that G+E′ is biconnected. If the embedding of G is given, the algorithm
runs in linear time and uses linear space.

3.2 Bridge-Connecting Convex Geometric Graphs
In this section we consider the problem of bridge-connecting a convex geometric graph G =
(V,E). We start by considering two basic graphs that are especially easy to bridge-connect,
the cycle and the near-cycle shown in Figure 11. While the cycle is already bridge-connected,
the near-cycle is not. It can, however, be bridge-connected by adding the single missing edge
to form a cycle.

Figure 11: A cycle (left) and a near-cycle (right).

The basic idea is to decompose an arbitrary convex geometric graph into cycles and near-
cycles and to use this decomposition to compute in a greedy fashion an edge set of minimum
cardinality that bridge-connects the graph.

We differentiate between two types of edges. If an edge connects two consecutive vertices
of the convex hull, we call it an outer edge, otherwise an inner edge. Note that if G is a
connected convex geometric graph that does not contain an inner edge, then G is a cycle or
a near-cycle.

Otherwise, an inner edge e = uv can be used to split G into two subgraphs that can be
augmented almost independently. The line defined by e splits the vertex set of G into two
convex point sets P1 and P2. We then define, for i = 1, 2, the graph Gi as the subgraph
of G induced by Pi ∪{u, v}. The interplay between augmentations of these two graphs is very
limited since adding any edge between two vertices that are distinct from u and v and that do
not belong to the same subgraph would introduce a crossing with e and is hence forbidden.
On the other hand, the two augmentations are not completely independent as it suffices for e
to be in one cycle. Hence, we store, for each edge e of G, a flag indicating whether e is already
part of a cycle in the current partial augmentation. Initially all these flags are set to false.
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Splitting G recursively along all inner edges defines a tree T whose nodes correspond to
subgraphs of G. Two nodes of T are adjacent if and only if the corresponding subgraphs
share an edge of G. The leaves of this tree correspond to components that are cycles or near-
cycles. Starting from E′ = ∅, we compute a minimum augmentation E′ of G by iteratively
augmenting a component C that corresponds to a leaf of T . We do this as follows.

Let e = uv be the edge that is shared by C and its parent in T , and let C′ = C \ {u, v}.
We distinguish three different types of components. If C is a cycle, we mark all edges of C
and remove C′ from G. If C is a near-cycle that contains at least one edge except e that is
not yet marked, we add to E′ the unique edge that completes the cycle, mark e as lying on
a cycle and remove C′ from G. Finally, if C is a near-cycle and each edge except possibly e
has been marked, we do not add any edge to E′ and remove all vertices of C′ from G. See
Figure 12 for an example. Note that component 5 does not require an edge although it is not
a cycle.

1

2 3

4

5
6

Figure 12: A convex geometric graph (left) and its decomposition along interior
edges (right). The dashed edges form a bridge-connectivity augmentation of
minimal size, the numbers indicate the processing order of the components.

Once we have processed the last component of G, the set E′ is an augmentation of G since
we only remove edges from G that are marked as lying on cycles in G+ E′. The minimality
of E′ follows from the fact that in each component we need to add at most one edge and we
only add an edge to a component if it is strictly required.

The algorithm can be implemented to run in linear time. The initial computation of T
takes linear time, maintaining a list of leaves of the decomposition tree can be done in constant
time per step and processing a component C takes time linear in the size of C.

We summarize our result.

Theorem 4 Let S be a set of n points in the plane, and let G = (S,E) be a connected convex
geometric graph. There is an efficient algorithm that computes a minimum-cardinality set E′

of edges such that G+ E′ is bridge-connected. If the convex hull of S and the corresponding
planar embedding of G is given, the algorithm runs in linear time and uses linear space.

3.3 Minimum-Weight Augmentation
We now generalize the algorithm from the previous section to the case where every potentially
new edge e is associated with a positive cost c(e). We seek a minimum-cost augmentation of
a given plane graph G such that G becomes bridge-connected (while remaining plane). For
a set of edges E′ we define the cost of E′ as c(E′) =

∑
e∈E′ c(e). Given a connected convex

geometric graph with n vertices, we can solve the problem in O(n2) time.
The basic idea is again to use a decomposition into (near-)cycles. The main difference

from the previous problem is that in a near-cycle it is not always the best solution to add
the unique edge that completes the cycle. Consider the graph given by the solid edges in
Figure 13. The costs of the vertex pairs that are connected by dashed line segments are given
in the table next to the drawing or will be specified later; all other non-adjacent vertex pairs
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f
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e edge a b d f
cost 2 4 5 10

Figure 13: Example of a minimum-weight augmentation.

have a very high cost. We first focus on the component to the right of and including the bold
split edge e. Adding the unique edge f that completes the cycle would incur a cost of 10,
whereas adding the edge set E1 = {b, d} would incur a cost of only 9. Adding the edge set
E2 = {a, d} would be even cheaper, namely 7. This solution, however, has the disadvantage
that e does not lie on a cycle in the component to the right of e; hence e is forced to lie on
a cycle in the component to the left of e. Which option yields the better solution globally
depends on the costs of edges x and y. If c(y)−c(x) is greater than c(E1)−c(E2), the optimal
global solution is E1∪{x}, otherwise E2∪{y} is optimal. Hence, we cannot make the decision
between E1 and E2 in advance. Instead, we store both costs for the component to the right
of e, the cost w+(e) of a cheapest augmentation that puts e on a cycle and the cost w−(e) of a
cheapest augmentation that does not necessarily put e on a cycle. Note that w+(s) ≥ w−(s)
for any split edge s.

Initially, we set w+(e) =∞ and w−(e) = 0 for each outer edge e of G. We then compute
the decomposition tree T of G and process its components starting from the leaves as in
the algorithm described in the previous section. Other than there, we need to use dynamic
programming to find a global minimum-cost solution. Let C be a component and let e = uv
be the edge that is shared by C and its parent in T . We assume that, for all edges e′ of C
that are distinct from e, we already have computed w+(e′) and w−(e′). For any set E′ of
vertex pairs of C, we denote the set of bridges of C + E′ by brC(E′), and we define the cost
of E′ with respect to e as

coste(E′) =
∑

e′∈brC(E′)\{e}
(w+(e′)− w−(e′)) +

∑
e′∈E′

c(e′).

The first term of the cost function describes the increase of augmentation cost stemming from
the fact that e is not on a cycle in C + E′ and hence must be part of a cycle in a previously
processed component. The second term is the cost for the edges in E′. We set

w−(e) = min
E′

coste(E′)

and

w+(e) = min
E′, e/∈brC(E′)

coste(E′).

We now show how to compute these values efficiently. If C is a cycle, then w−(e) =
w+(e) = cost(∅) = 0. If C is a near-cycle, we can reduce the computation of w−(e) and
w+(e) to a shortest-path problem as follows.

We say that an augmentation E′ of C is (inclusion) minimal if, for any proper subset
E′′ ⊂ E′, we have that brC(E′) is a proper subset of brC(E′′), that is, any smaller set covers
fewer edges. The following lemma shows that any minimal plane augmentation of C has a
certain path structure.

Lemma 1 Let E′ be a minimal plane augmentation of C, and let u1, . . . , uk be the vertices
of C as they occur along C. Then P = E′ ∪brC(E′) forms a path from u1 to uk. The subset
of vertices that is visited by P occur along P in the same order as in C.
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Figure 14: Illustration for the proof of Lemma 1.

Proof: We first show that all vertices of P have degree at most 2, except for u1 and uk,
which have degree at most 1. Suppose that a vertex ui of P is incident to two distinct
vertices uj , uj′ with i < j < j′. Then edge uiuj is not a bridge since vertices ui, uj , . . . , uj′
form a cycle containing this edge. Therefore, uiuj lies in E′. As j′ > j, we have that
brC(E′ \ {uiuj}) = brC(E′). Analogously, ui can have at most one neighbor uj with j < i
in P .

Next, we show that P connects u1 and uk. Note that u1 is not a singleton, as it either
is incident to an edge of E′ or u1u2 lies in brC(E′). Let ui be the vertex with the largest
index that belongs to the connected component of u1 in P . Note that i > 1 by the previous
observation. Now suppose that i < k. The choice of ui implies that ui is not adjacent to any
vertex uj with j > i in P . In particular, the edge uiui+1 does not lie in brC(E′), which,
in turn, implies the existence of an edge ujuj′ with j < i < j′, see Figure 14a. Since uj′ is
not in the same connected component as u1 (this would contradict the choice of ui), we have
that uj , too, belongs to another connected component. Hence, the path from u1 to ui must
contain an edge urur′ with r < j and j < r′ ≤ i < j′. Such an edge would, however, cross
the edge ujuj′ , contradicting the planarity of E′. Therefore, we have that i = k and that P
connects u1 and uk as claimed.

It remains to show that P is connected. Suppose that P contains an edge uiui′ that is not
connected to u1. Then, due to the planarity of E′, the path from u1 to uk in P contains an
edge ujuj′ with j < i < i′ < j′. But then uiui′ 6∈ brC(E′) and brC(E′) = brC(E′ \ {uiui′}),
see Figure 14b. This contradicts uiui′ lying in P .

The planarity of E′ implies that P contains its vertices in the same order as along C. �

Lemma 1 shows that we can compute w+(e) by finding a shortest u1–uk path in the

directed, weighted graph ~C = (VC , ~EC ; `) with vertex set VC = {u1, . . . , uk}, edge set ~EC =
{uiuj | 1 ≤ i < j ≤ k, uiuj 6= e}, and weight

`(uiuj) =

{
w+(uiuj)− w−(uiuj), j = i+ 1
c(uiuj), j > i+ 1

for each edge uiuj in ~EC . Analogously, we can compute w−(e) by adding e to ~C with a

weight of 0. Since ~C is a directed acyclic graph, a shortest path can be computed in time
O(| ~C|) = O(|C|2) [4]. This yields an overall running time of O(n2). We have proved the
following theorem.

Theorem 5 Let G be a connected convex geometric graph with n vertices. Then we can find,
in O(n2) time, a minimum-weight set E′ of vertex pairs such that G+E′ is bridge-connected.

4 Path Augmentation
In this section we consider the following two problems.

Planar k-path augmentation (k-PathAug):
Given a planar graph G, two vertices s and t of G, and an integer k > 1, find
a smallest set E′ of vertex pairs sucht that G + E′ is planar and contains k
edge-disjoint s–t paths.
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Plane geometric k-path augmentation (geometric k-PathAug) is defined as above with
“planar” replaced by “plane geometric”. Note that for k = 2 the geometric case (geometric
2-PathAug) is a relaxed version of PECA. Both problems have a variant where the aim is to
find vertex-disjoint paths. We refer to this as the vertex variant of (geometric) k-PathAug.

In the following we give a polynomial-time algorithm for planar 2-PathAug. We then
turn to the geometric version of the problem. We show that in the worst case n/2 edges are
needed for geometric 2-PathAug. For k > 2 geometric k-PathAug does not always have a
solution. We give necessary and sufficient conditions for geometric 3-PathAug. We do not
consider the non-geometric variant 3-PathAug, because every planar graph with at least four
vertices can be triangulated, and hence, can be augmented to contain three vertex-disjoint
paths between any two vertices [14].

4.1 Planar 2-Path Augmentation
Theorem 6 2-PathAug and its vertex variant can be solved in linear time.

Proof: We only consider the edge variant; the vertex variant can be solved analogously. Let
G = (V,E) be a planar graph, let s and t be two vertices of G, and let C1, . . . , Cr be the 2-edge
connected components of G. We first consider a special case of the problem. We assume that
the 2-edge connected components of G form a path C1, . . . , Cr and that s ∈ C1 and t ∈ Cr.

For each component Cj with 2 ≤ j ≤ r− 1 consider the two vertices uj and vj of Cj that
are incident to bridges. We say that Cj is a pearl, if Cj + ujvj is planar. This is the case
if and only if Cj has an embedding such that uj and vj lie on the outer face. If Cj is not a
pearl, we say that Cj is a ring.

Let i < k and let wi and wk be vertices of Ci and Ck, respectively, such that G+wiwk is
planar. Now assume there is a component Cj with i < j < k that is a ring. Then the graph
that results from contracting C1 ∪ · · · ∪ Cj−1 to uj and Cj+1 ∪ · · · ∪ Cr to vj is Cj + ujvj .
Contractions do not violate planarity, thus Cj + ujvj is planar. This, however, violates the
assumption that Cj is a ring. Hence no edge in a planar augmentation of G can “bypass”
a ring. In other words, an optimal augmentation contains an edge between C1 and the first
ring, between the first and the second ring, etc., and between the last ring and Cr. If there are
no rings, the optimal augmentation consists of an edge connecting C1 and Cr, for example,
between the corresponding cut vertices.

Now we consider the general case, that is, the 2-edge connected components form a tree T .
In T , the components that contain s and t are connected by a path. This is the special case
we have treated above. Obviously, any planar augmentation of the subgraph induced by the
components on the path is also a planar augmentation of G. Since no ring on the path can
be bypassed, there is no planar augmentation of G that uses fewer edges.

The tree of the 2-edge connected components can be computed in linear time. Finding
the ring components on the path between s and t also takes linear time. Hence the whole
algorithm runs in linear time. �

4.2 Geometric 2-Path Augmentation
Although geometric 2-PathAug appears to be a simplification of geometric PECA, it is not
obvious how to take advantage of this. Therefore we consider the worst-case problem: how
many edges are needed for geometric 2-PathAug in the worst case. For a zig-zag path with
end vertices s and t whose vertices are in convex position n/2 edges are needed in order
to establish two edge-disjoint s–t paths, see Figure 15. Abellanas et al. [1] came up with
this example to show that, for trees, geometric PECA sometimes requires n/2 edges. They
conjectured that n/2 edges always suffice to augment a tree to bridge-connectivity. Recently,
Tóth [19] confirmed this. This shows that n/2 edges always suffice for geometric 2-PathAug
in trees.

We show that any plane geometric graph has, for any two vertices s and t, an s–t 2-path
augmentation with at most n/2 edges. We also give a simple algorithm that finds such an
augmentation in linear time. We use the fact that every geometric graph G = (S,E) has a
geometric triangulation, that is, there is a graph T = (S,E′) with E ⊆ E′ such that all faces
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s t

Figure 15: Zig-zag path of n vertices that needs n/2 edges (dashed) to aug-
ment [1].

of T except perhaps the outer face are triangles. This follows from the fact that every simple
polygon has a triangulation [5].

Lemma 2 Let S be a finite set of points in the plane, and let s, t ∈ S. Let G = (S,E) and
G′ = (S,E′) be connected plane geometric graphs such that E ⊆ E′. If G′ contains a path of
length L between s and t, then there exists an s–t 2-path augmentation of G with at most L
edges.

Proof: We can assume that G′ is a triangulation of S since this does not increase the length
of a shortest s–t path in G′.

Let π be a path of length L between s and t in G′. We denote its vertices by s =
v0, . . . , vL = t. We use induction on L to show that we can augment G with L edges. We
start with the case L = 1, that is, G′ contains the edge e = {s, t}. If s and t lie in the same
2-edge connected component of G, G already contains two edge-disjoint s–t paths and we’re
done. Otherwise we consider two cases.

If e is not in G, then s and t lie in the same 2-edge connected component of G+ e since G
is connected. If e is already in G then e is a bridge (otherwise s and t would be in the same
2-edge connected component). Removing e from G yields two connected subgraphs G1 and
G2 of G. Since G′ is a triangulation of S that contains all edges of G, there exists an edge
e′ = vw in G′ with v ∈ G1 and w ∈ G2 such that e′ is different from e and G+ e′ is plane. In
G+ e′ the vertices s and t lie in the same 2-edge connected components.

We now consider L > 1. Given a path π of length L we first apply the induction hypothesis
to the path π′ = v0, . . . , vL−1. Then we use the same argument as above to show that it suffices
to add at most one edge to G to make sure that vL−1 and vL are in the same 2-edge connected
component. The augmented graph is plane since it is a subgraph of G′. �

For the main result of this section, it remains to show that triangulations have small
diameter. We need the following notation. Given a triangulation T and vertices s and t in
T , we denote by d(s, t) the length of a shortest s–t path in T . For a vertex v of T we denote
by N i(v) = {u ∈ T | d(v, u) ≤ i} the set of vertices of T at distance at most i from v and by
∂N i(v) = {u ∈ T | d(v, u) = i} the set of all vertices at distance exactly i from v. Note that
N i+1(v) = N i(v) ∪ ∂N i+1(v) for any vertex v in T and any integer i ≥ 0.

Lemma 3 Let S be a set of n points in the plane, and let T = (S,E) be a triangulation of S.
Then T contains a path of length at most n/2 between any pair of points in S.

Proof: We first show that for any vertex v of T and for any integer i ≥ 0 it holds that
|N i(v)| ≥ 2i + 1 or N i(v) = S. For i = 0 the statement clearly holds. For i > 0, we show
that either |∂N i(v)| ≥ 2 or N i(v) = S. Clearly, ∂N i(v) = ∅ implies N i(v) = S since T is
connected. If ∂N i(v) = {x} and N i(v) 6= S, then there exists a vertex y in S \ N i(v). In
this case, however, the fact that every path from s to y must contain x implies that x is a
cut vertex, which contradicts the fact that T is biconnected. This proves our lower bound
on |N i(v)|.

Now consider any pair of vertices s and t in S and set k = bn/2c. By the previous
inequality we have that Nk(s) ≥ 2 bn/2c+1 ≥ n and hence Nk(s) = S. Hence, t lies in Nk(s)
and, by the definition of Nk(s), there exists a path of length at most n/2 from s to t. �

Together, Lemmas 2 and 3 yield the following theorem.
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Theorem 7 Let S be a set of n points in the plane, let G = (S,E) be a plane geometric
graph, and let s and t be two vertices of G. Then there is an s–t 2-path augmentation of G
that uses at most n/2 edges.

We now improve this bound for the case that the convex hull CH(S) of S does not contain
too many points. The basic idea is to simultaneously grow neighborhoods around s and t;
once N i(s) and N i(t) both contain vertices of CH(S) for some i ≥ 0, there is a relatively short
path connecting them.

Lemma 4 Given a set S of n points in the plane, a geometric triangulation of S has diameter
at most 2(n+ 3)/5 + h/2, where h = |CH(S)|.

Proof: Let T be a triangulation of S and let v be a vertex of T . We claim the following. If
N i(v) ∩ CH(S) = ∅ then |N i(v)| ≥ 3i+ 1.

We show this by induction on i. Clearly, the claim holds for i = 0. Now let i ≥ 1. We
apply the induction hypothesis to N i−1(v) and show that |∂N i(v)| ≥ 3 if N i(v)∩CH(S) = ∅.
Assume, for the sake of contradiction, that |∂N i(v)| ≤ 2. That means that all paths going
from N i−1(v) to S\N i(v) must pass through one of the two vertices in ∂N i(v). Hence, ∂N i(v)
is a separator of cardinality 2. Let T ′ be the plane graph that results from T by triangulating
the outer face of T (using non-straight-line edges). Since all edges in T ′ − T connect points
on the convex hull of S, which is disjoint from N i(v), it holds that ∂N i(v) is a separator of
cardinality 2 of T ′. This is a contradiction to the fact that every fully triangulated graph is
3-connected. Hence, our assumption is wrong, and the case |∂N i(v)| ≤ 2 is ruled out. In
other words, |∂N i(v)| ≥ 3 for all i ≥ 1 with N i(v) ∩ CH(S) = ∅. This proves our claim.

Now let

k = min{i | N i(s) ∩N i(t) 6= ∅ or both N i(s) ∩ CH(S) 6= ∅ and N i(t) ∩ CH(S) 6= ∅}.

be the first iteration where the iterated neighborhoods either meet or both have reached the
convex hull of S.

Clearly there exists a path of length 2k + h/2 between s and t. The neighborhoods give
a path from s to the convex hull and from t to the convex hull and any two points on the
convex hull are connect by a path of length at most h/2.

We now bound k in a similar fashion as before. We have |Nk−1(s) ∪ Nk−1(t)| ≥ 5(k −
1) + 2 = 5k − 3 since the neighborhoods of s and t grow by at least two vertices as shown in
the proof of Lemma 3 and one of them grows by at least three vertices by the claim above.
On the other hand |Nk−1(s) ∪Nk−1(t)| ≤ n. From this we get k ≤ (n+ 3)/5.

Hence there exists a path from s to t with length at most 2k+h/2 ≤ 2(n+ 3)/5 +h/2. �

Note that the bound in Lemma 4 is strictly better than the bound in Lemma 3 if h <
(n− 12)/5.

We now turn to the corresponding algorithmic problem. In the remainder of this subsec-
tion we show how to compute a solution to geometric 2-PathAug of size at most n/2 in linear
time. Given a graph G, our algorithm consists of the following three steps.

1. Find any triangulation T of G.

2. Compute a shortest path π from s to t in T .

3. Construct an s–t 2-augmentation from π (whose existence follows from Lemma 2).

Concerning step 1, note that the boundary of the outer face of a plane geometric graph is,
in general, not a simple polygon. It is however weakly simple in the sense that segments that
have a common point in the interior are actually the same segment. Algorithmically, weakly
simple polygons can be handled just like simple polygons [1].

Therefore, we can apply Melkman’s linear-time algorithm [16] for computing the convex
hull of a polygonal chain to compute the convex hull of our geometric graph. We then add
edges between neighboring points on the convex hull. Now all interior faces of our graph
are weakly simple polygons and can hence be triangulated in linear time [3]. Let T be the
resulting triangulation of G.
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Figure 16: Example for the linear-time 2-path-augmentation algorithm.

Concerning step 2, a shortest s–t path π in T can be found in linear time using breadth-
first search.

Finally, concerning step 3, we want to show how to find an augmentation of G in linear
time. We first compute a data structure that allows us to measure how we proceed along the
path π by adding edges. Let π′ be a simple s–t path in G. We remove all bridges of G that are
used by π′. We call the resulting graph G′. We number the connected components of G′ in
the order in which they occur along π′ and label the vertices of each component accordingly,
starting with 1. Note that, by construction, all vertices on π′ that have the same label lie in
the same 2-edge connected component (with respect to the graph G). We denote the label of
a vertex u by `(u). See Figure 16a for an example.

As in the proof of Lemma 2, we go through the edges of π in order, starting from the edge
leaving s. We consider the edges of π directed towards t. Initially, we set j = 1. Throughout
the algorithm we maintain the following two invariants.

(I1) It holds that j ≥ `(v) for each vertex v of π whose incoming edge has already been
processed.

(I2) All vertices of π′ with label up to j lie in the same 2-edge connected component of G.

Both invariants clearly hold for j = 1. Together, the invariants yield the correctness of the
algorithm since π ends in t and hence, according to invariant (I1), we have j = `(t) after the
last step and thus, by invariant (I2), s and t belong to the same 2-edge connected component.

We now describe the algorithm and show that it preserves the two invariants. We dis-
tinguish two main cases based on the values of j and of the label `(v) of the endpoint of the
current edge e = uv of π.

If `(v) ≤ j (as for e = v5v6 in Fig. 16a), we simply advance to the next edge of π. Clearly,
this preserves both invariants.

If `(v) > j, we add a suitable edge to G as follows. If e is not in G (as for e = v3v4 in
Fig. 16a), we simply add e to G and set j to `(v). Otherwise (as for e = v4v5 in Fig. 16a),
e is a bridge of G lying on the path π′ and we have `(v) = `(u) + 1. In the triangulation T ,
the edge e = uv bounds at least one triangle. Let uwv be such a triangle. Hence, there are
two possibilities for adding an edge to G; either uw or wv. If `(w) > `(u) (as for u = v4 and
v = v5 in Fig. 16a), we add the edge uw (edge v4w in Fig. 16a) and set j to `(w) (to 5 in
Fig. 16a). Otherwise, we add the edge wv and set j to `(v).

Clearly, the number of edges we add is bounded by the length of the path π. See Fig. 16b
for the edges that are added in the case of the graph from Fig. 16a.

We now argue that the algorithm preserves our invariants. By our choice of j, it is clear
that invariant (I1) holds. To prove (I2), let a and b be the two endpoints of the newly added
edge. Let a′ be a vertex of π′ closest to a in G′ (in terms of graph distance) and let πa
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be a shortest a–a′ path. Let b′ and πb be defined analogously. Since πa and πb lie in G′,
`(a) = `(a′) and `(b) = `(b′). As `(a) 6= `(b), πa and πb are disjoint; they “live” in different
2-edge-connected components of G. The newly added edge ab together with πa and πb and
the subpath of π′ that connects a′ and b′ form a simple cycle. This shows that, after adding
the new edge ab, vertices a′ and b′ belong to the same 2-edge connected component of G. By
invariant (I2) we have that a′ lies in the same 2-edge connected component as s. Now we
use transitivity and the fact that, after the addition of ab, variable j is set to `(b) = `(b′).
This yields that indeed, after adding ab, all vertices of π′ with label at most j lie in the same
2-edge connected component. In summary, we have proved the following theorem.

Theorem 8 Let S be a set of n points in the plane, let G = (S,E) be a plane geometric
graph, and let s and t be vertices of G. Then there exists a set E′ of at most n/2 vertex pairs
such that G+ E′ is a plane geometric graph that contains two edge-disjoint s–t paths. Such
a set of vertex pairs can be computed in O(n) time.

4.3 Geometric 3-Path Augmentation

In this section we consider the problem of augmenting geometric graphs to contain more
than two disjoint s–t paths while staying plane. The planar case obviously always has a
solution, because every planar graph can be triangulated and a planar triangulation is always
3-connected. Hence we focus on the plane geometric cases in this section. In the following we
give necessary and sufficient conditions for when plane geometric s–t 3-augmentation has a
solution.

We first consider the vertex version of the problem, that is, given a geometric graph
G = (S,E) and two vertices s and t of G, add edges to G such that G contains three vertex-
disjoint s–t paths.

4.3.1 The Vertex-Disjoint Case

Let T = (S,E) be any plane geometric triangulation, and let s and t be any two vertices of T .
An edge between two vertices of the convex hull that does not belong to the convex hull itself
is called a chord. A chord e = {u, v} is s–t separating if s and t lie in different connected
components of T \ {u, v}.

Obviously there exist three vertex-disjoint s–t paths in T if and only if T does not contain
an s–t separating chord. Hence we can rephrase our original question in the following form: Let
G be any plane geometric graph. Can we triangulate G such that the resulting triangulation
TG contains no s–t separating chord? The following theorem states that this question can be
answered in the affirmative.

Theorem 9 Let S be a finite set of points in the plane, let G = (S,E) be a plane geometric
graph, and let s and t be any two vertices of G. If G contains no s–t separating chord, we
can compute a triangulation TG that contains three vertex-disjoint s–t paths.

Proof: In the first step we add all edges of the convex hull to G and compute any triangulation
of the interior. We can give an total ordering to the s–t separating chords of the triangulation
by their facial distance from s. Let uv be the chord that is closest to s. Let uvw be the
triangle that is on the same side as s with respect to uv and let uvw′ be the other triangle
bounded by uv. As u and v lie on the convex hull, we can flip the chord uv, that is, replace uv
by the edge ww′ without destroying planarity. If the new edge ww′ was an s–t separating
chord, then one of the edges uw and vw would have to be an s–t separating chord as well,
contradicting the choice of uv, see Figure 17. Hence we have removed an s–t separating chord
without introducing a new one. Inductively we obtain the desired triangulation TG. �
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Figure 17: Removing an s–t separating chord uv by flipping.

4.3.2 The Edge-Disjoint Case

In this section we consider the problem of adding edges to a given plane geometric graphG such
that for two fixed vertices s and t of G there exist three edge disjoint s–t paths. Since every
plane geometric graph can be triangulated, we characterize the triangulations that contain
three edge-disjoint s–t paths.

Theorem 10 Let S be a finite set of points in the plane, let T = (S,E) be a geometric
triangulation of S, and let s and t be any two vertices of T . Then T contains three edge-
disjoint s–t paths if and only if s and t have degree at least 3.

Proof: Clearly the degree conditions are necessary for the existence of three edge-disjoint
paths in T . We show that they are also sufficient. We use Menger’s Theorem, which says that
a graph is k-connected if and only if it contains k vertex-disjoint paths between any pair of
vertices. Hence, since T is biconnected, there exist two vertex-disjoint s–t paths π1 and π2.
We now show that we can find a third s–t path π3 that is edge-disjoint from π1 and π2.

We start our construction of π3 by constructing a path to a vertex s∗ on (π1 ∪ π2) \ {s}.
Let e1 and e2 be the first edges of π1 and π2, respectively. Since s has degree at least 3 and T
is triangulated, there exists a triangle incident to s whose boundary contains exactly one of
the edges e1 and e2. Let s, s1, and s2 be the vertices of this triangle. We assume without
loss of generality that ss1 = e1. We start π3 with the edge ss2, which neither belongs to π1
nor to π2. If s2 lies on π1 (see Figure 18a), we let s∗ = s2. Otherwise (see Figure 18b) we
append the edge s2s1 to π3 and let s∗ = s1. Note that s2s1 neither belongs to π1 nor to π2.

We now show that given the vertex s∗ on π1, we can continue the construction of π3 by
using π1 as a “hand rail”. Let u be a vertex on π1 (initially u = s∗), and let v be the vertex
next to u on π1 in the direction of t. Then the edge uv bounds a triangle on at least one side.
If v = t then, due to deg(t) ≥ 3, there exists a triangle whose boundary contains ut and two
other edges that do not belong to π1 and π2. Hence, we can use these to connect π3 to t. If
v 6= t, we consider the triangle {u, v, w} whose boundary contains uv. If w is incident to v
on π1 in the direction of t, then we append the edge uw to π3, see Figure 18a. Otherwise we
append edges uw and wv to π3, see Figure 18b. In neither of the two cases do we use edges
that belong to π1 or π2.

Note that the path we construct in this way is not necessarily simple. This can be corrected
by removing cycles. �
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Figure 18: Hand rail construction along path π1.
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5 Conclusions
We have studied the complexity of several connectivity augmentation problems. We have
showed that PECA, PVCA, and their geometric variants are all NP-hard. On the positive
side, we have given efficient algorithms for 2-PathAug and its vertex variant on planar graphs.
Further, we have studied worst-case bounds for geometric 2-PathAug, and we have fully
characterized geometric graphs that can be augmented to contain three (vertex-)disjoint s–t
paths.

We conclude with two open questions. Does geometric PECA admit a constant-factor
approximation? Can geometric 2-PathAug be solved efficiently?
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