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The visualization of data is an important topic in computer sci    ence; 
with an increasing amount of data available, making data sets 
well-readable for users is a frequent task. A lot of data that contains 
connections between persons or objects can be represented as a 
graph. Hence, graph drawing, that is, the visualization of graphs, is 
a specialized research area.
This book covers research results in different areas of graph draw-
ing. Its focus is on drawing metro maps and on labeling maps with 
external labels that are connected to the points of interest by lines. 
In both areas, the use of curves and the effects of crossings are 
investigated.
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Preface

In this thesis, Martin Fink deals with the visualization of graphs. A graph consists of a set of
objects called vertices and a set of connections between pairs of objects called edges. Graphs
are used to model networks, both abstract (such as social networks) and physical (such as river
or subway networks). In order to help users to understand the structure of networks and their
underlying graphs, the �eld of Graph Drawing studies problems related to the layout of graphs.
�e central question is how to best draw the vertices and edges of a given graph in the plane (or
some other space) such that certain features of the graph are revealed. Typically, vertices are
drawn as points, little disks, or squares, and edges are drawn as curves (so-called Jordan arcs)
that connect the corresponding vertices. Such drawings are called node-link representations.
In Martin Fink’s thesis, the three words that make the title reappear many times: crossings,

curves, and constraints. Clearly, in a node-link representation, crossings cannot be avoided—
except if the given graph is planar, which holds only for a small subset of graphs. Hence, it is
fundamental for Graph Drawing algorithms to deal with crossings. Martin Fink’s thesis contains
some important contributions to the treatment of crossings. Traditionally, edges have mostly
been drawn as straight-line edges, polygonal, or rectilinear paths; these are called (edge) drawing
styles. Only very recently, other drawing styles such as (Bézier) curves have appeared in the
literature. For two speci�c application areas, Martin Fink is the �rst to use such curves. Last
but not least, constraints have long been used in Graph Drawing to model application-driven
requirements beyond the drawing style of edges. In this thesis, constraints usually concern the
placement of vertices; a vertex must either be placed at a speci�c position, at one within a given
set of positions or simply not “too far” from a given position.
�e thesis consists of three parts, which can be read independently of each other. It pays,

however, to check the preliminaries in Chapter 2, where the author gives a gentle introduction
into graphs and Graph Drawing, and establishes some basic complexity-theoretic concepts.
In part I, Martin Fink considers the problem of drawingmetro maps, an application of Graph

Drawing that has received considerable attention over the last few years. �e author presents the
�rst algorithm that draws the metro lines of a metro map using Bézier curves. �e algorithm is
based on a spring embedder, that is, an iterative procedure that simulates a physical system with
attracting and repelling forces. Martin Fink also considers a very di�erent, more theoretical
type of problem related to metro maps: how to avoid crossings between di�erent metro lines. In
particular, the author introduces a new way to de�ne and count crossings, which he calls block
crossings, and presents provably good algorithms. In my opinion, this new approach to an old
problem in Graph Drawing makes for a very solid contribution.
Part II deals with point-set embeddability of graphs. In this setting, which has been studied

for more than twenty years, one is not only given a graph to be drawn, but also a set of points,
and the task is to place each vertex on one of the given point such that the graph can be drawn
in a speci�c drawing style. Martin Fink combines this old problem with new constraints: he

v



Preface

allows crossings between edges of the graph, but insists on large crossing angles (that is right
angles or near-right angles).
In the �nal part of the thesis, part III, the author investigates two versions of the boundary

labeling problem. In this problem, one is given amap with some sites and the objective is to place
the labels outside the map and connect them with the sites they label. Usually the connections
must not intersect each other. Such a label placement is advantageous if the map background is
important and should not be superimposed by labels. In the �rst version of the problem, Martin
Fink uses, among others, Bézier curves in order to label sites in focus-and-context maps. In the
second version of the problem, labels must be connected to several sites (which are of the same
type, for example, cafés).
In his thesis, Martin Fink presents some profound research, both practical and theoretical. He

does an excellent job in motivating his problems and in explaining and illustrating his solutions,
some of which are technically quite involved. I enjoyed reading this thesis, and I wish it will
have many readers.

Alexander Wol�
Chair I – E�cient Algorithms and Knowledge-Based Systems
Institute of Computer Science
University of Würzburg
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Chapter 1

Introduction

Graphs are one of the most frequently used tools for modeling data. In computer science, graphs
are used both for solving problems—with the help of graph-based algorithms—and for making
information accessible to users of applications. �is is possible because many problems and
many types of information can be modeled using graphs. Any graph consists of two sets: a set
of well-distinguishable objects, called vertices, and a set of connections, called edges. Any edge
of a graph models a relation connecting one vertex of the graph to another vertex. Hence, the
simplest example of data that can be modeled by a graph is a physical network.
For example, the street network of a city can be modeled by making any junction a vertex.

An edge connects two vertices if there is a single street segment that connects the two junc-
tions corresponding to the vertices; this street segment must not be split by a junction in its
middle. Similarly, a wired computer network can be modeled as a graph by making the devices
(computers, switches, etc.) vertices of the graph while wires connecting two devices become
edges. Another example are transportation networks such as the metro network of a city, for
example, the London Underground or the Métro de Paris. In this setting, the stations of the
network become vertices; two stations are connected by an edge if there is a direct connection
between these stations that does not have an intermediate stop.

Graph Drawing. If a graph is just used internally by some so�ware for solving a problem
with the help of a graph algorithm, it is not important for the user how the graph is represented.
As the user will only see the solution of the problem, the graph representation best suitable for
the algorithm may be used. However, if we use a graph for showing information to the user, the
right visualization is crucial. Presenting lists of vertices and edges as text to the user only works
for very small graphs. Even for such a small graph, a drawing is usually much easier to read
and interpret; see Figure 1.1. �erefore, and due to the importance of graphs for modeling data,
there is a need for algorithms that compute good visualizations of graphs.
With a good drawing, the human ability of quick visual perception of structures enables a

user to intuitively understand the structure of a graph. Also certain tasks, like �nding a shortest
path that connects two vertices of the graph, can be answered much faster and more easily
with a good visualization. �e research area of graph drawing is primarily concerned with the
development of algorithms for drawing graphs.
In a drawing of a graph, the vertices are usually represented by points in the plane (or by small

disks) and the edges are drawn as curves connecting vertices; see Figure 1.1b and Figure 1.1d.
Such drawings are sometimes also called node–link diagrams. Alternative methods for visually
representing graphs exist. An example is shown in Figure 1.1f where the vertices are drawn as

1



Chapter 1: Introduction

{a, b}, {a, c},{a, d}, {b, c},{b, d}, {c, d},{c, e}, {d , e}
(a) Description by a list of edges.

a b

c d

e

(b) Straight-line edges with cross-
ing.

a b

c de

(c) Polylines.

a

b
c d

e

(d) Planar drawing with circular
arcs.

a

b

c d

e

(e) Bézier curves.

a

b

c d

e

(f) Contact of disks.

Figure 1.1: An example of a graph shown as a list of edges compared to drawings of the same
graph in di�erent styles.

disks in the plane and an edge is represented by a contact of the disks of the corresponding
vertices. However, in this thesis, we will always use the classic—and most commonly used—
drawings of graphs as node–link diagrams.
�ere are several styles for drawing the edges of a graph. An edge may be drawn as a straight-

line segment (see Figure 1.1b), a polyline (see Figure 1.1c), a circular arc (see Figure 1.1d), a
parametric curve (see Figure 1.1e), or in other styles. Furthermore, we can distinguish drawings
in which edges cross (as in Figure 1.1b) and drawings which are crossing-free; drawings without
edge crossings are called planar. Unfortunately, only a relatively small, but well-studied, subset
of all graphs can be drawn in a planar way—the planar graphs.

Constraints. In most applications in which a graph is used for displaying information and,
therefore, needs to be drawn, one does not simply want to present some drawing of the graph, but
a drawing that follows certain constraints. As a �rst example, one may insist on a planar drawing.
�is is a hard constraint, which means that we are only interested in drawings that satisfy this
constraint. Such hard constraints determine the drawing style or drawing convention. We
can also think of the corresponding so� constraint or optimization constraint. An optimization
constraint aims at optimizing the aesthetics of drawings. In our example, we could allow crossings

2



between edges but try to �nd a drawing with as few crossings as possible, that is, we want to
minimize the number of crossings. �is is a �rst example of an NP-hard problem in graph
drawing, as Garey and Johnson showed [GJ83]; there are many more graph drawing problems
that are NP-hard as we will see. Apart from planarity, also the restriction to a certain style for
drawing the edges is a very common hard constraint in graph drawing. In the following, we will
see more constraints that are used in this thesis.

Vertex Positions. If one wants to draw a graph in order to show additional information on
top of a previous visualization, the position of vertices may already be �xed. As an example,
one may want to show the �ight connections between di�erent airports or trading connections
between di�erent cities on top of map. Under this constraint, a drawing with straight-line edges
is already �xed. If, however, we have more freedom when drawing the edges, the drawing can
be optimized, for instance, by trying to avoid crossings, or by maximizing the angles occurring
between crossing edges.
Also the optimization variant of this constraint can occur; that is, we have a desired position

for each vertex. We do not require that the vertex is drawn exactly at the desired position, but
we prefer drawings in which it is drawn close to this position. As a possible objective, we want
to �nd a drawing that minimizes the sum of the distances between the vertices and their desired
positions. We will see this optimization criterion for creating drawings of metro networks in
Chapter 3: in such a drawing, the user must be able to �nd the location of a station of the network
on the map and, therefore, the distance to the geographic location should be small. However,
deviations from the desired positions are allowed if they help to improve the readability of the
drawing.
In a variant of the previous hard constraint, it is also possible that we want to draw a graph

such that only a prescribed set of positions is used for placing vertices. However, the exact
position for each individual vertex is not given, which means that we have to map any vertex
to a distinct point of the given set, and then �nd a feasible drawing. �e problem of �nding a
drawing under these constraints is known as point-set embeddability which is covered in Part II.
Very special constraints for the vertex positions occur in boundary labeling (handled in Part III),
where the exact position of only a part of the vertices is prescribed.

Edges and Crossings. As already mentioned, there are several possible styles for drawing
the edges of a graph. A natural constraint is to restrict the drawings to use only a speci�c style
for edges. �ere are, however, several degrees of such restrictions. For instance, if the edges
have to be drawn as polylines, one may further restrict that any edge consists only of at most
three straight-line segments, or that all straight-line segments have to be axis-parallel, that
is, horizontal or vertical; the drawing style resulting from the latter constraint is called the
orthogonal drawing style; see Figure 1.2 for an example. We will consider orthogonal drawings
in Chapter 7.
A very common constraint is to insist on a planar drawing. Since such a drawing does not

always exist, other constraints for the crossings can also make sense. As already mentioned, the
so� constraint of minimizing the number of crossings has been investigated and is NP-hard.
Also hard constraints for the numbers of crossings have been considered. For example, the class
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a b

c d

e

Figure 1.2: An orthogonal
drawing.

(a) Small crossing angle. (b) Larger crossing angle.

Figure 1.3: Comparison between crossing angles.

of 1-planar graphs is a generalization of planar graphs; a graph is 1-planar, if it can be drawn
such that any edge is involved in at most one crossing.
�e angle of crossings has also been considered as a constraint. If two edges cross with a very

large angle, it is much easier to distinguish between the edges than if the crossing angle is small.
�ere have been studies indicating that drawings of graphs in which all crossing angles are large
are almost as readable as crossing-free drawings [HHE08]; see Figure 1.3. Formulated as a hard
constraint, we can insist that any crossing angle is at least α for a constant angle α close to 90○.
We will use constraints of this type in Chapter 6.
We will also consider another crossing problem in which not crossings between edges of the

graph, but crossings between paths drawn on top of the graph are considered. �is problem
occurs when visualizing transportation networks like metro networks: O�en several transporta-
tion lines of such a network run in parallel, that is, they share edges of the underlying graph.
At the end of a parallel subpath, however, the lines split, which can make crossings between
them necessary. Hence, we try to visualize the lines in such a way that the number of crossings
is minimized. Crossings between metro lines will be considered in Chapters 4 and 5.

Curves. A special drawing style for edges are smooth curves such as circular arcs. Drawing
edges using smooth curves allows us to have more �exibility for routing the edges, compared
to straight-line edges, while we can still avoid having sharp bends, which happens if we use
polylines. In Chapters 3 and 8 we will use a special class of parametric curves called Bézier
curves, or, more formally, curves in Bézier representation. �ey allow us to choose the direction
in which the edge leaves an incident vertex. For drawing metro maps, we will use this in order
to ensure that a metro line does not have sharp bends although it is composed of several edges
of the network.

Outline of the Thesis

�is thesis consists of three parts, each dealing with a di�erent area of graph drawing. Part I is
devoted to drawingmetro maps, that is, visualizations of metro networks. Part II covers point-set
embeddability problems; in this setting, the positions of vertices are restricted to a prescribed
set of points. Finally, Part III deals with boundary labeling; in boundary labeling, interesting
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Figure 1.4: A metro network drawn using Bézier curves.

sites on a map are labeled by connecting the label text to the site via an edge. Before starting
with the three main parts, a brief introduction into terminology, techniques, and related topics
is given in Chapter 2.

Part I: Metro Maps

In the �rst part of the thesis, we consider the problem of drawing metro maps. More speci�cally,
we consider two subproblems independently. We �rst want to create a drawing of the graph
modeling the network of metro stations. In a second step, the di�erent metro lines running in
this network should be visualized on top of the drawing.

Chapter 3: DrawingMetroMaps using Bézier Curves

Chapter 3 is devoted to drawing the graph that represents a metro network. Traditionally, most
metro maps are drawn in the octilinear drawing style. In octilinear drawings of graphs, edges
are drawn as polylines consisting only of horizontal, vertical, and diagonal segments (at an angle
of 45○). However, a user study of Roberts et al. [RNL+13] shows that the planning speed for
trips in the network can be increased by using curvy metro maps in which edges are drawn as
smooth curves. We present an algorithm for drawingmetromaps using curves; more speci�cally,
our algorithm uses Bézier curves for drawing the edges; see Figure 1.4 for an example. We try
to optimize the drawing by having a small visual complexity. �is is done by minimizing the
number of single curves used in the drawing.
�is chapter is based on joint work with Herman Haverkort, Martin Nöllenburg, Maxwell

Roberts, Julian Schuhmann, and Alexander Wol� [FHN+13].

5
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(a) 12 individual crossings. (b) 3 block crossings.

Figure 1.5:Metro lines drawn on top of a part of a metro network with di�erent distribution of
the crossings.

Chapter 4: Metro-Line CrossingMinimization

In Chapter 4, we turn to the problem of visualizing themetro lines. �e method presented in the
previous chapter, that is, in Chapter 3, is—similar to other algorithms for drawing metro maps—
focused on drawing the underlying graph of the metro network. An essential feature of metro
maps is, though, the visualization of the metro lines on top of the network (see Figure 1.5a for an
example): only the visualization of the metro lines makes it possible to plan trips in the metro
network. Hence, we want to make it easy for users to follow a metro line on the map, so that
they can see which stations are served by the line. �e most important optimization criterion
for making the lines easy to follow is to have as few crossings between lines as possible; the
problem of minimizing the number of crossings is known asmetro-line crossing minimization.
In this chapter, we show that the most general version of metro-line crossing minimization is

NP-hard. For a well-known version of the problem, we present the �rst approximation algorithm,
and we develop an e�cient algorithm for a restricted set of networks. Finally, we develop a
�xed-parameter algorithm for metro networks whose graph is a tree.
�is chapter is based on joint work with Sergey Pupyrev [FP13a] and—for Section 4.5—on

joint work with Sergey Pupyrev and Alexander Wol� (not yet published).

Chapter 5: OrderingMetro Lines by Block Crossings

In Chapter 5, we introduce and study a variant of metro-line crossingminimization. We improve
visualizations of metro networks by not onlyminimizing the number of crossings betweenmetro
lines, but also taking the distribution of the crossings into account. Our idea is the following (see
Figure 1.5b for an illustration). Suppose, on some edge of the network there are two contiguous
blocks of lines running in parallel. If each line of the �rst block crosses each line of the second
block, we can arrange all these crossings in one block crossing, in which the whole blocks change
their order, while the lines within a block stay parallel. �is improves the readability compared
to a random distribution of the individual crossings; see Figure 1.5.
We thus study the problem of minimizing the number of block crossings between metro lines.

We show that also block crossing minimization is NP-hard—even for networks of small degree
and edges that have not more than eleven metro lines passing through them. Furthermore, we
present a heuristic that �nds a solution on general graphs with a bounded number of block
crossings. For some restricted classes of networks, we present approximation algorithms. Finally,
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(a) �e graph G = (V , E). (b) �e point set S.

a b

c d
e

(c) A planar orthogonal embed-
ding of G on S.

Figure 1.6: A point-set embedding of a graph on a point set with no prescribed vertex-point
mapping

we adjust the �xed-parameter algorithm for ordinary metro-line crossing minimization to
minimize the number of block crossings.
�is chapter is based on joint work with Sergey Pupyrev [FP13b] and—for Section 5.6—on

joint work with Sergey Pupyrev and Alexander Wol� (not yet published).

Part II: Point-Set Embeddability

In the second part of the thesis, we study point-set embeddability problems. In point-set embed-
dability, the task is to draw a graph using a set of prescribed positions for placing the vertices; see
Figure 1.6 for an example. �ere are twomain subsettings depending on whether themapping of
the vertices to the points in the given set is prescribed or can be chosen when �nding a drawing.
We study point-set embeddability problems in which edges must be drawn as polylines with a
small number of bends. We are especially interested in nonplanar drawings. However, we allow
only crossings with large crossing angles.

Chapter 6: Point-Set Embeddability and Large Crossing Angles

In Chapter 6, we introduce and study point-set embeddability with large crossing angles. We
�rst show that the problem is NP-hard if the edges must be drawn as straight-line segments. We,
hence, focus on the versions with polyline edges and prescribed vertex-point mapping. We show
how to embed any graph on any point set with three bends per edge and right-angle crossings.
Furthermore, we present embeddings of any graph on any point set with one or two bends
per edge such that all crossings have an angle of at least 90○ − ε, where we can choose ε > 0
arbitrarily small. For all embeddings that we construct, we also analyze the area requirement.
�is chapter is based on joint work with Jan-Henrik Haunert, Tamara Mchedlidze, Joachim

Spoerhase, and Alexander Wol� [FHM+12].

Chapter 7: Orthogonal Point-Set Embeddability on the Grid

In Chapter 7, we study point-set embeddability in the orthogonal drawing style; that is, edges
must be drawn as polylines consisting only of horizontal and vertical segments. Furthermore,
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Chapter 1: Introduction

we insist that vertices and bends of edges must be placed on grid points, that is, points with
integer coordinates. �is constraint is natural for orthogonal drawings; any orthogonal drawing
can be converted by moving vertices and bends until all of them lie on integer positions.
We show that, under these constraints, point-set embeddability without prescribed vertex-

point mapping is NP-hard; this is independent of the number of bends that we allow per edge.
Surprisingly, the problem remains NP-hard even if we allow crossings. For the problem variants
in which we are given the precise position of each vertex, we show that point-set embeddability
can be solved e�ciently for up to one bend per edge. For two or three bends, the nonplanar
version is NP-hard. For the planar version we show hardness if the number of bends is not
restricted.
�is chapter is based on joint work with Jan-Henrik Haunert, Tamara Mchedlidze, Joachim

Spoerhase, and Alexander Wol� [FHM+12] and—for the hardness results—on joint work with
Alexander Wol� (not yet published).

Part III: Boundary Labeling

�e third part of the thesis is devoted to a style of labeling maps, called boundary labeling. In
boundary labeling problems, one wants to label interesting sites on the map; that is, the sites
have to be annotated by a label text, which o�en is the name of the site. In normal map labeling,
the labels are placed on the map next to the corresponding sites. However, this approach has
two disadvantages. First, in regions with too many sites, the labels can overlap. Second, parts of
the map are hidden behind the labels. To overcome these problems, boundary labeling can be
used: �e labels are moved away from their sites to the boundary of the map or of a focus region.
For showing the correspondence between a label and a site, the two objects are then connected
via an edge, called leader; see Figure 1.7. Hence, boundary labeling is a special graph drawing
problem (related to point-set embeddability), in which the position of a part of the vertices (the
sites) is completely �xed, while the possible positions for the remaining vertices (the labels) are
restricted to the boundary of the map or of the focus region.

Chapter 8: Algorithms for Labeling Focus Regions

In Chapter 8, we study boundary labeling with circular focus regions. We use two main styles
depending on the placement of the labels. In the �rst style, we use conventional horizontal text
labels which are connected to the sites via straight-line leaders. In the second style, we use radial
labels whose text runs radially away from the center of the focus region. For both styles we
also present methods that improve the solutions by replacing the straight-line leaders by Bézier
curves that enter the label in the direction of the text.
We present algorithms that label as many sites as possible and ensure that the leaders are

crossing free and the labels do not overlap. We extend these results to the versionwith preferences
for labeling the sites. We also present approaches for selecting a subset of the sites that can be
labeled simultaneously; as an additional requirement, we want the labeled sites to represent the
spatial distribution of sites in the focus region
�is chapter is based on joint work with Jan-Henrik Haunert, André Schulz, Joachim Spoer-

hase, and Alexander Wol� [FHS+12].
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�is chapter is based on joint work with Michalis Bekos, Sabine Cornelsen, Seok-Hee Hong,
Michael Kaufmann, Martin Nöllenburg, Ignaz Rutter, and Antonios Symvonis [BCF+13].
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Chapter 2

Preliminaries

�is chapter contains a brief introduction to graphs, graph drawing, complexity, and related
topics. �is is not meant as a full introduction to these topics, but as an opportunity for
developing a common terminology and for introducing the basic concepts that we will use
later. For real introductory works we refer to the literature. An introduction to graphs and
graph theory is given in the book of Diestel [Die10]. �e books Graph Drawing by Di Battista
et al. [DETT99] and Drawing Graphs edited by Kaufmann and Wagner [KW01] both give an
introduction to basic concepts and algorithms for drawing graphs. �e recently published
Handbook on Graph Drawing and Visualization edited by Tamassia [Tam13] comprises many
topics on graph drawing and related areas. An introduction to many elementary algorithms and
to the runtime analysis of algorithms can be found in the book Introduction to Algorithms by
Cormen et al. [CLRS09]. For additional information on complexity classes and especially on
NP-hard problems, we refer to the book of Garey and Johnson [GJ79].

2.1 Graphs

A directed graph is de�ned by a pair G = (V , E) where V is a set of distinguishable objects,
the vertices of the graph, and E ⊆ V × V is the set of edges. �e vertices are o�en also called
nodes. Usually, n = ∣V ∣ denotes the number of vertices andm = ∣E∣ denotes the number of edges.
Naturally, m ∈ O(n2). Any directed edge e ∈ E is a pair e = (u, v) with two vertices u, v ∈ V .
We say that e is the edge from u to v and call u and v the endvertices of the edge e. Sometimes,
the notation uv = (u, v) is used as an abbreviation.
An undirected graph is de�ned by a pair G = (V , E), where any edge e ∈ E is a set of two

di�erent vertices, that is, E ⊆ {{u, v} ∣ u, v ∈ V and u ≠ v}. Frequently, the notation e = (u, v)
from directed graphs is also used for undirected graphs; in this case (u, v) and (v , u) are
identi�ed. In the graph drawing problems in this thesis, we usually work with undirected
graphs.
If there is an edge e = {u, v} (or e = (u, v)), we say that the vertices u and v are adjacent

or neighbors; similarly, we say that the edge e is incident to the vertex u. We denote the set of
neighbors of a vertex v ∈ V by N(v) ∶= {u ∈ V ∣ {u, v} ∈ E}. �e degree of a vertex v is the
number of adjacent vertices (or of incident edges), denoted by deg v = ∣N(v)∣. Vertices with
degree 0 are called isolated. �emaximum degree ∆ in a graph is the maximum over the degrees
of all vertices, that is, ∆ = maxv∈V deg v.
A subgraph of G = (V , E) is a graph G′ = (V ′ , E′) with V ′ ⊆ V and E′ ⊆ E. For a set

V ′ ⊆ V , we say that G′ = (V ′ , E′) is the subgraph induced by V ′ if E′ contains any edge of G
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whose endvertices are both contained in V ′, that is, E′ = {{u, v} ∈ E ∣ u, v ∈ V ′}. �e subgraph
induced by V ′ can also be denoted by G[V ′].
A path in a graph G = (V , E) from a vertex u to a vertex v is a sequence

P = (u = v0 , v1 , v2 , . . . , vk−1 , vk = v)
of vertices with {v i , v i+1} ∈ E (or (v i , v i+1) ∈ E) for i = 0, . . . , k − 1. We say that P is a path of
length k because P consists of k edges. �e vertices u and v are also called the endvertices of the
path P. For any i with 0 < i < k, we say that P traverses the vertex v i or that it passes through v i .
A path is simple if it contains any vertex at most once. A cycle is a path C = (v0 , . . . , vk) with
v0 = vk and k > 0. A cycle is simple if it contains any vertex except v0 = vk at most once.
A graph G = (V , E) is connected, if, for any pair of vertices u, v ∈ V , there is a path from u

to v. A connected component of a graph is a maximal subset V ′ ⊆ V such that the induced
subgraph G[V ′] is connected; o�en also G[V ′] is called the connected component. Any graph
can be uniquely partitioned into connected components; a connected graph consists only of
one connected component. In graph drawing, connected components can o�en be drawn
independently. Hence, many algorithms assume that the input is a connected graph.
A graph that does not contain any simple cycle is called a forest; a connected forest T = (V , E)

is a tree. It is well-known and easy to check that any tree consists of exactly n − 1 edges and that
any pair of vertices in a tree is connected by a unique simple path. Any tree can be rooted at
some arbitrary vertex r ∈ V . For a rooted tree, we call the unique neighbor of a vertex v ∈ V
that lies on the unique simple path connecting v to the root r the parent of v, or p(v). �e other
neighbors of v are called its children. It is easy to see that all children of v have v as their parent
vertex because the unique path connecting a children to r passes through v. If we remove the
edge {v , p(v)}, the graph is split into two connected components; the connected component
containing v is called the subtree of v, denoted by T[v].
A vertex v ∈ V of degree 1 in a tree is called a leaf ; sometimes the term leaf is even used for a

vertex of degree 1 in any graph. �e interior vertices of a tree are the vertices of a degree higher
than 1.
We call a graph P = (V , E) for which there exists a simple path containing all edges also a

path. Similarly, a graph with a simple cycle containing all edges is also called a cycle. Note that a
path is a special case of a tree. Any path has exactly two leaves; all interior vertices have degree 2.
Another special type of a tree is the caterpillar. A tree T = (V , E) is a caterpillar if the subgraph
induced by the set V ′ ⊆ V of interior vertices is a path.
A (perfect)matching is a graph G = (V ,M) in which each vertex has degree 1. Any vertex in

G is adjacent to exactly one other vertex, its matching partner. For an arbitrary graphG = (V , E),
a subsetM ⊆ E of the edges is called a matching if each vertex has degree 0 or 1 in the subgraph(V ,M).
2.2 Graph Drawing

Let G = (V , E) be an undirected graph. A drawing of G is a function Γ that maps the vertices
and edges of G into the plane R2. �e image of a vertex v is a point Γ(v); the points of vertices
have to be distinct, that is, Γ(u) ≠ Γ(v) for u ≠ v. �e image of an edge e = {u, v} is a simple
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(a) No feasible drawing due to overlaps.

a b
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e

(b) A feasible drawing.

Figure 2.1: Infeasible and feasible drawings of the same graph.

open Jordan curve Γ(e) whose two endpoints are the points Γ(u) and Γ(v). We insist that the
interior of the curve Γ(e) does not contain Γ(w) for any vertex w ∈ V .
�ere is a huge di�erence between a graph and its drawing. For any graph, there are many

di�erent drawings. However, when speaking about a speci�c drawing, the vertices and edges are
o�en identi�ed with their representation in the drawing, that is, we speak about the position of
a vertex v when we mean Γ(v) and about an edge e when we mean the drawn Γ(e) of this edge.
Crossings and Planarity. While the drawing of an edge must not contain a vertex in its
interior, it is allowed that the drawings of two edges e1 and e2 share a point of their interior.
In this case, we say that e1 and e2 cross in the drawing. However, we do not allow that the
edges overlap, that is, that there is a part of the drawing of e1—more than a �nite number of
points—that is also contained in the drawing of e2; see Figure 2.1. In general, drawings with
few crossings are preferred. If a drawing does not have any crossing, we say that the drawing is
planar; we also call a graph planar, if there exists a planar drawing of this graph. Most graphs are
nonplanar: Following from Euler’s formula, any planar graph has at most 3n− 6 edges. However,
a lot of research in graph drawing is devoted to planar graphs.
For graphs that are not planar, there are twomain ideas for creating drawings. First, a drawing

should have as few crossings as possible. Unfortunately, �nding a drawing with the minimum
number of crossings is NP-hard as Garey and Johnson showed [GJ83]. �e second idea is that
crossing angles—the angles de�ned by the curves representing the two edges in a crossing—
should be large, that is, as close to 90○ as possible. A drawing in which any crossing angle is
90○ is called a right-angle crossing (or RAC) drawing. A generalization are large-angle crossing
drawings, in which any crossing angle must be at least α for a constant angle α ∈ (0; 90○]. In
Chapter 5 we will use these requirements for crossing angles.

Faces and Embeddings. Suppose, we are given a planar drawing Γ of a graph G = (V , E).
We can observe that the representation of the vertices and edges in the drawing divides the plane
into several regions, called faces. Any face is bounded vertices and edges lying on its boundary.
Furthermore, there is always exactly one face of in�nite area, called the outer face; see Figure 2.2
for an example.
Certainly, any edge can be incident to at most two di�erent faces in a drawing, one on each

of its sides. Similarly, any vertex is adjacent to at most deg v di�erent faces. Furthermore,
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v1
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v3

v4

v5
v6

f0

f1

f2

Figure 2.2: Planar drawing of a
graph with three faces f0, f1, and f2,
where f0 is the outer face.

v1

v2

v3

v4
v5

v6

(a) Drawing with the same em-
bedding as in Figure 2.2.

v1
v2

v3

v4

v5

v6

(b) Drawing with di�erent
(outerplanar) embedding.

Figure 2.3: Two drawings of the graph shown in Fig-
ure 2.2.

we can describe each face of a drawing by the clockwise order of edges and vertices on its
boundary; here, clockwise means that when following the sequence of edges, the described face
is always to the right of the current edge. We call the description of all faces of a planar drawing
a (combinatorial) embedding of the graph. Note that—following from the description of the
faces—the combinatorial embedding implicitly also describes the clockwise order of the edges
incident to each vertex.
Clearly, the combinatorial embedding corresponding to a given planar drawing Γ of a

graph G = (V , E) is unique. In contrast, there are many drawings with the same combi-
natorial embedding. Furthermore, G can have several di�erent combinatorial embeddings; see
Figure 2.3. A special type of planar graphs are outerplanar graphs. A graph is outerplanar if it has
a combinatorial embedding in which all vertices are incident to the outer face; see Figure 2.3b.
Suppose, the drawing Γ is nonplanar. By replacing each crossing in the drawing by a dummy

vertex, we get a modi�ed planar graph G′, also called a planarization of G, together with a
planar drawing Γ′. �e combinatorial embedding corresponding to Γ′ then also describes the
nonplanar drawing Γ ofG. By this modi�cation, we can also speak about nonplanar embeddings.

Basic Algorithms. An essential problem in graph drawing is deciding whether a given
graph G = (V , E) is planar. �is problem can be solved e�ciently, and there are several
algorithms for planarity testing with a linear runtime, for example, the algorithm of Hopcro�
and Tarjan [HT74]. Usually, such algorithms do not only decide whether G is planar, but also
output a combinatorial embedding if the graph is planar; see, for example, the work of Mehlhorn
andMutzel [MM96] based on the algorithm ofHopcro� and Tarjan. �erefore, many algorithms
for drawing planar graphs assume that a combinatorial embedding is part of the input; then,
usually, a drawing realizing the given embedding is computed.
Not all planar embeddings of a graph can be realized in any drawing style for the edges.

A remarkable exception to this are straight-line edges: Any combinatorial embedding of any
planar graph can be realized as a straight-line drawing, for instance by using the algorithm
of de Fraysseix, Pach, and Pollack [dFPP90] or the one of Schnyder [Sch90]. Another well-
known result exists for orthogonal drawings, that is, drawings in which the edges are polylines
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2.2 Graph Drawing

Input: a graph G = (V , E), ε > 0, integer K > 0
Obtain initial drawing.
while number of iterations < K andmaximum displacement > ε do
Compute forces on vertices.
Sum up forces and obtain movement vector for each vertex.
Apply the forces to the current drawing.

return output drawing

Algorithm 2.1: Basic structure of force-directed algorithms.

consisting of vertical and horizontal segments only. Clearly, only planar graphs of maximum
degree 4 can be drawn in this style; otherwise, a pair of edges incident to the same vertex would
overlap. However, any embedding of a planar graph of maximum degree 4 can be realized in
the orthogonal drawing style. Even the total number of bends of the edges can be minimized
e�ciently as Tamassia showed [Tam87].

Force-Directed Algorithms. A well-known class of graph drawing algorithms are force-
directed algorithms. �ese heuristics are popular because they are easy to understand and extend
and, especially, because they can be used for drawing any graph, not just planar graphs. �e force-
directed approach was introduced in 1984 by Eades in his spring embedder algorithm [Ead84].
Later, many other force-directed algorithms were developed; one of the most popular is the
one of Fruchterman and Reingold [FR91]. Here, we give only a brief introduction and focus on
the version of Fruchterman and Reingold. In Chapter 3, we will develop a new force-directed
algorithm for drawing metro maps. In Chapter 8, we will develop very simple force-directed
algorithms for boundary labeling with Bézier curves.
Normally, force-directed algorithms create a straight-line drawing of a graph. As all edges are

drawn as straight-line segments, the only relevant output is the position of each vertex.
�e idea is simple: We start with some arbitrary—in some cases even random—drawing

of the graph. �en, iteratively the drawing is improved, until we �nally get some satisfactory
result. For force-directed algorithms, the main ingredient for improving the current drawing
are forces. Any force is a function assigning to any vertex of the drawing a desired movement
vector. Usually, forces are de�ned locally, taking into account only the position of one or two
vertices, for example, the endvertices of an edge. In an iteration, all forces exerted by edges or by
other vertices on each vertex are computed. For each vertex, the forces sum up to a movement
vector. At the end of each iteration, the computed movements are applied and the drawing is
modi�ed. �en, the next iteration starts. �e basic structure of force-directed algorithms is
shown in Algorithm 2.1.
�ere are two very common forces: An attractive force between adjacent vertices and a

repelling force between all pairs of vertices. �e basic idea idea is that all edges should have
approximately equal length l and that non-adjacent vertices should have larger distance than
adjacent vertices. Here, we use the forces de�ned by Fruchterman and Reingold [FR91].
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First, suppose that the vertices v and u are adjacent, that is, there is an edge {u, v} ∈ E. �en,
the vertex u exerts the attracting force

Fatt(u, v) = d(u, v)
l

⋅ Ð→vu
on v. �is movement vector points from v to u, that is, the force tries to move v to be closer
to u. Furthermore, the force is stronger if the distance d(u, v) between v and u is larger in the
current drawing.
Additionally, any vertex u exerts on any vertex v the repulsive force

Frep(u, v) = ( l
d(u, v))

2 ⋅ Ð→uv .
�is force tries to move v away from u. �e closer the two vertices are, the stronger is the force.
Note that an adjacent vertex u exerts both an attractive and a repelling force on v. �ese two

forces can then be seen as a combined force Fatt(u, v) + F rep(u, v), which moves v towards
u if d(u, v) < l and moves v away from u if d(u, v) > l . If d(u, v) = l , we have Fatt(u, v) +
F rep(u, v) = 0.
Many di�erent optimized and specialized algorithms based on the force-directed approach

have been developed; see, for example, Kobourov’s recent survey [Kob13] in the Handbook on
Graph Drawing.

Edge Styles. We have already mentioned several styles for drawing the edges of a graph. �e
simplest edge drawings are shortest connections between the endvertices, that is, straight-line
segments. Another drawing style, which we will especially use in Part II, are polylines, that
is, sequences of straight-line segments that are connected by bends. If an edge consists of k
segments, it has k − 1 bends. Hence, we can measure the complexity of an edge by the number
of its bends. For limiting the complexity of drawings, we o�en restrict ourselves by setting
an upper bound for the number of bends of an edge. We did already mention the orthogonal
drawing style. �is style is a restricted version of polyline edges, in which only horizontal and
vertical segments are allowed. As mentioned before, only graphs of maximum degree 4 can
be drawn in the orthogonal style, while any planar graph of maximum degree 4 has a planar
orthogonal drawing.
Another style for drawing edges are smooth curves. �ey overcome the problem of polylines,

that is, they do not have sharp bends, but still yield more �exibility for routing the edges than
straight-line edges do. A simple example of smooth curves are circular arcs. O�en, however,
parametric curves with even more �exibility are used. We will next introduce an example of
such parametric curves that we will use in this thesis.

Bézier Curves. We use so-called cubic Bézier curves. For more information about Bézier
curves in general, we refer to the book of Prautzsch et al. [PBP02]. A cubic Bézier curve C is
given by the cubic polynomial

PC ∶ [0, 1] → R2 , t ↦ (1 − t)3p + 3(1 − t)2 tp′ + 3(1 − t)t2q′ + t3q,
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p

p′ q′

q

Figure 2.4: A cubic Bézier curve.

where p, p′, q′, and q are the control points ofC; see Figure 2.4. We call p and q also the endpoints
of C, because PC(0) = p and PC(1) = q.
By considering the derivative of PC , it is not hard to see that the curve C leaves the endpoint

p in the direction of p′, that is, the line pp′ is the tangent of C at p, since P′C(0) = 3(p′ − p).
Similarly, one can check that the curve C enters the point q coming from the direction of q′,
that is, the line q′q is the tangent of C at q, since P′C(1) = 3(q − q′).
Another well-known property of a Bézier curve is that the curve is always contained in the

convex hull of its control points (see the gray shaded region in Figure 2.4).
When creating drawings with Bézier curves, we o�en need to check whether two Bézier

curves intersect or come too close to each other. Computing intersections of cubic curves is
not easy. Since we just want to ensure that curves are not too close, it su�ces to test polygo-
nizations of the curves at hand. Given a cubic Bézier curve with polynomial P and an accu-
racy λ ∈ Z>0, we de�ne the polygonization of C to be the polygonal chain connecting the points
P(0), P(1/λ), . . . , P((λ−1)/λ), P(1). �e larger wemake λ, themore precise but also the slower
our closeness check gets. As a speed-up, we can �rst test whether the convex hulls intersect.

2.3 Complexity and NP-Hardness

In this thesis, we o�en have to speak about the complexity of algorithms and of problems. As
everywhere, also in graph drawing, there are decision problems and optimization problems.
An example is the crossing number problem. In its optimization version, one has to �nd a
drawing of a given graph such that the number of crossings is minimum. We can turn this into
a decision problem by asking whether a drawing with a most k crossings exists. Of course, if
we can optimally solve the optimization version, we can also solve the decision variant. When
we say that a problem is (NP-)hard, we normally mean that its decision version is hard. By a
correspondence as in the example, we can however, also speak about hardness of optimization
problems.
We assume that the reader is familiar with the basic knowledge about the runtime analysis of

algorithms. When denoting the asymptotic runtime of algorithms, we usually use the big O
notation. Recall that the runtime of an algorithm is a function f ∶N → N that maps the input
size of the algorithm to the time necessary for solving an input of this size. �e class

O( f ) = {д∶N→ N ∣ ∃c>0,n0∈N∀n≥n0 д(n) ≤ c ⋅ f (n)}
contains all runtime functions that are asymptotically at least as fast as f .
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Polynomial-Time Algorithms. We are especially interested in the classes O(nk) for a con-
stant k. If a constant k exists such that the runtime of an algorithm is in O(nk), then we say
that it is a polynomial-time algorithm, or an e�cient algorithm. Note that here, e�cient just
means that the runtime is bounded by some polynomial; it does not necessarily mean that the
algorithm is fast enough for practical use.
�e class P consists of all problems for which a deterministic algorithm exists that solves

the problem in polynomial time. �ere is also the class NP which contains all problems that
can be solved by a nondeterministic polynomial-time algorithm. It is well-known that P ⊆ NP.
However, the question whether P = NP is still open; it is one of the most important questions
in computer science.

NP-Hardness. For many problems it is known that they are in NP; however, no e�cient
algorithm is known. Awell-known class of problems is the class ofNP-hard problems. Informally,
a problem is NP-hard if it is as hard as any problem in NP; that is, if this problem can be solved
e�ciently, we can solve any problem in NP e�ciently. �erefore, as most people assume that
P ≠ NP, there is little hope for solving NP-hard problems e�ciently.
More formally, a decision problem A is NP-hard, if, for any problem B in NP, there exists a

polynomial-time reduction from B to A. A polynomial-time reduction from B to A transforms
any instance IB of B of size n in polynomial time into an instance IA of size p(n)—for a
polynomial function p—such that there is a feasible solution to IB if and only if there is a feasible
solution to IA.
A special class of NP-hard problems are problems that are NP-complete, which means that

these problems are both NP-hard and contained in NP.
�ere are many problems that are known to be NP-hard or even NP-complete; the book of

Garey and Johnson [GJ79] contains many of them. Usually, NP-hardness of a problem A is
proven by giving a polynomial-time reduction from some known NP-hard problem B to A.
Since this reduction can be concatenated with a polynomial-time reduction from any problem
C in NP to B, this yields that there is a polynomial-time reduction from any problem in NP to
A; hence, A is NP-hard.
In this thesis, we will show that some of the considered problems are NP-hard. Hence, we

now list some important NP-hard problems that we will use in hardness proofs.

SAT �e input of the Satis�ability problem (or SAT, for short) consists of a boolean formula F
in conjunctive normal form over a set X = {x1 , . . . , xn} of variables; that is, the formula
F is a conjunction of clauses. Any clause c has the form c = (l1 ∨ . . . ∨ lk), where, for
i = 1, . . . , k, l i is a literal. Any literal is a negated or an unnegated variable, that is, l i = ¬x j
or l i = x j for some variable x j ∈ X. Note that the formula F is fully described by its set C
of clauses. Hence, we can describe the SAT instance by (X ,C).
Given such a boolean formula F, one has to decide whether there exists a truth assignment
X → {false, true} such that F is satis�ed, that is, it evaluates to true. �is is the case,
if for each clause c ∈ C at least one literal l i ∈ c evaluates to true, meaning that x j is true
if l i = x j or that x j is false if l i = ¬x j .
Note that SAT has been the �rst problem known to be NP-complete. In 1971, Cook showed
this in a fundamental proof [Coo71].
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3SAT �e problem 3SAT is the version of SAT in which any clause consists of at most three
literals. �is restriction is still NP-complete. In contrast, the version 2SAT—with at most
two literals in a clause—can be solved e�ciently. Note that, if there is a clause containing
only one literal, then its variable can easily be eliminated by �xing it to the adequate truth
value. Hence, we can assume that each clause contains two or three literals.

Planar 3SAT A version of 3SAT that is still NP-hard, and that is especially relevant for showing
hardness of graph drawing problems is Planar 3SAT. An instance (X ,C) of Planar
3SAT is an instance of 3SAT for which the graph GXC = (X ∪ C , EXC) is planar. GXC is
de�ned by the edge set

EXC = {{x , c} ∣ x ∈ X , c ∈ C and x ∈ c or ¬x ∈ c} ,
that is, there is an edge connecting a variable x and a clause c if x occurs in c.
Planar 3SAT is known to be NP-hard even if any variable occurs in exactly three di�erent
clauses [DJP+94], that is, ∣ {c ∈ C ∣ x ∈ c or ¬x ∈ c} ∣ = 3 for each x ∈ X.

Not-All-Equal 3SAT A variant of 3SAT with modi�ed de�nition of satis�ability is Not-All-
Equal 3SAT.An instance (X ,C) is also an instance of 3SAT.However, inNot-All-Equal
3SAT, the instance (X ,C) is satis�able if and only if there exists a truth assignment to
the variable set X so that each clause c ∈ C contains a literal that evaluates to true and a
literal that evaluates to false. Not-ALL-Equal 3SAT is also NP-complete.

3Partition Partitioning problems are another example of a problem class containing many
hard problems. In the problem 3Partition, we are given a set A = {a1 , . . . , a3n} of 3n
positive integers. We have to decide whether there exists a partition of A into n sets
A1 , . . . ,An of three numbers each, such that all A i have the same sum s = 1/n ⋅ ∑3ni=1 a i .
3Partition is known to be strongly NP-hard. �is means that we can assume that each
number a i ∈ A is only polynomial in n. As a practical consequence for proving hardness
of problems, this allows us to model a i by a set of a i objects, like vertices or edges, as a
unary encoding.

Approaches for Hard Problems. For NP-hard problems, there is little hope to �nd an
e�cient algorithm. For optimization problems, however, we still can try to �nd feasible solutions
of reasonable quality.
�e simplest approach for hard problems is developing a heuristic, that is, an algorithm that

�nds a feasible solution using reasonable operations. We do not know anything about the quality
of the solution. Alternatively, we can give an algorithm that promises at least a bound on the
quality of the solution. For instance, for a minimization problem, we can try to �nd an algorithm
that outputs a solution whose cost we can bound with respect to the input size, for example, the
size of the input graph. We do, however, still not know how the quality relates to an optimum
solution.
A more advanced approach is to �nd an approximation algorithm. Suppose that an algorithm

for a minimization problem �nds a solution of value ALG for an instance where the value
of an optimum solution is OPT. If we can �nd a constant c such that for any input we have
ALG ≤ c ⋅OPT, we say that we have a c-approximation algorithm. �ere are also approximation
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algorithms where c is not a constant but a value whose size depends just on the size of the
input—but not on the actual input itself. As an example, we can have a (log n)-approximation
algorithm where n is the input size.

Fixed-Parameter Tractability. A relatively new approach is �xed-parameter tractability.
Additionally to the regular input of a problem, a �xed-parameter algorithm has an additional
parameter k. �e algorithm then needs to solve the problem exactly in O( f (k) ⋅nc) time, where
f ∶ k ↦ R+ is a computable function, n is the input size, and c is constant. �e runtime can,
hence, be separated into two factors: a polynomial factor, depending only on the input size, and
a factor of arbitrary (computable) time, depending only on the parameter k. If such an algorithm
exists, we say that the problem is �xed-parameter tractable with respect to the parameter k.
�ere are two main cases for the parameter k. On the one hand, k can be part of the output

of the optimization variant of the problem. For example, for crossing minimization, we can
ask whether there exists a solution with at most k crossings, where k is the parameter. One the
other hand, k can also describe a property of the input instance such as the maximum degree of
an input graph. In this thesis, we will use both types of parameters. For further information on
�xed-parameter tractability, we refer to the books of Downey and Fellows [DF99, DF13] or of
Niedermeier [Nie06].
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Chapter 3

DrawingMetroMaps using Bézier
Curves

�e automatic layout of metro maps is a well-known problem in graph drawing that has been
investigated quite intensely over the last few years. Previous work has focused on the octilinear
drawing style where edges are drawn horizontally, vertically, or diagonally at 45○; this is the style
used in many o�cial metro maps in cities like London, Paris, or Tokyo. Due to the limitation to
segments of four di�erent slopes, octilinear metro maps naturally have a schematized look. On
the downside, however, they also contain sharp bends in metro lines.
We suggest the use of the curvilinear drawing style, inspired by manually created curvy metro

maps; instead of straight-line segments, we use Bézier curves for drawing edges of the metro
network. In this drawing style, we are able to forbid metro lines to bend (even in stations);
this allows the user of such a map to trace the metro lines more easily. In order to create
such drawings, we use the force-directed framework; the drawing is gradually optimized, based
on forces that can be de�ned using physical analogies. Our method is the �rst that directly
represents edges as curves and operates on these curves.

3.1 Introduction

�e problem of drawing metro maps automatically has been investigated by a number of pub-
lications over the last decade. Using the terminology of graph drawing, it is stated as follows.
�e input is a plane graph G = (V , E), a map Π∶V → R2 that associates with each vertex its
geographic location, and a line cover L of G; the elements of L are paths in G with the property
that every edge is contained in at least one path. �e desired output is a drawing of G that ful�lls
or optimizes a set of aesthetic constraints. �e paths in L are the metro lines; hence, we also
call the vertices of G stations. In this chapter, as well as in other methods for drawing metro
maps, the focus is on drawing the graph. �e metro lines are taken into account in so far as
they should have few bends when drawn on top of the graph. However, the actual insertion of
the metro lines into a drawing of the graph is an additional problem that is usually solved as a
post-processing. Since one wants to have as few crossings between metro lines, the problem is
known asmetro-line crossing minimization; we will care about metro-line crossingminimization
in Chapters 4 and 5.
Note that, in theory—especially for metro-line crossing minimization—, it is o�en assumed

that the metro lines are simple paths. In practice, this is the case for most lines. However, some
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lines can also be cycles or traverse a vertex more than once. �e algorithm presented in this
chapter creates feasible drawings even if there are lines that are not simple paths.
Previous algorithmic approaches [HMdN06, SRMW11, NW11] for drawing metro maps have

all used a similar set of constraints comprising topology preservation, bend minimization,
minimization of geographic distortion, edge length uniformity, non-overlapping station label
placement, and octilinearity, that is, the requirement that edges must be drawn horizontally,
vertically, or diagonally at 45○; see Figure 3.1a.

Octilinearity vs. Curvilinearity. Geographic designers seem to use a set of constraints,
similar to the ones mentioned for previous algorithmic approaches. Especially octilinearity is
used for most metro maps; see, for example, the book of Ovenden [Ove03]. Such schematic
maps potentially o�er usability bene�ts by simplifying line trajectories, and hence reducing the
amount of information that is irrelevant for deciding how to travel from one station to another.
However, there is o�en a mistaken belief that it is merely the use of straight lines and a restricted
angle set that bene�ts the user, and as a consequence many human designers fail to optimize
octilinear maps, converting chaotic real-life line trajectories into complex sequences of short
straight-line segments and bends [Rob12].
In other instances, the network structure itself makes the bene�ts of octilinearity di�cult to

realize. A number of systems worldwide su�er from this, including the Paris Métro. In some
cases, using a di�erent level of linearity may help. For example, one could use multiples of 30○,
that is, horizontal and vertical segments, as well as segments with slopes of 30○ and 60○. If
these slopes better match the line trajectories of the network, they can permit more e�ective
optimization. However, in the case of a dense interconnected network, where line trajectories
are complex, a linear schematic may simply fail to o�er su�cient simpli�cation because of the
network structure—irrespective of whether a human or a computer attempts the design.
Under such circumstances, where the density of bends cannot be reduced, a curvilinear

schematic mapmay be attempted instead; see Figure 3.1b and Figure 3.2 for curvilinear drawings
of the metro networks of Montréal and of Sydney, respectively. Such a map seeks to simplify
line trajectories, using curves rather than straight lines. �e underlying logic is that if a linear
schematic yields sequences of many visually disruptive bends, then gentle curves with imper-
ceptible radius change are preferable. �is translates into using (�xed-degree) Bézier curves
subject to the following criteria:

(B1) Any pair of Bézier curves that are consecutive on a metro line must meet in a station and
must have the same tangent there.

(B2) �e aim for each individual metro line is to consist of the smallest number of Bézier
curves necessary in order to maintain interchanges.

(B3) Points of in�ection should be avoided.

In the speci�c case of the Paris Métro, such a design is able to smooth and to emphasize the
orbital lines (lines 2 and 6), simplifying the appearance of the network and making salient its
underlying structure. In a user study, a hand-drawn curvilinear design based on the above criteria
out-performed the conventional octilinear Paris metro map, with up to 50% improvement in
planning speed [RNL+13]. Figure 3.3 shows a manually created example of a curvilinear metro
map that tries to take the criteria into account.
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(a) Octilinear drawing. (b) Curvilinear drawing created by our algorithm.

Figure 3.1: Octilinear and curvilinear drawings of the metro network of Montréal.

PreviousWork. Previous algorithmic work on drawing metro maps used (mostly) octilinear
polylines rather than smooth curves for representing edges. Hong et al. [HMdN06] presented a
force-directed algorithm for drawing metro maps; their algorithm �nds a drawing with slopes
approximating octilinearity. A�erwards they use an interactive external labeling system to place
station labels with few overlaps.
�e algorithm of Merrick and Gudmundson [MG07] �rst covers the metro network by paths

and then uses a path simpli�cation approach for creating a schematized drawing. Another fast
heuristic based on the schematization of paths was presented by Dwyer et al. [DHM08].
Stott and Rodgers [SRMW11] suggested another approach; who used multicriteria optimiza-

tion based on hill climbing for drawing metro maps. �eir approach performs local vertex
moves as long as they improve the quality measure. �is way, they are able to create drawings in
which almost all edges are octilinear. �ey also integrated a label placement heuristic, so that
one iteration of vertex movements alternates with one label placement iteration until no more
local improvements are possible.
Nöllenburg and Wol� [NW11] used mixed-integer linear programming (MIP) for producing

metro maps. �eir approach always satis�es hard constraints like octilinearity and overlapping-
free labeling, and optimizes so� constraints, for example, the number of bends or geographic
distortion. �e runtime is high and determined by the time needed to solve the MIP with an
external solver; an instance of their model may have no feasible solution at all. Yet, the layout
quality in their case study is high and judged as the most similar to manually designed maps
in an expert survey conducted with 41 participants who compared their layouts with those of
Hong et al. [HMdN06] and Stott and Rodgers [SRMW11].
Ribeiro et al. [RRL12] presented a fast force-directed algorithm for drawing metro maps.

�eir algorithm uses straight-line edges and allows con�guration with di�erent parameters. It
does, however, not use a speci�c style such as octilinearity.
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Figure 3.2:Metro Network of Sydney drawn by our algorithm.
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Ti and Li [TL14] presented amethod that �rst enlarges dense areas of the network by distorting
the geographic map and then schematizes the resulting distorted network using an external
stroke-based algorithm.
Wang and Chi [WC11] developed a system for octilinear on-demand focus-and-context metro

maps; in their maps, they highlight routes returned by a route planning system while showing
the rest of the network as less important context information. �eir approach can also be used
for drawing non-focused metro maps. �ey deform the given geographic map by minimizing a
set of energy terms modeling the aesthetic constraints. Labeling is performed independently.
�eir method is both fast and creates good layouts, for example, for mobile devices.
In graph drawing—without the metro map setting—, curves have been used before. For

example, several works considered Lombardi drawings, introduced by Duncan et al. [DEG+12].
In this drawing style, edges are drawn as circular arcs. As an additional requirement, for each
vertex all angles occurring between the incident edges have to be equal. Planar Lombardi
drawings exist for trees [DEG+13], outerpaths [LN13] (a special type of outerplanar graphs), and
all planar graphs of maximum degree 3 [Epp13].
Chernobelskiy et al. [CCG+12] presented heuristics—based on the force-directed approach—

that create near-Lombardi drawings; in this style, edges are still drawn as circular arcs, but one
does no longer insist on equal angles around vertices.
Similarly, Finkel and Tamassia [FT05] developed a force-directed algorithm for general-

purpose graph drawing using Bézier curves for drawing the edges. Brandes andWagner [BW00]
did the same in the context of transportation networks for visualizing train connection data
with �xed positions of stations. �ey developed a force-directed algorithm that draws single
edges between �xed locations as Bézier curves. In both cases, the authors turned all control
points into vertices of the graph and used algorithms for straight-line drawings.

Our Contribution. Our drawing algorithm is based on the force-directed approach. In
contrast to the algorithms of Finkel and Tamassia [FT05] and of Brandes and Wagner [BW00],
our algorithm does not turn the control points of the curves into vertices. We introduce new
forces that operate on the curves by moving vertices and control points in di�erent ways. Our
new forces aim at producing drawings that take the above requirements (B1) to (B3) into account.
We �rst describe our basic algorithm (see Section 3.3). By construction, it ensures require-

ment (B1), that is, there are no bends within metro lines. We improve the visual complexity of
the output of the basic algorithm by merging pairs of Bézier curves that are consecutive along a
metro line, wherever this is possible; see Section 3.4 (and Figure 3.13). �is optimizes require-
ments (B2) and (B3). Force-directed algorithms depend a lot on their initial con�guration; we
run our algorithm on both octilinear drawings and geographic layouts (see Section 3.5). We
have implemented our algorithm (in Java) and tested it on the metro maps of London, Montréal,
Sydney, and Vienna; see Section 3.6 for the results.

3.2 Preliminaries

In what follows, we review the two main ingredients that we use, with a focus on the properties
that we will need for our algorithm (see also Section 2.2 for a more detailed introduction): First,
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Figure 3.4: Cubic Bézier curve.
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Figure 3.5: A smooth concatenation of Bézier
curves C and D in point p.

we detail how our algorithm treats the Bézier curves which we use for drawing edges. Second,
we quickly recall the force-directed approach.

Bézier Curves. Bézier curves are a special type of parametric curves; see Section 2.2 for a
brief introduction. We use cubic Bézier curves. Recall that a cubic Bézier curve C is given by
the cubic polynomial

PC ∶ [0, 1] → R2 , t ↦ (1 − t)3p + 3(1 − t)2 tp′ + 3(1 − t)t2q′ + t3q,

where p, p′, q′, and q are the control points ofC; see Figure 3.4. We call p and q also the endpoints
of C. We say that p′ is the control point of C at p and that q′ is the control point of C at q.
We use the fact that the curve leaves p in the direction of p′, that is, the line pp′ is the tangent

of C at p. Now, if there is another curve D with a control point p̃ at p such that its tangent is the
same but p̃ is on the opposite side of p with respect to p′, then the concatenation of C and D
is smooth in p; see Figure 3.5. Our algorithm will ensure this behavior for consecutive edges
of a metro line by construction. �is makes it easier for the user of our metro maps to trace
metro lines visually because we avoid bends in metro lines. Technically, we encode the position
of p′ by a unit-length vectorÐ→pC that gives the direction of the tangent and by the distance rC(p)
between p and p′. Since we want to share a single tangent, as an object, between multiple curves,
we allow rC(p) to be negative. �is is used when we have to model that an edge of the metro
network leaves a station in exactly the opposite direction as another edge; this is desired, for
instance, if a metro line passes through a station.
Our algorithm repeatedly needs to check whether two Bézier curves intersect or come too

close to each other. As explained in Section 2.2, this can be done by using polygonizations
of the curves. Furthermore, we can speed up our check by �rst testing the convex hulls for
intersections; if they do not intersect, the curves cannot cross.

Force-Directed Algorithms. Following the force-directed framework (compare the short
introduction in Section 2.2), our algorithm starts with some initial plane drawing, and then,
iteratively, computes forces on the vertices (and control points). A force is a desired movement
vector. At the end of each iteration, the computed forces are applied and the drawing is modi�ed.
�en the next iteration starts. Common forces are repulsive forces between vertices, and
attractive forces between adjacent vertices. In general, forces are de�ned so that they tend to
improve the drawing gradually. As all the forces together add up to the desired movement
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Input: plane graph G = (V , E), ε > 0, integer K > 0
Obtain initial crossing-free drawing with Bézier curves.
while number of iterations < K andmaximum displacement > ε do
Compute forces on vertices.
Compute forces on curves.
Apply the forces to the current drawing.

return improved output drawing

Algorithm 3.1: Basic structure of the force-directed algorithm using curves.

vectors, the forces have to be weighted so that they have the right relative strength. �is is
done by multiplying the force vectors with some weight factor; �nding well-working factors is a
matter of testing; see Section 3.6.
While we reuse standard forces known from the literature, we also de�ne new forces that

are speci�c to our drawing style. Whenever we have such a force that works on the shape of
a curve, we will use the representation for control points introduced above: If a force tries to
move a control point, then this is represented as a force that tries to rotate the tangent used by
this control point, and another force that tries to modify the (signed) distance between vertex
and control point.

3.3 Basic Algorithm

Our algorithm follows the general idea of other force-directed algorithms; its basic structure is
shown in Algorithm 3.1.
Additionally, we have to deal with the metro lines in the given set L. From the point of view

of a station, we (usually) want each pair of incident edges that belong to the same metro line to
leave the station in opposite directions. �us, we need to maintain extra data in addition to the
graph structure and layout. First, we need the set L of metro lines with access from lines to the
edges they use and, vice versa, from the edges to the lines using them. Second, for each vertex,
we have a set of tangents given by unit-length vectors pointing away from the vertex. �ird, for
each edge e incident to a vertex v, we have a pointer to a tangentÐ→t of this vertex as well as the
signed distance re(v). Tangent and distance describe the position of the control point of e at v.
Input Data and Initial Drawing. Our force-directed algorithm needs an initial drawing
which must be crossing-free, with edges drawn as Bézier curves. If several edges incident to
the same vertex v are to use the same tangent—but possibly in opposite directions—then this
must be indicated in the input since such constraints are properties of the metro network. In
each iteration of our algorithm—right from the start—we assume that we have such a feasible
drawing. In Section 3.5 we describe how to compute an initial Bézier drawing given either a
straight-line or an octilinear drawing of the metro network.
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3.3 Basic Algorithm

3.3.1 Forces on Vertices

We use the standard forces de�ned by Fruchterman and Reingold [FR91] (see also Section 2.2);
they strive to move non-adjacent vertices far apart from each other and tomake adjacent vertices
have a common distance l . �e second goal is especially useful for metro maps as the number of
intermediate stops is normally a better indicator for the travel time than the geographic distance.
We let any vertex u exert on any vertex v the repulsive force

Frep-vtx(u, v) = ( l
d(u, v))

2 ⋅ Ð→uv .
If v and u are adjacent, vertex u additionally exerts the attracting force

Fatt(u, v) = d(u, v)
l

⋅ Ð→vu
on v.
As a metro map represents a geographic metro network, stations should not be too far away

from their actual location on the map. �erefore, we also have, for any vertex v, a force

Forig(v) = ÐÐÐ→vΠ(v)
that attracts v to its geographic position Π(v).
3.3.2 Forces on Tangents and Control Points

Whereas previous force-directed graph-drawing algorithms did not directly operate on curves,
we now present new forces for that very purpose—in order to take advantage of the power of
Bézier curves.

Improving the Shape of a Curve. Consider an edge e = uv that is represented as a curve
with control point u′ at u. If the distance d(u, u′) is small compared to the length of e, the
curve could be very sharp, and almost have a bend. If, on the other hand, u′ is far from u, the
curve gets too long. As a compromise, we aim at having ∣re(u)∣ = d(u, u′) = d(u, v)/3, which
worked well in our tests. To achieve this, we combine an attracting and a repulsive force on u′
like the Fruchterman-Reingold forces. We do not want to change the tangent, just the (signed)
distance re(u) between u and u′ in the direction of the tangent vector. Hence, the desired
change is

F shp(u, u′) = ((d(u, v)/3)2∣re(u)∣ − ∣re(u)∣2
d(u, v)/3) ⋅ sgn(re(u)).

Note that this force is a scalar and, hence, the same type of object as the distance re(u).
Additionally, we aim at straightening curves, as a straight-line segment is the simplest type of

Bézier curve and avoids sharp bends within the edge. To this end, we move vertices as well as
tangents.
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Figure 3.6: Straightening a Bézier curve.
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Figure 3.7: Rotational forces applied to a tan-
gent used by two edges uv1 and uv2. �e re-
sulting force is a rotation by angle α.

First, we try to move vertex v so that it lies on the tangent t of uv at u. Let vt be the point
on t at distance l (the desired edge length) from u; see Figure 3.6. Now the force

Fstr-vtx(u, v) = Ð→vvt
moves v towards vt .
Second, we aim at rotating tangent t at vertex u so that v lies on t as also indicated in Figure 3.6.

Let α be the signed angle between t andÐ→uv. �e basic idea is to rotate the tangent t by angle α
so that the tangent has the direction ofÐ→uv. �ere may, however, be multiple edges incident to u
using t as their tangent that all try to rotate t by di�erent angles. A bad curvature of long edges
is worse than a bad curvature of short edges; with the same rotation of the tangent, the control
point—and, thus, the curve—changes much more if the distance between vertex and control
point is high. �erefore, we do not simply sum up the individual forces on t, but use a sum
that is weighted by the control point distances (as in the law of the lever); see Figure 3.7. Let
v1 , . . . , vk be the vertices whose edges uv1 , . . . , uvk use tangent t with control points c1 , . . . , ck
and imply a desired change of the tangent by angles α1 , . . . , αk . �en the rotational force is

Fstr-tng(t, u, v1 , . . . , vk) = ∑k
i=1 α i ⋅ d(u, c i)∑k

i=1 d(u, c i) .

Again, the force is a scalar, as a rotation is a one-dimensional movement.

Improving the Angular Resolution. We also aim at a good angular resolution at vertices,
that is, we want to have large angles between edges leaving a vertex in di�erent directions, that
is, having di�erent tangents. For any pair of di�erent tangents t1 , t2 at a vertex v we, therefore,
add a repulsive force

Frep-tng(t1 , t2) = 1
α(t1 , t2)

on t1, where α(t1 , t2) ∈ [−π, π] is the (signed) angle formed by t1 and t2. Note that, when
measuring the angle, we have to take into account that some vectors are used in both directions
while others are just used at one side of the vertex; see Figure 3.8.
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3.4 Decreasing the Visual Complexity

(a) before (b) a�er

Figure 3.8: Improving the angular resolution.

3.3.3 Avoiding Crossings by Limiting Forces

In our output drawing we do not want crossings between edges. As we start with a planar
drawing, we can achieve this by ensuring that we never introduce crossings. For straight-line
drawings, Bertault [Ber99] does this in his force-directed algorithm by introducing limitations
of movements. To this end, he uses zones, that is, octants of directions; for each octant of a
vertex, he computes a maximum displacement that is allowed if the drawing should stay planar.
However, intersections of Bézier curves are more di�cult to compute and predict than crossings
of straight-line segments. Instead of using a zone-based approach, we therefore check, for each
pair of edges, whether the intended changes to the drawing would result in a crossing. If this is
the case, we change the movement vector of both endpoints so that the absolute value is half of
the original value. We do this until the application of the new forces does not result in a crossing
on any edge.

3.4 Decreasing the Visual Complexity

�emain visual complexity of a drawing of a metro map with curves is created by a large number
of in�ection points (compare requirement (B3)), especially if adjacent curves of a metro line do
not �t well together. Ideally, a metro line consists of just one Bézier curve, thus making it easy to
trace the line visually (compare requirement (B2)). O�en, this is not possible as intersections
of a line with other lines restrict its shape. We can, however, reduce the number of curves
signi�cantly by merging consecutive curves on the same line. In our initial drawing, any edge
of the graph representing the metro network is a single Bézier curve. In a step of our algorithm,
we replace two consecutive curves by a single curve if this does not change the topology of the
network. We now sketch how we handle di�erent cases for merging edges that are incident to a
vertex v. We distinguish the cases depending on the lines passing through v.

Merging Curves on Intermediate Nodes. Suppose a degree-2 vertex v has two incident
edges e1 = uv and e2 = vw lying on a common metro line ℓ. �en the two edges share a tangent
at v and leave v in opposite directions. We merge the edges into a new edge e = uw. We use
the control point of e1 at u and the control point of e2 at w and check whether the drawing of e
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intersects that of any other edge; see Figure 3.9. If this is not the case, we remove e1 and e2 and
insert e into the graph and its drawing, otherwise we keep e1 and e2 and discard e. �eoretically,
the chance of avoiding intersections could be increased by testing di�erent values for the control
point distances of the merged edge. Our tests, however, suggest that this is not necessary, since,
in the �nal drawings, almost no vertices of degree 2 remained.
To keep track of vertices that are lost by merging edges, we have to maintain a sorted list of

such vertices for each edge. As the lists of both e1 and e2 may already contain virtual vertices,
we concatenate the two lists with v in between to get the list for e. We do not only use this list
for producing the �nal drawing, in which we place the virtual vertices evenly distributed along
the drawing of e, but we also use the number of intermediate vertices for adjusting the desired
length of the edge, especially when computing the attraction between u andw. If l is the desired
length for simple edges and e contains k virtual vertices, then the desired length of e is (k + 1)l
because e represents k + 1 edges of the real metro network.
If deg(v) = 1, that is, if v is the terminal of some line, and the edge incident to v contains some

virtual vertices, then v typically represents a terminal located in a sparsely occupied suburb. We
can give more freedom to the drawing of such end edges by decreasing the in�uence of the force
Forig(v) that attracts v to its original position Π(v), for example, by scaling the force by some
value c < 1 (in our tests, we used c = 1/50). �is allows v to be placed closer to the center, which
makes the drawing more compact.

Merging Curves on Simple Interchange Nodes. Merging pairs of curves that meet at
vertices of higher degree is di�cult since it is not clear how to ensure that three or more merged
curves actually meet in (or close to) a single point. We �rst restrict ourselves to degree-4 vertices
in which two lines intersect.
Suppose that a vertex v is adjacent to vertices u, u′, w, w′ via edges e1, e′1, e2, and e′2. Line ℓ

contains the edges e1 = uv and e2 = vw, and line ℓ′ contains e′1 = u′v and e′2 = vw′. We want
to replace the concatenation of e1 and e2 by e = uw and that of e′1 and e′2 by e′ = u′w′. If we
manage to do so, we represent v as a virtual vertex, that is, as the intersection of e and e′; see
Figure 3.10. At the same time, we have to make sure that the only new crossing that is introduced
is the crossing of e and e′ that represents v. We try to �nd appropriate curves for e and e′
by adjusting the distances of the control points to the respective endpoints while keeping the
tangents (as we did for vertices of degree 2). For the distance ∣re(u)∣, we test values in the
interval [∣re1(u)∣, d(u,w)] at equal distances. It makes sense to require ∣re(u)∣ ≥ ∣re1(u)∣ since
the combined curve is longer than e1 and the new control point should not be too far from u. By
testing all di�erent combinations of discretized distances for the four involved control points,
we found feasible solutions in most cases.
Note that there is an additional constraint: the crossing that now represents v should divide

both new edges e and e′ roughly in proportion to the numbers of virtual vertices on e and e′,
respectively, on the two sides of v. If e contains k virtual vertices le� of v and k′ virtual vertices
right of v, then the intersection with e′ should have a distance to u that is (k + 1)/(k + k′ + 2)
times the total length of the curve of e. We allow a deviation from this optimal position by a
factor of δ (we used δ = 20% in our tests) times the length of the part of the curve to the le� of v
and to the right of v, respectively. We call the allowed range on e the δ-zone of e.
In all further steps of the algorithm, we have to adhere to these zones for crossing edges. A

further merging of lines including e is only allowed if v stays in the allowed δ-zone. Furthermore,
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(a) �e (octilinear) input drawing.
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(b) Lines 1 and 2 share their tangent, which has,
hence, also to be used by lines 4 and 5. Line 3
either creates a crossing or violates the shared
tangents in the input.

Figure 3.12: Example where it is impossible to keep the embedding and ensure that both edges
of each line share the same tangent.

Initial Drawing from Geographic Layout. If we do not have an octilinear drawing, the
initial drawing can also be constructed given just the coordinates of the stations. Similarly to
Nöllenburg andWol� [NW11], we start with the straight-line drawing induced by the station
positions. �is drawing may have crossings; we replace them by dummy vertices and get a
crossing-free straight-line drawing. �is drawing can then be transformed into a crossing-free
Bézier drawing as presented in the previous paragraph.
Since the introduced crossings, as dummy vertices, are preserved over all iterations, they will

also be present in the output drawing. Fortunately, their number is small in practice. (From a
network point-of-view it indeed makes sense to have stations at crossings.) For example, the
large London network (which was built by competing companies operating single lines) has
only four crossings—the same as in the o�cial tube map.
Note that, in the initial drawing, there are only two di�erent tangents at a dummy vertex,

each for one of the two crossing lines; this is also the case in the �nal drawing. Additionally,
in the more advanced version of the algorithm, we can even transform the dummy vertex to a
(dummy) virtual vertex before the algorithm starts; see Section 3.4.

3.6 Implementation and Tests

We implemented our algorithm in Java. For testing we used the metro networks of four cities:
London (297 vertices, 217 of which have degree 2, 13 metro lines), Vienna (90/71/5), Montréal
(69/59/4), and Sydney (173/144/10); see Figure 3.14, Figure 3.13d, Figure 3.1b, and Figure 3.2 for
illustrations of the networks. �e input data contained the graph structure as well as information
on the lines and geographic positions of stations. We also used octilinear layouts of these cities as
initial drawings, which we generated using the MIP approach of Nöllenburg and Wol� [NW11].
In both cases, tangents were annotated where necessary; see Section 3.5.
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Effects of Virtual Vertices. We were especially interested in how far making vertices virtual
in�uenced the visual complexity of metro maps. Figure 3.13 shows the power of virtual vertices
for the metro map of Vienna. Starting with an octilinear layout (Figure 3.13a), the �rst drawing
(Figure 3.13b) was computed without virtual vertices and, hence, no curves were merged. Clearly,
the drawing does not have any sharp bends. �e attraction to the geographic position of vertices,
however, caused some unnecessary in�ection points. Next, we added the possibility to create
virtual vertices of degree 2 (Figure 3.13c). For Vienna, this worked on all intermediate vertices,
reducing the number of Bézier curves signi�cantly. Finally, we also enabled virtual vertices of
higher degree (Figure 3.13d). For Vienna, this worked for 8 of 9 possible vertices. Two metro
lines were represented by just one curve, while the three other lines need two curves each.
It turned out that including virtual vertices of degree 2 always worked well, and that they

were fast to handle. �ere were almost no remaining vertices of this type even a�er the very �rst
iteration; hence, testing the remaining degree-2 vertices was fast in all following iterations. In
contrast, trying to merge edges at vertices of higher degree was much slower because potentially
many combinations of control point positions had to be tested. Additionally, we observed that
once many virtual vertices of higher degree had been added, the drawing did not change much
any more. Apparently, the additional constraints on the crossings make the drawing more rigid,
and many movements get forbidden. �erefore, we decided to �rst have many, that is, hundreds,
of iterations without caring about virtual vertices of degree more than 2, and then treat them in
a single (more time-consuming) �nal iteration.

Running Time. On the largest instance, the Underground of London, the running time for
creating a drawing starting with an octilinear layout (see Figure 3.14) was 935 seconds on a
3 GHz dual-core computer with 4 GB RAM. �is includes the 872 seconds spent on the last
iteration, in which curves were merged by inserting virtual vertices of degree higher than 2. In
contrast, the �rst 500 iterations just took 63 seconds.

Weights of Forces. As noted in Section 3.2, weight factors are needed that let di�erent forces
work well together. We group the forces depending on the object on which they operate. In our
tests, the following factors turned out to work well:

F resvert = (Frep-vtx + Fatt + 10Forig + 3Fstr-vtx)/100 for vertices,
F restan = 150Frep-tng + 0.03Fstr-tng for tangents, and

F rescpdist = F shp/20 for control point distances.

Initial Drawing and Forig. We tested the algorithm both with a straight-line drawing and an
octilinear layout as input. When we de�ned Forig using the geographic station locations, the
version using the octilinear layout performed slightly better. �e best results, however, were
achieved when using the octilinear layout as input and de�ning Forig with respect to the vertex
positions in the octilinear input drawing. In this case, the center had more space, and more
curves could be merged, which reduced the visual complexity. Figures 3.2, 3.1b, 3.13 and 3.14
were computed this way.

38
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(a) Initial octilinear drawing. (b) Drawing without virtual vertices.

(c) Drawing with virtual vertices of degree 2 (high-
lighted by squares).

(d) Drawingwith virtual vertices of degree 2 and ad-
ditionally with virtual vertices of higher degree
(highlighted by squares).

Figure 3.13: Metro network of Vienna: Initial octilinear drawing and drawings produced by
our algorithm, with increasing use of virtual vertices.
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3.7 Concluding Remarks

3.7 Concluding Remarks
�e implementation of our algorithm performed well on small and medium-size networks
(Vienna, Sydney, and Montreal in our tests) as well as sparse regions of large networks. In such
cases, many curves could be merged so that, in the end, lines consisted only of few curves. We
conclude that spending the extra time for merging as many curves as possible should always be
invested. In denser regions, such as the center of London, many curves were actually merged, but
there are also a number of vertices that did not allow this, making the drawing rather complex.

Open Problems. A �rst open problem is incorporating the placement of station labels into
our algorithm. One can, of course, try to use an external labeling algorithm on the output
drawing. However, it is possible that there is no space for all station labels in the output drawing.
Taking the labels into account while creating the drawing would overcome this problem—but
also make the algorithm more complicated.

Global Optimization. As future work, however, we suggest studying an alternative approach
to generating curvy metro maps automatically by approximating each metro line globally as one
C2-continuous cubic spline right from the start rather than piece-by-piece for every edge. Curve-
�tting techniques from computer graphics could be applied for �nding splines that interpolate
or approximate the input points with low error; the challenge would be to additionally de�ne
and implement appropriate constraints that allow for a su�cient and maybe context-dependent
amount of distortion to smooth unimportant bends and yet ensure, for example, the desired
angular properties in vertices of degree at least 3.

Drawings with Circular Arcs. As an alternative to Bézier curves, circular arcs may also be
used for drawing metro maps. Note that representing any edge by a single circular arc will
normally not su�ce since the tangents on the two endpoints cannot be chosen independently.
Drawing edges as a combination of two circular arcs connected at a point of common tangent
can, however, be tried.
For smaller networks and networks that have many lines that either go from the center to the

suburbs or go round a central region, we suggest concentric drawings. One �rst has to choose
a center in the central region of the network. �en, edges can be represented by sequences of
circular arcs—with the �xed center—and segments that are radial with respect to the same
center; see Figure 3.15 for an example. If the structure of the networks allows such a concentric
drawing, it should be easier to �nd one—at least with a �xed center—since the drawing style is
more restricted. Furthermore the concentric drawing style by itself reduces the complexity of
the drawing due to its focus on the center; see also our poster [FLW14] (with Magnus Lechner
and Alexander Wol�) on the ongoing work on concentric metro maps.
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Figure 3.15: Sketch of a concentric drawing of the metro network of Vienna; intermediate
stations are not shown. �e drawing was automatically generated using a work-in-progress
implementation [FLW14].
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Chapter 4

Metro-Line CrossingMinimization

In the previous chapter, we presented an algorithm for creating curvy drawings of metro
networks. In our algorithm, as well as in other algorithms for drawing metro maps, what is
actually drawn is the underlying graph. As a postprocessing, themetro lines are then inserted
into the drawing. When doing so, one has to care about several lines sharing an edge of the
network. Crossings between metro lines will o�en be necessary. In order to make the metro
lines in the drawing easy to follow, we want to insert them in such a way that the total number of
crossings is minimized; this is known as themetro-line crossing minimization (MLCM) problem:
Given an embedded graph G and a set L of simple paths in G, called lines, order the lines on
each edge so that the total number of crossings is minimized.
Although there has been some research on metro-line crossing minimization, the complexity

of MLCM has been an open problem, so far. In contrast, the problem variant MLCM-P, in
which line ends must be placed in outermost position on their edges, is known to be NP-hard.
In this chapter, our main results answer two open questions: First, we show that the general

MLCM problem is NP-hard. Second, we give an O(√log ∣L∣)-approximation algorithm for
MLCM-P.
Our further results are as follows. For both problem variants, we can e�ciently check whether

a solution without crossings exists. For MLCM-P, we develop a �xed-parameter tractable
algorithm with respect to the number of crossings; we also solve MLCM-P optimally on some
non-trivial instances. Finally, we present a �xed-parameter tractable algorithm for both MLCM
and MLCM-P on trees with respect to the sum of the maximum degree of the underlying graph
and the maximum number of lines per edge.

4.1 Introduction

An important part of transportation networks like metro networks are transportation lines
that connect di�erent points using streets or railway tracks of the underlying network. As we
have seen, such networks can be modeled as graphs. �e edges represent railway track or road
segments connecting the vertices. �e lines become paths in the graph.
Usually, lines that share an edge are drawn individually along the edge in distinct colors;

see Figure 4.1. O�en, some lines must cross, and one normally wants to have as few crossings
of metro lines as possible. �e metro-line crossing minimization (MLCM) problem has been
introduced by Benkert et al. [BNUW07]. �e goal is to order the lines along each edge such that
the number of crossings is minimized. Although the problem has been studied, many questions
remain open.
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Figure 4.1: A part of the o�cial metro map of Paris.1

We present our results in terms of the problem of metro-map visualization; however, crossing
minimization between paths on an embedded graph is used in various �elds. In very-large-scale
integrated (VLSI) chip layout, a wire diagram should have few wire crossings [Gro89]. Another
application is the visualization of biochemical pathways [Sch02]. In graph drawing the number
of edge crossings is considered one of the most important aesthetic criteria.
Recently, a lot of research, both in graph drawing and information visualization, has been

devoted to edge bundling. In this setting, some edges are drawn close together—like metro
lines—which emphasizes the structure of the graph [Hol06, CZQ+08, PNBH12]; minimizing
crossings between parallel edges arises as a subproblem [PNBH12]. More precisely, bundled
graph drawings can be interpreted as drawings of a modi�ed graph, in which the edges of
the original graph are paths—like metro lines—that o�en share edges. Metro-line crossing
minimization then helps to have few crossing between these paths.

Problem Definitions. �e input is an embedded graph G = (V , E) together with a setL = {ℓ1 , . . . , ℓ∣L∣} of simple paths in G. We call G the underlying network or the underlying
graph, the vertices stations, and the paths lines. �e endpoints v0 , vk of a line ℓ = (v0 , . . . , vk) ∈ L
are terminals, and the vertices v1 , . . . , vk−1 are intermediate stations. For each edge e = (u, v) ∈ E
let Le be the set of lines passing through e.

1Cropped from the o�cial metro map, which is available online at http://www.ratp.fr/fr/ratp/c_23590/
plans-metro/ (Accessed on December 14, 2013). © Régie autonome des transports parisiens (RATP), Paris
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4.1 Introduction
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(a) πv3v4 = (ℓ3 , ℓ2) and πv3v1 = (ℓ1 , ℓ8 , ℓ4 , ℓ3). �e
lines ℓ3 and ℓ4 have an unavoidable edge crossing
on {v1 , v3}. In contrast, the crossing of ℓ2 and ℓ3
on {v3 , v4} is avoidable. In v3 there is an unavoid-
able vertex crossing of the lines ℓ2 and ℓ8 . As the
vertex crossing of ℓ2 and ℓ5 in v3 is avoidable, the
solution is not feasible.
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(b) A feasible solution satisfying the periphery
condition. Note that the two vertex crossings
occurring in vertices v3 and v6 are both un-
avoidable and, hence, allowed.

Figure 4.2: 9 lines on an underlying network of 6 vertices and 9 edges.

Following previous work [ABKS10, Nöl10], we use the k-sidemodel; each station v is repre-
sented by a polygon with k sides, where k is the degree of v in G; see Figure 4.2. Note that for
k = 2 we can still represent the station by a rectangle and use two opposite sides for connecting
the edges to it; for k = 1 we use just one side. Each side of the polygon is called a port of v and
corresponds to an incident edge (v , u) ∈ E. Recall that the input is an embedded graph; hence,
the clockwise order of edges incident to a vertex is �xed. A line (v0 , . . . , vr) is represented by a
polyline starting at a port of v0 (on the boundary of the polygon), passing through two ports
of v i for 1 ≤ i < r, and ending at a port of vr .
For each port of u ∈ V corresponding to (u, v) ∈ E, we de�ne the line order πuv = (ℓ1 . . . ℓ∣Luv ∣)

as an ordered sequence of the lines in Luv ; πuv speci�es the clockwise order at which the lines Luv
are connected to the port of u with respect to the center of the polygon. Note that there are two
di�erent line orders πuv and πvu on any edge (u, v) of the network, describing the orders at
the two ends of the edge (u, v). A solution, or a line layout, speci�es line orders πuv and πvu for
each edge (u, v) ∈ E.
A line crossing is a crossing between a pair of polylines corresponding to a pair of lines on

the graph. We distinguish two types of crossings; see Figure 4.2a. An edge crossing between
lines ℓ1 and ℓ2 occurs whenever πuv = (. . . ℓ1 . . . ℓ2 . . . ) and πvu = (. . . ℓ1 . . . ℓ2 . . . ) for some
edge (u, v) ∈ E since line ℓ1 is above ℓ2 at vertex u and below ℓ2 at vertex v, assuming that the
edge is drawn horizontally with u to the le�. Note that the line order at a port is always described
relative to the vertex. Hence, even if the order of lines does not change on edge e = (u, v), that
is, there is no crossing on e, the permutation πvu is reversed compared to πuv . We still say that
the oder does not change, with the obvious meaning that there is no crossing.
We now consider the concatenated cyclic sequence πu of the orders πuv1 , . . . , πuvk , where(u, v1), . . . , (u, vk) are the edges incident to u in clockwise order. Note that lines that pass
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(a) Avoidable vertex crossing. (b) Avoidable vertex crossing of
(a) moved to an edge.

(c) Unavoidable vertex
crossing.

Figure 4.3: Avoidable and unavoidable vertex crossings.

through vertex u are found twice in the sequence πu . A vertex crossing between ℓ1 and ℓ2 occurs
in u if πu = (. . . ℓ1 . . . ℓ2 . . . ℓ1 . . . ℓ2 . . . ) or πu = (. . . ℓ2 . . . ℓ1 . . . ℓ2 . . . ℓ1 . . . ). Intuitively, the
lines change their relative order inside u.
A crossing of lines ℓ1 and ℓ2 is called unavoidable if ℓ1 and ℓ2 cross in any line layout; otherwise

the crossing is avoidable. A crossing is unavoidable if neither ℓ1 nor ℓ2 have a terminal on their
common subpath and the lines split on both ends of this subpath in such a way that their relative
order has to change; see Figure 4.2 for examples of the crossing types. Following previous work,
we insist that avoidable vertex crossings are not allowed in a solution, that is, these crossings are
not hidden below a station symbol; this is called the edge crossingsmodel. Furthermore, we do
not count unavoidable vertex crossings since they occur in any solution; see Figure 4.3.
A pair of lines may share several common subpaths, and the lines may cross multiple times

on the subpaths. For the simplicity of presentation, we always assume that there is at most
one common subpath of two lines; we call this the path intersection property. Our results do,
however, also hold for the general case as every common subpath can be considered individually.

Problem Variants. Several variants of metro-line crossing minimization have been consid-
ered so far. �e original metro-line crossing minimization (MLCM) problem is formulated as
follows.

Problem 4.1 (MLCM). For an instance (G ,L) consisting of an embedded graph G = (V , E) and
a set L of lines on G, �nd a line layout with the minimum number of crossings.

Note that the embedding of the graph does not necessarily have to be planar; the crucial
part for metro-line minimization is that the clockwise order of edges incident to each vertex is
prescribed by the embedding. Crossings between edges are allowed. As the lines on two crossing
edges cross in any line layout, there is no need to count such crossings.
In practice, it is desirable to avoid gaps between adjacent lines; to this end, every line is

drawn so that it starts and terminates in the topmost or bottommost part of a port; see Fig-
ure 4.2b. In fact, many manually created maps follow this periphery condition introduced by
Bekos et al. [BKPS08]. Formally, we say that a line order πuv at the port of u satis�es the periph-
ery condition if πuv = (ℓ1 . . . ℓp . . . ℓq . . . ℓ∣Luv ∣) with p ≤ q, where u is a terminal for the lines
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ℓ1 , . . . , ℓp , ℓq , . . . , ℓ∣Luv ∣ and u is an intermediate station for the lines ℓp+1 , . . . , ℓq−1. �e problem
is known as metro-line crossing minimization with periphery condition (MLCM-P).

Problem 4.2 (MLCM-P). For an instance (G ,L) consisting of an embedded graph G = (V , E)
and a set L of lines on G, �nd a line layout with the minimum number of crossings that satis�es
the periphery condition on each port.

In the special case of MLCM-P with side assignment (MLCM-PA), the input additionally
speci�es for each line end on which side of its port it terminates; Nöllenburg [Nöl10] showed that
MLCM-PA is computationally equivalent to the version of MLCM in which all lines terminate
at vertices of degree one.
As MLCM and MLCM-P are NP-hard even for very simple networks, we introduce the

additional constraint that no line is a subpath of another line. �is is o�en the case for bus
and metro transportation networks; if, however, there is a line that is a subpath of a longer line
then one can also visualize it as a part of the longer line. We call the problems with this new
restriction Proper-MLCM and Proper-MLCM-P.

Previous Work. Line crossing problems in transportation networks were �rst studied by
Benkert et al. [BNUW07], who introduced themetro-line crossing minimization (MLCM) prob-
lem. �ey described a quadratic-time algorithm for MLCM on instances whose underlying
network consists of a single edge with attached leaves. As far as we are aware, this is the only
known result on MLCM so far; no e�cient algorithms are known for the case of two or more
edges. �e complexity status of MLCM has been open.
However, the variants MLCM-P and MLCM-PA have been considered. First, Bekos et

al. [BKPS08] studied MLCM-P and proved that the variant is NP-hard on paths. Motivated by
the hardness, they introduced the variantMLCM-PA and presented e�cient algorithms for paths
and “le�-to-right” trees (in which all lines have a common direction). Later, polynomial-time
algorithms forMLCM-PA on general graphs were found with gradually improving running time
by Asquith et al. [AGM08] (O(∣L∣3 ⋅ ∣E∣5/2) time), Argyriou et al. [ABKS10] (O((∣L∣2 + ∣E∣)∣E∣)
time), and Nöllenburg [Nöl10] (O(∣L∣2∣V ∣) time), until Pupyrev et al. [PNBH12] presented a
linear-time algorithm (O(∣V ∣ + ∣E∣ + k) time, where k is the total length of the metro lines).
Asquith et al. [AGM08] formulated MLCM-P as an integer linear program that �nds an optimal
solution for the problem on general graphs; note that this approach requires exponential time in
the worst case. Okamoto et al. [OTU13a] worked onMLCM-P on paths (see also the full version
of their paper [OTU13b]). �ey showed how to e�ciently decide whether there is a solution
without crossings. In Section 4.3, we will show how this can be done for general graphs. Further-
more, they presented an exact algorithm for paths and a �xed-parameter tractable algorithm
with respect to the number of lines per edge of the path.
A lot of recent research, both in graph drawing and information visualization, is devoted to

edge bundling where some edges are drawn close together—like metro lines �e linear-time
algorithm for MLCM-PA of Pupyrev et al. [PNBH12] has been developed in this context.
In VLSI design, the problem of minimizing intersections between nets (physical wires)

arises [Gro89, MS95]. Net patterns with fewer crossings are likely to have better electrical char-
acteristics and require less wiring area as crossings consume space on the circuit board; hence,
it is an important optimization criterion in circuit board design. �is problem is equivalent to
MLCM-PA. Groeneveld [Gro89] suggested an algorithm for MLCM-PA on general graphs in
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problem graph class result reference

MLCM

caterpillar NP-hard �m. 4.1
single edge O(∣L∣2) time [BNUW07]
tree FPT for ∆ + c �m. 4.9
general graph crossing-free test �m. 4.2

MLCM-P

path NP-hard [ABKS10]
tree FPT for ∆ + c �m. 4.11
general graph ILP [AGM08]
general graph O(√log ∣L∣)-approx. �m. 4.5
general graph crossing-free test �m. 4.3
general graph FPT for #crossings �m. 4.4

Proper-MLCM-P general graph with
consistent lines

O(∣L∣2(∣L + ∣E∣)) time �m. 4.7

MLCM-PA general graph O(∣E∣ + ∣V ∣∣L∣) time [PNBH12]

Table 4.1: Overview of results for the metro-line crossing minimization problem.

this context. Another method for graphs of maximum degree four was developed by Chen and
Lee [CL98].

Our Results. Table 4.1 summarizes our contributions and previous results. We �rst prove
that MLCM is NP-hard even on caterpillars, that is, paths with attached leaves (Section 4.2.1),
thus, answering an open question of Benkert et al. [BNUW07] and Nöllenburg [Nöl09]. As
crossingminimization is hard, it is natural to ask whether there exists a crossing-free solution.
We show that there is a crossing-free solution if and only if there is no pair of lines forming an
unavoidable crossing; this criterion can easily be checked (Section 4.2.2).
We then study MLCM-P (Section 4.3). Argyriou et al. [ABKS10] and Nöllenburg [Nöl09]

asked for an approximation algorithm. To this end, we develop a 2SAT model for the problem.
Using the 2SAT formulation we obtain an O(√log ∣L∣)-approximation algorithm for MLCM-P.
�is is the �rst approximation algorithm in the context of metro-line crossing minimization.
We also show how to �nd a crossing-free solution in polynomial time, if such a solution exists.
Moreover, we prove that MLCM-P is �xed-parameter tractable with respect to the maximum
number k of allowed crossings, via the �xed-parameter tractability of 2SAT.
Next, we study the new variant Proper-MLCM-P (Section 4.4). We present e�cient algo-

rithms for solving Proper-MLCM-P optimally on caterpillars, le�-to-right trees, and many
other instances described in Section 4.4. �e class of le�-to-right trees was also considered
by Bekos et al. [BKPS08] and by Aryriou et al. [ABKS10] in the context of metro-line crossing
minimization. Actually, our algorithm can be applied to any graph if the lines on the graph
satisfy a simple property that we call consistent line directions. On such instances, with the help
of some transformations, we can reduce the problem of �nding a crossing-minimum solution to
the problem of �nding a minimum edge cut in a �ow network. �is is the �rst polynomial-time
exact algorithm for the variant in which avoidable crossings may be present in an optimal
solution.
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For both MLCM and MLCM-P, we consider the restricted variant of the problems in which
the maximum degree ∆ as well as the maximum edge multiplicity c, that is, the maximum
number of lines per edge, are bounded (Section 4.5). For the case where the underlying network
is a tree, we show that both MLCM and MLCM-P are �xed-parameter tractable with respect to
the combined parameter ∆ + c.
Finally, we consider practical aspects of metro-line crossing minimization. We show how to

�nd a (not necessarily optimal) line layout in the cases where some of the required constraints
are not ful�lled.

4.2 General Metro-Line CrossingMinimization

We begin with the most �exible problem variant MLCM, and show that it is hard to decide
whether there is a solution with at most k > 0 crossings, even if the underlying network is a
caterpillar. In contrast, we give polynomial-time algorithms for deciding whether a crossing-free
solution exists.

4.2.1 NP-Completeness

Argyriou et al. [ABKS10] showed that the restricted version MLCM-P is NP-hard even if the
underlying graph is a path. It is easy to see that this does not hold for the general versionMLCM.
In fact, any such instance has a crossing-free solution. Later, we can see this with the help of
�eorem 4.2 since, on a path, there is no pair of lines with an unavoidable crossing. �ere is,
however, also a very simple algorithm for creating such a solution: Traverse the path from le� to
right and maintain an ordered sequence of the lines. Whenever a line starts, add it at the end of
the sequence; when a line ends, it is simply removed. �is does not create any crossings. Since
in MLCM lines can end anywhere on their respective port, the solution is feasible.
If, however, the graphs become just slightly more complex than paths, MLCM is NP-hard: We

show that the problem is NP-complete even for caterpillar graphs, that is, paths with attached
vertices of degree 1.

�eorem 4.1. MLCM is NP-complete even on caterpillar graphs.

Proof. We prove hardness by reduction fromMLCM-P; as mention above, MLCM-P is known
to be NP-hard on paths [ABKS10]. Suppose that we have an instance of MLCM-P consisting of
a path G = (V , E) and a set L of lines on the path. We want to decide whether it is possible to
order the lines with periphery condition and at most k crossings.
We create a new underlying network G′ = (V ′ , E′) by adding some vertices and edges to

G. We assume that the path G is embedded along a horizontal line and specify new positions
relative to this line. For each edge e = (u, v) ∈ E, we add vertices u1 , u2 , v1, and v2 and edges(u, u1), (u, u2), (v , v1), and (v , v2) such that v1 and u1 are above the path and v2 and u2 are
below the path. Next, we add c = ∣L∣2 lines connecting u1 and v2, and c lines connecting u2
and v1 to L′ ⊇ L; see Figure 4.4. We call the added structure the red cross of e, the added lines
red lines, and the lines of L old lines. We claim that there is a number K such that a solution
of MLCM-P for (G ,L) with at most k crossings exists if and only if a solution of MLCM for(G′ ,L′) with at most k + K crossings exists.
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u v

(a) MLCM-P-solution on edge (u, v).

u v

u1

u2

v1

v2
(b) Insertion of a red cross into the solution with
minimum number of additional crossings.

Figure 4.4: Insertion of the red lines of our red cross gadget into an MLCM-P solution on an
edge (u, v).

(a) No crossings necessary. (b) 2c crossings.

(c) c crossings. (d) 2c crossings.

Figure 4.5: Crossings of lines with the red cross on an edge.

Let e = (u, v) ∈ E be an edge of the path, and let ℓ ∈ Le be a line on e. If ℓ has its terminals at
u and v, that is, ℓ lies completely on e, then ℓ never has to cross any other line in G or G′ (see
Figure 4.5a); hence, we can assume that such a line ℓ does not exist.
Now, assume that the line ℓ has none of its terminals at u or v. It is easy to see that ℓ has

to cross all 2c lines of the red cross of e (see Figure 4.5b). Finally, suppose that ℓ has just one
terminal at a vertex of e, say at u. If the terminal is placed above the edge (u, u1) then ℓ has to
cross all red lines connecting u2 and v1 but can avoid the red lines connecting u1 and v2; that
is, c crossings with red lines are necessary on edge e (see Figure 4.5c). Symmetrically, if the
terminal is below (u, u2) then only the c crossings with the red lines from u1 to v2 are necessary.
If the terminal is between the edges (u, u1) and (u, u2), however, then all 2c red lines must be
crossed (see Figure 4.5d). �ere are, of course, always c2 unavoidable internal crossings of the
red cross of e.
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Let ce = c te + cme be the number of old lines on e, where c te is the number of old lines on e that
have a terminal at u or v, and cme is the number of old lines on e that have no terminal at u or v.
In any solution there are at least c te ⋅ c + 2 ⋅ cme ⋅ c + c2 crossings on e in which at least one red
line is involved. It is easy to see that placing a terminal between red lines leaving towards a leaf
never brings an advantage. On the other hand, if just a single line has an avoidable crossing
with a block of red lines, the number of crossings increases by c = ∣L∣2, which is more than the
number of crossings in any solution for (G ,L) without double crossings. Hence, no optimal
solution of the lines in G′ has avoidable crossings with red blocks and, therefore, any optimal
solution satis�es the periphery condition; thus, a�er deleting the added edges and red lines, we
obtain a feasible solution for MLCM-P on G.
Let K ∶= ∣E∣ ⋅ c2 +∑e∈E (c te + 2cme ) ⋅ c be the minimum number of crossings involving red lines

in the graph G′. Suppose that we have an MLCM-solution on G′ with at most K + k crossings.
�en, a�er deleting the red lines, we obtain a feasible solution for MLCM-P on G with at most k
crossings. On the other hand, if we have an MLCM-P-solution on G with k crossings, then we
can insert the red lines with just K new crossings as follows. Suppose that we want to insert the
block of red lines from u1 to v2 on an edge e = (u, v) ∈ E. We start by putting them immediately
below the lines with a terminal on the top of u. �en we cross all lines below until we see the
�rst line that ends on the bottom of v and, hence, must not be crossed by this red block. We go
to the right and just keep always directly above the block of lines that end at the bottom side
of v; see Figure 4.4. When we reach v, we have not created any avoidable crossing. Once we
have inserted all blocks of red lines, we obtain a solution for the lines on G′ with exactly K + k
crossings. �is completes the proof of the NP-hardness.
It remains to show that MLCM is contained in NP. As Argyriou et al. [ABKS10] observed

for MLCM-P, one can simply guess orders for all ports and then check, for any combination of
orders, in polynomial time whether the orders form a feasible solution with at most k crossings.
�is also works for MLCM; the only di�erence is that more line layouts are feasible for MLCM.
Hence, MLCM is NP-complete.

4.2.2 Recognition of Crossing-Free Instances

As we have seen, MLCM in general is NP-hard. In contrast, we will now see that it is easy to
check whether an instance of the problem allows a crossing-free solution.
Suppose that we are given an instance (G ,L) of MLCM and we want to check whether there

exists a solution without any crossings. If a crossing-free exists solution, then, obviously, there
cannot be a pair of lines with an unavoidable crossing. We show that this necessary condition is
already su�cient.
Consider a pair of lines ℓ1 , ℓ2 with a common subpath P = (v , v1 , . . . , u1 , u); see Figure 4.6.

Suppose that the lines split at v, that is, neither ℓ1 nor ℓ2 terminates at v. Since vertex crossings
are not allowed in our model, there is a unique order between ℓ1 and ℓ2 at the port vv1 in any
feasible solution of MLCM. Furthermore, in any crossing-free solution, the relative order of ℓ1
and ℓ2 is the same on all ports.
We arbitrarily �x a direction for each edge of the underlying network. For an edge e =(u, v) ∈ E directed from u to v and for a pair of lines ℓ1 , ℓ2 ∈ Luv , we say that ℓ1 is above ℓ2 if

πuv = (. . . ℓ1 . . . ℓ2 . . . ) in any crossing-free solution taking just these two lines into account—
and disregarding all other lines. Otherwise, if πuv = (. . . ℓ2 . . . ℓ1 . . . ) in any crossing-free
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v v1 u1 u

ℓ1

ℓ2

ℓ2

ℓ1
(a) Line ℓ1 is above line ℓ2 at the port vv1 but be-
low ℓ2 at the port uu1 ; a crossing of ℓ1 and ℓ2 is
unavoidable.

v v1 u1 u

ℓ1

ℓ2

ℓ2

ℓ1

(b) A terminal on a common subpath of ℓ1 and ℓ2
at u; the crossing is avoidable.

Figure 4.6: Avoidable and unavoidable crossings.

ℓ
ℓ1

ℓ2
uv

ℓ

Figure 4.7: A separator ℓ of lines ℓ1 and ℓ2.

solution, we say that ℓ1 is below ℓ2. Note that on some other edge e′, ℓ1 may be below ℓ2,
depending on the direction of e′. We say that a line ℓ lies between ℓ1 and ℓ2 if ℓ1 is above ℓ and ℓ
is above ℓ2 on e. First, a useful observation.

Observation 4.1. �e lines ℓ1 , ℓ2 have an unavoidable crossing if and only if they split in such a
way that, on some edge e, ℓ1 has to be above ℓ2 and at the same time ℓ2 has to be above ℓ1.

We assume that no line is a subpath of another line because a subpath can be reinserted
parallel to the longer line in a crossing-free solution. Consider a pair of lines ℓ1 and ℓ2 whose
common subpath P starts in u and ends in v. If u (or, similarly, v) is a terminal neither for ℓ1 nor
ℓ2 then either there is a unique relative order of the lines along P in any crossing-free solution
or a crossing is unavoidable; see Figure 4.6. Hence, we assume that u is a terminal for ℓ1, v is a
terminal for ℓ2, and we call such a pair of lines overlapping. Suppose there is a separator for ℓ1
and ℓ2, that is, a line ℓ on the common subpath of ℓ1 and ℓ2 that has to be below ℓ1 and above ℓ2
(or the other way round) as shown in Figure 4.7. �en, ℓ1 has to be above ℓ2 in any crossing-free
solution.
�e only remaining case is a pair of lines without a separator. With the help of the following

lemma we will be able to simplify the instance by merging such pairs.

Lemma 4.1. Let ℓ1 , ℓ2 be a pair of overlapping lines without a separator, for which the number of
edges of the common subpath is minimum. If there exists a crossing-free solution, then then there
also exists a crossing-free solution in which ℓ1 and ℓ2 are immediate neighbors in the orders on
their common subpath, that is, they are never separated by a line lying between them.

Proof. First, let us show that no line has its terminal in an intermediate station of the common
subpath of ℓ1 and ℓ2. Suppose there is such a line ℓ. �en ℓ forms an overlapping pair with either
ℓ1 or ℓ2—say ℓ1 without loss of generality—, whose common subpath is shorter than the one of
ℓ1 and ℓ2. Hence, there is a separator ℓ′ of ℓ1 and ℓ1; ℓ′ also separates ℓ1 and ℓ2 in contradiction
to the choice of ℓ1 and ℓ2.
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ℓ2

ℓ1

ℓ

(a) Lines S between ℓ1 and ℓ.

ℓ1

ℓ2

ℓ

(b) Lines between ℓ1 and ℓ reordered.

Figure 4.8: Rerouting lines between ℓ1 and ℓ2. All shown lines share a subpath, which is shown
in the drawings. At any position with a terminal, there is a node (not drawn).

Now, suppose that there is no crossing-free solution in which ℓ1 and ℓ2 are immediate neigh-
bors on their complete subpath. We �x a crossing-free solution in which the number of lines
lying between ℓ1 and ℓ2 is minimal and suppose that, without loss of generality, ℓ1 is above ℓ2.
Let ℓ be a line lying between ℓ1 and ℓ2. If we follow line ℓ to the le� and to the right, it either

ends at a subpath with ℓ1 or ℓ2, or it leaves these two lines. If ℓ leaves both ℓ1 to the le� and ℓ2 to
the right, then ℓ must be a separator, a contradiction. On the other hand, if ℓ leaves only one of
the lines, say ℓ1, it overlaps with the other one, that is, with ℓ2, and forms an overlapping pair
with it.
Let ℓ be the topmost line that lies between ℓ1 and ℓ2 in the solution and overlaps with ℓ1

(or, symmetrically, the bottommost line that overlaps with ℓ2). By modifying the ordering,
considering lines above ℓ and below ℓ1, and some lines not overlapping with ℓ1, it is possible
to reroute ℓ so that it does not lie between ℓ1 and ℓ2, hence decreasing the number of lines
between ℓ1 and ℓ2, in contradiction to the choice of the solution. To this end, let S ⊇ {ℓ1 , ℓ}
be the smallest superset of ℓ and ℓ1 such that for any pair of lines ℓ′ , ℓ′′ ∈ S any line that lies
between ℓ′ and ℓ′′ in the solution is also contained in S; see Figure 4.8a. Note that no pair of
lines in S has a separator because this separator would also be a separator for ℓ1 and ℓ2.
If S = {ℓ1 , ℓ} we can easily reroute ℓ to be above ℓ1. Otherwise, we apply the following

procedure. For any pair of overlapping lines in S that are immediate neighbors—that is, there is
no line lying in between—, we reroute the right line to be immediately above the le� line, which
is possible as there is no separating line. Eventually, ℓ will be above ℓ1; otherwise, there would
still be steps to be performed; see Figure 4.8b. Hence, we can create a solution in which there is
at least one line less between ℓ1 and ℓ2, a contradiction.

In the situation of the previous lemma, we can safely merge ℓ1 and ℓ2 into a new line ℓ that
starts and ends at the terminals of ℓ1 and ℓ2 that are not on the common subpath of the two
lines. We will now use this merging for simplifying the instance so that we can conclude that
any instance without unavoidable crossings allows a crossing-free line layout.

�eorem 4.2. Let (G = (V , E),L) be an instance of MLCM. A crossing-free solution exists if
and only if there is no pair of lines with an unavoidable crossing.

Proof. If there is a pair of lines with an unavoidable crossing, then naturally there is no crossing-
free solution. Now assume that there is no unavoidable crossing. We will show how to �nd a
crossing-free solution.
Using Lemma 4.1, we can merge a pair of overlapping lines without a separator into a new

line. �e merging cannot introduce an unavoidable crossing as we will see. Suppose there would
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uv
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ℓ1
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ℓ4

Figure 4.9: Unavoidable crossing of two separators of ℓ1 and ℓ3.

be a line ℓ forming an unavoidable crossing with the merged line ℓ′ of ℓ1 and ℓ2. �e lines ℓ
and ℓ′ have to split on both ends with with di�erent side constraints. �e splits have to be on
di�erent sides of the common subpath of ℓ1 and ℓ2, otherwise there already was an unavoidable
crossing of ℓ with ℓ1 or ℓ2. From the splits we get relative orders of ℓ with ℓ1 and ℓ2 such that
either ℓ1 is above ℓ and ℓ is above ℓ2, or ℓ2 is above ℓ and ℓ is above ℓ1. In both cases ℓ already
was a separator for ℓ1 and ℓ2 and we would not have merged the lines.
We iteratively perform merging steps until any overlapping pair has a separator. Note that

there might be multiple separators for a pair, but all of them separate the pair in the same relative
order; otherwise, we would have a pair of separators with an unavoidable crossing; see Figure 4.9.

A�er the merging steps, for any pair of lines sharing an edge, we either obtain a unique
relative order for crossing-free solutions, or the pair has a separator.
We now create a directed relation graph Ge for each edge e ∈ E. Vertices of the graph are the

lines Le passing through e. Edges of Ge model the relative order of the lines in a crossing-free
solution; we have an edge (ℓ1 , ℓ2) (similarly, (ℓ2 , ℓ1)) in Ge if ℓ1 and ℓ2 split in such a way that
ℓ1 is above (below) ℓ2 in any crossing-free solution.
Let us prove that all relation graphs are acyclic. Suppose there is a cycle in a relation graph

Ge . We choose the shortest cycle C. A cycle of length 2 is equivalent to a pair of lines with an
unavoidable crossing; hence, such a cycle cannot exist.
Now, suppose there is a cycle C = (ℓ1 , ℓ2 , ℓ3) of length 3. Lines ℓ1 and ℓ2 share a common

subpath and split on one side in the order (ℓ1 , ℓ2). �e splitting for realizing the edge (ℓ2 , ℓ3)
can not be realized on this subpath; otherwise, we would also get the edge (ℓ1 , ℓ3). Similarly,
the splitting for (ℓ3 , ℓ1) also can not be realized on the subpath. Hence, we have to distribute
the two splittings to the two sides of the subpath, which is not possible without introducing an
unavoidable crossing with ℓ1 or ℓ2; see Figure 4.10.
Finally, if the shortest cycle C has length at least four, then there exists a path (ℓ1 , ℓ2 , ℓ3 , ℓ4)

of length four without chords. As there is no edge between ℓ1 and ℓ3, ℓ1 and ℓ3 have to be an
overlapping pair and ℓ2 is a separator for them. On the other hand, ℓ4 is also a separator for ℓ1
and ℓ3, but separates them in another relative order. It is easy to see that there is an unavoidable
crossing of ℓ2 and ℓ4, a contradiction; see Figure 4.9. Hence, the relation graphs are acyclic.
Now, in a relation graph Ge for any pair of lines ℓ1 , ℓ2 ∈ Le , there is either a directed edge

connecting the lines in Ge , or the lines are overlapping; in the latter case, there has to exist
a separator for ℓ1 and ℓ2 and, hence, a directed path of length 2 connecting ℓ1 and ℓ2 in Ge .
Since Ge is acyclic, there exists a topological ordering of the lines Le . Due to the existence of
separators—and, hence, connecting paths for overlapping lines—the topological ordering is
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ℓ1

ℓ2

e

ℓ3

(a) ℓ1 and ℓ2 split on both sides.

ℓ1

ℓ2

e

ℓ3

(b) ℓ1 and ℓ2 split only on one side.

Figure 4.10: Situations occurring in the proof of �eorem 4.2 for lines ℓ1, ℓ2, and ℓ3 that have a
common edge e.

unique. We obtain a crossing-free solution by using the ordering for every edge. As the relative
order of any pair of lines is the same for all edges, there cannot be a crossing.

�e proof yields an algorithm for �nding a crossing-free solution if there is no unavoidable
crossing. It needsO(∣L∣2∣E∣) time for deleting subpaths as well as iteratively merging the shortest
unseparated overlapping pair. Finally, we can get the relative order of each pair of lines on all
edges in O(∣L∣2∣E∣) time and we can order the lines on all edges. Hence, a�er reinserting the
deleted or merged lines, we obtain a crossing-free solution in O(∣L∣2∣E∣) time.
4.3 Metro-Line CrossingMinimization with Periphery

Condition

We now turn to the problem variant MLCM-P, that is, the version of MLCM in which line ends
must be outermost at their ports. As mentioned in the previous section, MLCM-P has been
shown to be NP-hard by Argyriou et al. [ABKS10]. Similar to what we did for MLCM, we will
show that checking whether there is a crossing-free solution can be achieved in polynomial
time also for MLCM-P. We will also show that the problem variant is �xed-parameter tractable
and develop an approximation algorithm. Our results are based on a 2SAT model that we will
develop �rst.

4.3.1 A 2SATmodel for MLCM-P

Let (G = (V , E),L) be an instance of MLCM-P. Our goal is to decide, for each line end, on
which side of its terminal port the line end should be placed. For convenience, we arbitrarily
choose one side of each port and call it “top”, the opposite side is called “bottom”. For each line ℓ
starting at vertex u and ending at vertex v, we create binary variables ℓu and ℓv , which are true
if and only if ℓ terminates at the top side of the respective port. We formulate the problem of
�nding a truth assignment that leads to a crossing-free solution as a 2SAT instance for the given
instance of MLCM-P. Note that Asquith et al. [AGM08] already used 2SAT clauses as a tool for
developing their ILP for MLCM; the variables in the clauses represent above/below relations
between line ends. In contrast, in our model a variable directly represents the position of a
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vℓ′

ℓ

(a) �e lines cross.

vℓ′

ℓ

(b) Crossing eliminated by rerouting.

Figure 4.11: Avoiding a crossing of lines with a common terminal by rerouting.

line on the top or bottom side of a port. �is allows us to derive further results using the 2SAT
formulation.
As a preparation, we show that lines sharing a terminal never have to cross. As a consequence,

we later will not have to care about pairs of such lines.

Lemma 4.2. Let ℓ, ℓ′ be a pair of lines sharing a terminal v. We can transform any solution in
which ℓ and ℓ′ cross into a solution with fewer crossings in which ℓ and ℓ′ do not cross.

Proof. Assume that ℓ and ℓ′ cross in a solution. We switch the positions of the line ends at the
common terminal v between ℓ and ℓ′ and reroute the two lines between the crossing’s position
and v. By reusing the route of ℓ for ℓ′ and vice versa, the number of crossings does not increase;
see Figure 4.11. On the other hand, the crossing between ℓ and ℓ′ is eliminated.

Let ℓ, ℓ′ be two lines whose common subpath P starts at vertex u and ends at vertex v. Observe
that terminals of ℓ and ℓ′ that lie on P can only be at u or v. If neither ℓ nor ℓ′ has a terminal on
P then a crossing of the lines does not depend on the positions of the terminals; it only depends
on how the lines split at u and v. Hence, we assume that there is at least one terminal at u or v.
We model a possible crossing between ℓ and ℓ′ by a 2SAT formula, the crossing formula of ℓ
and ℓ′, consisting of at most two clauses. �e crossing formula evaluates to true if and only if ℓ
and ℓ′ do not cross. For simplicity, we assume that the top sides of the terminal ports of u and v
are located on the same side of P. If this is not the case, the variable ℓu must be substituted by
its inverse ¬ℓu in the formula. We consider four cases; see Figure 4.12 for illustrations.
(f1) Suppose that u and v are terminals for ℓ and intermediate stations for ℓ′, that is, ℓ is a

subpath of ℓ′; see Figure 4.12. �en, ℓ does not cross ℓ′ if and only if both terminals of ℓ
lie on the same side of P. �is is expressed by the crossing formula

(ℓu ∧ ℓv) ∨ (¬ℓu ∧ ¬ℓv) ≡ (¬ℓu ∨ ℓv) ∧ (ℓu ∨ ¬ℓv).
Note that only variables for line ℓ occur in this formula. �e same formula may occur
multiple times, caused by a di�erent line ℓ′.

(f2) Suppose that u is a terminal for ℓ and an intermediate station for ℓ′, and v is a terminal
for ℓ′ and an intermediate station for ℓ; see Figure 4.12. �en there is no crossing if and
only if both terminals lie on opposite sides of P. �is is expressed by the crossing formula

(ℓu ∧ ¬ℓ′v) ∨ (¬ℓu ∧ ℓ′v) ≡ (ℓu ∨ ℓ′v) ∧ (¬ℓu ∨ ¬ℓ′v).
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u v

ℓ′
ℓ

(f1) (ℓu ∧ ℓv) ∨ (¬ℓu ∧ ¬ℓv) ≡
(¬ℓu ∨ ℓv) ∧ (ℓu ∨ ¬ℓv)

u v
ℓ′ ℓ

(f2) (ℓu ∧ ¬ℓ′v) ∨ (¬ℓu ∧ ℓ′v) ≡
(ℓu ∨ ℓ′v) ∧ (¬ℓu ∨ ¬ℓ′v)

u vℓ′

ℓ

(f3) Crossing can always be removed.

u v ℓ′

ℓ

(f4) (ℓu)

Figure 4.12:�e four cases for crossing formulas.

(f3) Suppose that both ℓ and ℓ′ terminate at the same vertex, say at v; see Figure 4.12. By
Lemma 4.2, a solution of MLCM-P with a crossing of ℓ and ℓ′ can be transformed into a
solution with fewer crossings in which ℓ and ℓ′ do not cross. Hence, we do not need to
introduce a crossing formula in this case. Instead, we can �nd a line layout in which the
lines possibly cross and, a�erwards, improve the line layout by removing the crossing of ℓ
and ℓ′.

(f4) In the remaining case, there is only one terminal of ℓ and ℓ′ on P. Without loss of
generality, let ℓ terminate at u; see Figure 4.12. �e lines have to cross if and only if the
line end of ℓ at u is placed on the wrong side of the line ℓ′. Hence, a crossing is triggered
by a single variable. Depending on the �xed terminals or leaving edges at v and u, the
crossing formula consists of the single clause

(ℓu) or (¬ℓu).
Note that, like in case (f1), the same clause can occur multiple times, caused by di�erent
lines ℓ′.

4.3.2 Crossing-Free Solutions

�e �rst thing we can do with the help of the 2SAT formulation is checking whether there exists
a crossing-free solution of an MLCM-P instance. We can do this using the following algorithm.
First, we check for unavoidable crossings by analyzing every pair of lines individually. Second,
the 2SAT model is satis�able if and only if there is a solution of the MLCM-P instance without
avoidable crossing. Note that assigning sides to the line ends at the ports using a satisfying truth
assignment of the 2SAT model could still result in crossings since we did not introduce crossing
formulas in case (f3); such crossings can, however, easily be remove with the help of Lemma 4.2.
Since 2SAT can be solved in linear time [EIS76], there are at most ∣L∣2 crossing formulas, and
we can compute the 2SAT formulation in O(∣E∣∣L∣2) time by checking all pairs of lines on any
edge, we conclude as follows.
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Figure 4.13: An instance of MLCM-P that does not have a crossing-free solution. �ere is,
however, no small substructure of lines that gives a contradiction to the assumed existence of a
crossing-free solution. Any proper subset of the lines allows a crossing-free solution. Note that
the example can easily be extended to an arbitrary number of lines.

�eorem 4.3. Let (G = (V , E),L) be an instance of MLCM-P. Deciding whether there exists a
crossing-free solution for (G ,L) can be accomplished in O(∣E∣∣L∣2) time.

Recall that for MLCM the existence of a crossing-free solution is equivalent to the absence of
unavoidable crossings; see�eorem 4.2. In contrast, instances of MLCM-P without unavoidable
crossings do not always allow crossing-free solutions. Moreover, for any k, there is an instance
with k lines such that any subset of k−1 lines admits a crossing-free solution, while the instance of
all k lines requires at least one crossing; see Figure 4.13 for an example. Hence, there is no simple
criterion for the existence of crossing-free solutions based on small forbidden substructures.
Nevertheless, we can e�ciently check whether a solution without avoidable crossings exists by
using the 2SAT model.
For the special case that G is a path, Okamoto et al. [OTU13a] presented an algorithm that

decides in linear time whether a crossing-free solution of MLCM-P exists.

4.3.3 Fixed-Parameter Tractability
We have seen that we can check whether an instance of MLCM-P allows a solution without
crossings in polynomial time. Now, we will see that we can also check whether a solution with
at most k crossings exists—if k is a constant—in polynomial time. More precisely, we will
even show that MLCM-P is �xed-parameter tractable with respect to the number k of allowed
crossings. We will use the 2SAT model for obtaining a �xed-parameter tractable algorithm.
Recall that wemust show that we can check inO( f (k)⋅poly(I)) time whether there is a solution
with at most k avoidable crossings, where f must be a computable function and I is the input
size.
We want to relate crossings in a solution to unsatis�ed clauses in the 2SAT formulation.

In case (f4) this is easily possible because the crossing formula consists of just one clause. In
cases (f1) and (f2), however, the crossing formulas consist of two clauses. By analyzing the
truth assignments it is easy to see that for any truth assignment at least one of the two clauses is
satis�ed. Hence, we get the following observation.

Observation 4.2. Let ℓ and ℓ′ be two lines whose possible crossing is described by a crossing
formula of type (f1), (f2), or (f4). For any truth assignment, the crossing formula contains exactly
one unsatis�ed clause if ℓ and ℓ′ cross in the corresponding line layout; if the lines do not cross,
then all clauses of the crossing formula are satis�ed.
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Hence, minimizing the number of crossings is the equivalent to maximizing the number
of satis�ed clauses in the corresponding 2SAT instance. Maximizing the number of satis�ed
clauses, or solving the MAX-2SAT problem, is NP-hard [GJ79].
However, the problem of deciding whether it is possible to remove a given number k of m

2SAT clauses so that the formula becomes satis�able is �xed-parameter tractable with respect to
the parameter k [RO09]. �is yields the following result.

�eorem 4.4. MLCM-P is �xed-parameter tractable with respect to the number k describing the
maximum number of avoidable crossings that a feasible solution may contain, with a runtime of
O(15k ⋅ k ⋅ ∣L∣6 + ∣L∣2∣E∣)
Proof. We show that the 2SAT formula for the instance (G = (V , E),L) of MLCM-P can be
made satis�able by removing at most k clauses if and only if there is a line layout with at most k
avoidable crossings.
First, suppose that it is possible to remove at most k clauses from the 2SATmodel so that there

is a truth assignment satisfying all remaining clauses. Fix such a truth assignment and consider
the corresponding assignment of sides to the terminals. By Observation 4.2, any crossing leads
to an unsatis�ed clause in the 2SAT formula, and no two crossings share an unsatis�ed clause.
Furthermore, only the removed clauses can be unsatis�ed. Hence, we have a side assignment
that causes at most k avoidable crossings.
Now, we assume that there is an assignment of sides for all terminals that causes at most k

crossings. By Observation 4.2, there are at most k unsatis�ed clauses since any crossing just leads
to a single unsatis�ed clause. �e removal of these clauses creates a new, satis�able, formula.
Hence, the MLCM-P instance has a solution with at most k avoidable crossings if and only if

the 2SAT formula can bemade satis�able by removing atmost k clauses. By using theO(15kkm3)-
time algorithm for 2SAT of Razgon andO’Sullivan [RO09]—wherem is the number of clauses—,
we obtain a �xed-parameter algorithm forMLCM-Pwhose runtime isO(15kk∣L∣6+∣L∣2∣E∣).
Note that the result of�eorem 4.4 does also hold if k is the number of crossings, also counting

the unavoidable crossings. We just have to determine the number k′ of unavoidable crossings by
comparing all pairs of lines; then, we can apply �eorem 4.4 with the number k − k′ of allowed
avoidable crossings.

4.3.4 ApproximatingMLCM-P

Using insights into the 2SAT formulation that we developed in the previous sections, we can
now derive an approximation algorithm for MLCM-P. �e proof of �eorem 4.4 yields that the
number of avoidable crossings in a crossing-minimal solution of MLCM-P equals the minimum
number of clauses that we need to remove from the 2SAT formula in order to make it satis�able.
Furthermore, a set of k clauses, whose removal makes the 2SAT formula satis�able, corresponds
to anMLCM-P solution with at most k avoidable crossings. Note that we do not need to consider
unavoidable crossings since they occur both in optimum and approximative solutions. Hence,
an approximation algorithm for the problem of making a 2SAT formula satis�able by removing
the minimum number of clauses (also called Min 2CNF Deletion) yields an approximation
for MLCM-P of the same quality. As there is an O(√logm)-approximation algorithm for
Min 2CNF deletion [ACMM05], we obtain the following result.
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(a) An instance (G ,L) of Proper-MLCM-P.

t

b

ℓ4v4

ℓ2v1

ℓ5v3 ℓ2v4 ℓ3v3

(b) Graph Gtb for the instance (G ,L).

Figure 4.14: A small instance of Proper-MLCM-P. �e generated 2SAT formulas are: (ℓ2v1)
for the crossing of ℓ1 and ℓ2; (¬ℓ4v4) for the crossing of ℓ5 and ℓ4; (ℓ2v4 ∨ ℓ3v3) ∧ (¬ℓ2v4 ∨ ¬ℓ3v3) for
the crossing of ℓ2 and ℓ3; (ℓ2v4 ∨ ℓ5v3) ∧ (¬ℓ2v4 ∨ ¬ℓ5v3) for the crossing of ℓ2 and ℓ5.
�eorem 4.5. �ere is an O(√log ∣L∣)-approximation algorithm for MLCM-P.

4.4 The Problem Proper-MLCM-P
In this section, we consider the problem Proper-MLCM-P; in this variant of MLCM-P no
line in L is a subpath of another line. First, we focus on graphs whose underlying network is a
caterpillar. �ere, the top and bottom sides of ports are given naturally; see Figure 4.14a.
Based on the 2SAT model described in the previous section, we construct a graph Gtb =(Vtb , Etb), which has a vertex ℓu for each variable of the model (and, hence, for each line end)

and two additional vertices t and b, representing the top and bottom side of a port (or true
and false), respectively. Since no line is a subpath of another line, our 2SAT model has only
the two types of crossing formulas (f2) and (f4); compare Section 4.3.1. For case (f2), that is, the
crossing formula (ℓu ∨ ℓ′v) ∧ (¬ℓu ∨ ¬ℓ′v), we create an edge (ℓu , ℓ′v) in Gtb . �e edge models a
possible crossing between lines ℓ and ℓ′; that is, the lines cross if and only if ℓ terminates on
top (bottom) of u and ℓ′ terminates on top (bottom) of v. For a crossing formula of type (ℓu)
(case (f4)), we add an edge (b, ℓu) to Gtb ; similarly, we add an edge (t, ℓu) for a formula (¬ℓu).
�e edges (b, ℓu) and (t, ℓu) model that there is a crossing if the line end of ℓ at u is on the
bottom or on the top, respectively; see Figure 4.14b for an example.
Any truth assignment to the variables is equivalent to a b-t cut in Gtb , that is, a cut separating

b and t. More precisely, the b-side of the partition corresponds to the false variables and
the t-side of the partition corresponds to the true variables. Any edge in the graph models
the fact that two variables should not be assigned to the same side as the corresponding line
ends would cause a crossing otherwise. Hence, any line crossing corresponds to an uncut edge.
�erefore, for �nding a line layout with the minimum number of crossings, we need to solve the
well-known MIN-UNCUT problem on Gtb , which is de�ned as follows.

Problem 4.3 (MIN-UNCUT). Given a graph G = (V , E), partition the set V of vertices into
two sets St , Sb so that the number of uncut edges (v , u) (with either v , u ∈ St or v , u ∈ Sb) is
minimized.

As an additional constraint, we want that t ∈ St and b ∈ Sb . In general, the problem
MIN-UNCUT is NP-hard [GJ79] because optimum solutions of MIN-UNCUT are also opti-
mum solutions of the NP-hard maximum cut problem. However, it turns out that the graph Gtb
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has a special structure, which we call almost bipartite; this structure will allow us to solve
MIN-UNCUT e�ciently on Gtb .

De�nition 4.1 (Almost bipartite graphs). A graph G = (V , E) is called almost bipartite if it
is the union of a bipartite graph H = (VH , EH) and two additional vertices b, t whose edges
may be incident to vertices of both sides of the partition of H; that is, V = VH ∪ {b} ∪ {t} and
E = EH ∪ E′, where

E′ ⊆ {(b, v) ∣ v ∈ V} ∪ {(t, v) ∣ v ∈ V}.
For the graph Gtb , the bipartition is given by the fact that “le�” (similarly, “right”) terminals

of two lines can never be connected by an edge inGtb since crossing formulas of type (f2) always
involve a le� and a right terminal. More formally, let L l be the set of variables for terminals
at the le�most end of a line and let Lr be the set of of variables for terminals on the rightmost
end of a line. �en Vtb = L l ∪̇Lr∪̇ {b, t} and the subgraph induced by L l ∪̇Lr is bipartite with
respect to the sets L l and Lr . We now show that MIN-UNCUT can be solved optimally for
almost bipartite graphs in polynomial time.
Almost bipartite graphs are a subclass of weakly bipartite graphs, see the work of Bara-

hona [Bar83]. Weakly bipartite graphs have no simple combinatorial characterization. It is
known thatMAX-CUT andMIN-UNCUT can be solved in polynomial time onweakly bipartite
graphs using the ellipsoid method [GP81]. However, the algorithm might be not fast in practice.
As mentioned by Grötschel and Pulleyblank [GP81], “it remains a challenging problem to �nd
a practically e�cient method for the max-cut problem in weakly bipartite graphs which is of
a combinatorial nature and does not su�er from the drawbacks of the ellipsoid method”. In
the following we present such an algorithm for the special case of almost bipartite graphs. Our
algorithm is based on a maximum �ow computation in a modi�ed graph.

�eorem4.6. MIN-UNCUT can be solved in O(n3) time on almost bipartite graphs of n vertices.

Proof. LetG = (V , E) be an almost bipartite graph consisting of a bipartite graphH = (VH , EH),
two additional vertices b and t, and a set E′ of edges connecting some vertices of H to b and
t as in De�nition 4.1. �e special vertices b and t have to belong to di�erent vertex sets Sb
and St of G. We create a new graph G̃ = (Ṽ , Ẽ) from G as follows. First, we split vertex b into
new vertices b1 and b2 and we split vertex t into new vertices t1 and t2 such that b1 and t2 are
connected to the vertices of the �rst side H1 of the partition of H, and b2 and t1 are connected
to the second side H2 of the partition of H. Formally, for each edge (b, v) ∈ E with v ∈ H1, we
create an edge (b1 , v) ∈ Ẽ; for each edge (b, v) ∈ E with v ∈ H2, we create an edge (v , b2) ∈ Ẽ.
Similarly, edges (v , t1) ∈ E′ are created for all (t, v) ∈ E with v ∈ H1, and edges (t2 , v) ∈ E′ are
created for all (t, v) ∈ E with v ∈ H2. �e construction is illustrated in Figure 4.15b.
Now, for each edge (u, v) ∈ Ẽ, we assign capacity 1, and compute a maximum �ow between

the pair of sources b1 , t2 and the pair of sinks b2 , t1. A�er introducing a supersource (connected
to b1 and t2) and a supersink (connected to b2 and t1), this can be done in O(n3) time by using
the maximum �ow algorithm of Edmonds and Karp. Note that we �nd an integral maximum
�ow in G̃ because all capacities are integers.
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Figure 4.15: SolvingMIN-UNCUTon an almost bipartite graph. �emaximum�ow (minimum
cut) with value 3 results in vertex partitions V 1b = {b1 , 4, 5, 6}, V 1t = {t2 , 1, 2, 3}, V 2b = {b2}, and
V 2t = {t1}. �e optimal partition Sb = {b, 4, 5, 6}, St = {t, 1, 2, 3} induces three uncut edges(b, 6), (b, 6), and (t, 2).
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Amaximum �ow corresponds to a maximum set of edge-disjoint paths starting at b1 or t2
and ending at b2 or t1. Such a path corresponds to one of the following structures in the original
graph G since b1 and b2 correspond to b and t1 and t2 correspond to t:

(i) an odd cycle containing vertex b (that is, a cycle with an odd number of edges),

(ii) an odd cycle containing vertex t, or

(iii) an even path between vertices b and t (that is, a path with an even number of edges).

Note that, if a graph has an odd cycle, then at least one of the edges of the cycle is uncut in any
solution of MIN-UNCUT. �e same holds for an even path connecting b and t in G because b
and t have to belong to di�erent sides of the partition. Since the maximum �ow corresponds to
the edge-disjoint odd cycles and even paths in G, the value of the �ow is a lower bound for a
solution of MIN-UNCUT.
We now want to prove that the value of the maximum �ow in G̃ is also an upper bound by

showing how to construct a partition of V into Sb and St with b ∈ Sb and t ∈ St such that the
number of uncut edges is equal to the value of the maximum �ow. By Menger’s theorem, the
value of the maximum �ow in G̃ is the cardinality of the minimum edge cut separating sources
and sinks. Let E∗ be theminimum edge cut and letG1 andG2 be the corresponding disconnected
subgraphs of G̃, where b1 ∈ G1 and b2 ∈ G2; see Figure 4.15c. �e graph G1 is bipartite since
H ∩G1 is bipartite; vertex b1 is only connected to vertices of H1 and vertex t2 is only connected
to vertices of H2. �erefore, there is a 2-partition of vertices of G1 such that b1 and t2 belong
to di�erent sides of the partition; let us denote the sides by V 1b and V

1
t . Similarly, there is a

2-partition of G2 into V 2b and V
2
t with b2 ∈ V 2b and t1 ∈ V 2t . We combine these partitions so that

Sb = {b} ∪ (V 1b ∪ V 2b ) ∖ {b1 , b2 , t1 , t2} and St = {t} ∪ (V 1t ∪ V 2t ) ∖ {b1 , b2 , t1 , t2}. �e sets Sb
and St form the required partition of V for MIN-UNCUT; see Figure 4.15d. �e set of uncut
edges is the transformation of E∗ back to the original graph G, which completes the proof.

As a direct corollary, we get a polynomial-time algorithm for Proper-MLCM-P on cater-
pillars: We �rst build the 2SAT model and then, by analyzing the crossing formulas, we build
the graph Gtb . By applying�eorem 4.6 to Gtb , we �nd a partition into Sb and St for the line
ends. By assigning line ends in Sb to the bottom side and line ends in St to the top side of
the respective port, we get a solution for Proper-MLCM-P, which—a�er removing potential
crossings of type (f3) with the help of Lemma 4.2—is crossing-minimal.
We can, actually, also use the same method for a larger set of instances. �e only special

property of caterpillars that we used was that there is a meaning of le� and right line ends and
of the top and bottom side of ports that is consistent over all pairs of lines. We now relate this
property to the directions of lines.

De�nition 4.2. Let G = (V , E) be a graph and let L be a set of lines on G. We say that the lines
allow consistent line directions on G if each line can be directed so that for each edge e ∈ E all
lines ℓ ∈ Le on this edge have the same direction.

If the underlying graph is a path then we can consistently direct the lines from le� to right.
Similarly, consistent line directions exist for le�-to-right trees, which have been considered by
Bekose et al. [BKPS08] and by Argyriou et al. [ABKS10] for metro-line crossing minimization;
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Figure 4.16: An example that does not allow consistent line directions.

they are also called upward trees; see also Section 5.4.2. Upward trees are trees for which there
is an embedding with all lines being monotone in some direction. Note that not all trees
allow consistent line directions; see Figure 4.16. Furthermore, there are also instances whose
underlying graph is not a tree that still allow consistent line directions. �is is the case, for
example, if the graph is a simple cycle.
Given a graph G = (V , E) with a set L of lines, it is easy to test whether there are consistent

line directions—and �nding such directions if they exist. �is can be done by simply giving an
arbitrary direction to some �rst line, and then applying the same direction on all lines sharing
edges with the �rst line until all lines have directions or an inconsistency is found.
Given an instance with consistent line directions, we naturally get a le� and a right terminal

for any line; any line starts at its le� terminal and ends at its right terminal. Similarly, the top and
bottom side of a port refer to the side if we direct the respective edge so that the lines go from
le� to right. Using this idea, we can now show that we can solve Proper-MLCM-P optimally
on any instance that allows consistent line directions.

�eorem 4.7. Let G = (V , E) be an embedded graph with a set L of lines. If the instance (G ,L)
admits consistent line directions, then Proper-MLCM-P can be solved in O(∣L∣2(∣L∣+∣E∣)) time.

Proof. Given consistent line directions, we assign top and bottom sides of each port as follows.
Consider a port of u ∈ V corresponding to an edge (u, v) ∈ E. Let πuv be the order of the lines at
the port, with πuv = (ℓ1 . . . ℓp . . . ℓq . . . ℓ∣Luv ∣) (p ≤ q), whereu is a terminal for the lines ℓ1 , . . . , ℓp
and for the lines ℓq , . . . , ℓ∣Luv ∣ and u is an intermediate station for the lines ℓp+1 , . . . , ℓq−1. We
say that the lines ℓ1 , . . . , ℓp terminate at the top side of the port if the lines Luv are directed from
u to v; otherwise, ℓ1 , . . . , ℓp terminate at the bottom side of the port. Analogously, ℓq , . . . , ℓ∣Luv ∣
terminate at the bottom side of the port if the lines are directed from u to v and at the top side
otherwise.
Now, we consider a pair of lines ℓ and ℓ′ that have a common subpath P starting at vertex u

and ending at vertex v. It is easy to see that the top sides of the terminal ports of u and v are
located on the same side of P. Hence, in our 2SAT model, we have only crossing formulas
of the type (ℓu ∨ ℓ′v) ∧ (¬ℓu ∨ ¬ℓ′v) with variables ℓu and ℓ′v and no other combinations of
literals—apart from clauses consisting of a single literal. �erefore, the graph Gtb contains an
edge (ℓu , ℓ′v) for the pair of lines.
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Now, we can show that Gtb is almost bipartite. To this end, we prove that there is no odd
cycle containing only vertices ℓu with u ∈ V , ℓ ∈ L and neither b nor t. Suppose there is such a
cycle C. Let ℓ1u and ℓ2v be two neighboring vertices of C; we know that the common subpath P of
ℓ1 and ℓ2 starts at vertex u and ends at vertex v in G. We may assume, without loss of generality,
that the lines are directed from u to v. Consider the port at u corresponding to the �rst edge(u, u1) of P. �e direction of the lines is aligned with the port; that is, due to the consistent line
directions, the lines are directed from u to u1. We then also say that the line end of ℓ1 at u is
its le� end. Now, consider the port at v corresponding to the last edge (v , v1) of P. Here, the
direction of the lines is opposite to the port; that is, the lines are directed from v1 to v. �e line
end of ℓ2 at v is its right end. It is easy to see that, for the next line end described by the vertex
ℓ3w in the cycle C, the direction of the lines is again aligned with the corresponding port of w,
and the line end is a le� end. Moreover, for every line ℓ2k+1 the corresponding port is aligned
with the direction of lines, and for every ℓ2k the direction of lines is opposite to the port. Hence,
there cannot exist an odd cycle C.
Nowwe have seen thatGtb is almost bipartite. �erefore, we can apply�eorem 4.6 for solving

MIN-UNCUT on Gtb . �e cut then gives rise to an optimum solution of Proper-MLCM-P for
the instance (G ,L).
Recall that building the 2SAT clauses needed O(∣L∣2∣E∣) time. Within the same time, we can

build the graph Gtb . Since Gtb has O(∣L∣) vertices, we then �nd optimum side assignments in
O(∣L∣3) time by�eorem 4.6. Hence, the total runtime is O(∣L∣2(∣L∣ + ∣E∣)).
4.5 MLCMwith BoundedMaximumDegree and Edge

Multiplicity
We now introduce two additional restrictions for metro-line crossing minimization. First, we
consider instances in which themaximum degree ∆ of a station is bounded by some constant.
Second, we assume that on any edge e, there is at most a constant number c of lines, that is,∣Le ∣ ≤ c; we say that c is the maximum edge multiplicity. For metro maps both restrictions are
realistic: In the popular octilinear drawing style, themaximumpossible degree is 8. Furthermore,
even in huge metro networks, edges that are served by more than 10 lines are unlikely to occur,
as Nöllenburg [Nöl09] pointed out.
We now show that the restricted problem variant of both MLCM andMLCM-P can be solved

in polynomial time if the underlying network is a tree. We �rst focus on MLCM; we will then
see that the results can easily be extended to MLCM-P.
We develop a dynamic program that solves MLCM on instances whose underlying network is

a tree. First, we root the tree T = (V , E) at some arbitrary leaf r. Let v ∈ V ∖{r}, and let u be the
parent node of v. We say that a line contributes to the subtree T[v] if at least one of its terminals
is a vertex of T[v]; the line leaves the subtree if one of its terminals is in T[v] and the other one
is outside. Any line that leaves the subtree T[v] passes through the edge e = (u, v). If we �x the
order πvu of Le at the port of v corresponding to the edge e, an optimum solution for T[v] is
independent of an optimum solution for the remaining graph; in other words, we can combine
any optimum solution for T[v] resulting in the order πvu with any optimum solution for the
remaining graph resulting in the same order πvu . Let cr[v , πvu] be the number of crossings in
an optimum solution for T[v] that results in the order πvu at node v on the edge (u, v). If there
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v

u1 u2 u3

πvu

πu1v
πu2v

πu3v

u

(a) Subtree T[v]; the remaining instance, which
is bounded by the orders πvu , πu1v , πu2v , and
πu3v is drawn bold.

v

u1 u2 u3

(b) Remaining instance of constant size for the sub-
tree; permutations are replaced by edges leaving
in the right order.

Figure 4.17: Computation of cr[v , πvu] for a subtree T[v] in the dynamic program.
is no feasible solution, that is, if any solution for πvu has avoidable vertex crossings, then we let
cr[v , πvu] = ∞.
If v is a leaf, then, for any order πvu , cr[v , πvu] = 0. Now, suppose that v has childrenu1 , . . . , uk ,

with k < ∆. For computing the value cr[v , πvu], we test all combinations of permutations πu iv
for u i with i = 1, . . . , k; see Figure 4.17a. Given such permutations, we can combine optimum
solutions for the subtrees T[u1], . . . , T[uk] resulting in orders πu1v , . . . , πukv with an optimum
solution for the remaining instance, which consists of the edges (u1 , v), . . . , (uk , v) and is
described by the orders πu1v , . . . , πukv and πvu ; see the bold region in Figure 4.17a and the
transformed instance shown in Figure 4.17b. Let f (v , πvu , πu1v , . . . , πukv) be the number of
crossings in an optimumsolution of this remaining instance; note that this value can be computed
in constant time because the remaining instance has only constant size. �en,

cr[v , πvu] = min
πu1v , . . . ,πuk v

( f (v , πvu , πu1v , . . . , πukv) + k∑
i=1
cr[u i , πu iv]) .

Note that f (v , πvu , πu1v , . . . , πukv) = ∞ if the permutations lead to an infeasible solution with
avoidable vertex crossings. �e table cr[⋅, ⋅] has at most n ⋅ c! = O(n) entries, each of which can
be computed in constant time. Hence, we get the following theorem.

�eorem4.8. MLCMcan be solved optimally in O(n) time on tree instances ofmaximumdegree
∆ and maximum edge multiplicity c if both ∆ and c are constants.

We now want to analyze the running time for computing an entry cr[v , πvu]more precisely.
First, there are atmost (c!)∆−1 combinations for the orders πu1v , . . . , πukv . Second, for computing
f (v , πvu , πu1v , . . . , πukv), we can try all combinations for the orders on the edges around v. If
such a combination leads to a feasible solution, we can solve each edge—as a permutation of
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constant size—individually. �e number of crossing on an edge (u i , v) is exactly the number of
pairs of lines whose order changes between the two ports of the edge. �is number can easily be
computed in O(c2) time.
Overall, evaluating f (v , πvu , πu1v , . . . , πukv) is then possible inO((c!)∆−1∆c2) time. �e total

time for �nding an optimum solution is, hence,O(nc!⋅(c!)∆−1 ⋅(c!)∆−1∆c2) = O(n(c!)2∆−1∆c2).
As the parameters c and ∆ are well-separated from n, we can conclude as follows.

�eorem4.9. MLCM is �xed-parameter tractable on tree instances with respect to the parameter
c +∆, where ∆ is the maximum degree and c is the maximum edge multiplicity. �e problem can
be solved in O(n(c!)2∆−1∆c2) time.

It is now easy to see that the algorithm can be adapted to MLCM-P. �e only necessary
change is to enforce the periphery condition for all orders on ports. To this end we just restrict
all permutations used in the table and in the computation of values to this property. Hence, we
get the following theorem.

�eorem 4.10. MLCM-P can be solved optimally in O(n) time on tree instances of maximum
degree ∆ and maximum edge multiplicity c if both ∆ and c are constants.

Checking whether the used permutations are allowed is easy and does not change the runtime.
Hence, we also get �xed-parameter tractability for MLCM-P with the same runtime as for
MLCM.

�eorem4.11. MLCM-P is �xed-parameter tractable on tree instances with respect to the param-
eter c +∆, where ∆ is the maximum degree and c is the maximum edge multiplicity. �e problem
can be solved in O(n(c!)2∆−1∆c2) time.

Improved Runtime. With a little more e�ort, we can improve the runtime for the �xed-
parameter algorithms for MLCM and MLCM-P. So far, the table cr contained, for the edge(u, v) connecting vertex v to its parent u, an entry of the form cr[v , πvu] that represent the
minimum number of crossings in a subtree for a �xed order on the port connecting the subtree
T[v] to the rest of the graph. Now, we additionally store an entry cr[u, πuv]where πuv is the order
of lines at the port of u on the edge (u, v). �e value cr[u, πuv] describes the minimum number
of crossings in a feasible solution for MLCM (or MLCM-P, respectively) in the subtree T[v]
and on the edge (u, v) connecting T[v] to u, given the order πuv .
For computing an entry cr[u, πuv], we try all possible (feasible) orders at the port of v on the

edge (u, v); the entry is determined by the feasible order πvu that minimizes the sum of the
number of crossings on the edge (u, v) and the crossings cr[v , πvu] in the subtree T[v].
We also need to modify the computation of entries of the original type cr[v , πvu]. Instead of

using other entries of the same type as we did before, we now use the new entries corresponding
to the other ports of v that point downwards into the subtrees. If these orders are �xed, the
remaining instance now consists only of the vertex v. We just have to distinguish whether the
orders lead to avoidable vertex crossings in v. More precisely, for k < ∆, let u1 , . . . , uk be the
children of v and let πvu1 , . . . , πvuk be orders of the lines on edges (u1 , v), . . . , (uk , v) at the
respective ports of v; see Figure 4.18. �en,

cr[v , πvu] = min
πvu1 , . . . ,πvuk

( f ′(v , πvu , πvu1 , . . . , pvuk) + k∑
i=1
cr[v , πvu i ])
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Figure 4.18: Computation of cr[v , πuv]. �e recursion is done using values cr[v , πvu i ] with
i = 1, . . . , k, which describe optimum solutions for subtrees including the edges (u1 , v) connect-
ing the subtrees to v.

�e numbers of crossings on the edges incident to v are already counted by the entries cr[v , πvu1],
. . . , cr[v , πvuk ]. Hence, with f ′ we just have to check whether the orders of lines around v are
feasible; that is, f ′(v , πvu , πvu1 , . . . , pvuk) = 0 if the orders πvu and πvu1 , . . . , pvuk do not lead to
avoidable vertex crossings. For MLCM-P, the individual orders must additionally satisfy the
periphery condition. Otherwise, let f ′(v , πvu , πvu1 , . . . , pvuk) = ∞.
In the improved version, the only thing we have to do when evaluating f ′ is checking all pairs

of lines with a common edge for possible vertex crossings, which we can do in O(∆c2) time.
As there are at most O((c!)∆−1) combinations for the orders πvu1 , . . . , πvuk , we can compute
any entry of the table cr in O((c!)∆−1∆c2) time. As there are still only O(nc!) such entries, the
total runtime of the improved dynamic program is O(n(c!)∆∆c2).
�eorem4.12. MLCMandMLCM-P are �xed-parameter tractable on tree instances with respect
to the parameter c +∆, where ∆ is the maximum degree and c is the maximum edge multiplicity.
�e problem can be solved in O(n(c!)∆∆c2) time.

Note that for the special case of paths, the maximum degree is ∆ = 2 and, hence, constant.
We get a �xed-parameter algorithm with respect to the only parameter c. �e algorithm runs
in O(n(c!)2c2) time. Since only MLCM-P is NP-hard on paths, while MLCM is trivial, this
makes only sense for MLCM-P. However, for the special case of MLCM-P on paths, Okamoto
et al. [OTU13a] presented a specialized �xed-parameter algorithm with a runtime of O(n2cc3).
4.6 Practical Considerations onMetro-Line Crossing

Minimization
Not all real-world transportation network meet the requirements implied by the models for
MLCM and MLCM-P that we used following previous work. For example, lines are not nec-
essarily simple paths as many metro maps have circular or tree-like lines. �us, the existing
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algorithms cannot be applied. Furthermore, both MLCM and MLCM-P are NP-hard even
for very simple underlying graphs. �erefore, we propose two approaches to overcome these
obstacles for practical purposes; the approaches also point to possible directions for future work.

Line Simplification and Insertion. In many metro networks, there are just few lines that
are no simple paths. We suggest �rst creating a simpli�ed instance with the desired properties
by deleting few (parts of) lines. �en, a�er obtaining a solution for the simpli�ed instance, the
deleted parts can be reinserted with as few crossings as possible. We will show that a single
line can be inserted into an existing line layout optimally with respect to the number of newly
introduced crossings. A number of extensions is possible in this direction. For example, how can
we �nd a good set of edges and lines whose removal results in a simpli�ed instance? Furthermore,
an algorithm that inserts several lines optimally into a given solutions would also be helpful.

Optimal Insertion of a Line into an Existing Solution. We now explore a simple heuristic
for computing line orders. �e heuristic works iteratively by inserting lines into an existing
order. Let ℓ1 , . . . , ℓ∣L∣ be the input lines. �e heuristic consists of ∣L∣ iterations; in iteration i
line ℓ i is inserted into the current line orders for lines ℓ1 , . . . , ℓ i−1. �is can be done optimally,
that is, the number of crossings that we introduce in a single step is minimum with respect to
the previous line layout. Note that this does not mean that the heuristic is globally optimal since
accepting additional crossings in one iteration may save more crossings later.

Lemma 4.3. Let G = (V , E) be an embedded graph, let L be a set of lines on G, and let πuv be
a �xed order of the lines for each (u, v) ∈ E. �ere is an O(k∣L∣2)-time algorithm for inserting
a line ℓ ∉ L with k vertices into the existing line layout so that the number of newly introduced
crossings is minimized.

Proof. Let ℓ = (v1 , v2 , . . . , vk) with v i ∈ V for i = 1, . . . , k. We need to �nd positions in the
permutations πv1v2 , πv2v1 , πv2v3 , . . . , πvkvk−1 for line ℓ such that the resulting line layout is both
feasible and crossings-minimal. To this end, we create a directed graph H = (U , E′). �e
vertices of H contain all possible positions for ℓ in the permutations of ports; we will add an
edge between two positions if the respective ports lie on the same edge or at the same vertex.
�e idea is to rely the problem of �nding positions for ℓ to �nding a shortest path in H; see
Figure 4.19 for a sketch.
More precisely, we �rst create two special vertices s, t ∈ U . Additionally, we create vertices

as follows. Consider an edge (v i , v i+1) that is traversed by line ℓ. �e current order of lines on
the ports of v i and v i+1 corresponding to (v i , v i+1) contains the lines Lv iv i+1 . Let h = ∣Lv iv i+1 ∣.
�en both ports contain h + 1 possible positions for inserting line ℓ. We number the positions
from 1 to h + 1 and create a vertex π j

v iv i+1 ∈ U for each position in the order πv iv i+1 at the port of
vertex v i and a vertex π j

v i+1v i ∈ U for each position in the order πv i+1v i at the port of vertex v i+1,
with 1 ≤ j ≤ h + 1. Let V+

i be the set of vertices modeling positions in the order πv iv i+1 and let
V−
i+1 be the set of vertices modeling positions in the order πv i+1v i .
We now create edges as follows. First, for each vertex u ∈ V+

1 we create an edge (s, u) ∈ E′
and for each vertex u′ ∈ V−

k we create an edge (u′ , t) ∈ E′. �e length of all these edges is 0.
Second, let u j ∈ V−

i and u j′ ∈ V+
i . A possible edge between u j and u j

′ models the transition
of ℓ from position j at the port of (v i−1 , v i) at vertex v i to position j′ at the port of (v i , v i+1) at
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v1 v2 v3 v4

s t

Figure 4.19: Insertion of a line ℓ = (v1 , v2 , v3 , v4) (blue) into an existing line layout. Vertices of
the graph H are shown as red boxes; the edges of H are indicated in gray.

vertex v i . Such a transition must not create unavoidable vertex crossings. Hence, we create the
edge (u j , u j′) of length 0 if the transition does not result in an avoidable crossing. Finally, we
consider a pair of vertices w j ∈ V+

i and w j′ ∈ V−
i+1. We create an edge (w j ,w j′) that models the

transition of ℓ from position j in the port of (v i , v i+1) at vertex v i to position j′ at the port of(v i , v i+1) at vertex v i+1. Any such transition is feasible. �e transition may, however, result in
(new) crossings. We set the length of the edge (w j ,w j′) to be the number of new crossings for
this transitions; it is easy to determine this number.
Now, any feasible line layout corresponds to an s-t path in H via the positions chosen for ℓ

in the di�erent orders; vice versa, any simple s-t path corresponds to a feasible line layout.
Furthermore, the number of crossings in a feasible solution is equal to the length of the cor-
responding s-t path. Hence, minimizing the number of additional crossings is equivalent to
�nding a shortest s-t path. Since H is acyclic, this can be done in linear time with respect to the
graph H. �ere are O(k∣L∣) vertices and O(k∣L∣2) edges in H. Hence, we can �nd a shortest
path in O(k∣L∣2) time.
�e solution found by the previous algorithm is, of course, feasible for MLCM. For inserting

a line with the minimum number of additional crossings so that the solution is also feasible for
MLCM-P, a simple modi�cation su�ces: Instead of creating a vertex for any position in the
order of a port, we just create a vertex for any such position at which line ℓ may be inserted
without violating the periphery condition.

Fixed-Parameter Algorithms. Both MLCM and MLCM are NP-hard; we were, however,
able to construct �xed-parameter algorithms. In Section 4.3.1, we presented a �xed-parameter
algorithm for MLCM-P with respect to the maximum number of crossings. In the previous
Section, we presented �xed-parameter algorithms for MLCM and MLCM-P on tree instances
with respect to the maximum degree and edge multiplicity. Designing such an algorithm
for general graphs is an interesting open problem. Furthermore, it is unclear whether the
dependency on the degree is actually necessary. In contrast, even for very small constant
maximum degrees both variants certainly remain NP-hard if the edge multiplicity is unbounded:
the problems MLCM-P and MLCM are NP-hard even for paths and caterpillars of maximum
degree 6, respectively. Possibly faster �xed-parameter algorithms with respect to just the edge
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multiplicity are worth to be constructed. Another open question is whether also MLCM is
�xed-parameter tractable with respect to the number of crossings.

CrossingDistribution. So far, the focus has been onminimizing the number of crossings and
not on the visualization of crossings, although two line orders with the same crossing number
may look quite di�erently; see also the following chapter. �erefore, an important practical
problem is the visual representation of computed line crossings. In our opinion, crossings of lines
should preferably be close to the end of their common subpath as thismakes it easier to recognize
that the lines do cross. It is not always possible to �nd an optimal solution in which every pair of
lines crosses at the end of their common subpath as Pupyrev et al. observed [PNBH12]. It would
be interesting to �nd a solution with a small number of crossings and a reasonable distribution
of crossings.
For making a metro line easy to follow the important criterion is the number of its bends.

Hence, an interesting question is how to sort metro lines using the minimum total number of
bends. Bereg et al. [BHNP13] studied this problem for the case of a single edge.

4.7 Concluding Remarks
In this chapter, we studied several variants of metro-line crossingminimization. As amain result,
we proved that the general problem version MLCM is NP-hard. For MLCM-P, we presented an
O(√log ∣L∣)-approximation algorithm, as well as an exact O(∣L∣2(∣L∣ + ∣E∣))-time algorithm
for Proper-MLCM-P on instances with consistent line directions. We also developed simple
polynomial-time algorithms for checking for the existence of crossing-free solutions for MLCM
and MLCM-P. For instances whose underlying graph is a tree, we developed �xed-parameter
algorithms for bothMLCMandMLCM-P. �e parameter of these algorithms is the combination
of the maximum degree and the maximum edge multiplicity.

Open Problems. From a theoretical point of view, there are still many interesting open
problems; the most important ones are the following.

1. Is there an approximation algorithm for MLCM?

2. Is there a constant-factor approximation algorithm for MLCM-P?

3. What is the complexity status of Proper-MLCM/Proper-MLCM-P in general, that is,
for instances without consistent line directions? Note that both in our hardness proof for
MLCM and in the hardness proof of Argyriou et al. [ABKS10] for MLCM-P, many lines
that are subpaths of other lines are used.

On the practical side, we have already discussed several problems; see Section 4.6. �e most
important are the development of practically usable algorithms and algorithms that take also the
distribution of crossings into account. We will work on the latter problem in the next chapter.
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Chapter 5

OrderingMetro Lines by Block Crossings

In the previous chapter, we considered metro-line crossing minimization, that is, the problem
of ordering the metro lines a drawing of a metro network so that the total number of crossings
betweenmetro lines is minimized. However, not all solutions with the same number of crossings
are visually equivalent. For improving the readability of metro maps, we suggest merging single
crossings into block crossings, that is, crossings of two neighboring groups of consecutive lines;
see Figure 5.1
Unfortunately, minimizing the total number of block crossings is NP-hard even for very simple

graphs, which follows from a result on sorting permutations by a certain type of operation. We
give approximation algorithms for special classes of graphs and an asymptotically worst-case
optimal algorithm for block crossings on general graphs. Furthermore, we show that the problem
remains NP-hard on planar graphs even if both the maximum degree and the number of lines
per edge are bounded by constants; on trees, this restricted version becomes tractable.

5.1 Introduction

As mentioned above, in metro-line crossing minimization the focus has, so far, been on the
number of crossings of lines and not on their visualization; two line orders with the same
crossing number may, however, look quite di�erently; see Figure 5.1.
Our aim is to improve the readability of metro maps by computing line orders that are

aesthetically more pleasing. To this end, we merge pairwise crossings into crossings of blocks of
lines minimizing the number of block crossings in the map. Informally, a block crossing is an
intersection of two neighboring groups of consecutive lines sharing the same edge; see Figure 5.1b.
We consider two variants of the problem. In the �rst variant, we want to �nd a line ordering

(a) 12 pairwise crossings. (b) 3 block crossings.

Figure 5.1: Optimal orderings of a metro network.
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with the minimum number of block crossings. In the second variant, we want to minimize both
pairwise and block crossings.
As mentioned before, metro-line crossing minimization also arises as a subproblem in edge

bundling. �ere, many edges of the graph can be drawn close together like metro lines. Hence,
in the corresponding metro-line crossing minimization instance, there can be edges with many
lines—signi�cantly more than in real-world metro maps, where usually not more than ten lines
appear on a common edge. Hence, block crossings can also greatly improve the readability of
bundled graph drawings.

Problem Definition. �e input for our problem is the same as for general metro-line
crossing minimization—compare Section 4.1—that is, we are given an embedded underlying
graph G = (V , E) and a set L = {ℓ1 , . . . , ℓ∣L∣} of lines in G.
For i ≤ j < k, a block move (i , j, k) on the sequence π = [π1 , . . . , πn] of lines on e is the

exchange of two consecutive blocks π i , . . . , π j and π j+1 , . . . , πk . Interpreting e = (u, v) directed
from u to v, we are interested in line orders π0(e), . . . , π t(e)(e) on e, so that π0(e) is the order
of lines Le at the beginning of e (that is, at the port of vertex u corresponding to the edge e),
π t(e)(e) is the order at the end of e (that is, at the port of vertex v corresponding to e), and each
π i(e) is an ordering of Le so that π i+1(e) is derived from π i(e) by a block move. If t + 1 line
orders with these properties exist, we say that there are t block crossings on edge e.
Recall that, the order of the lines at a port of a vertex is always relative to this vertex. Hence,

seen as a permutation, the order π t(e) is actually the reversed order of the port of v corresponding
to e. Furthermore, we stress that the output, that is, the line orders, replace the old output, that
is, the order at the ports; the line orders implicitly contain the orders at the ports.
As in the previous chapter, we use the edge crossingsmodel, that is, we do not hide crossings

under station symbols if possible. Recall that two lines sharing at least one common edge either
do not cross or cross each other on an edge but never in a vertex.
As for MLCM and MLCM-P, unavoidable vertex crossings are allowed and not counted as

they exist in any solution.
�e block crossing minimization (BCM) problem is de�ned as follows.

Problem 5.1 (BCM). Let G = (V , E) be an embedded graph and let L be a set of lines on G. For
each edge e ∈ E, �nd line orders π0(e), . . . , π t(e)(e) that yield a feasible solution of MLCM such
that the total number of block crossings,∑e∈E t(e), is minimum.

In this chapter, we restrict our attention to instances with two properties. First, as in the
previous chapter, we assume the path intersection property, that is, two lines share at most one
common subpath. Second, any line terminates at nodes of degree one and no two lines terminate
at the same node (path terminal property). Recall that normal metro-line crossing minimization
can be solved in linear time on such instances—as Pupyrev et al. [PNBH12] showed—which are
also instances of MLCM-PA.
If both properties hold, a pair of lines either has to cross, that is, a crossing is unavoidable, or

it can be kept crossing-free, that is, a crossing is avoidable; see Figure 5.2. �e orderings that are
optimal with respect to pairwise crossings are exactly the orderings that contain just unavoidable
crossings (Lemma 2 in the paper of Nöllenburg [Nöl10]); that is, any pair of lines crosses at
most once, in an equivalent formulation. Intuitively, double crossings of lines can easily be
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ℓ1

ℓ2

ℓ3

v1

v2 v3 v4 v5

v6

v7

Figure 5.2: Lines ℓ1 and ℓ2 have an unavoidable edge crossing on the edge (v3 , v4). �e un-
avoidable crossing of ℓ1 and ℓ3 could also be placed on (v4 , v5). An avoidable crossing of ℓ2 and
ℓ3 is forbidden in solutions with monotone block crossings.

eliminated by rerouting the two lines, thus decreasing the number of crossings. As this property
is also desirable for block crossings, we use it to de�ne themonotone block crossing minimization
(MBCM) problem. Note that feasible solutions of MBCMmust have the minimum number of
pairwise crossings; that is, they must be optimal solutions of MLCM.

Problem 5.2 (MBCM). Given an instance (G = (V , E),L) of BCM, �nd a feasible solution that
minimizes the number of block crossings subject to the constraint that any two lines cross at most
once.

We will see that there are instances for which BCM allows fewer crossings than MBCM does;
see Figure 5.3 in Section 5.2.

Our Contribution. We introduce the new problems BCM and MBCM. To the best of our
knowledge, ordering lines by block crossings is a new direction in graph drawing. So far BCM
has been investigated only for the case that the skeleton, that is, the graph without terminals, is a
single edge [BP98], while MBCM is a completely new problem.
We �rst analyze MBCM on a single edge (Section 5.2), exploiting, to some extent, the similar-

ities to sorting by transpositions [BP98]. �en, we use the notion of good pairs of lines, that is,
lines that should be neighbors, for developing an approximation algorithm for BCM on graphs
whose skeleton is a path (Section 5.3); we properly de�ne good pairs so that changes between
adjacent edges are taken into account. Yet, good pairs can not always be kept close; we introduce
a good strategy for breaking pairs when needed.
Unfortunately, the approximation algorithm does not generalize to trees. We do, however,

develop a worst-case optimal algorithm for trees (Section 5.4). It needs 2∣L∣ − 3 block crossings
and there are instances in which this number of block crossings is necessary in any solution. We
then use our algorithm for obtaining approximate solutions for MBCM on the special class of
upward trees.
As our main result, we present an algorithm for obtaining a solution for BCM on general

graphs (Section 5.5). We show that the solutions constructed by our algorithm contain only
monotone block moves and are, therefore, also feasible solutions for MBCM. We analyze the
upper bound on the number of block crossings that the algorithm yields. While the algorithm
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Chapter 5: Ordering Metro Lines by Block Crossings

graph class BCM MBCM
single edge 11/8-approx. [EH06] 3-approx. �m. 5.2
path 3-approx. �m. 5.3 3-approx. �m. 5.4
tree ≤ 2∣L∣ − 3 cross. �m. 5.5 ≤ 2∣L∣ − 3 cross. �m. 5.5
upward tree 6-approx. �m. 5.1 6-approx. �m. 5.6
general graph O(∣L∣√∣E∣) cross. �m. 5.7 O(∣L∣√∣E∣) cross. �m. 5.7

bounded degree & edge multiplicity
tree FPT �m. 5.9 FPT �m. 5.9
planar graph NP-hard �m. 5.11 NP-hard �m. 5.10

Table 5.1: Overview of our results for BCM and MBCM.

itself is simple and easy to implement, proving the upper bound is non-trivial. Next, we show
that the bound is tight; we use a result from projective geometry for constructing worst-case
examples in which any feasible solution contains many block crossings. Hence, our algorithm is
asymptotically worst-case optimal.
Finally, we consider the restricted variant of the problems in which the maximum degree ∆ as

well as the maximum edge multiplicity c (the maximum number of lines per edge) are bounded
(Section 5.6). For the case where the underlying network is a tree, we show that both BCM and
MBCM are �xed-parameter tractable with respect to the combined parameter ∆ + c. On the
other hand, we prove that both variants are NP-hard on general graphs even if both ∆ and c are
constant. Table 5.1 summarizes our results.

RelatedWork. Apart from the relevantwork formetro-line crossingsminimization in general,
there are some works in the direction of block crossings.
In the context of VLSI layout, Marek-Sadowska and Sarrafzadeh [MS95] considered not only

minimizing the number of crossings, but also suggested distributing the crossings among circuit
regions in order to simplify net routing.
As wewill later see, BCMon a single edge is equivalent to the problem of sorting a permutation

by block moves, which is well studied in computational biology for DNA sequences; it is known
as sorting by transpositions [BP98, CI01]. �e task is to �nd the shortest sequence of block
moves transforming a given permutation into the identity permutation. BCM is, hence, a
generalization of sorting by transpositions from a single edge to graphs. �e complexity of
sorting by transpositions was open for a long time; only recently it has been shown to be NP-
hard [BFR12]. �e currently best known algorithm has an approximation ratio of 11/8 [EH06].
�e proof of correctness of that algorithm is based on a computer analysis, which veri�es more
than 80, 000 con�gurations.
To the best of our knowledge, no tight upper bound for the necessary number of steps in

sorting by transpositions is known. �ere are several variants of sorting by transpositions; see
the survey of Fertin et al. [FLR+09]. For instance, Vergara et al. [HV98] used correcting short
block moves to sort a permutation. In our terminology, these are monotone moves such that the
combined length of exchanged blocks does not exceed three. Hence, their problem is a restricted
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variant of MBCM on a single edge; its complexity is unknown. �e general problem of sorting
by (unrestricted) monotone block moves has not been considered, not even on a single edge.

5.2 Block Crossings on a Single Edge

For getting a feeling for the problem, we restrict our attention to the simplest networks consist-
ing of a single edge with multiple lines passing through it, starting and ending in leaves; see
Figure 5.3a. Subsequently, we will be able to reuse some of the ideas for a single edge for longer
paths and even for trees.
On a single edge, BCM can be reformulated as follows. We choose a direction for the edge

e = (u, v), for example, from bottom (u) to top (v). �en, any line passing through e starts on
the bottom side in a leaf attached to u and ends at the top side in a leaf attached to v. Suppose
we have n lines ℓ1 , . . . , ℓn . �e indices of the lines and the order of edges incident to u and v
yield a necessary order τ (as a permutation of {1, . . . , n}) of the lines on the bottom side of e,
that is, at u, and a necessary order π of the lines at the top side of e; compare Figure 5.3a.
Given these two permutations π and τ, the problem now is to �nd a shortest sequence of

block moves transforming π into τ. By relabeling the lines we can assume that τ is the identity
permutation, and the goal is to sort π. �is problem is sorting by transpositions [BP98], which
is, hence a special case of BCM. Sorting by transpositions is known to be NP-hard as Bulteau et
al. [BFR12] showed. Hence, BCM, as a generalization, is also NP-hard.

�eorem 5.1. BCM is NP-hard even if the underlying network is a single edge with attached
terminals.

As sorting by transpositions is quite well investigated, we concentrate on the new problem of
sorting with monotone block moves; that means that the relative order of any pair of elements
changes at most once. �e problems are not equivalent; see Figure 5.3 for an example where
dropping monotonicity reduces the number of block crossings in optimum solutions. Hence, we
do not know the complexity of MBCM on a single edge. �e problem is probably NP-hard even
on a single edge, but even for BCM (that is, sorting by transpositions) the NP-hardness proof
is quite complicated. As we are mainly interested in more complex networks, we just give an
approximation algorithm for MBCM on a single edge. Later, we will see that on general planar
graphs, MBCM is indeed NP-hard even if there are few lines per edge (see Section 5.6.2).
For sorting by transpositions and, hence, for BCMon a single edge, there is an 11/8-approxima-

tion algorithm by Elias and Hartmann [EH06]. We will now present a simple 3-approximation
algorithm for MBCM on a single edge.

Terminology. We �rst introduce some terminology following previous work where possible.
Let π = [π1 , . . . , πn] be a permutation of n elements. For convenience, we assume that there
are extra elements π0 = 0 and πn+1 = n + 1 at the beginning of the permutation and at the end,
respectively.
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3 2 5 4 1

1 2 3 4 5
(a) Input instance with pairwise
crossings.

3 2 5 4 1

1 2 3 4 5
(b) Two block moves on the central
edge.

3 2 5 4 1

1 2 3 4 5
(c) �ree monotone block
moves on the central edge.

Figure 5.3: Sorting Permutation [3, 2, 5, 4, 1] by block moves and by monotone block moves;
block moves are highlighted.

A block in π is a sequence of consecutive elements π i , . . . , π j with 1 ≤ i ≤ j ≤ n. A block move(i , j, k) with 1 ≤ i ≤ j < k ≤ n on π maps

π =[. . . , π i−1 , π i , . . . , π j , π j+1 , . . . πk , πk+1 , . . . ] to[. . . , π i−1 , π j+1 , . . . , πk , π i . . . , π j , πk+1 , . . . ],
that is, exchanges the blocks π i , . . . , π j and π j+1 , . . . , πk .
A block move (i , j, k) ismonotone if πq > πr for all i ≤ q ≤ j < r ≤ k, that is, if any element

in the �rst block π i , . . . , π j is greater than any element of the second block π j+1 , . . . , πk . We
denote the minimum number of block moves needed to sort π by bc(π) and the minimum
number of monotone block moves needed for sorting π by mbc(π).
An ordered pair (π i , π i+1) (with 0 ≤ i ≤ n) is a good pair if π i+1 = π i + 1, and a breakpoint

otherwise. Intuitively, sorting π is a process of creating good pairs (or destroying breakpoints)
by block moves. �e identity permutation [1, . . . , n] is the only permutation with only good
pairs and no breakpoints.
A permutation is simple if it contains no good pairs. Any permutation can be uniquely

simpli�ed without a�ecting its distance to the identity permutation [CI01]. �is is done by
“glueing” good pairs together, that is, treating the two lines as one line and relabeling. Let gp(π)
and bp(π) denote the number of good pairs and of breakpoints in π. As there are n + 1 pairs(p i , π i+1) with 0 ≤ i ≤ n and any such pair is either a good pair or a breakpoint, we have
gp(π)+bp(π) = n+ 1 for any permutation π. �e number bp(π) = n+ 1−gp(π) of breakpoints
can, hence, be interpreted as the number of missing good pairs because the identity permutation
id = [1, . . . , n] we have bp(id) = 0 and gp(id) = n + 1. �e identity permutation is the only
permutation with this property. Recall that a simple permutation τ does not have good pairs.
Hence, gp(τ) = 0 and bp(τ) = n + 1.
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5.2 Block Crossings on a Single Edge

A Simple Approximation. It is easy to see that a block move (i , j, k) a�ects three pairs of
adjacent elements in π (the pairs (π i , π i+1), (π j , π j+1), and (πk , πk+1)). �erefore the number
of breakpoints can be reduced by at most three in any block move. �is implies mbc(π) ≥
bc(π) ≥ ⌈bp(π)/3⌉ for any permutation π as Bafna and Pevzner [BP98] pointed out. Clearly,
bp(π) − 1 moves su�ce for sorting any permutation, which yields a simple 3-approximation for
BCM.
We suggest the following algorithm for sorting a simple permutation π using only monotone

block moves: In each step �nd the smallest i such that π i ≠ i and move element i to position i,
that is, exchange blocks π i , . . . , πk−1 and πk , where πk = i. Clearly, the step destroys at least
one breakpoint, namely (π i−1 = i − 1, π i). Furthermore, the move is monotone as element i
is moved only over larger elements. �erefore, mbc(π) ≤ bp(π) and the algorithm yields a
3-approximation.
By �rst simplifying a general permutation, applying the algorithm, and then undoing the

simpli�cation, we can also �nd a 3-approximation for permutations that are not simple.

�eorem 5.2. We can �nd a 3-approximation for MBCM on a single edge in O(n2) time.

Clearly, the 3-approximation can be found in O(n2) time. If we need to output all permu-
tations of block moves, Ω(n2) time is also necessary, because there can be a linear number of
block moves (for example, for simple permutations). If we do not want to know the sequence of
permutations but just the sequence of block moves (i , j, k), this can be improved to O(n log n)
time by proceeding as follows.
Recall that we use simple permutations. In increasing order, we move the elements i =

1, . . . , n − 1. In any step, the monotone block move is described by (i , k, k), where k is the
current index of the element i. Hence, the crucial part is determining this index without actually
performing the block move. For doing so, we create a binary tree of height O(log n) whose
leaves are the elements 1, . . . , n ordered by their indices in the input; we also store the initial
index in any leave. In any step i, when moving the element i, we will mark its leave as deleted
and update some additional values; we will, however, never change the structure of the tree.
In order to �nd the element i in the tree, we store, for each inner vertex, the minimum of the
elements i , . . . , n in the subtree. When we mark the element i as deleted, we can easily update
the minima, while follow the path to the root, in O(log n) time.
In any vertex of the tree, we store an additional o�set value, which is initially 0. Now, suppose

we are in step i, that is, we want tomove the element i—which is currently at some position k—to
position i with the move (i , k, k). In this move, several—at positions i , . . . , k − 1—are moved by
back by one position. �e moved elements are exactly the elements j > i that have been placed
le� of i in the input. In the binary tree, they are represented by the leaves le� of the leaf of i that
have not yet been deleted. Hence, we do the following. When deleting i from the tree, we follow
the path to the root and always increment the o�set value for subtrees le� of the path; that is,
whenever we reach a vertex of the tree coming from a right subtree, we increment the o�set for
the root of the neighboring le� subtree. If we always do so, we can calculate the new position of
any leaf by adding the sum of the o�set values on the path to the root to the original position.
Since updating the values in one step takes only logarithmic time, we need O(n log n) time in
total.
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Exhaustive Search. We will later need optimum solutions for both BCM and MBCM on a
single edge with a constant number of lines (up to 11) for constructing gadgets for a hardness
proof in Section 5.6.2. �erefore, we now show how to �nd optimum solutions in terms of
permutations based on exhaustive search.
�e idea is simple. For a permutation π of length n, that is, a permutation of id = [1, 2, . . . , n],

we consider the graphGn = (Sn , En)whose vertex set Sn is the set of all permutations of length n.
Two permutations π1 , π2 are connected by a directed edge (π1 , π2) ∈ En if there is a block move
that transforms permutation π1 into π2. If we are interested in monotone block crossings, then
we add the edge (π1 , π2) only if this block move is monotone.
Now, it is easy to see that bc(π)/mbc(π) is equal to the length of a shortest path between id

and π in Gn . Such a path can be found by breadth �rst search. �is takes O(n!n3) time because
there are n! vertices and O(n!(n3)) = O(n!n3) edges in Gn .
We make the source code of the implementation used by us available online1. It includes

the breadth �rst search that computes the (monotone) block crossing distance to the identity
permutation for all permutations of size n, as well as the code that we used for �nding suitable
sets of permutations for the di�erent gadgets of our NP-hardness proof (see Section 5.6.2). Note
that—due to the large number of permutations—for computing distances of permutations of
size 11 a lot of RAM is necessary; in our tests we needed 5 GB; a complete breadth �rst search
needed about an hour, and checking all permutations for �nding a suitable set of permutations
for the variable gadget took even longer. �e computations for the other gadgets with shorter
permutations need, of course, signi�cantly less RAM and are much faster. If enough memory is
available, just checking all permutations we used can be done within about 15 minutes.

5.3 Block Crossings on a Path

Now we consider an embedded graph G = (V , E) consisting of a path P = (VP , EP) with
attached terminals. In every node v ∈ VP the clockwise order of terminals adjacent to v is given,
and we assume that the path is oriented from le� to right. We say that a line ℓ starts at its le�most
vertex on P and ends at its rightmost vertex on P. As we consider only crossings of lines sharing
an edge, we assume that the terminals connected to any path node v are in such an order that
�rst lines end at v and then lines start at v; see Figure 5.4. We will �rst concentrate on developing
an approximation algorithm for BCM. �en, we will show how to modify the algorithm for
monotone block crossings.

5.3.1 BCM on a Path

We suggest a 3-approximation algorithm for BCM. Similar to the single edge case, the basic idea
of the algorithm is to consider good pairs of lines. A good pair is, intuitively, an ordered pair of
lines that will be adjacent—in this order—in any feasible solution when one of the lines ends.
We argue that our algorithm creates at least one additional good pair per block crossing, while
even the optimum creates at most three new good pairs per crossing. To describe our algorithm
we �rst de�ne good pairs.

1http://lamut.informatik.uni-wuerzburg.de/blockcrossings/BlockCrossings.java
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Figure 5.4: Lines starting and ending
around a vertex of the path.

b
c

a

v

Figure 5.5: Inheritance of a good pair; (a, b)
inherits form (c, b).

De�nition 5.1 (Good pair). Let a and b be two lines. �e ordered pair (a, b) is a good pair if
one of the following two conditions holds.
(i) Lines a and b end in the same node v ∈ P and a and b are consecutive in clockwise order
around v.

(ii) �ere are a line c and an interior vertex v of the path P such that c is the �rst line that
enters P in v from above, a is the last line ending in v above P as shown in Figure 5.5, and(c, b) is a good pair.

Note that case (i) of the de�nition follows the de�nition of good pairs on a single edge;
compare Section 5.2. In case (ii) we say that the good pair (a, b) is inherited from (c, b) and
identify (a, b) with (c, b), which is possible as a and c do not share an edge. Analogously, there
is inheritance for lines starting/ending below P.
As a preprocessing step, we add two virtual lines, te and be , to each edge e ∈ EP . �e line te

is the last line entering P before e from the top and the �rst line leaving P a�er e to the top.
Symmetrically, be is the last line entering P before e from the bottom and the �rst line leaving P
a�er e to the bottom. Although virtual lines are nevermoved, te participates in good pairs, which
models the fact that the �rst line ending a�er an edge must be brought to the top. Symmetrically,
be participates in good pairs modeling the fact that the �rst line ending a�er an edge must be
brought to the bottom.
We now investigate some important properties of good pairs. We �rst can observe that good

pairs are well-de�ned, that is, a line participates in at most two good pairs (above and below) on
each edge.

Lemma 5.1. Let e ∈ Ep be an edge and let ℓ ∈ Le . �en ℓ is involved in at most one good pair(ℓ′ , ℓ) for some ℓ′ ∈ Le and in at most one good pair (ℓ, ℓ′′) for some ℓ′′ ∈ Le .

Proof. Let e = (u, v) be the rightmost edge with a line ℓ ∈ Le that violates the desired property.
Assume that the �rst part of the property is violated, that is, there are two di�erent good pairs(ℓ′1 , ℓ) and (ℓ′2 , ℓ). If ℓ ends at vertex v, there clearly can be at most one of these good pairs
because all good pairs have to be of case (i).
Now, suppose that ℓ also exists on the edge e′ = (v ,w) to the right of e on P. If both ℓ′1 and ℓ′2

existed on e′, we would already have a counterexample on e′. Hence, at least one of the lines
ends at v, that is, at least one of the good pairs results from inheritance at v. On the other hand,
this can only be the case for one of the two pairs, suppose for (ℓ′1 , ℓ). Hence, there has to be
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another good pair (ℓ′3 , ℓ) on e′, a contradiction to the choice of e. Symmetrically, we see that
there cannot be two di�erent good pairs (ℓ, ℓ′′1 ) and (ℓ, ℓ′′2 ).
A line does not have to be part of a good pair everywhere. We can, however, show that any

line is part of a good pair on its last edge of the path.

Lemma 5.2. If e = (u, v) ∈ EP is the last edge before line ℓ ends to the top, then there exists a
line ℓ′ on e that forms a good pair (ℓ′ , ℓ) with ℓ. Symmetrically, if e is the last edge before ℓ ends
to the top, then there exists a line ℓ′′ on e that forms a good pair (ℓ, ℓ′′) with ℓ.
Proof. We suppose that ℓ ends to the top; the other case is analogous. We consider the clockwise
order of lines ending around v. If there is a predecessor ℓ′ of ℓ, then, by case (i) of the de�nition,(ℓ′ , ℓ) is a good pair. Otherwise, ℓ is the �rst line ending at v above the path. �en, the virtual
line te that we added is its predecessor, and (te , ℓ) is a good pair.
In what follows, we say that a solution or an algorithm creates a good pair (a, b) in a block

crossing if the two lines a and b of the good pair are brought together in the right order by that
block crossing; analogously, we speak of breaking a good pairs if the two lines are neighbors in
the right order before the block crossings and are no longer a�er the crossing.

Lemma 5.3. �ere are only two possibilities for creating a good pair (a, b):
(i) �e lines a and b start at the same node consecutively in the right order.

(ii) A block crossing brings a and b together.

Proof. In the interior of the common subpath of a and b, the good pair (a, b) can only be
created by block crossings because either a and b cross each other or lines between a and b
cross a or b. Hence, (a, b) can only be created without a block crossing at the moment when
the last of the two lines, say a, starts at a node v. In this case a has to be the �rst line starting
at v on the top of P. �is implies that, due to inheritance, there is a good pair (c, b), where c
is the last line ending at v to the top. It follows that the good pair (c, b), which is identical to(a, b), existed before v. Analogously, we get a contradiction if b is the �rst line starting at v on
the bottom of P.

In case (i) of the lemma, we also say that (a, b) is an initial good pair. Analogously to the
lemma, a good pair can only be destroyed by a crossing or the end of both lines.
It is easy to see that any solution, especially an optimal one, has to create all good pairs. As

we identify good pairs resulting from inheritance with the original good pair—resulting from
case (i) of De�nition 5.1—, it su�ces to consider good pairs resulting from two lines ending at
the same vertex consecutive in clockwise order. As the lines must not cross in this vertex, they
must be together before this vertex is reached.
Recall that our main idea is to use that, in analogy to the case of a single edge, a block crossing

can create at most three new good pairs. �ere will be few cases in which a block crossing has to
break a good pair. We show that such a crossing cannot increase the number of good pairs at all.

Lemma 5.4. In any block crossing the number of good pairs increases by at most 3. In a block
crossing that breaks a good pair, the number of good pairs does not increase.
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e
v

Figure 5.6: Ordering the lines on edge e in a step of the algorithm.

Proof. We consider a block crossing on some edge that transforms the sequence

π = [. . . , a, b, . . . , c, d , . . . , e , f , . . .] into π′ = [. . . , a, d , . . . , e , b, . . . , c, f , . . .] ,
that is, the blocks b, . . . , c and d , . . . , e are exchanged. �e only new pairs of consecutive lines
that π′ contains compared to π are (a, d), (e , b), and (c, f ). Even if these are all good pairs, the
total number of good pairs increases only by three.
Now, suppose that the block crossing breaks a good pairs. �e only candidates are (a, b),(c, d), and (e , f ). If (a, b) was a good pair, then the new pairs (a, d) and (e , b) cannot be good

pairs because, on one edge, there can only be one good pair (a, ⋅) and one good pair (⋅, b); see
Lemma 5.1. Hence, only (c, f ) can possibly be a new good pair. Since one good pair is destroyed
and at most one good pair is created, the number of good pairs does not increase. �e cases that
the destroyed good pair is (c, d) or (e , f ) are analogous.
Using good pairs, we formulate our algorithm as follows; see Figure 5.6 for an example. We

traverse P from le� to right. On an edge e = (u, v) ∈ EP of the path, there are red lines that end at
v to the top, green lines that end at v to the bottom, and black lines that continue on the next edge.
We bring the red lines in the right order to the top by moving them upwards. Doing so, we keep
existing good pairs together. If a line is to be moved, we consider the lines below it consecutively.
As long as the current line forms a good pair with the next line, we extend the block that will be
moved. We stop at the �rst line that does not form a good pair with its successor. �en, we move
the whole block of lines linked by good pairs in one block move to the top. Next, we bring the
green lines in the right order to the bottom, again keeping existing good pairs together. �ere is
an exception: sometimes one good pair on e cannot be kept together. If the moved block is a
sequence of lines containing both red and green lines, and possibly some—but not all—black
lines, then the block has to be broken; see the block (d , a, b, e) in Figure 5.7. Note that this can
only happen in one move on an edge; there can only be one sequence containing both red and
green lines because all red lines are part of a single sequence and all green lines are part of a
single sequence due to case (i) of De�nition 5.1. �ere are two cases when the sequence of good
pairs has to be broken:

(i) A good pair in the sequence contains a black line and has been created by the algorithm
previously. �en, we break the sequence at this good pair.

(ii) All pairs containing a black line are initial good pairs, that is, they have not been created
by a crossing. �en, we break at the pair that ends last of these. When comparing the end
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e
ℓ

a
c

b
a

d f

д h

Figure 5.7: �e (necessary) insertion of line ℓ forces breaking a good pair, that is,(a, b) (≡ (a, c)), (d , a) (≡ ( f , a)), or (b, д) (≡ (b, h)), on edge e.
of pairs we take inheritance into account, that is, a good pair ends only when the last of
the pairs that are linked by inheritance ends.

A�er an edge has been processed, the lines ending to the top and to the bottom are on their
respective sides in the right relative order. Hence, our algorithm produces a feasible solution.
We show that the algorithm produces a 3-approximation for the number of block crossings. A
key property is that our strategy for case (ii) is optimal.

Lemma 5.5. Let ALG and OPT be the number of block crossings created by the algorithm and
an optimal solution, respectively. �en, ALG ≤ 3OPT.
Proof. Block crossings that do not break a good pair always increase the number of good pairs.
If we have a block crossing that breaks a good pair in a sequence as in case (i) then there has
been a block crossing that created the good pair previously as a side e�ect, that is, there was an
additional (red or green) good pair whose creation caused that block crossing. Hence, we can
say that the destroyed good pair did not exist previously and still have at least one new good
pair per block crossing.
If we are in case (ii), that is, all good pairs in the sequence are initial good pairs (see Figure 5.7),

then these good pairs also initially existed in the optimal solution. It is not possible to keep all
these good pairs because the remaining black lines have to be somewhere between the block
of red lines and the block of green lines. Hence, even the optimal solution has to break one of
these good pairs, on this edge or previously.
Let bcalg and bcopt be the numbers of broken good pairs due to case (ii) in the algorithmand the

optimal solution, respectively. In a crossing in which the algorithm breaks such a good pair the
number of good pairs stays the same as one good pair is destroyed and another created. On the
other hand, in a crossing that breaks a good pair the number of good pairs can increase by atmost
two even in the optimal solution (actually, this number cannot increase at all; see Lemma 5.4).
Let gp be the total number of good pairs and let gpinit be the number of initial good pairs.
Note that, according to De�nition 5.1, good pairs resulting from inheritance are not counted
separately for gp as they are identi�ed with another good pair. We get gp ≥ ALG−bcalg + gpinit
and gp ≤ 3⋅OPT−bcopt+gpinit. Hence, ALG ≤ 3OPT+(bcalg−bcopt) combining both estimates.
To prove an approximation factor of 3, it remains to show that bcalg ≤ bcopt. First, note

that the edges where good pairs of case (ii) are destroyed, are exactly the edges where such
a sequence of initial good pairs exists; that is, the edges are independent of any algorithm or
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c ba1a2

v

Figure 5.8: Line c prevents that (a2 , b) inherits from (a1 , b).
solution. We show that, among these edges, our strategy ensures that the smallest number of
pairs is destroyed, and pairs that are destroyed once are reused as o�en as possible for breaking
a sequence of initial good pairs.
To this end, let e′1 , . . . , e′bcalg be the sequence of edges where the algorithm destroys a new

good pair of type (ii), that is, an initial good pair that has never been destroyed before. We follow
the sequence and argue that the optimal solution destroys a new pair for each of these edges.
Otherwise, there is a pair e′i , e′j (with i < j) of edges in the sequence where the optimal solution
uses the same good pair p on both edges. Let p′ and p′′ be the pairs used by the algorithm on e′i
and e′j , respectively, for breaking a sequence of initial good pairs. As p′ was preferred by the
algorithm over p, we know that p′ still exists on e′j . As p′ is in a sequence with p, the algorithm
still uses p′ on e′′, a contradiction. �is completes the proof.

We can now conclude with the following theorem; the running time is obvious.

�eorem5.3. �ere is an O(∣L∣(∣L∣+n))-time algorithm for �nding a 3-approximation for BCM
on instances where the underlying network is a path of length n with attached terminals.

5.3.2 MBCM on a Path

�e algorithm for paths presented in the previous section does not guarantee monotonicity
of the solution. It can, however, be turned into a 3-approximation algorithm for MBCM. To
achieve this, we will adjust the de�nition of inheritance of good pairs, as well as the step of
destroying good pairs, and we will sharpen the analysis.
We �rst modify our de�nition of inheritance of good pairs. We prevent inheritance in

the situations in which keeping a pair of lines together at the end of an edge is not possible
without either having a forbidden crossing in the following vertex or violating monotonicity.
We concentrate on inheritance with lines ending to the top; the other case is symmetric.
Suppose we have a situation as shown in Figure 5.8 with a good pair (a1 , b). Line c must not

cross b. On the other hand it has to be below a2 near node v and separate a2 and b there. Hence,
bringing or keeping a2 and b together is of no value, as they have to be separated in any solution.
�erefore, we modify the de�nition of good pairs, so that the pair (a2 , b) does not inherit from(a1 , b) in this situation; we say that line c is inheritance-preventing for (a1 , b).
Apart from the modi�ed de�nition of good pairs, one part of our algorithm needs to be

changed in order to ensure monotonicity of the solution. A block move including black lines
could result in a forbidden crossing. We focus on the case, where black lines are moved together
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with red lines to the top. �is can only occur once per edge. �e case that black lines are moved
together with green lines to the bottom is symmetric. Let b0 , b1 , . . . , bk be the sequence of
good pairs from the bottommost red line r = b0 on. If there is some line ℓ above the block that
must not be crossed by a line b i of the block, then we have to break the sequence. We consider
such a case and assume that i is minimal. Hence, we have to break one of the good pairs in(r, b1), (b1 , b2), . . . , (b i−1 , b i). Similar to case (i) in the algorithm for BCM, we break a pair of
this sequence that is not initial. If all the pairs are initial (case (ii)), we choose the pair (b j−1 , b j)
with j ≤ i minimal such that the end node of b j is below the path, and break the sequence there.
Note that line ℓ must end below the path, otherwise it would prevent inheritance of at least one
of the good pairs in the sequence. Hence, also b i ends below the path, and b j is well-de�ned.
It is easy to see that our modi�ed algorithm still produces a feasible ordering. We now show

that the solution is also monotone.

Lemma 5.6. �e modi�ed algorithm produces an ordering with monotone block crossings.

Proof. We show that any pair of lines that cross in a block crossing is in the wrong order before
the crossing. Monotonicity of the whole solution then follows. We consider moves where blocks
of lines are brought to the top; the other case is symmetric.
Suppose that a red line r is brought to the top. As all red lines that have to leave above r have

been brought to the top before, r crosses only lines that leave below it, that is, lines that have to
be crossed by r. If a black line ℓ is brought to the top, then it is moved together in a block that
contains a sequence of good pairs from the bottommost red line r′ to ℓ. Suppose that ℓ crosses a
line c that must not be crossed by ℓ. Line c cannot be red because all red lines that are not in the
block that is moved at the moment have been brought to the top before. It follows that r′ has
to cross c. Hence, we can �nd a good pair (a, b) in the sequence from r′ to ℓ such that a has
to cross c but b must not cross c. In this case, the algorithm will break at least one good pair
between r′ and b. It follows that c does not cross ℓ, a contradiction.

We have now seen that themodi�ed algorithm creates feasible solutions forMBCM. It remains
to proof the approximation factor as we modi�ed the algorithm. �is can be done similar to
BCM.

Lemma 5.7. Let ALGmon be the number of block crossings created by the algorithm for MBCM
and letOPTmon be the number of block crossings of an optimal solution for MBCM. It holds that
ALGmon ≤ 3OPTmon.
Proof. As for the nonmonotone case, all block crossings that our algorithm introduces increase
the number of good pairs, except when the algorithm breaks a sequence of initial good pairs
in case (ii). Again, also the optimal solution has to have crossings where such sequences are
broken. As for BCM, let gp be the total number of good pairs, let gpinit be the number of initial
good pairs, let bcalg be the number of broken good pairs of case (ii) for the algorithm, and let
bcopt be the number of such broken pairs for the optimum solution.
In a crossing of case (ii), the two lines of the destroyed pair lose their partner. Hence, there

is only one good pair a�er the crossing, and the number of good pairs does not change at all;
compare Lemma 5.4.
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Hence, gp ≥ ALGmon −bcalg + gpinit and gp ≤ 3 (OPTmon −bcopt) + gpinit. Combining both
estimates, we get

ALGmon ≤ 3OPTmon +(bcalg − 3bcopt).
Let bcalg,top be the number of splits for case (ii) where the block move brings lines to the top,
and let bcalg,bot be the number of such splits where the move brings lines to the bottom. Clearly,
bcalg = bcalg,top + bcalg,bot. We get

ALGmon ≤ 3 ⋅OPTmon +(bcalg − 3 ⋅ bcopt)≤ 3 ⋅OPTmon +(bcalg,top − bcopt) + (bcalg,bot − bcopt).
To complete the proof, we show bcalg,top ≤ bcopt. Symmetry will yield bcalg,bot ≤ bcopt and,
hence, ALGmon ≤ 3OPTmon.
Let e′1 , . . . , e′bcalg,top be the sequence of edges where the algorithm uses a new good pair as a

breakpoint for a sequence of type (ii) when lines leave to the top, that is, a good pair that has
not been destroyed before. Again, we argue that even the optimal solution has to use a di�erent
breakpoint pair for each of these edges. Otherwise, there would be a pair e′ , e′′ of edges in this
sequence where the optimal solution uses the same good pair p on both edges. Let p′ and p′′ be
the two good pairs used by the algorithm on e′ and e′′, respectively. Let p′ = (ℓ′ , ℓ′′). We know
that ℓ′ leaves the path to the top and ℓ′′ leaves to the bottom as described in case (ii). Because all
lines in the orders on e′ and e′′ stay parallel—otherwise they could not form a sequence of good
pairs—, we know that lines above ℓ′ leave to the top, and lines below ℓ′′ leave to the bottom. In
particular, p′ still exists on e′′, as p stays parallel and also still exists.
As in the description of the algorithm, let a and b be lines such that (a, b) is the topmost

good pair in the sequence for which a line c exists on e′′ that crosses a but not b. If (a, b) is
below p′, then the algorithm would reuse p′ instead of the new pair p′′, since (a, b) is in a
sequence below p; hence, also p′ is in the sequence and above (a, b).
Now suppose that (a, b) is above p′. �e pair (a, b) is created by inheritance because c ends

between a and b. As both a and b end to the top, separated from the bottom side of the path
by p′, this inheritance takes place at a node, where a is the last line to end on the top side.
But in this case c prevents the inheritance of the good pair (a, b) because it crosses only a, a
contradiction.

�e modi�ed algorithm still needs O(∣L∣(∣L∣ + n)) time. We can now conclude with the
following theorem.

�eorem 5.4. �ere is an O(∣L∣(∣L∣ + ∣n∣))-time algorithm for �nding a 3-approximation for
MBCM on instances where the underlying network is a path of length n with attached terminals.

5.4 Block Crossings on Trees
In the following we focus on instances of BCM and MBCM where the underlying network is a
tree. As we have seen in Section 4.4, there are examples of trees that do not allow consistent line
directions. �is is in contrast to paths, where we could direct all lines from le� to right and use
this to de�ne good pairs of lines analogously to the case of a single edge. For general trees, we
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(a) Situation before inserting the line.
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a

b
c

(b) �e line is inserted on edges (v , a) and (v , b).

Figure 5.9: Insertion of a new line (red, bold) into the current order on edges (v , a) and (v , b).
do not have an approximation algorithm. We will, however, present an algorithm that yields a
worst-case optimal bound on the number of block crossings. �en, we consider the special class
of upward trees which have an additional constraint on the lines; for upward trees we develop a
6-approximation for BCM and MBCM.

5.4.1 General Trees

We can show that a linear number of monotone block crossings su�ces for any tree. More
precisely, 2∣L∣ − 3 block crossings su�ce (and are sometimes necessary).
�eorem 5.5. Given an embedded tree T = (V , E) of n vertices and a setL of lines on T, we can
order the lines with at most 2∣L∣ − 3 monotone block crossings in O(∣L∣(∣L∣ + n)) time.

Proof. We give an algorithm in which paths are inserted one by one into the current orders; for
each newly inserted path we create at most two additional monotone block crossings. �e �rst
line that we insert into the empty orders cannot create a crossing, and the second line crosses
the �rst one at most once. Hence, we need 2∣L∣ − 3 monotone block crossings in total.
We start with an edge e = (r,w) incident to a terminal r, that is, a leaf of the tree. As r is a

terminal, there is only one line ℓ on the edge e which will be the �rst line that we insert into the
orders of the solution that we are building. We now assume that the tree is rooted at r and that
all edges are directed pointing away from the root.
When the algorithm processes an arbitrary edge e = (u, v), the lines in Le will already be

ordered; that is, they do not need to cross on yet unprocessed edges of T because the necessary
crossings for pairs of lines in Le have been placed on edges treated before. We consider all
unprocessed edges (v , a), (v , b), . . . incident to v in clockwise order and build the right order
for them. �e relative order of lines that also pass through (u, v) is kept unchanged on the new
edges. For all lines passing through v that have not been treated before, we apply an insertion
procedure; see Figure 5.9.
Consider, for example,the insertion of a line ℓ passing through (v , a) and (v , b). Close to

v, that is, at the ports of v corresponding to (v , a) and (v , b), we add ℓ on both edges at the
innermost position such that we do not get vertex crossings with lines that pass through (v , a)
or (v , b). We �nd the correct position of ℓ in the current order of Lva at the end of edge (v , a)
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(a) Instance for ∣L∣ = 3. (b) �e instance for ∣L∣ = 4 is created by adding a
line (green, bold) to the instance for ∣L∣ = 3.

Figure 5.10: Examples for trees with 2∣L∣ − 3 necessary crossings. By adding more lines using
the same construction by which the instance for ∣L∣ = 4 was created from the one for ∣L∣ = 3,
instances with an arbitrary number of lines can be created.

at a relative to the lines already inserted so far, and insert ℓ using a single block crossing. �is
crossing will be the last one on (v , a) going from v to a. Similarly, ℓ is inserted into Lvb .
We have to make sure that lines that do not have to cross are inserted in the right order. As

we know the right relative order for a pair of such lines, we can make sure that the one that
has to be innermost at node v is inserted �rst. Similarly, by considering the clockwise order
of edges around v, we know the right order of line insertions such that there are no avoidable
vertex crossings. When all new paths are inserted, the orders on (v , a), (v , b), . . . are correct;
we proceed by recursively processing these edges.
Suppose that monotonicity is violated, that is, there is a pair of lines that crosses twice. �en,

the crossings must have been introduced when inserting the second of those lines on two edges
incident to a node v. �is can, however, not happen, as at node v the two edges are inserted in
the right order. Hence, the block crossings of the solution are monotone.

In comparison to the cases of a single edge and of a path, where we had at most ∣L∣ block
crossings, the bound for trees has doubled. We can, however, show that the new bound 2∣L∣ − 3
is tight, that is, that there are tree instances where this number of block crossings is necessary
even for an optimum solution.

Worst-Case Examples. Consider the graph shown in Figure 5.10. �e new bold green line in
Figure 5.10b is inserted so that it crosses two existing paths. �e example can easily be extended
to instances of arbitrary size where 2∣L∣ − 3 block crossings are necessary in any solution.
Unfortunately, there are also examples in which our algorithm creates ∣L∣ − 1 crossings while

a single block crossing su�ces; see Figure 5.11 for ∣L∣ = 5. �e extension of the example to any
number of lines is straightforward. �is shows that the algorithm does not yield a constant-factor
approximation.
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(a) Started at the le�most edge, the algorithm, pro-
duces 4 crossings.

(b) In an optimum solution one block crossing suf-
�ces.

Figure 5.11:Worst case example for our algorithm for trees shown for �ve edges. It can easily
be extended to an arbitrary number of edges (and crossings).

1 4 5 2 6 3

1 4 52 63
(a) Input instance with
pairwise crossings.

1 4,5 2 6 3

1 4,52 63
(b) Simpli�ed instance;
4 and 5 are merged.

1 4,5 2 6 3

1 4,52 63
(c) Line ordering on sim-
pli�ed instance.

1 4 5 2 6 3

1 4 52 63
(d) Simpli�cation
undone for solution.

Figure 5.12: �e algorithm for upward trees in three steps applied to a simple instance. �e
instance is drawn in the style of a permutation with lines numbered from 1 to 6.

5.4.2 Upward Trees

Next, we introduce an additional constraint on the lines, which helps us to approximate the
minimum number of block crossings. We consider an upward tree T with a set of lines L.
�e instance (T ,L) is an upward tree if T has a planar upward drawing—respecting the given
embedding—inwhich all paths aremonotone in vertical direction, and all path sources are on the
same height as well as all path sinks; see Figure 5.12a. Note that upward trees require consistent
line directions, but are even more restricted. Bekos et al. [BKPS08] already considered such
trees (under the name “le�-to-right trees”) for the metro-line crossing minimization problem.
Note that a graph whose skeleton is a path is not necessarily an upward tree.
Our algorithm consists of three steps. First, we perform a simpli�cation step that removes

some lines. Second, we use the algorithm for trees presented in the previous section on the
simpli�ed instance. Finally, we re-insert the removed lines into the constructed order without
introducing new block crossings. We �rst consider MBCM. We start by analyzing the upward
embedding; see Figure 5.12 for an illustration of the steps of the algorithm.
Given an upward drawing of T , we read a permutation π produced by the terminals on

the top similar to the case of a single edge; we assume that the terminals produce the identity
permutation on the bottom. Similar to the single-edge case, the goal is to sort π by a shortest
sequence of block moves. Edges of T restrict some block moves on π; for example, the blocks[1, 4] and [5] in Figure 5.12a cannot be exchanged because there is no suitable edge with all these
lines. However, we can use the lower bound for block crossings on a single edge, see Section 5.2:
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For sorting a simple permutation π, at least ⌈bp(π)/3⌉ = ⌈(∣L∣+ 1)/3⌉ block moves are necessary.
We stress that the simplicity of π is crucial here because the algorithm for trees may create up to
2∣L∣ − 3 crossings. To get an approximation, we show how to simplify a tree.
Consider two non-intersecting paths a and b that are adjacent in both permutations and

share a common edge. We prove that one of these paths can be removed without changing the
optimal number of monotone block crossings. First, if any other line c crosses a then it also
crosses b in any solution (i). �is is implied by the monotonicity of the block crossings, by
planarity, and by the y-monotonicity of the drawing. Second, if c crosses both a and b then all
three paths share a common edge (ii); otherwise, there would be a cycle in the graph due to
planarity. Hence, given any solution for the paths L ∖ {b}, we can construct a solution for L by
inserting b parallel to a without any new block crossing. To insert b, we must �rst move all block
crossings involving a to the common subpath with b. �is is possible due to observation (ii).
Finally, we can place b parallel to a.
To get a 6-approximation for an upward tree T , we �rst remove lines until the tree is simple.

�en we apply the insertion algorithm presented in Section 5.4.1, and �nally re-insert the lines
removed in the �rst step. �e number of block crossings is at most 2∣L′∣, where L′ is the set of
lines of the simpli�ed instance. As an optimal solution has at least ∣L′∣/3 block crossings for this
simple instance, and re-inserting lines does not create new block crossings, we get the following
result.

�eorem 5.6. Given an embedded upward tree T = (V , E) of n vertices and a setL of lines on T,
we can �nd a 6-approximation for MBCM in O(∣L∣(∣L∣ + n)) time.

If we consider BCM instead of MBCM, we face the problem that we do not know whether
every solution for the simpli�ed instance can be transformed into a solution for the input
instance without additional crossings. However, we can observe that the solutions that our
algorithm �nds for the simpli�ed instance are always monotone and, hence, can be transformed
back. Furthermore, dropping lines can never increase the necessary number of block crossings.
Hence, also for BCM we have the lower bound of ⌈(∣L′∣ + 1)/3⌉ block crossings. Summing up,
we also get a 6-approximation for BCM by using the same algorithm.

Corollary 5.1. Given an embedded upward tree T = (V , E) of n vertices and a set L of lines
on T, we can �nd a 6-approximation for BCM in O(∣L∣(∣L∣ + n)) time.

5.5 Block Crossings on General Graphs

In this section, we consider general graphs. We suggest an algorithm that achieves an upper
bound on the number of block crossings and show that it is asymptotically worst-case optimal.
Our algorithm uses only monotone block moves, that is, each pair of lines crosses at most once.
�e algorithm works on any embedded graph; it does not even need to be planar, we just need
to know the circular order of incident edges around each vertex.
�e idea of the algorithm is as follows. We process the edges in some arbitrary order. When

we treat an edge, we sort the lines that traverse it. A crossing between a pair of lines can be
created on the edge only if this edge is the �rst one treated by the algorithm that is used by both
lines of the pair; see Algorithm 5.1 for the structure of the algorithm.
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foreach edge e with ∣Le ∣ > 1 do
Build order of lines on both sides of e.
Merge lines that are in the same group on both sides.
Find the largest group of consecutive lines that stay parallel on e.
Insert all other lines into this group and undo merging.

Algorithm 5.1: Ordering the lines on a graph.

�e crucial part is sorting the lines on an edge. Suppose we currently deal with edge e and
want to sort Le . Due to the path intersection property, the edge set used by the lines in Le forms
a tree on each side of e; see Figure 5.13. We cut these trees at the edges that have already been
processed. �en, each line on e starts at a leaf on one side and ends at a leaf on the other side.
Note that multiple lines can start or end at the same leaf representing an edge that has previously
been treated by the algorithm.
From the tree structure and the orders on the ports of the edges processed previously, we get

two orders of the lines, one on each side of e. We consider groups of lines that start or end at a
common leaf of the tree (such as the group of red lines in Figure 5.13). All lines of a group have
been seen on a common edge, and, hence, have been sorted. �erefore lines of the same group
form a consecutive subsequence on one side of e, and have the same relative order on the other
side of e.
Let д and д′ be a group of lines on the le� and on the right side of e, respectively. Suppose

that the set L′ of lines starting in д on the le� and ending in д′ on the right consists of multiple
lines. As the lines of д as well as the lines of д′ stay parallel on e, L′ must form a consecutive
subsequence (in the same order) on both sides. Now, wemergeL′ into one representative, that is,
we remove all lines ofL′ and replace them by a single line that is in the position of the lines ofL′
in the sequences on both sides of e. Once we �nd a solution, we replace the representative by the
sequence. �is does not introduce new block crossings as we will see. Consider a crossing that
involves the representative of L′, that is, the representative is part of one of the moved blocks.
A�er replacing the representative, the sequence L′ of parallel lines is completely contained in
the same block. Hence, we do not need additional block crossings.
We apply this merging step to all pairs of groups on the le� and right end of E. �en, we

identify a group д⋆ with the largest number of lines a�er merging, and insert all remaining lines
into д⋆ one by one. Clearly, each insertion requires at most one block crossing; in Figure 5.13 we
need three block crossings to insert the lines into the largest (red) group д⋆. A�er computing
the crossings, we undo the merging step and obtain a solution for edge e.

�eorem 5.7. Given an instance (G = (V , E),L) of MBCM, Algorithm 5.1 computes a feasible
solution in O(∣E∣2∣L∣) time. �e resulting number of block crossings is bounded by ∣L∣√∣E′∣,
where E′ ⊆ E is the set of edges with at least two lines.

Proof. First, it is easy to see that no avoidable crossings are created, due to the path intersection
property. Additionally, we treat all edgeswith at least two lines, which ensures that all unavoidable
crossings will be placed. Hence, we get a feasible solution using only monotone crossings.
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e

(a) Cutting edges (marked) de�ne groups. �e lines marked in gray are merged as they are in the same
group on both sides.

e

д⋆

(b) Sorting by insertion into the largest group д⋆ (red, fat). �e merged lines always stay together, in
particular, when their block crosses other lines.

Figure 5.13: Sorting the lines on an edge e in a step of our algorithm.
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Our algorithm sorts the lines on an edge in O(∣L∣∣E∣) time. We can build the tree structure
and �nd the orders and groups by following all lines until we �nd a terminal or an edge that
has been processed before in O(∣L∣∣E∣) time. Merging lines and �nding the largest group needs
O(∣L∣) time; sorting by insertion into this group and undoing the merging can be done in
O(∣L∣2) time. Note that ∣L∣ ≤ ∣E∣ due to the path terminal property.
For analyzing the total number of block crossings, we maintain an information table T with∣L∣2 entries. Initially, all the entries are empty. A�er processing an edge e in our algorithm, we

�ll the entry T[ℓ, ℓ′] = e for each pair (ℓ, ℓ′) of lines that we see together for the �rst time. �e
main idea is that with be block crossings on edge e, we �ll at least b2e new entries of T . �is
ultimately yields the desired upper bound of ∣L∣√∣E∣ for the total number of block crossings.
More precisely, let the information gain I(e) be the number of pairs of (not necessarily distinct)

lines ℓ, ℓ′ that we see together on a common edge e for the �rst time. Clearly,∑e∈E I(e) ≤ ∣L∣2.
Suppose that b2e ≤ I(e) for each edge e. �en,

∑
e∈E

b2e ≤ ∑
e∈E

I(e) ≤ ∣L∣2 .
Using the Cauchy-Schwarz inequality ∣⟨x , y⟩∣ ≤ √⟨x , x⟩ ⋅ ⟨y, y⟩ with x = (be)e∈E′ as the vector
of block crossing numbers and y = (1)e∈E′ , we see that the total number of block crossings is

∑
e∈E′

be = ∣⟨x , y⟩∣ ≤ √⟨x , x⟩ ⋅ ⟨y, y⟩ =
¿ÁÁÀ(∑

e∈E′
b2e) ⋅ ∣E′∣ ≤ √∣L∣2∣E′∣ = ∣L∣√∣E′∣.

It remains to show that b2e ≤ I(e) for an edge e. We analyze the lines a�er the merging step.
Consider the groups on both sides of e; we number the groups on the le� side L1 , . . . ,Ln and
the groups on the right sideR1 , . . . ,Rm . For 1 ≤ i ≤ n let l i = ∣Li ∣ and for 1 ≤ j ≤ m let r j = ∣R j ∣.
Without loss of generality, we can assume that L1 is the largest of the n +m groups and we will
insert all remaining lines into L1.
�en, be ≤ ∣Le ∣ − l1. Let s i j be the number of lines that are in group Li on the le� side and in

groupR j on the right side of e. Note that s i j ∈ {0, 1}, otherwise we could still merge lines. �en
l i = ∑m

j=1 s i j , r j = ∑n
i=1 s i j , s ∶= ∣Le ∣ = ∑n

i=1∑m
j=1 s i j , and be = s − l1. In terms of this notation, the

information gain is

I(e) = s2 − n∑
i=1

l 2i − m∑
j=1

r2j + n∑
i=1

m∑
j=1

s2i j ,

which can be seen as follows. From the total number s2 of pairs of lines on the edge, we have to
subtract all pairs of lines that are in the same group on the le� or on the right side of the edge;
we must be careful not to subtract pairs that are in the same group on the le� and on the right
side twice. By applying the following Lemma 5.8 to the values s i j (for 1 ≤ i ≤ n and 1 ≤ j ≤ m),
we get b2e ≤ I(e).
To complete the proof, note that the unmerging step neither decreases I(e) nor does it

change be .

Lemma 5.8. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, let s i j ∈ {0, 1}. Let l i = ∑m
j=1 s i j for 1 ≤ i ≤ n and

let r j = ∑n
i=1 s i j for 1 ≤ j ≤ m such that l1 ≥ l i for 1 ≤ i ≤ n and l1 ≥ r j for 1 ≤ j ≤ m. Let

s = ∑n
i=1∑m

j=1 s i j , b = s − l1, and I = s2 −∑n
i=1 l 2i −∑m

j=1 r2j +∑n
i=1∑m

j=1 s2i j . �en, b2 ≤ I.
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Proof. It is easy to see that, for any 1 ≤ i ≤ n, 1 ≤ j ≤ m, it holds that s i j(s i j − s1 j) ≥ 0 as
s i j ∈ {0, 1}. Using this property in the last line of the following sequence of (in-)equalities, we
see that

I − b2 = ⎛⎝s2 −
n∑
i=1

l 2i − m∑
j=1

r2j + n∑
i=1

m∑
j=1

s2i j
⎞⎠ − (s2 − 2sl1 + l 21 )

= n∑
i=1

m∑
j=1

s2i j + 2l1(s − l1) − n∑
i=2

l 2i − m∑
j=1

r j
n∑
i=1

s i j

= n∑
i=1

m∑
j=1

s2i j + 2l1 n∑
i=2

m∑
j=1

s i j − n∑
i=2

l i
m∑
j=1

s i j − n∑
i=1

m∑
j=1

s i jr j

= n∑
i=2

m∑
j=1

s i j (s i j + 2l1 − l i − r j) − m∑
j=1

s1 j (r j − s1 j)

= n∑
i=2

m∑
j=1

s i j
⎛⎜⎜⎝s i j + 2l1 − l i − r j´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

⎞⎟⎟⎠ −
m∑
j=1

s1 j
n∑
i=2

s i j

≥ n∑
i=2

m∑
j=1

s i j (s i j − s1 j)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

≥ 0.

Next we show that the upper bound on the number of block crossings that our algorithm
achieves is asymptotically tight. To this end, we use the existence of Steiner systems for building
(nonplanar) worst-case examples of arbitrary size in which many block crossings are necessary.

�eorem5.8. For any prime power q, there exists a graph Gq = (Vq , Eq) ofΘ(q2) vertices with a
set of lines Lq so that Ω(∣Lq ∣√∣E′q ∣) block crossings are necessary in any solution, where E′q ⊆ Eq

is the set of edges with at least two lines.

Proof. Let q be a prime power. From the area of projective planes it is known that an S(q2 + q +
1, q+ 1, 2)-Steiner system exists [VB06], that is, there is a set S of q2 +q+ 1 elements with subsets
S1 , S2 , . . . , Sq2+q+1 of size q + 1 each such that any pair of elements s, t ∈ S appears together in
exactly one set S i .
We build the graph Gq = (Vq , Eq) by �rst adding vertices s−, s+ and an edge (s− , s+) for any

s ∈ S . �ese edges will be the only ones with multiple lines on them, that is, they form E′q .
Additionally, we add an edge (s+ , t−) for each pair s, t ∈ S . Next, we build a line ℓ i for each set S i
as follows. We choose an arbitrary order s0 , s1 , s2 , . . . , sq of the elements of S i ; then, we introduce
extra terminals s(ℓ i) and t(ℓ i) in which the new line ℓ i = (s(ℓ i), s−0 , s+0 , s−1 , s+1 , . . . , s−q , s+q , t(ℓ i))
starts and ends, respectively; see Figure 5.14a.
As any pair of lines shares exactly one edge, the path intersection property holds. For each

s ∈ S , we order the edges around vertices s− and s+ in the embedding so that all q+ 1 lines on the
edge representing s have to cross by making sure that the order of the lines is exactly reversed
between s− and s+; see Figure 5.14b. �en, at least q/3 block crossings are necessary on each
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s−0 s+0 s−1 s+1 s−2 s+2 s−q s+q t(ℓi)s(ℓi)
(a) Line ℓ i is routed through the edges representing s0 , s1 , s2 , . . . , sq .

s− s+
(b) �e order of the lines is reverted between s− and s+.

Figure 5.14: Construction of the worst-case example.

edge (compare the case of a single edge in Section 5.2), and, hence, (q2 + q + 1)q/3 = Θ(q3)
block crossings in total. On the other hand, ∣L∣√∣E′∣ = (q2 + q + 1)√q2 + q + 1 = Θ(q3).
Note that the graphs for the worst-case instances in the previous proof are not planar. It is an

interesting question to decide whether the upper bound is also asymptotically tight for planar
instances.

5.6 Instances with BoundedMaximumDegree and Edge
Multiplicity

Similar to general metro-line crossing minimization, also block crossing minimization is inter-
esting with bounded maximum degree and bounded edge multiplicity; compare Section 4.5.
Recall that, in this setting, all stations have constant maximum degree ∆, and the maximum
edge multiplicity is a constant c, that is, ∣Le ∣ ≤ c for each edge e.
We �rst show that the restricted problem variants of both BCM and MBCM can be solved

in polynomial time if the underlying network is a tree. On the other hand, we prove that the
restricted variants are NP-hard on planar graphs.

5.6.1 Restricted (M)BCM on Trees

We want to modify the dynamic program presented in Section 4.5 for MLCM. For BCM this
is quite easy: We just need to count block crossings instead of single crossings when solving
the problem on a single edge with at most c lines. �e rest does not need to be changed. For
MBCM, we additionally need to guarantee that two lines cross at most once. Similar to the
modi�cation for MLCM-P, we can do this by disregarding combinations of permutations that
lead to forbidden crossings when combining solutions for subtrees. Hence, we get the following
result.
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5.6 Instances with Bounded Maximum Degree and Edge Multiplicity

�eorem 5.9. BCM andMBCM can be solved optimally in O(n) time on tree instances of max-
imum degree ∆ and maximum edge multiplicity c if both ∆ and c are constants.

Now, we want to analyze the runtime. �e only relevant modi�cation with respect to the
runtime is the modi�ed computation of the number of block crossings—instead of single
crossings—needed for sorting an edge with at most c lines if the order on both ports is already
�xed. We can do this by using breadth-�rst search in the graph of permutations of at most c
elements; compare Section 5.2. We have O(c!) vertices—the permutations—and O(c!(c3)) =
O(c!c3) edges—resulting from the up to (c3) block moves that are possible in one step. Note
that for MBCM we additionally have to disallow nonmonotone block moves. Summing up,
we have to replace O(c2) by O(c!c3) in the runtime analysis, resulting in a total runtime of
O(n(c!)2∆∆c3). Again, this runtime yields that we have a �xed-parameter tractable algorithm.
Corollary 5.2. BCM and MBCM are �xed-parameter tractable on tree instances with respect to
the parameter c + ∆, where ∆ is the maximum degree and c is the maximum edge multiplicity,
with a runtime of O(n ⋅ (c!)2∆∆c3).
5.6.2 NP-Hardness of Restricted BCM andMBCM

�e hardness of sorting by transpositions implies that BCM is NP-hard even on a single edge;
compare �eorem 5.1. For the restricted version, however, this does not hold because the edge
can contain only a constant number of lines. In fact, due to the FPT algorithm presented in the
previous section, neither BCM nor MBCM can be NP-hard on trees for any constant maximum
degree and edge multiplicity. However, we will see that for general planar graphs even the
restricted problems are NP-hard. We start with MBCM.
We will now show that restricted MBCM is NP-hard on general planar graphs. More speci�-

cally, MBCM is NP-hard even if the maximum degree is 3 and there is no edge with more than
11 lines.

�eorem 5.10. MBCM is NP-hard on planar graphs even if the maximum degree is 3 and the
maximum edge multiplicity is 11.

Proof. We show hardness by reduction from Planar 3SAT, which is known to be NP-hard
even if any variable occurs in exactly three di�erent clauses [DJP+94]; compare Section 2.3.
Let (X ,C) be an instance of Planar 3SAT where X is the set of variables and C is the set of
clauses. Recall that any clause contains only two or three literals. �e graphGXC = (X∪C , EXC)
with the edge set EXC = {{x , γ} ∣ variable x occurs in clause γ} describing the occurrence of
variables in clauses is planar.
We now construct an instance (G = (V , E),L) of MBCMmodeling the 3SAT instance. To

this end, we take a �xed planar embedding of GXC . We replace each variable x ∈ X in GXC by
a variable gadget Vx and each clause γ ∈ C by a clause gadget Cγ . If x ∈ γ, then the edge {x , γ}
becomes an edge {vx , vγ} where vx and vγ are vertices of the variable gadget and the clause
gadget, respectively. If ¬x ∈ γ, we replace the edge {x , γ} by a path (vx , u, u′ , vγ)where u and u′
are vertices of a negator gadget Nx . In both cases, we call the edges of the connection between
the gadgets the variable path. By placing the gadgets in the positions of the respective vertices
of GXC and routing the variable paths along the edges, we get a planar embedding of G.
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C(x∨¬y∨z)

Vx Vy Vz

Ny

Figure 5.15: Connections of variable paths for a clause γ = (x ∨ ¬y ∨ z) where x is false and
y and z are true.

On any edge outside of a gadget, exactly two lines represent a literal. Looking in the direction
of the clause gadget, we say that the literal state is true if the lines crossed in the previous gadget,
and that it is false otherwise. We will build the gadgets in such a way that crossings occur only
within gadgets in crossing minimal solutions. Furthermore, we will connect the lines so that
any pair of lines representing a literal has to cross, that is, it can be either in true or in false
state. Figure 5.15 shows the connections for the variables of a clause.
We �rst de�ne the properties that we need for our gadgets. In the descriptions, we use global

constants kvar, kneg, kcls, and k′cls for numbers of crossings.

Variable Gadget: �e variable gadget has three port edges e1, e2, and e3 that are part of
variable paths, and each of these edges has exactly two lines on it. �ese edges and lines
are the only ones that leave the gadget. In a crossing-minimal solution in which the three
pairs of lines either do or do not cross inside the gadget, there are exactly kvar crossings in
the gadget. Any solution in which some, but not all, of these pairs cross inside the gadget
has at least kvar + 1 crossings.

Negator Gadget: �e negator gadget is basically a version of the variable gadget with only two
ports. �ere are two port edges e1 and e2, each with a pair of lines. In crossing-minimal
solutions in which both pairs either do or do not cross inside the gadget, there are exactly
kneg crossings. In the con�gurations in which exactly one of the pairs crosses inside the
gadget, there are at least kneg + 1 crossings.

Clause Gadget: �e clause gadget has three (or two) port edges, each with a pair of lines. If at
least one of the pairs does not cross inside the gadget, there are exactly kcls crossings; if
all pairs cross inside the gadget, at least kcls + 1 crossings are necessary.
We also need a version of the clause gadget with only two port edges, both with a pair
of lines. In this version, there are exactly k′cls crossings if at least one of the pairs of lines
does not cross inside the gadget; otherwise, there are at least k′cls + 1 crossings.
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Given such gadgets, we build the network that models the 3SAT instance. We are interested
only in canonical solutions, that is, solutions in which (i) all crossings are inside gadgets and (ii)
any variable gadget has exactly kvar crossings, any negator gadget has exactly kneg crossings, and
any clause gadget has exactly kcls crossings (or k′cls crossings if the clause has just two literals),
resulting in a total number K of allowed crossings. It is easy to see that canonical solutions are
exactly the solutions with at most K crossings. We claim that, if there is a canonical solution,
the instance of 3SAT is satis�able.
To see this, we analyze the variable gadget. As there are only kvar crossings in a canonical

solution, the pairs of lines modeling the variable values either all cross, or all stay crossing-free.
Hence, a�er leaving the gadget, the three pairs all have the same state, true if they crossed, and
false otherwise. As there are no crossings outside of gadgets, this state can only change on the
variable path if it contains a negator.
Suppose a variable path contains a negator gadget. In this case two lines ℓ1 and ℓ2, coming

from a variable gadget, are connected by port edge e1, and two lines ℓ3 and ℓ4, leaving towards
a clause gadget, are connected by port edge e2. As we consider a canonical solution, there are
only two possibilities. If both pairs do not cross inside the negator, the pair {ℓ1 , ℓ2} has to cross
in the variable gadget and, therefore, is in true state. �en, the pair {ℓ3 , ℓ4} is in false state,
as the lines do not cross in the negator gadget. On the other hand, if both pairs cross inside the
negator, the pair {ℓ1 , ℓ2} represents false, and {ℓ3 , ℓ4} represents true. Hence, the negator
gadget works as desired.
Finally, we consider the clause gadgets. As there are only kcls crossings (or k′cls crossings in

the version with only two literals), at least one of the variable pairs does not cross inside the
gadget, which means that it is in true state. Hence, the clause is satis�ed.
Now, suppose we are given a truth assignment that satis�es all clauses. We want to build a

canonical solution for the block crossing problem. To this end, we �x, for each variable gadget,
the order of the pairs of lines (crossing or non-crossing) corresponding to the truth value of
the variable, which is the same for all port edges. �en, we take the appropriate solution with
kvar block crossings for this gadget. Next, for each negator gadget, there is exactly one possible
realization with kneg block crossings given the state of the pair of lines on the ingoing port edge.
Finally, for each clause gadget, there is at least one variable pair that did already cross, as the
given truth assignment satis�es all variables. Hence, we can realize the clause gadget with only
kcls block crossings (or k′cls block crossings in the version with two literals). �erefore, we can
�nd a canonical solution.
We have now seen that, assuming that there are appropriate gadgets, the satis�ability of a

given instance of Planar 3SAT is equivalent to deciding whether the corresponding instance
of MBCM has a canonical solution. For completing the proof, it remains to show how to build
the gadgets with the desired properties.

Negator gadget. �e negator gadget is illustrated in Figure 5.16a. It consists of an edge e
with 10 lines, two port edges e1 and e2 with two lines each, and 16 edges, connected to leaves,
with one line per edge. Assuming that the lines on e form the identity permutation on the
lower end of the edge, we can read di�erent permutations on the upper end, depending on the
solution. However, the upper permutation always follows the permutation template

πneg = [4, 8, 1, a1 , a2 , b1 , b2 , 10, 3, 7],
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1 2 3 4 5 6 7 8 9 10

1 34 8 10 7{6, 9}{2, 5}
e1 e2

e

(a) Negator gadget.
1 2 3 4 5 6 7 8 9 10 11

3 45 9 11{7, 10}{1, 6}
e1 e2

e

e3
{2, 8}

(b) Main part of the variable gadget.

Figure 5.16: Gadgets for the NP-hardness proof. Lines starting/ending in leaves of the graph
and passing through port edges (dashed)) are indicated by numbers (or sets of two numbers for
port edges).

where {a1 , a2} = {6, 9} and {b1 , b2} = {2, 5}. �e pairs {a1 , a2} and {b1 , b2} are on the port
edges e1 and e2, respectively, and can be connected to a variable or negator gadget.
�e important property of the permutations of type πneg is that there are only two ways to

arrange the lines in any solution of MBCM with the minimum number of block crossings. It is
not hard to check that
• mbc(π) = 5 if π = [4, 8, 1, 6, 9, 2, 5, 10, 3, 7] or π = [4, 8, 1, 9, 6, 5, 2, 10, 3, 7] and
• mbc(π) = 6 in the remaining cases, that is, if π = [4, 8, 1, 6, 9, 5, 2, 10, 3, 7]
or π = [4, 8, 1, 9, 6, 2, 5, 10, 3, 7].2

Given a canonical solution, we can assume that the pairs of lines a1 , a2 and b1 , b2 do not cross
on the edges e1 and e2 since crossings on these edges can be moved to e without increasing the
total number of block crossings in the solution. Hence, in a canonical solution, both pairs of
lines {a1 , a2} and {b1 , b2} either cross on e or do not cross there.
Variable gadget. �e basic part of the variable gadget is illustrated in Figure 5.16b. Its
structure is similar to the negator gadget: �e gadget consists of an edge e with 11 lines, three
port edges e1, e2, and e3 with two lines each, and 16 edges with one line per edge. Again, we
can assume that all the crossings are located on e in a canonical solution. �e lines on e form a
permutation of the template

πvar = [5, 9, 3, a1 , a2 , b1 , b2 , 11, c1 , c2 , 4],
where {a1 , a2} = {7, 10}, {b1 , b2} = {1, 6}, and {c1 , c2} = {2, 8}.
One can check that

• mbc(π) = 6 if π = [5, 9, 3, 7, 10, 1, 6, 11, 8, 2, 4] or π = [5, 9, 3, 10, 7, 6, 1, 11, 2, 8, 4] and
• mbc(π) = 7 in the remaining six cases that follow the template πvar.
In other words, in a canonical solution the pairs of lines {a1 , a2}, {b1 , b2}, and {c1 , c2} form
either the state (true, true, false) or (false, false, true) in the gadget. �erefore, we use
2One can use the exhaustive search method presented in Section 5.2 for solving MBCM exactly for these instances.
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1 2 3 4 5 6

e1 e2
e3

{1, 3} {2, 5} {4, 6}

e

(a) Clause gadget.

1 2 3 4 5 6

(b) Sketch of a solution for the clause gadget for
c = (l1 ∨ l2 ∨ l3), where l1 and l3 are true and
l2 is false.

Figure 5.17: �e clause gadget for the NP-hardness proof. Lines starting/ending in leaves of
the graph and passing through port edges (dashed)) are indicated by numbers (or sets of two
numbers for port edges).

an additional negator connected to the pair {c1 , c2} by the port edge e3, so that, in a canonical
solution, the variable gadget encodes either true or false for all variable pairs at the same
time.

Clause gadget. �e clause gadgets is illustrated in Figure 5.17a. It consists of an edge e with
6 lines, three port edges e1, e2, and e3 with two lines each, and 6 edges with one line per edge.
�e lines form a permutation of the template

πcls = [a1 , a2 , b1 , b2 , c1 , c2],
where {a1 , a2} = {1, 3}, {b1 , b2} = {2, 5}, and {c1 , c2} = {4, 6}.
One can check that

• mbc(π) = 3 if π = [3, 1, 5, 2, 6, 4] and
• mbc(π) = 2 in the remaining �ve cases of permutations following template πcls.
Hence, in a crossing optimal solution, at least one of the pairs of lines, {a1 , a2}, {b1 , b2}, and{c1 , c2}, must not cross inside the gadget, that is, the corresponding literal must be true; see
Figure 5.17b for an example of such a con�guration.
By dropping the edge e3 and the corresponding two lines 4 and 6 and renaming line 5 to 4,

we get a variant for clause gadgets with two literals. �en, we have a permutation of the template
π′cls = [a1 , a2 , b1 , b2] where {a1 , a2} = {1, 3} and {b1 , b2} = {2, 4}. One can check that
• mbc(π) = 2 if π = [3, 1, 4, 2] and
• mbc(π) = 1 in the remaining three cases following the template π′cls.
Again, in a canonical solution, at least one of the literals corresponding to the pairs {a1 , a2} and{b1 , b2}must be true.
We have now seen that the desired gadgets exist. Additionally, we have seen that no edge

contains more than 11 lines. So far, the maximum degree of the underlying graph is 12. We can,
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1 2 3 4 5 6 7 8 9 10

e

Figure 5.18: Lower part of a negator gadget modi�ed for maximum degree 3.

however, easily modify the gadgets so that the maximum degree is 3. We do this as follows. On
both sides of the central edge e of each gadget, we replace the node where the lines split by a
tree-like structure in which the lines split into only two groups per step; see Figure 5.18. Note
that this modi�cation does neither allow to save block crossings, nor does it make additional
crossings necessary. �is completes the proof.

�e general variant of (nonmonotone) BCM isNP-hard even for a single edge; see�eorem 5.1.
For constant maximum degree and edge multiplicity, however, the problem is tractable on trees;
see�eorem 5.9. Next we show that on general planar graphs BCM is NP-hard even for constant
maximum degree and edge multiplicity. To this end, we modify the negator and variable gadgets;
the clause gadget does not need to be changed because the properties of the permutations we
used there still hold if we allow nonmonotone block moves.

Negator gadget. �e structure for the variable gadget stays the same. We just replace the
used permutation template by

πneg = [3, a1 , a2 , 4, 7, b1 , b2],
where the lines {a1 , a2} = {1, 6} leave the gadget on port edge e1 and the lines {b1 , b2} = {2, 5}
leave the gadget on e2.
One can check that

• bc(π) = 3 if π = [3, 1, 6, 4, 7, 2, 5] or π = [3, 6, 1, 4, 7, 5, 2] and
• bc(π) = 4 in the remaining two cases for template πneg (note that we now use nonmonotone
block crossings).

Hence, both pairs of lines {a1 , a2} and {b1 , b2} either cross in the gadget or do not cross there
in a canonical solution.

Variable gadget. Also the structure of the variable gadget stays the same. We just replace
the used permutation template by

πvar = [6, a1 , a2 , b1 , b2 , c1 , c2],
where the lines a1 and a2 leave the gadget on port edge e1, b1 and b2 leave the gadget on e2, and
c1 and c2 leave it on e3; furthermore, {a1 , a2} = {1, 4}, {b1 , b2} = {3, 7}, and {c1 , c2} = {2, 5}.
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One can check that
• bc(π) = 3 if π = [6, 1, 4, 3, 7, 5, 2] or π = [6, 4, 1, 7, 3, 2, 5] and
• bc(π) = 4 in the remaining six cases for template πvar.
Hence, in a canonical solution the pairs of lines a1 , a2, b1 , b2, and c1 , c2 form either the state(true, true, false) or (false, false, true) in the gadget. Again, we use an additional
negator connected to the pair c1 , c2 by the port edge e3 for ensuring that the variable gadget
encodes either true or false for all variable pairs at the same time.

Using the new gadgets, we immediately get the reduction for BCM.We note that we can ensure
maximum degree 3 by the same construction that we used for MBCM. Note that both negator
and variable gadget for BCM use fewer lines compared to MBCM; the maximum number of
lines on an edge is 7.

�eorem 5.11. BCM is NP-hard on planar graphs even if the maximum degree is 3 and the max-
imum edge multiplicity is 7.

We point out that the hardness results for bounded degree and edge multiplicity imply that, in
contrast to the case of trees, BCM and MBCM are not �xed-parameter tractable with respect to
these parameters on general graphs. �e problems could, however, be �xed-parameter tractable
with respect to di�erent parameters such as the number of crossings.

5.7 Concluding Remarks
We have introduced the new variants BCM andMBCM of the metro-line crossing minimization
problem in which one wants to order the lines taking more advanced crossings into account. We
have presented approximation algorithms for single edges, paths, and upward trees. �en we
have developed an algorithm that bounds the number of block crossings on general graphs and
have showed that our bound is asymptotically tight. Finally, we have investigated the problems
under bounded maximum degree and edge multiplicity, both of which are valid assumptions
for practical purposes. Under these restrictions, we have solved BCM and MBCM optimally on
trees by giving a �xed-parameter tractable algorithm. Additionally, we have proven that BCM
and MBCM are NP-hard on general graphs even if maximum degree and edge multiplicity are
small.

Open Problems. As our results are the �rst for block crossing minimization, there are still
many interesting open problems. First, the complexity status of MBCM on a single edge would
be interesting to know, mainly from a theoretical point of view. �e hardness proof for BCM
is quite complicated and does not easily extend to MBCM. Second, a challenging task is to
develop an approximation algorithm for BCM on general graphs. �e third important question
is whether there exists a �xed-parameter tractable algorithm for BCM and MBCM on paths,
trees, and general graphs with respect to the allowed number of block crossings. For the problem
MLCM-P, we presented such an algorithm in Section 4.3; however, for block crossings this
seems to be much more di�cult since BCM is already NP-hard on a single edge.
Recently, Bereg et al. [BHNP13] investigated the problem of drawing permutations with few

bends; they represented each element of the permutation as a line, similar to a metro line. Also
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for the visual complexity of a metro line an important criterion is the number of its bends or
in�ection points, that is, the points where the direction of the line changes. Hence, an interesting
question is how to visualize metro lines using the minimum total number of in�ection points.
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Chapter 6

Point-Set Embeddability and Large
Crossing Angles

In many applications one wants to visualize a graph in such a way that the vertices are placed
at desired positions. �is means that either the exact position for each vertex is prescribed, or
there is a set of input points and we have to draw the graph such that each vertex is placed on
one of the input points. �is setting is known as point-set embeddability (PSE).
So far, point-set embeddability has almost exclusively been considered for planar drawing

styles. However, drawings with crossings can be almost as well-readable as planar drawings
if the crossing angles are large enough. In this chapter, we consider point-set embeddability
with large crossing angles. We either require that we just have right-angle crossings, or that all
crossing angles are close to 90○.
We �rst show that point-set embeddability is NP-hard for any choice of α if the edges must

be drawn as straight-line segments. Next, we show how to create embeddings with minimum
crossing angle α > 0 for any graph and any point set such that each edge may have one or two
bends. In both cases, we use only bounded area for our embeddings. Finally, we show that three
bends per edge su�ce for being able to �nd a RAC embedding of any graph on any set of points.

6.1 Introduction

In point-set embeddability (PSE) problems we are given not only a graph that is to be drawn,
but also a set of points in the plane that specify where the vertices of the graph can be placed.
�e problem class was introduced by Gritzmann et al. [GMPP91] more than twenty years ago.
�ey showed that any n-vertex outerplanar graph can be embedded on any set of n points in the
plane (in general position) such that edges are represented by straight-line segments connecting
the respective points and no two edge representations cross. Later on, the PSE question was also
raised for other drawing styles, for example, by Pach and Wenger [PW01] and by Kaufmann
andWiese [KW02] for drawings with polygonal edges, so-called polyline drawings. In these and
most other works, however, planarity of the output drawing was an essential requirement.
Experiments on the readability of drawings [HHE08] showed that polyline drawings with

angles at edge crossings close to 90○ and a small number of bends per edge are almost as readable
as planar drawings. Motivated by these �ndings, Didimo et al. [DEL11] de�ned right-angle-
crossing (RAC) drawings where pairs of crossing edges must form a right angle and, more
generally, αAC drawings (for α ∈ (0, 90○]) where the crossing angle must be at least α.
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In this chapter, we investigate the intersection of the two areas, point-set embeddability and
the RAC or αAC drawing style. �e resulting problem αAC point-set embeddability is de�ned
as follows.

De�nition 6.1 (αAC PSE). Given an n-vertex graph G = (V , E) and a set S of n points in the
plane, determine whether there exists a bijection µ∶V → S, and a polyline drawing of G so that
each vertex v is mapped to µ(v) and the drawing is αAC, that is, all crossing angles are at least α.
If such a drawing exists and the largest number of bends per edge in the drawing is b, we say
that G admits an αACb embedding on S.

�e point-set embeddability problem with right-angle crossings—or RAC PSE—is the special
version of αAC PSE with α = 90○. Analogously to αAC PSE, we say that the graph G admits a
RACb embedding on S if there is a feasible RAC embedding with at most b bends per edge.
If we insist on straight-line edges, the drawing is completely determined once we have �xed a

bijection between vertex set and point set. If we allow bends, however, PSE is also interesting
with mapping, that is, if we are given a bijection µ between vertex and point set. We call an
embedding using µ as the mapping µ-respecting. �e maximum number of bends per edge in a
polyline drawing is the curve complexity of the drawing.

Motivation. �ere are three previous results that motivated us to study RAC and αAC point-
set embeddings—even for planar graphs.

• Rendl and Woeginger [RW93] have already considered a special case of the question that
we investigate in this chapter, that is, the interplay between planarity and RAC in PSE.
�ey showed that, given a set S of n points in the plane, one can test in O(n log n) time
whether a perfect matching admits a RAC0 embedding on S. �ey required that edges
are drawn as axis-aligned line segments, that is, they allowed only horizontal and vertical
segments. �ey also showed that if one additionally insists on planarity, the problem
becomes NP-hard.

• Pach andWenger [PW01] showed for the polyline drawing scenario with mapping that, if
one insists on planarity, Ω(n) bends per edge are sometimes necessary even for the class
of paths and for points in convex position.

• Cabello [Cab06] proved that deciding whether a graph admits a planar straight-line
embedding on a given point set is NP-hard even for 2-outerplanar graphs.

Our Contribution. In order to measure the size of our drawings, we assume that the given
point set S lies on a grid Γ of size n × n where n = ∣S∣. We further assume that the points in S are
in general position, that is, no two points lie on the same horizontal or vertical line. We call S
a 1-spaced n × n grid point set, following previous work of di Giacomo et al. [GFF+13]; a point
set is 1-spaced if the horizontal and the vertical distance of each pair of points is at least 1. We
require that, in our output drawings, bends lie on grid points of a (potentially larger or �ner)
grid containing Γ.
We show the following results on RAC and on αAC PSE, which all hold even if the mapping

is prescribed—except for the hardness result.
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• We modify Cabello’s result [Cab06] to show that RAC0 (and αAC0) PSE is NP-hard
(�eorem 6.1). Hence, we focus on the case with bends in the remaining part of the
chapter.

• For any ε > 0, we can �nd a (π/2 − ε)AC1 embedding on any 1-spaced n × n grid point
set within area O(n2) on a grid re�ned by a factor of O(1/ε2) (�eorem 6.2); this area
requirement is optimal [GDLM11]. In the planar case, it is NP-hard to decide whether a 1-
bend point-set embedding exists—both with [GKO+09] and without [KW02] prescribed
mapping.

Without re�ning the grid, we get a (π/2 − ε)AC2 drawing within area O(nm) (�eo-
rem 6.3).

• Every graph with n vertices and m edges admits a RAC3 embedding on any 1-spaced
n × n grid point set within area O((n +m)2) (�eorem 6.4). For being able to �nd a
RAC drawing of arbitrary graphs, curve complexity 3 is needed—even if the point set
is not prescribed: Arikushi et al. [AFK+12] showed that in the RAC1 and RAC2 style no
graphs with more than 6.5n and 74.2n edges can be drawn, respectively. In the planar
case (with mapping), the curve complexity for PSE is Ω(n) [PW01].

RelatedWork. Besides the work of Rendl and Woeginger [RW93] that we mentioned above,
the study of point-set embeddability has primarily focused on the planar case, in connection
with straight-line and polyline edges. As we already mentioned, Pach and Wenger [PW01]
showed that there are examples where embedding a path on a set of points in convex positions
with a prescribed mapping makes a linear number of bends per edge necessary if the drawing
has to be planar. For the setting without prescribed mapping, Kaufmann andWiese [KW02]
showed that it is possible to �nd a planar embedding of any planar graph on any point set with
just two bends per edge. Furthermore, they showed that deciding whether such an embedding
with just one bend per edge exists is NP-hard for general planar graphs, while there is always an
embedding with one bend per edge for four-connected planar graphs. If the number of bends
is not bounded, then any planar graph can be embedded on any point set with any prescribed
mapping as Halton showed [Hal91].
In the straight-line drawing style, Bose [Bos02] presented algorithms that embed outerplanar

graphs on point sets with improved runtime and space requirement compared to the work of
Gritzmann et al. [GMPP91]. Bose et al. [BMS97] developed algorithms for embedding problems
of rooted trees.
Efrat et al. [EEK07] showed that point-set embeddability with circular-arc edges and pre-

scribed mapping is NP-hard.
�ere are also some works on point-set embeddability in the orthogonal drawing style which

we will cover in the following chapter, that is, in Chapter 7.
A topic closely related to point-set embeddability are universal point sets. A universal point set

for planar graphs of n vertices is a point set on which any planar graph of n vertices can be embed-
ded with straight-line edges. For larger n, more than n points are necessary; Kurowski [Kur04]
proved a lower bound of 1.235n for the size of a universal point set. In a recent work, Bannister
et al. [BCDE13] showed how to construct universal point sets of size n2/4 −Θ(n) for any n.
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Although RAC and αAC drawings have been introduced very recently, there is already a large
body of literature on the problem. Regarding the area of RAC drawings, Didimo et al. [DEL11]
proved that a RAC3 drawing of an n-vertex graph uses area Ω(n2) ∩ O(m2). Di Giacomo et
al. [GDLM11] showed that, for RAC4 drawings, area O(n3) su�ces and that, for any ε > 0, every
n-vertex graph admits a (π/2 − ε)AC1 drawing within area Θ(n2). Our results for RAC3 and
AC1 drawings (in�eorems 6.4 and 6.2) match the ones cited here, in spite of the fact that vertex
positions are prescribed in our case. Van Kreveld [vK10] recently de�ned and investigated a
number of quality ratios between RAC and planar drawings of planar graphs.

6.2 Straight-Line RAC and αAC Point-Set Embeddability

We �rst focus on the straight-line versions of the embeddability problems, that is, on RAC0
PSE and on αAC0 PSE. In the straight-line version, an embedding is completely �xed by the
vertex–point mapping. Hence, the versions with prescribed mapping are trivial: We just have
to check whether the embedding given by the prescribed mapping is a feasible RAC or αAC
drawing by checking all pairs of edges.
In contrast, we can show that RAC0 PSE and αAC0 PSE without prescribed mapping are

NP-hard. For planar straight-line point-set embeddability NP-hardness was proven by Ca-
bello [Cab06]. We can modify the construction used in his hardness proof so that we see
hardness also for PSE with large crossing angles.

�eorem 6.1. αAC0 PSE is NP-hard for any constant 0 < α ≤ π/2 even for 2-outerplanar graphs
and 1-spaced sets of grid points.

Proof. Cabello [Cab06] proved NP-hardness of planar straight-line PSE of 2-outerplanar graphs
by reducing from 3-Partition, which is strongly NP-hard (compare Section 2.3). We modify
the point set S used in his reduction for an instance of 3-Partition such that any pair of possible
straight-line segments—both de�ned by a pair of points—crosses at an angle less than α. �is
will ensure that any αAC0 embedding is actually planar. �e special properties of the point set
needed for the reduction must be preserved by our modi�cations. Additionally, our modi�ed
point set must not contain two points on the same grid row or column.
�e properties of Cabello’s point set S (see Figure 6.1) that are used in his hardness proof are

the following.

(1) �ere are three subsets L,M, and T of points. For each of these sets, all the points lie on
one straight line. �e three straight lines for L,M, and T are parallel.

(2) �ere are four special points p0 , p1 , p2 , p3 with p1 , p3 ∈ M and p0 , p2 ∉ L ∪M ∪ T . Note
that S = L ∪M ∪ T ∪ {p0 , p2}.

(3) �e relative position (that is, the horizontal order) of the point sets L, {p0},M , T , and{p2} is as shown in Figure 6.1.
(4) �e boundary of the convex hull of S contains exactly p1 , p2 , p3, and all the points in L,
that is,

∂CH(S)∩S = {p1 , p2 , p3} ∪ L.
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p0

p1

p2

p3

L M T

Figure 6.1: Point set and graph of Cabello’s hardness proof.

p2

ab(a)
c(a)

Figure 6.2: K4 drawn using points a, b(a), c(a), and p2.
(5) �e graph K4 can be drawn using p2 and three points {a, b, c} ⊆ M∪T as vertex positions
such that no other point is overlapped if and only if a ∈ T , b ∈ M is le� of a on the same
height, and c ∈ M is the upper vertical neighbor of b.

We now transform the point set S such that any two straight lines de�ned by pairs of points
of S cross at an angle less than α.
Let h be the height of the bounding box of S. We treat the three lines containing the points

in L,M, and T individually. First, we rotate each line counterclockwise such that the points
lie on a diagonal of the grid. �en, we horizontally stretch the grid by an integer factor w >
h ⋅ cot(α/2). Finally, we horizontally arrange L, p0 ,M , T , and p2 such that between two sets
there is a horizontal gap of width at least w. Now, for any pair of points, the horizontal distance
is at least w. Hence, the angle formed by the straight line de�ned by this pair and a horizontal
line is at most arccot(w/h) < α/2, which implies that the crossing angle of two di�erent straight
lines is less than α. Hence, any feasible αAC0 embedding must be planar.
Now, we have to �nd a position for p2 that guarantees property (5). For a point a ∈ T , let

b(a) ∈ M be the point directly le� of T , and let c(a) ∈ M be the point directly above b(a) inM;
see Figure 6.2. �e graph K4 can be drawn using these points and p2 if and only if the straight
line between p2 and b(a) and the straight line between p2 and c(a) do not intersect the triangle
a, b(a), c(a). Let abot and atop be the bottommost and the topmost point of T , respectively.
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Figure 6.3: Region of feasible positions for p2.
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Figure 6.4: Point set with rotated lines and huge horizontal gaps.

Considering the triangles of abot and atop one can check that p2 can be placed one row below
and more than 2h2w columns right of abot; see Figure 6.3. Furthermore, if p2 is in that position,
K4 cannot be drawn on p2, a ∈ T , and b, c ∈ M unless {b, c} = {b(a), c(a)} which means that
property (5) holds. Figure 6.4 shows the horizontal arrangement of the new point set.
It is clear that properties (1)–(4) also hold. �e only problem is that we have grid rows with

multiple points, which means that the point set is not 1-spaced. To avoid this, we �rst re�ne the
grid by factor 5, that is, we add 4 rows or columns between each consecutive pair of original
grid rows or columns, respectively. �en, we move all points in the sets {p0} ,M , T and {p2}
upwards by 1, 2, 3, and 4 units of the new grid, respectively.
Finally, we get a point set S′ with properties (1)–(5), that is, we can substitute S by S′ inCabello’s

hardness proof. All points of S′ lie on a grid of size O(h)×O(h2 ⋅w) = O(h)×O(h3 cot(α/2)),
where the height h of Cabello’s construction is polynomial in the size of the 3-Partition instance.
Furthermore, there is at most one point in any row or column of the grid, that is, S′ is 1-spaced.
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Figure 6.5: Drawing of K4 on a grid re�ned by factor λ = 8.
As any crossing angle for a graph drawn on points of S′ is less than α, there is an αAC0

embedding of the graph on S′ if and only if there is a planar straight-line embedding of the
graph on S′. Hence, together with properties (1)–(5), an αAC0 embedding of the graph in
Cabello’s construction on S′ exists if and only if there is a feasible solution for the input instance
of 3-Partition.

6.3 αAC1 Point-Set Embeddings

As αAC0 PSE is hard, we now turn to versions in which bends are allowed. We �rst consider
αAC1 PSE. Recall that we require the bends of edges to lie on grid points.
For drawing arbitrary graphs with right-angle crossings, the RAC3 style is necessary [AFK+12],

that is, we can not draw all graphs in the RAC style with just one or two bends per edge; hence,
we �rst focus on αAC1 PSE with α < π/2. �e following result shows that with just one bend
per edge we can embed any graph on any 1-spaced grid point set if we allow the bends to lie on
points of a re�ned grid.

�eorem 6.2. Let G = (V , E) be a graph with n vertices and m edges, let S be a 1-spaced n × n
grid point set, and let 0 < ε < π

2 . �en G admits a ( π
2 − ε)AC1 embedding on S (with or without

prescribed vertex–point mapping) on a grid that is �ner than the original grid by a factor of λ ∈
O(cot ε) = O(1/ε2).
Proof. If the mapping µ∶V → S is not given, let µ be an arbitrary mapping. �e idea of our
construction is as follows. For each edge e ∈ E, we �rst choose one of the two possible drawings
of e with one bend so that both segments lie on grid lines (of the original grid). �is yields a
drawing of the graph with many overlaps of edges. �en, we slightly twist each edge so that
its horizontal segment becomes almost horizontal, meaning that it has a negative slope close
to 0. At the same time, we make the vertical segment almost vertical, meaning it has a very large
positive slope; see Figure 6.5.
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Figure 6.6: Angles in the 2-bend-drawing.

As we want all bends to be on grid points, we �rst re�ne the grid by an integral factor of
λ = 1 + ⌈cot ε⌉. We do this by inserting, at equal distances, λ − 1 new rows or columns between
two consecutive grid rows or columns, respectively. Now, a point s = (a, b) ∈ S lies at position(λa, λb) with respect to the new λn × λn grid.
Let e be an edge and let (ex , ey) be the original position of the bend of e with respect to

the new grid. We choose the new position of the bend to be the unique grid point diagonally
next to (ex , ey) such that the horizontal and vertical segments of e become almost horizontal
and almost vertical, respectively. If we apply this construction to all edges, we get a drawing in
which none of the almost horizontal and almost vertical segments incident to some vertex v can
overlap. Moreover, two almost horizontal or two almost vertical segments incident to di�erent
vertices neither overlap nor intersect because S is 1-spaced. �us, any crossing involves an almost
horizontal and an almost vertical segment.
Let e1 and e2 be two crossing edges such that the almost horizontal segment involved in the

crossing belongs to e1. We can assume that the smaller angle of the crossing occurs to the top
le� of the crossing; the other case is symmetric by a rotation of the plane. Let δ− be the angle
formed by the almost horizontal segment of e1 and a horizontal line, and let δ+ be the angle
formed by the almost vertical segment of e1 and a vertical line; see Figure 6.6. �en the crossing
angle of e1 and e2 is α = π/2− δ− + δ+ ≥ π/2− δ−. For δ− to be maximal, the horizontal length l
of the almost horizontal segment has to be minimal. As this length cannot be less than λ − 1, we
get δ+ ≤ arccot(λ − 1) ≤ arccot(cot ε) = ε. Hence, the crossing angle α is at least π/2 − ε. Note
that cot ε ∈ O(1/ε2).

Note that we use at most one row or column of the re�ned grid adjacent to the bounding box
of the input points in each of the four directions. Hence, the area requirement is O ((n ⋅ cot ε)2)
in terms of the �ner grid. Di Giacomo et al. [GDLM11] showed that there are graphs for which
any (π/2 − ε)AC1 drawing needs Ω(n2) drawing area even without the restriction to an input
point set.
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i j

(i + 1, y) ( j + 1, y)

Figure 6.7: Constructing a 2-bend drawing
with large crossing angles.
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Figure 6.8: Angles in the 2-bend drawing.

6.4 αAC2 Point-Set Embeddings

We now allow two bends per edge, that is, we move to αAC2 PSE. Here, we do not need to
re�ne the grid. Similar to αAC1 PSE, our result holds for both scenarios, with and without given
vertex–point mapping. Again, it is not possible to embed any graph with right-angle crossings
and just two bends per edge. Hence, we consider the case that α < π

2 .

�eorem 6.3. Let G = (V , E) be a graph with n vertices and m edges, let S be a 1-spaced n × n
grid point set, and let 0 < ε < π

2 . �en G admits a ( π
2 − ε)AC2 embedding on S (with or without

prescribed vertex–point mapping) within area O(n(m + cot ε)) = O(n(m + 1/ε2)).
Proof. If the vertex–point mapping µ∶V → S is not prescribed, let µ be an arbitrary mapping.
Let v1 , . . . , vn be an ordering of V so that p i ∶= µ(v i) has x-coordinate i. Each edge e = uv
has exactly two bends, a u-bend and a v-bend, where the u-bend is the bend closer to u when
following e from u to v. For i = 1, . . . , n, we place all v i-bends in column i + 1. All middle
segments of edges will be horizontal. �us, the bends for an edge e = v iv j are at positions(i + 1, y) and ( j + 1, y) in some row y < 0 below the original grid; see Figure 6.7. By using a
dedicated row for each edge, we achieve that no two middle segments intersect. By construction,
no two �rst or last edge segments intersect. Hence, crossings occur only between the horizontal
middle segments and �rst or last segments of edges. By making the y-coordinates of the middle
segments small enough, we will achieve that all crossing angles are at least π/2 − ε.
Let E = {e1 , . . . , em} be an ordering of the set of edges of G, and let uv = ek be one of these

edges. We set the y-coordinates of the middle segment of ek to −k − ⌈cot ε⌉. Let ek′ be an edge
whose horizontal segment intersects the �rst segment of ek . �e crossing angle is π/2− δ, where
δ is the angle between the vertical line through the u-bend and the �rst segment of uv; see
Figure 6.8. We have δ ≤ arccot(k + ⌈cot ε⌉) ≤ ε. �us, the crossing angle is at least π/2 − ε.
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Observe that our area bounds for αAC1 and for αAC2 are quite reasonable: for a minimum
crossing angle of 70○, the drawings provided by�eorems 6.2 and 6.3 use grids of sizes at most(3n) × (3n) and n × (m + 3), respectively.
6.5 RAC3 Point-Set Embeddings
We now allow three bends per edge. Didimo et al. [DEL11] have shown that any graph with n
vertices and m edges admits a RAC3 drawing within area O(m2)—without prescribed point
set for the vertices. �eir proof uses an algorithm of Papakostas and Tollis [PT00] for drawing
graphs such that each vertex is represented by an axis-aligned rectangle and each edge by an
L-shape, that is, an axis-aligned 1-bend polyline. Didimo et al. turn such a drawing into a RAC3-
drawing by replacing each rectangle by a point. In order to make the edges terminate at these
points, they add at most two bends per edge. We now show how to compute a RAC3-drawing of
the same size (assuming n ∈ O(m))—although we are restricted to the given point set.
Recall that curve complexity 3 is actually necessary for �nding a RAC drawing for arbitrary

graphs—even without a prescribed point set [AFK+12].

�eorem 6.4. Let G = (V , E) be a graph with n vertices and m edges and let S be a 1-spaced
n×n grid point. �en G admits a RAC3 embedding on S (with or without prescribed vertex–point
mapping) within area O ((n +m)2).
Proof. If the vertex–point mapping µ∶V → S is not given, let µ be an arbitrary mapping. Let
v1 , . . . , vn be an ordering of V so that p i ∶= µ(v i) has x-coordinate i. We construct a RAC3
drawing as follows. Each edge has exactly three bends and four straight-line segments. We
ensure that intersections involve only the two middle segments of edges, and that these middle
segments have only slope +1 or −1.
For an edge uv, we call the bend directly connected to u by a segment the u-bend, the bend

directly connected to v by a segment the v-bend, and the remaining bend themiddle bend. We
start constructing the drawing by placing the v-bends for each vertex v, starting with vn . We set
the y-coordinate yn of the �rst vn-bend to 0. �en, for i = n, n − 1, . . . , 1, observe that there are
exactly deg v i many v i-bends, whichwe place in column i+1 starting at y-coordinate y i below the
n×n grid using positions {(i+1, y i), (i+1, y i−2), (i+1, y i−4), . . . , (i+1, y i−2⋅(deg v i−1)}; see
Figure 6.9. We connect each vertexwith its associated bendswithout introducing any intersection
since we stay inside the area between columns i and i + 1. We set y i−1 = y i − 2 ⋅ (deg v i − 1) − 3.
If v i has degree 0, we do not place bends but set y j−1 = y j − 3 to avoid overlaps and crossings.
�en we continue with v i−1.
Since we place the bends from right to le� and from top to bottom by moving our “pointer”

by L1- (or Manhattan) distances 2 or 4, each pair of these bends has even Manhattan distance.
To draw an edge uv, we �rst select a “free” u-bend position and a free v-bend position. �e two
middle segments go to the right at slopes +1 and −1. Since u- and v-bend have even Manhattan
distance, the middle bend has integer coordinates, that is, it lies on a grid point.
Let u and v be two vertices with u-bend bu of some edge uu′ and v-bend bv of some edge vv′,

respectively. �e segments ubu and vbv cannot intersect; we want to see that the middle segment
starting at bu also cannot intersect vbv . Such an intersection can only occur if u lies to the le�
of v and the middle segment lies above bv . In this case, bv lies above bu with a y-distance that is
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Figure 6.9: Construction of a RAC3
embedding.

Figure 6.10: RAC3 embedding of K4 as in the proof of
�eorem 6.4; some straight-line segments have been
replaced by circular arcs for the sake of clarity.

greater than their x-distance. As all middle segments have a slope of at most +1, bv lies above
the relevant middle segment, which, hence, cannot intersect vbv .
�erefore, an intersection can only occur between two middle segments, one with slope +1

and one with slope −1. Such segments always intersect at an angle of 90○.
It remains to prove the space limitation. Clearly, the drawing of any edge requires not more

horizontal than vertical space. On the other hand, for any vertex v, we need at most 2 ⋅ deg v + 3
rows below the grid, resulting in a total vertical space requirement of O(n +m). �is completes
the proof.

Figure 6.10 shows an embedding of K4 on a given point set created using our construction.

6.6 Concluding Remarks

In this chapter, we have opened an interesting new area: the intersection of point-set embed-
dability and drawings with crossings at large angles. We have done �rst steps in investigating
the problems RAC PSE and αAC PSE.
First, we have shown that the straight-line version αAC0 point-set embeddability is NP-hard

for any minimum crossing angle α. For the versions with bends, we have seen that any graph
allows an αAC2 embedding on any point set—even if the vertex–point mapping is prescribed.
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�is is also true for αAC1 PSE; in this case, however, we had to use a re�ned grid in order to be
able to place all bends on grid points.
In the RAC drawing style, we could show that any graph can be embedded on any point set

even with prescribed embedding using three bends per edge. Furthermore, the drawing area
requirement of the drawings of our algorithm is asymptotically worst-case optimal—even for
drawings without the restricted input point set.

Open Problems. While we did �rst steps in investigating RAC and αAC PSE, there are also
several open problems.
First, for being able to �nd αAC1 embeddings for all graphs and place the bends on grid

points, we re�ned the input grid. Is it also possible to �nd such embeddings without re�ning
the grid? �is seems relatively unlikely, at least if we do not want to leave the bounding box of
the input points.
In the RAC setting, Di Giacomo et al. [GDLM11] have shown that any n-vertex graph admits

a RAC4-drawing that uses area O(n3). Can we achieve the same bound in the PSE setting?
It is known that less than three bends per edge do not su�ce for being able to draw all graphs

with right-angle crossings. Hence, it would be interesting to know the complexity of RAC2
PSE and RAC1 PSE. In other words: Can we e�ciently test whether a given graph has a RAC2
embedding (or RAC1 embedding) on a given 1-spaced n × n grid point set? If this is the case,
can we minimize the drawing area?
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Chapter 7

Orthogonal Point-Set Embeddability on
the Grid

In this chapter, we investigate planar and nonplanar point-set embeddability in the orthogonal
drawing style on an input grid. In the orthogonal drawing style, edgesmust be drawn as polylines
consisting of horizontal and vertical straight-line segments. Hence, if we allow crossings, any
crossing angle will naturally be a right angle. Orthogonal drawings are o�en realized on a
grid where not only the vertices have to be placed on grid points, but also the bends of edges.
�erefore, all edge segments lie on grid lines. We also demand this for feasible orthogonal
point-set embeddings.
As our main-result, we show that orthogonal point set embeddability without prescribed

vertex–point mapping is NP-hard, no matter whether or not we enforce planarity and no matter
how many crossings we allow per edge. We also consider problem variants with prescribed map-
ping. While some cases are tractable, others are still NP-hard; in particular, planar orthogonal
point-set embeddability without any restriction on the number of bends is NP-hard. We also
consider the problems on 1-spaced point sets, where some variants become tractable.

7.1 Introduction

Orthogonal drawings are very popular. In the orthogonal drawing style, edges are drawn as
polylines, with the additional requirement that any segment of an edge is horizontal or vertical.
Hence, at any bend, there is a 90○-turn. Due to the schematized appearance, the orthogonal
drawing style is o�en used for technical visualizations such as UML diagrams or drawings of
electric circuits.
Also for orthogonal drawings, one may o�en want to place the vertices at speci�c positions.

Hence, point-set embeddability—as introduced in the previous chapter—is worth to be investi-
gated for the orthogonal drawing style. We will do this in this chapter. We will consider both
planar and nonplanar orthogonal point-set embeddability. Note that, if we do not insist on
planarity, we automatically get only right-angle crossings. Hence, nonplanar orthogonal PSE is
a restricted version of RAC PSE, which was presented in the previous chapter.
As before, we insist that all bends are placed at integer coordinates, that is, on grid points.

�is implies that any edge segment lies on a grid line. Hence, we speak of orthogonal PSE on the
grid.
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ProblemDefinition. �e input of all problem variants are a graph G = (V , E) of maximum
degree four and a set S of n = ∣V ∣ points on the integer grid. Note that we normally do not
require the point set to be 1-spaced. If we want to specify the precise position of each vertex, the
input also contains amapping µ; recall that the mapping is a bijection µ∶V → P. We �rst de�ne
nonplanar orthogonal point-set embeddability (NPO PSE).

De�nition 7.1 (NPOb PSE). Given an n-vertex graph G = (V , E) and a set S of n grid points,
determine whether there exists a bijection µ∶V → S, and an orthogonal drawing of G so that
each vertex v is mapped to µ(v) and each bend lies on integer coordinates. If such a drawing
exists and the largest number of bends per edge in the drawing is b, we say that G admits an
NPOb embedding on S.

�e variant planar orthogonal point-set embeddability (PO PSE) is de�ned analogously; the
only di�erence is that crossings are forbidden.

De�nition 7.2 (POb PSE). Given an n-vertex graph G = (V , E) and a set S of n grid points,
determine whether there exists a bijection µ∶V → S, and a planar orthogonal drawing of G so
that each vertex v is mapped to µ(v) and each bend of an edge lies on integer coordinates. If
such a drawing exists and the largest number of bends per edge in the drawing is b, we say that
G admits a POb embedding on S.

We also use the variants PO∞ and NPO∞ PSE in which there is no restriction for the number
of bends. As for RAC PSE and αAC PSE, we also speak of µ-respecting embeddings if the
vertex–point mapping µ is prescribed.
Some problem variants become easier for 1-spaced point sets. In this chapter, we normally do

not assume that the point set is 1-spaced.

Previous Work. In Section 6.1 we did already discuss previous work on point-set embed-
dability. �e work of Rendl and Woeginger [RW93] is worth to mention again. Recall that they
considered straight-line orthogonal point-set embeddability, without prescribed mapping, for
matchings. �ey showed that, given a set S of n points in the plane, one can decide inO(n log n)
time whether a perfect matching admits a NPO0 embedding on S. For the planar version, they
showed that PO0 PSE is NP-hard for matchings.
O’Rourke [O’R88] showed that a set of orthogonal polygons can uniquely be reconstructed

from its vertex set in O(n log n) time. If the point set may also contain interior points of edges,
the problem does, however, become NP-hard as Rappaport showed [Rap86]; this also implies
hardness of PO0 PSE without prescribed mapping.
Rahavan et al. [RCS86] considered a problem that is equivalent to PO1 PSE with prescribed

mapping for perfect matchings; they were able to solve the problem in quadratic time. We will
later generalize their result to all graphs and also nonplanar embeddings.
A special case of orthogonal drawings areManhattan-geodesic drawingswhich require that the

edges are shortest orthogonal connections, that is, monotone chains of axis-parallel line segments.
�is convention was recently introduced by Katz et al. [KKRW10]. As one of their main results,
they proved that planar Manhattan-geodesic point-set embeddability with prescribed mapping
on the grid—that is, a restricted variant of PO∞ PSE—is NP-hard even for matchings. In the
setting without prescribed mapping, they proved that Manhattan-geodesic PSE is NP-hard even
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for subdivisions of cubic graphs. On the other hand, they provided an O(n log n) decision
algorithm for the n-vertex cycle. Without the grid restriction, that is, if bends may be placed
anywhere, the problem can be solved e�ciently for perfect matchings as the showed.
Di Giacomo et al. [GFF+13] investigatedManhattan-geodesic point-set embeddability of trees.

�ey showed that all caterpillars of maximum degree 3 are PO1 embeddable on any 1-spaced
point set; moreover, they showed that all binary trees are NPO1 embeddable on any such point
set, which was independently proven by us. �e planar version PO1 PSE of trees with one bend
per edge was also considered by Kano and Suzuki [KS12] who showed that such an embedding
can always be found for some special binary trees if the point set is 1-spaced. Kano and Suzuki
further showed that any cycle and any spider of maximum degree 4 admits a PO1 embedding
on any 1-spaced point set.
Chowdhury and Rahman [CR11] considered planar orthogonal PSE without the restriction

of bends and points to grid points; in this setting, edges can come arbitrarily close to each other.
�ey also did not restrict the number of bends per edge, that is, they worked with PO∞ drawings.
Both for 3-connected cubic planar graphs with Hamiltonian cycle and for 4-connected planar
graphs they gave algorithms for embedding graphs on any point set. In both cases, they could
show that the total number of bends is linear.
We also want to mention some work on planar orthogonal drawings without the restriction

to a given point set. As a well-known result, Tamassia [Tam87] showed how to e�ciently �nd
an orthogonal drawing of a graph with a planar embedding that minimizes the total number
of bends with respect to the prescribed embedding. Note that this task is NP-hard if the
embedding is not prescribed as Garg and Tamassia showed [GT01]. Tamassia’s approach is
based on �rst computing an extended embedding, called orthogonal representation in which
additional information on the turns in bends is stored. He then transforms the orthogonal
representation into an orthogonal drawing on the grid, that is, with our restriction that bends
lie on grid points, using a heuristic. Later, Patrignani [Pat01] showed that �nding an orthogonal
embedding on the grid using minimum area is NP-hard for a planar graph with �xed orthogonal
representation; this problem is known as orthogonal compaction.
Bekos et al. [BKK+13] recently suggested improving the readability of nonplanar orthogonal

drawings by forcing segments with crossings to run diagonally. �ey argued that this helps the
viewer of such drawings to distinguish more easily between vertices and crossings. �ey called
the resulting drawing style the slanted orthogonal drawing style.

Our Contribution. We �rst focus on the problem versions with prescribed mapping. In this
setting, the straight-line versions PO0 and NPO0 PSE are trivial. For the versions with one bend
per edge, that is, PO1 PSE and NPO1 PSE, we develop an algorithm that decides embeddability
in quadratic time (Section 7.2). �is generalizes a result of Raghavan et al. [RCS86] for matching
graphs.
We then move to problem versions with more bends (Section 7.3). We are able to show that

NPO2 PSE and NPO3 PSE with prescribed mapping are NP-hard even if the graph is a path. In
contrast, for 1-spaced point-sets we can always �nd an NPO2 embedding for graphs of maximum
degree 3. For NPO3 PSE this is even true for any graph of maximum degree 4. Moreover, We
show that �nding an embedding of minimum area is NP-hard for paths even if all points lie on
the x-axis.
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In the planar setting, we show hardness of PO∞ PSE with prescribed mapping by modifying
a hardness proof for Manhattan-geodesic PSE by Katz et al. [KKRW10] (Section 7.4).
As our main result, we show that all problem variants are NP-hard if the mapping is not part

of the input, independent of the maximum number of bends and of whether or not crossing
are allowed (Section 7.5). For the problem versions with up to one bend per edge, that is, for
PO0, PO1, NPO0, and NPO1 PSE, we can even strengthen this result and show hardness for
outerplanar graphs of maximum degree 3.
Finally, we show that, in the version without prescribed mapping, every n-vertex binary tree

admits a NPO1 embedding on any 1-spaced point set (Section 7.6). We slightly extend this result
to graphs of maximum degree 3 that arise when replacing the vertices of a binary tree by cycles.

7.2 Orthogonal Point-Set Embeddability with at most One
Bend per Edge

We �rst consider the variant of orthogonal PSE with prescribed mapping, that is, we know the
exact position of each vertex. If we do not allow bends in edges, then the drawing is completely
determined by the positions of the vertices. Hence, the only possible drawing either is a feasible
PO0 or NPO0 drawing, or there is no such drawing. For deciding whether the drawing is a
feasible NPO0 drawing, we just have to check that each edge is horizontal or vertical and does
not contain a vertex except for its two endvertices. For PO0 we additionally have to check that
no pair of edges crosses. Hence, we can observe that the versions without bends are trivial.

Observation 7.1. PO0 and NPO0 PSE with prescribed mapping are trivial.

We nowmove to the versions in which at most one bend per edge is allowed. Suppose that we
have an edge e = (u, v). If u and v have either the same x-coordinate or the same y-coordinate,
then the only possibility for drawing e is to connect the vertices by a straight-line segment with
no bends. If, however, u and v have no common coordinate, we must draw the edge with one
bend; there are always two possibilities for connecting two vertices with one bend. Hence, the
problem is not trivial. However, we can still decide whether a feasible embedding exists. We
�rst show how to do this for the planar version PO1 PSE.

�eorem 7.1. Let G be an n-vertex graph of maximum degree 4, let S be a set of n points on the
grid, and let µ be a vertex–point mapping. We can decide in O(n2) time whether G admits a
µ-respecting PO1 embedding on S and, if it does, construct such an embedding within the same
time bound.

Proof. We use a 2SAT encoding to solve the problem. A similar approach was used by Raghavan
et al. [RCS86] to deal with the special version in which G is a matching. We �rst assume that
the point set is 1-spaced, that is, we never can draw an edge without a bend.
We associate a boolean variable xuv with each edge uv of G. �e two possible drawings of the

edge uv correspond to the two literals xuv and ¬xuv . If S is 1-spaced, only drawings of edges
incident to the same vertex can possibly overlap.
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u
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w

(a) Edges overlap in the current con�guration.

u

v

u′

v′

(b) Edges cross in the current con�guration.

Figure 7.1: Overlapping and crossing pairs of orthogonal edges with one bend.

Now, we construct a 2SAT formula ϕ as follows. Consider a pair of drawings of edges uv
and uw that overlap; see Figure 7.1a. �ere are two literals, for instance, xuv and ¬xvw , that
correspond to the two edge drawings. We add the clause

¬(xuv ∧ ¬xuw) ≡ (¬xuv ∨ xuw)
to ϕ. �is clause ensures that no satisfying truth assignment for ϕ can result in the forbidden
combination of drawings for uv and vw. We add such clauses for each pair of overlapping edge
drawings. �en, ϕ contains at most n ⋅ (42) ⋅ 4 = O(n) clauses because G has maximum degree 4.
Next, suppose that the edges e = uv and e′ = u′v′ do not share a vertex. Clearly, the edges

cannot overlap, but they can cross in some of their four possible combinations of drawings; see
Figure 7.1b. Suppose that there is a pair of drawings of e and e′ that cross. Let, for example,
le = ¬xe and le′ = xe′ be the literals corresponding to the edge drawings. �en, we add the
clause ¬(le ∧ le′) ≡ (¬le ∨ ¬le′) ≡ (xe ∨ ¬xe′).
�e clause ensures that no satisfying truth assignment can lead to the forbidden combination of
drawings of e and e′. We add clauses of this type for each pair of edge drawings that result in a
crossing.
Now, we can drop the assumption that the point set is 1-spaced. Assume that there is an edge

that must be drawn as a straight-line segment and contains another vertex in its interior. �en,
we immediately now that there is no feasible solution. �e same holds if there is a pair of edges
e and e′ that must be drawn as straight-line segments and whose straight-line segments cross.
�erefore, we assume that both cases do not occur.
We do not add variables for straight-line edges because their drawing is �xed. However,

such edges may still cross or overlap with an edge e with one bend. Furthermore, a drawing of
some edge e with a bend may have another vertex in its interior. In both cases, we add a clause(¬le) with a single literal, where le is the literal corresponding to the drawing of e with the
infeasible con�guration, in order to forbid the con�guration. Finally, note that when checking
whether two edge drawings cross, we must now also check for overlaps instead of just proper
intersections.
As we added clauses forbidding each combination of edge drawings if and only if the combi-

nation causes an overlap or a crossing, it is easy to see that ϕ is satis�able if and only if G has a
µ-respecting PO1 embedding on S.
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Recall that the maximum degree of G is 4. Hence, there are only O(n) edges. When adding
clauses, we checked any pair of edge drawings, and any pair of an edge drawing and a point. �is
takes O(n2) time and results in O(n2) clauses. Since the satis�ability of a 2SAT formula can
be decided in time linear in the number of clauses [EIS76], we need O(n2) time for deciding
whether a PO1 point-set embedding exists. If we �nd a satisfying truth assignment, we can
create a feasible drawing by choosing the drawing described by the truth value of the variable
corresponding to the edge, for each edge with a bend.

Now, we can consider NPO1 PSE. Here, we can basically reuse the 2SAT model developed for
the planar case. �e only necessary modi�cation is that we have to drop all clauses that model
crossings; we just keep clauses modeling overlaps. Hence, we get the following result.

�eorem 7.2. Let G be an n-vertex graph of maximum degree 4, let S be a set of n point on the
grid, and let µ be a vertex–point mapping. We can decide in O(n2) time whether G admits a
µ-respecting NPO1 embedding on S and, if it does, construct such an embedding within the same
time bound.

Note that for 1-spaced point sets we just have to add clauses that model overlaps of edges
incident to the same vertex. Because there is just a linear number of such clauses, NPO1 PSE
can be solved in linear time on 1-spaced point sets.

7.3 Orthogonal Point-Set Embeddability with Two or
Three Bends per Edge

In the previous section, we have seen that both PO1 PSE andNPO1 PSE with prescribedmapping
are easy. In contrast, we will show that NPO2 PSE and NPO3 PSE with prescribed mapping are
hard on general point sets. �en, we will see that any graph of maximum degree 4 allows an
NPO3 embedding with prescribed mapping on any 1-spaced point set. For NPO2 PSE, this is at
least true for graphs of maximum degree three.

7.3.1 General Point Sets
We will now show that NPO2 PSE with prescribed mapping is NP-hard. Furthermore, this holds
even if we restrict the problem to graphs that are simple paths.

�eorem 7.3. NPO2 PSE with prescribed mapping is NP-hard even for a single path.

Proof. We �rst show the result for a collection of paths. Our proof is by reduction from 3SAT
(compare Section 2.3). We model each variable of a given 3SAT instance by a horizontal path,
called variable path, along the x-axis where all edges are drawn with exactly two bends and one
horizontal segment above or below the x-axis. We can enforce this drawing style by placing
dummy nodes to the le� and to the right of each point of the path, see Figure 7.2.
Note that there are exactly two drawing styles for the path depending on whether the le�most

edge is drawn above or below the x-axis. We associate edges below the x-axis with true and
edges above the x-axis with false. For each variable path we number the edges from le� to
right. Odd edges represent positive literals and even edges represent negated literals. We call
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Figure 7.2: Representing a variable as an alternating path.

l1
l3

l2

(a) l1 = l3 = false and l2 = true

l1
l3

l2

(b) Making the graph connected.

Figure 7.3: Drawing of the clause gadget for clause C = (l1 ∨ l2 ∨ l3).
the �ve points used to start a new edge of the path a turn block. We place the necessary turn
blocks for the variable paths of all variables on the x-axis.
We now want to model a clause C = (l1 ∨ l2 ∨ l3) with literals l1, l2, and l3 by inserting a

gadget around the x-axis. Depending on whether variable v i of literal l i is negated or unnegated,
we place either one or two turn blocks for v i before the path of v i enters the gadget for C. Note
that the edge of v i lying completely inside the gadget is the one modeling the literal, that is, if
we need an odd edge (for a positive literal) in the gadget, we have to enter C with an even edge
and vice versa. Figure 7.3a shows a clause gadget where two of the three literals are false.
Clearly, the gadget cannot be drawn if all three internal edges are above the x-axis, that is, if

all three literals are false. On the other hand, it can easily be checked that drawing the clause is
always possible if at least one internal edge is below the axis, that is, if the corresponding literal
is true.
Hence, there is a feasible NPO2 embedding if and only if there is a satisfying truth assignment

for the 3SAT instance. Furthermore, the instance has linear size because we just need a constant
number of points and vertices for any clause.
So far, the NPO2 PSE instance that we constructed consists of a collection of paths. We now

show how to modify graph and point set so that we can see that the problem is NP-hard even for
a single path. First, we connect the isolated edges used for gadgets and turn blocks as indicated
in Figure 7.3b. Second, we extend each variable path by an additional point directly next to the
le� and right endpoint, respectively. Now, we have a collection of n + 1 paths, which we can
easily connect to a single path. It is easy to see that all new edges can be drawn above or on the
axis if the 3SAT instance is satis�able.
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Now, consider again the variable paths that we used in the reduction. Recall that we blocked
any vertex of a variable path by placing vertices on the next grid points to the le� and to the
right, so that any edge of the variable path can leave its vertices only vertically. Hence, it is not
possible to draw an edge of a variable path with three bends because this would involve leaving
one of the vertices to the le� or to the right. �erefore, there is no feasible NPO3 embedding if
there is no feasible NPO2 embedding.

�eorem 7.4. NPO3 PSE with prescribed mapping is NP-hard even for a single path.

7.3.2 AreaMinimization
Suppose that we already know that an embedding exists. Using a similar idea as in the previous
proof, we can show that �nding an area-minimum embedding is NP-hard. Again, this holds
even for paths.

�eorem 7.5. Area-minimization for NPO2 PSE with prescribed mapping is NP-hard even for a
single path and all points lying on the x-axis.

Proof. Our reduction is from Not-All-Equal 3SAT; compare Section 2.3. Recall that an
instance of this version of 3SAT is satis�able if and only if there exists a truth assignment to the
n variables so that each clause contains a literal that evaluates to true and a literal that evaluates
to false. As in the proof of �eorem 7.3, variables are modeled by variable paths, that is, by
alternating paths along the x-axis. Note that in our setting, minimizing the area is equivalent to
minimizing the height of the drawing.
Again, we can enforce the right combination of odd and even edges of the variable paths—

corresponding to unnegated or negated variables—by inserting turn blocks before entering a
clause gadget, if necessary. Our clause gadgets consist of two turn blocks for each of the three
literals of the clause, positioned symmetrically so that each path can leave the gadget on the
same row on which it entered the gadget.
As Figure 7.4 shows, a clause gadget can be drawn using at most �ve grid rows if and only

if not all literals have the same truth value; otherwise, six rows are needed. In the x-interval
spanned by the clause gadget there exist also n − 3 additional edges for the remaining variables.
To create a bottleneck for the height of the drawing, we add a matching of n − 2 edges that all
start immediately to the le� of the clause gadget and end immediately right of it. Now, the clause
gadget always occupies a height of at least (n − 3) + 6 + (n − 2) = 2n + 1 if all literals have the
same truth value.
To complete the proof, we have to show that a drawing of the graph with height at most 2n

exists if the given instance of Not-All-Equal 3SAT is satis�able. Suppose that we have an
assignment of truth values to the variables such that there is no clause in which all literals have
the same value. �e truth value of a variable decides whether the �rst edge of its variable path
is drawn above or below the x-axis. �en, the side is �xed for all other edges, too. For each
variable, we reserve one row above the axis, and one row below the axis, using the n rows directly
below and the n rows directly above the x-axis. We draw all edges of variable paths that lie not
completely inside a clause gadget in the reserved row on the respective side. �is can be done
without any overlapping.
For an edge representing a literal of a clause, we may reuse the row of another literal to save a

row, as shown in Figure 7.4. By doing so there are at most n − 3+ 5 = n + 2 rows occupied inside

126



7.3 Orthogonal Point-Set Embeddability with Two or �ree Bends per Edge

(a)

(c)

(b)

(d)

Figure 7.4: Drawings of a clause gadget where (a) all literals have the same truth value or (b–d)
one literal has a di�erent truth value than the others. In the given examples, in (a) all literals are
true and in (b–d) only one is false. �e cases where two literals are false are symmetric to
(b–d) and the case where all literals are false is symmetric to (a).

each clause gadget. We can add the additional n − 2 matching edges using only the unoccupied
n − 2 rows. By this construction, we create a drawing where exactly the n rows directly above
and the n rows directly below the x-axis are occupied. �is completes the reduction.
Again, it is easy to modify the construction so that the graph is a single path, in a similar

way as we did in the proof of �eorem 7.3. We just have to be careful when connecting the
two blocking dummy vertices inside a gadget to the le� and to the right: �e two edges for
connecting them need one additional row. Hence, they have to replace one of the matching
edges.

Also for this proof, we can observe that allowing an additional bend per edge does not help
us when trying to �nd feasible NPO3 embeddings. Hence, the problem remains NP-hard.

�eorem 7.6. Area-minimization for NPO3 PSE with prescribed mapping is NP-hard even for a
single path and all points lying on the x-axis.

A Tractable Case. We now consider graphs of maximum degree one, that is, perfect match-
ings, in the same setting; that is, all vertices lie on the x-axis. �e big di�erence to the case with
vertices of degree 2 is that we do not have to care about overlapping edge segments incident
to a vertex. Suppose that we have a feasible drawing that uses space below the x-axis. Take all
edges whose middle segment is in the bottommost row; we can redraw these edges such that the
middle segments are drawn one row above the topmost row used, that is, above the x-axis. By
repeating this, we get a drawing of the same area with no space used below the x-axis. Especially,
we can see that there always is an area-minimum embedding that does not use space below the
x-axis. We now show how we can minimize the area of such drawings.

�eorem 7.7. Let S be a set of n points on the x-axis, let G = (V , E) be a matching consisting of
n/2 edges, and let µ be a vertex–pointmapping. An area-minimum µ-respectingNPO2 embedding
of G on S can be computed in O(n2) time.
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Chapter 7: Orthogonal Point-Set Embeddability on the Grid

Proof. If S contains pairs of neighboring points that correspond to edges of the given matching,
we connect each of these pairs by a (horizontal) straight-line segment. Furthermore, we can
restrict ourselves to drawings in which all middle segments of the remaining edges are placed
above the x-axis. Hence, for drawing any of the remaining edges of the matching, we must
connect its endpoints by two vertical segments leaving the x-axis to the top and a horizontal
middle segment that connects the vertical segments. As G is a matching, only horizontal
segments can overlap. In order to minimize the drawing area, we, thus, have to minimize the
number of rows, the layers, needed for drawing the middle segments of all edges without overlap.
Let G′ = (V ′ , E′) with V ′ = E; E′ contains an edge for each pair of edges of G that cannot

use the same layer. Assigning the edges of G to the minimum number of layers is equivalent to
coloring the vertices of G′ with the minimum number χ′ of colors.
Let e1 , e2 be two edges. �e horizontal segment of e1 cannot be drawn in the same layer as the

horizontal segment of e2 if and only if the x-intervals of e1 and e2 intersect. Hence, the graph G′

is an interval graph: for an edge uv of G—a vertex of G′—the interval is [x(µ(u)), x(µ(v))].
Two edges must be placed in di�erent layers if their intervals intersect. �us, a coloring of G′

using χ′ colors can be computed in O(∣V ′∣ + ∣E′∣) = O(n2) time using the coloring algorithm
of Olariu for interval graphs [Ola91]. �is coloring yields an assignment of the edges to the
minimum number of layers, which in turn corresponds to a minimum-area NPO2 drawing: we
simply use the �rst χ′ horizontal grid lines immediately above the x-axis for the layers of the
horizontal edge segments.

AnApproximation. We can use the algorithm for matchings for deriving a 2-approximation
for graphs with vertices of degree 2; recall that �nding an optimum solution is NP-hard even
for a single path. Let G = (V , E) be a connected graph of maximum degree 2, let S be a set of
n = ∣V ∣ integer points on the x-axis, and let µ be a vertex–point mapping. �e graph G can
either be a cycle or a path. Recall that, in order to avoid overlaps we need to place two edges
incident to the same vertex on di�erent sides of x-axis. �us, ifG is a cycle of odd length, thenG
does not have an NPO2 drawing. On the other hand, if G is a cycle of even length or a path,
then G can be drawn by alternately drawing the edges above and below the x-axis just as we did
for variable paths in the hardness proof. We can, therefore, decompose G into two matchings,
one of which we will draw above and one of which we will draw below the x-axis. �en we apply
the interval-graph technique from the proof of �eorem 7.7, draw each matching on its side of
the x-axis, and get a minimum-area NPO2 embedding of G.
However, this does not work for unconnected graphs as the choice of placing edges above or

below the x-axis can be made independently for the connected components, although edges of
di�erent connected components might interfere with each other regarding the layer assignment.
Instead, we suggest using the following 2-approximation algorithm.

�eorem 7.8. Let G = (V , E) be a graph of n vertices of maximum degree 2 and no cycles of odd
length, let S be a set of n grid points on the x-axis, and let µ∶V → S be a mapping. Algorithm 7.1
computes a 2-approximation for a µ-respecting NPO2 embedding of minimum area.

Proof. It is easy to see that the algorithm places the edges such that no two edges incident to
the same vertex are placed on the same side of the x-axis. As the layering of a solution for the
1-sided problem in the split graph is used, there is also no overlapping of two middle segments.
Hence, the algorithm creates a µ-respecting NPO2 embedding.

128



7.3 Orthogonal Point-Set Embeddability with Two or �ree Bends per Edge

foreach node v with deg v = 2 do
Split v into two nodes v1 , v2 of degree 1.

Solve the 1-sided problem optimally on the split instance.
foreach connected component C (cycle or path) do
Choose some arbitrary edge e of C.
Draw e above the x-axis; for the rest of the edges of C the side is automatically �xed.
foreach edge e′ of C do
Draw e′ in the layer de�ned by the optimum 1-sided solution on its respective side.

Algorithm 7.1: 2-approximation for 2-sided area minimization.

Let OPT be the height of an optimum solution. We can construct a feasible solution for the
1-sided problem on the split graph by �xing one side of the x-axis, say the part above the axis,
and moving all middle segments below the axis to the �xed side above, occupying the same
number of new layers above the axis that were used below the axis. By this construction we get
a solution of height OPT for the 1-sided problem. �e height of this solution cannot be less than
the height of the optimum solution we used in the algorithm. As we doubled this solution, we
get an approximation factor of 2 for the 2-sided problem.

7.3.3 1-Spaced Point Sets

We now move to 1-spaced point sets. Consider, for a moment, a specialized NPO2 drawing
convention that requires the �rst and the last (of the three) segments of an edge to go in the
same direction—a bracket drawing. If we do not restrict the drawing area, then the problem
of �nding a bracket embedding of a graph G on a 1-spaced set of n grid points is equivalent
to �nding a 4-edge coloring of G. �e idea is that the four colors encode the direction of the
�rst and last edge segment—going up, down, le�, or right—and that the middle segment is
drawn su�ciently far away from the input point set. �e edge coloring ensures that no two
edges incident to the same vertex overlap. By Vizing’s theorem [Viz64], we know any graph of
maximum degree 3 is 4-edge colorable. Using the algorithm of Skulrattanakulchai [Sku02], a
4-edge coloring can be found in linear time. Hence, we can always �nd a bracket drawing for
graphs of maximum degree 3. Let us summarize.

�eorem7.9. Let G = (V , E) be a graph of n vertices withmaximum degree 3, let S be a 1-spaced
set of n grid points, and let µ∶V → S be a mapping. We can �nd a µ-respecting NPO2 embedding
of G on S in O(n) time.

Note that there are graphs of maximum degree 4 that admit neither a 4-edge coloring nor a
bracket embedding, but still do admit an NPO2 embedding, at least for some 1-spaced point
sets; see Figure 7.5 for such an embedding of K5. By checking many instances with the help of a
SAT solver, we did not �nd any example of a graph of maximum degree 4 and a 1-spaced point
set such that there is no NPO2 embedding.
Note that the NPO2 embeddings on 1-spaced point sets that our algorithm �nds will always

use space outside of the bounding box of the input points. Furthermore, there are examples of a
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Chapter 7: Orthogonal Point-Set Embeddability on the Grid

Figure 7.5: NPO2 drawing of K5 on a diagonal
point set.

Figure 7.6: Graph and mapping with no NPO2
embedding on the point set within the bound-
ing box.

graph G, a 1-spaced set S of grid points, and a mapping µ such that G does not admit an NPO2
point-set embedding on S with mapping µ if we insist that the drawing lies within the bounding
box of S; see Figure 7.6. Hence, also here, area minimization is an interesting open problem.
Since our hardness proof for area minimization of NPO2 embeddings used only points of the
x-axis, we do not know whether area minimization is still NP-hard for 1-spaced point sets.

Three Bends per Edge. If we allow four bends per edge, then it is clear that, for any graph
G = (V , E) of maximum degree 4, any 1-spaced set S of n grid points, and any mapping µ, we
can �nd a µ-respecting NPO2 embedding of G on S: Any two points can be connected using at
most four bends even if we prescribe in which directions the edge leaves the points. If we want
to draw an edge with more than one bend, we can use the two segments incident to the vertices
to leave the bounding box of the input points since the point set is 1-spaced. �e remaining
segments can be placed su�ciently far away from the input points to avoid overlaps.
We will now see that just three bends already su�ce. To this end, we �rst partition the edges of

the graph into two sets A and B = E ∖A so that we get two graphs G1 = (V ,A) and G2 = (V , B)
of maximum degree 2; this is always possible as we will see.
First, we can assume that all vertices of G have even degree, that is, degree 2 or degree 4: If

this is not already the case, we add edges toG connecting vertices of odd degree until all vertices
have even degree; note that there is always an even number of vertices of odd degree. Once
there are only vertices of even degree, we can �nd a Eulerian cycle C in G. We now follow C
and alternately assign the edges to A and B. When we traverse a vertex v when following C,
one edge incident to v will be assigned to A and another one will be assigned to B. As v can be
traversed by C at most twice, its degree in G1 and in G2 can be at most two.
Now, we associate two adjacent directions with each subgraph, G1 and G2; for example, we

can associate “up” and “right” with G1 and “down” and “le�” with G2. Using these directions
for leaving the vertices, we can draw the subgraphs individually; see Figure 7.7. Any connected
component of a subgraph is a path or a cycle. For drawing a path, or a cycle of even length, we
can, hence, alternately use the two directions assigned to the subgraph for drawing an edge with
two bends in the bracket style. If we want to draw a cycle of odd length, we also start the drawing
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Figure 7.7:�e graph K5 drawn in the NPO3 style; edges of G1 and G2 are drawn in black and
in (bold) red, respectively.

like this up to the last edge; the �nal edge has to use two adjacent directions, for instance up and
right. �is is always possible with three bends. It is easy to see that, using the above steps, such
an embedding can be constructed in linear time. We just have to keep track of the remaining
vertices of odd degree when adding edges.

Proposition 7.1. Let G = (V , E) be a graph of n vertices with maximum degree 4, let S be a
1-spaced set of n grid points, and let µ∶V → S be a mapping. G admits a µ-respecting NPO3
embedding on S and we can �nd such an embedding in O(n) time.

Note that this result is in contrast to general point sets that are not 1-spaced, where the problem
is NP-hard; see �eorem 7.4.

7.4 Planar Orthogonal Point-Set Embeddability with
Unbounded Bend Numbers

We now turn to the planar case with no bound on the number of bends, that is, to PO∞ PSE
with prescribed mapping; this version allows the most freedom for routing the edges. Katz
et al. [KKRW10] have shown that Manhattan-geodesic PO∞ PSE with prescribed mapping is
NP-hard; in this setting, edges must be drawn as shortest orthogonal connections. We show
that general PO∞ PSE with prescribed mapping is also NP-hard by modifying the hardness
proof of Katz et al.

�eorem 7.10. PO∞ PSE with prescribed mapping is NP-hard even for matchings.

Proof. We sketch the proof of Katz et al. and show that, with our modi�cations, we get a feasible
reduction for general PO∞ . �e reduction is from 3Partition which is known to be strongly
NP-hard; compare Section 2.3. Let A = {a1 , . . . , a3n} be an instance of 3Partition which
consists of 3n positive integers. �e goal is to decide whether there exists a partition of A into
n sets A1 , . . . ,An of 3 numbers such that all A i have the same sum s = 1/n ⋅ ∑3ni=1 a i . Figure 7.8
shows an example for the reduction; our modi�cations are marked by dashed lines.
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Figure 7.8: Example showing an instance of our reduction from 3Partition to PO∞ PSE
with prescribed mapping with sets A1 = {a1 , a5 , a7}, A2 = {a2 , a3 , a8}, and A3 = {a4 , a6 , a9}.
Di�erences to the construction of Katz et al. [KKRW10] are dashed.
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�ere are two modi�cations. First, we replaced two single edges between −N and 0 and
between L and L + N by consecutive matching edges whose vertices �ll all the grid points
that previously were spanned by the two edges. Second, we added a frame around the whole
construction; the frame is built the sameway as the previousmodi�cation. It is easy to see that the
modi�ed instance still works as desired by Katz et al. �e edges between−N and 0 and between L
and L + N can only be drawn horizontally in the Manhattan-geodesic style. Furthermore, the
geodesic style prevents that any other edge could interfere with the frame around the instance.
Hence, if there is a feasible solution to 3Partition, we can �nd a (Manhattan-geodesic) PO∞
embedding as shown by Katz et al.
Now, suppose that we have a (not necessarily Manhattan-geodesic) PO∞ embedding. Even

without the Manhattan-geodesic style the dashed frame cannot be crossed because there are
no gaps between consecutive vertices. For any number a i there are two groups S i and Ti of a i
points placed consecutively in the upper and lower half of the instance, which are connected by
a i matching edges; see Figure 7.8.
�e upper and lower half are connected by exactly n gaps of width s each, that is, at most

sn = ∑3ni=1 a i edges can leave the upper half. As all edges representing numbers are drawn, the
gaps are completely used by them. �erefore, the n − 1 black separator edges must completely
lie in the upper half and separate it into n regions. Furthermore, any set S i of points must lie
completely in one region; the points of S i cannot be separated by an edge as they are diagonally
contiguous. Hence, the regions de�ne a partition of A into sets A1 , . . . ,An . As the edges leaving
the region of A i completely �ll a gap of width s, it follows that∑a j∈A i a j = s, which completes
the proof.

Note that the ability to use arbitrarily many bends for edges is crucial for the reduction:
For creating a Manhattan-geodesic embedding—in the case that a feasible solution for the
3Partition instance exists—a large number of bends (linear in n) is used for routing from the
upper to the lower half so that crossings and overlaps with other edges are avoided. �erefore,
we cannot conclude anything about the complexity of POk PSE for a constant k.

7.5 Orthogonal Point-Set Embeddability without
PrescribedMapping

We now move to the problem variant in which the mapping from vertices to points is not part
of the input; that is, we can choose the mapping freely. Recall that there is always an NPO3
embedding (even with prescribed mapping) if the point set is 1-spaced. For general point sets,
however, we will show that all problem variants are NP-hard. We �rst focus on the versions
with up to one bend per edge, for which we can show hardness even for outerplanar graphs of
maximum degree 3.

�eorem 7.11. NPO0 PSE, NPO1 PSE, PO0 PSE, and PO1 PSE are NP-hard even for outerplanar
graphs of maximum degree 3.

Proof. We proof hardness by reduction from 3Partition and start with NPO1 PSE. Let A ={a1 , . . . , a3n} be an instance of 3Partition and let s = 1/n ⋅ ∑3ni=1 a i . We model this instance as
an instance of NPO1 PSE.
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Figure 7.9: Graph G i representing the
number a i consists of 4a i vertices in
2a i − 1 connected 4-cycles.
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Figure 7.10: Point set S for the reduction from 3Parti-
tion.

Each number a i is modeled by a graph G i = (Vi , E i) consisting of 4a i vertices in 2a i − 1
linked 4-cycles; see Figure 7.9. Note that the unary encoding of the numbers is possible due to
the strong NP-hardness of 3Partition. Let G = (V , E) be the graph consisting of the union of
all G is and a set V ′ of n − 1 isolated vertices, that is, V = V ′ ∪⋃3ni=1 Vi and E = ⋃3ni=1 E i .
Let S be the set of grid points shown in Figure 7.10, that is, S consists of n − 1 + 4ns points on

two consecutive horizontal grid lines; the points are arranged in n blocks S1 , . . . , Sn of 4s points
where within a block there is no gap, that is, no empty grid point; the blocks are split by isolated
points.
Suppose that A is a positive instance, that is, there is a feasible partition into A1 , . . . ,An . We

want to create an NPO1 embedding of G on S. To this end, we iterate over the numbers a i with
increasing index i. Suppose that a i ∈ A j for some 1 ≤ j ≤ n. We want to place the drawing of G i
inside block S j occupying columns from le� to right. We embed G i as indicated in Figure 7.9,
using the 2a i le�most unoccupied columns of S j . As ∑a i∈A j a i = s this is possible for all a i
without any overlap within a block. Hence, we get a feasible NPO1 embedding of G on S (in
fact, even a PO0 embedding).
We now want to see that, if there is no feasible solution of the 3Partition instance A, then

no feasible embedding of G on S exists. To this end, we show that G i can only be embedded
in such a way that it lies completely inside a single block S j . Suppose that an embedding of G i
would place a vertex v on an isolated point p. �en it is easy to see that a 4-cycle in which v is
contained cannot be completed. On the other hand, it is also not possible to embed a 4-cycle
using points of two di�erent blocks. Hence, each G i has to lie within a unique block S j and a
feasible embedding would yield a solution to the modeled instance of 3SAT. �is completes the
proof for NPO1 PSE.
For creating a feasible drawing of a positive instance, we used only straight-line edges without

crossings. �e reduction, therefore, also works if we restrict the drawing style to straight-line
edges and/or planar embeddings.

Recall that PO0 PSE is actually NP-hard even for matchings as Rendl and Woeginger [RW93]
have shown.
Next, we move to the versions in which more bends are allowed. �e basic structure of our

reduction remains the same; some additional e�ort is necessary for making the idea work for
larger numbers of bends. Furthermore, we now need general graphs of maximum degree 4.

�eorem 7.12. NPO∞ PSE and PO∞ PSE, as well as NPOk PSE and POk PSE for any con-
stant k ≥ 0, are NP-hard.
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Figure 7.11: Graph G i
representing the num-
ber a i is a grid graph of
2a i ×w vertices.
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Figure 7.12: Point set for the reduction.

Proof. Again, we prove hardness by reduction from 3Partition. We start with NPO∞ PSE.
�e remaining cases will follow as we use neither bends nor crossings in drawings for positive
instances of 3Partition. Let A = {a1 , . . . , a3n} be an instance of 3Partition and let s =
1/n ⋅ ∑3ni=1 a i .
Each number a i is modeled by a grid graph G i = (Vi , E i) consisting of 2a i ×w vertices; see

Figure 7.11. Here, w > 2s is an odd number that is as small as possible but at least 23. Again, the
unary encoding of the numbers is possible due to the strong NP-completeness of 3Partition.
Let G = (V , E) be the graph consisting of the union of all G is and a set V ′ of 5(n + 1) isolated
vertices, that is, V = V ′ ∪⋃3ni=1 Vi and E = ⋃3ni=1 E i .
Let S be the set of grid points shown in Figure 7.12, that is, S consists of 2wsn+5(n+ 1) points;

the points are arranged in n blocks S1 , . . . , Sn of 2ws points each. �e blocks are split by groups
of 5 isolated points; similarly, 5 isolated points are placed to the le� of S1 and to the right of Sn ,
respectively.
Suppose that A is a positive instance, that is, there is a feasible partition into A1 , . . . ,An . We

want to create a feasible NPO∞ embedding of G on S. To this end, we iterate over the numbers
a i with increasing index i. Suppose that a i ∈ A j for some set A j . We want to place the drawing
of G i inside block S j occupying columns from le� to right. We embed G i by drawing it as
indicated in Figure 7.11, using the 2a i le�most unoccupied columns of S j . As∑a i∈S j a i = s this
is possible for all a i without any overlap. Hence, we get a feasible NPO∞ embedding of G on S
(in fact, even a planar orthogonal drawing without bends).
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We now want to see that, if there is an NPO∞ embedding of G on S, then there is a feasible
solution A1 , . . . ,An of the 3Partition instance A. Suppose that an embedding of G i would
place a vertex v ∈ Vi on an isolated point p. �en it is easy to see that a 4-cycle in which v is
contained cannot be completed.
With two bends per edge it is possible to embed a single 4-cycle using points of two di�erent

blocks. Due to the grid structure of both the graphs and the blocks, this is, however, still no
problem: Almost all 4-cycles will be embedded in the interior of blocks; there, the only possibility
for embedding the 4-cycles is following the grid structure. Hence, for example on the middle
horizontal line, a graph G i can be embedded either horizontally (as indicated in Figure 7.11) or
vertically.
We show that G i (or, more precisely, any part of G i) cannot be embedded vertically on the

middle horizontal line. Suppose that a part of G i is embedded in such a way. �en, we follow
the horizontal line to the le� and to the right. �is means, that we follow G i to the top and
to the bottom, as G i is embedded vertically. In both directions, G i cannot leave the block due
to the isolated point placed there. However, the block has only width 2s, while G i has height
w > 2s, a contradiction. Hence, the embedding of G i at the middle horizontal line has to be
horizontal. If we follow the embedding of G i upward and downward, we will reach the upper or
lower part of the block of points. Hence, more than half of the height of G i is contained in the
block, which can be the case for only one block. Hence, on the middle line, G i occurs only in
one block S j . On the other hand, due to the horizontal embedding of G i , there also has to be at
least one block S j that contains at least half of the height of G i . In this block S j , G i has to occur
on the middle horizontal line.
�erefore, the occurrences of the graphs G i on the middle horizontal line in blocks S1 , . . . , Sn

give rise to a partition of A into sets A1 , . . . ,An . As the width of each block is 2s, this partition
is a feasible solution for the instance A of 3Partition. �is completes the proof.
Recall that, as promised in the beginning, we did not use bends or crossings for creating

embeddings of positive instances. Hence, the reduction works also for the planar version and
for any limited number of bends.

7.6 NPO1 Embeddings on 1-Spaced Point Sets without
PrescribedMapping

In�eorem 7.2, we have seen that NPO1 PSE with prescribedmapping can be solved in quadratic
time. In contrast, the problem isNP-hard if themapping is not part of the input (see�eorem7.11).
If we restrict ourselves to 1-spaced point sets, this does not have to hold; recall that we used
many points with identical x- or y-coordinate in the hardness proof. Still, although we do not
have a hardness proof, even the restriction to 1-spaced point sets seem quite hard. In this section,
we will see that at least for some small classes of graphs there is an embedding for any 1-spaced
point set.
First, we can �nd an NPO1 embedding for every n-vertex path or cycle on any 1-spaced set

of n grid points, even with prescribed mapping: we simply leave each point horizontally and
enter the next one vertically in the order prescribed by the mapping.
Without a given mapping, we can see that every binary tree has an NPO1 embedding on every

1-spaced set of n grid points. �e idea is to map the root of the tree to the point that has as many
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Figure 7.13: Illustrations for embedding binary trees.

points to its le� as the number of nodes in the le� subtree of the root; see Figure 7.13b. When
applying this idea recursively and drawing the �rst segment of the outgoing edges horizontally
(one to the le�, one to the right) and the second segment vertically, no two edges overlap; see
Figure 7.13c. �is was independently observed by Di Giacomo et al. [GFF+13]. We will extend
the result to a slightly larger class of graphs; �rst, we will, however, show the result for binary
trees in detail.

�eorem 7.13. Every binary tree T = (V , E) has an NPO1 embedding on every 1-spaced set S
of n grid points.

Proof. Assume that T is rooted at an arbitrary vertex r of degree 1 or 2, and let v1 , . . . , vn be a
numbering of the vertices of T given by a breadth-�rst-search traversal starting from r, that is,
v1 = r. For i = 1, . . . , n, let Ti be the subtree of T rooted at vertex v i ; see Figure 7.13a.
Let p1 be the point in S such that the vertical line ℓ1 through p1 splits S1 = S according

to T1 = T , that is, we split S1 into a set S2 of ∣T2∣ points on its le� and a set S3 of ∣T3∣ points on
its right; see Figure 7.13b. �en, we recursively pick points p2 and p3 and lines ℓ2 and ℓ3 that
partition S2 and S3 according to T2 and T3. We continue until we arrive at the leaves of T . �is
process determines points p1 , . . . , pn and lines ℓ1 , . . . , ℓn such that for i = 1, . . . , n point p i lies
on ℓ i . We simply map vertex v i to point p i for i = 1, . . . , n.
Consider an index i ∈ {1, . . . , n}. Our mapping makes sure that one subtree of Ti is drawn

to the le� of ℓ i and the other is drawn to the right of ℓ i . Let v j and v j+1 be the children of v i .
We draw the edges (v i , v j) and (v i , v j+1) such that their horizontal segments are both incident
to v i ; see Figure 7.13c.
Since S is 1-spaced, no two edges can overlap except if they are incident to the same vertex. If

we direct the edges of T away from the root, then, by our drawing rule, in any vertex v i of T
the incoming edge arrives in p i with a vertical segment and the outgoing edges leave p i with
horizontal segments in opposite directions. Hence, the drawing is a feasible NPO1 embedding.

An interesting question is whether crossings are actually necessary for binary trees. More
speci�cally, is it possible to �nd a PO1 embedding for any binary tree on any 1-spaced point set?
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(a) Embedding computed by our algorithm; it can-
not be made planar without changing the map-
ping.

(b) Planar embedding obtained by using a di�erent
mapping.

Figure 7.14: Two embeddings of a binary tree on the same 1-spaced point set.

Figure 7.15: Binary tree with no NPO1 embedding.

Kano and Suzuki proved this for the special class of binary trees inwhich a simple path containing
all degree-3 vertices exists [KS12]; the general question is open. �ere is no counterexample, but
there are examples for which the output drawing of our algorithm cannot be made planar by
just modifying the edges without changing the mapping; see Figure 7.14.
In the proof of the previous theorem we exploited the fact that we could choose the vertex–

point mapping as needed. Figure 7.15 shows a 6-vertex binary tree that does not have an NPO1
embedding on the given point set if the vertex–point mapping is prescribed as indicated in the
drawing.
We will now generalize the result on binary trees to a slightly larger class of graphs. We

allow also binary trees whose vertices may be replaced by cycles. We still allow only maximum
degree 3. Hence, when replacing a vertex v by a cycle, we have to make sure that the edges
connecting v to its parent vertex and to its children are all incident to di�erent vertices of the
cycle. �e basic idea of the algorithm for �nding an embedding stays the same. �ere will,
however, be several cases for embedding a cycle, depending on the con�guration of the points.

�eorem 7.14. Let G = (V , E) be an n-vertex graph of maximum degree 3 that arises when
replacing some of the vertices of a binary tree by cycles and let S be a 1-spaced set of n grid points.
�en, G admits an NPO1 embedding on S.

Proof. �e basic idea for extending the construction for binary trees to the new class of graphs is
to treat each cycle similar to a single vertex of a binary tree. We do this by reserving the adequate
number of consecutive columns for the vertices of the cycle in the middle of the drawing area
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for the current subtree when splitting into the drawing areas for the subtrees. �e subtrees are
connected to the cycle by leaving one point to the right and one point to the le�, respectively.
�emost di�cult part is to connect the reserved points to a cycle; we must be able to connect the
point representing the vertex that is the connector to the parent vertex (or cycle, respectively),
which was embedded before. To this end, we have to make sure that we can enter this point
using a vertical segment such that the connections to the le� and to the right are still possible.
Let C with k ∶= ∣C∣ ≥ 3 be the cycle representing the root of the current subtree. Let u and v

be the vertices of C that connect C to its le� and right child, respectively, and let z be the vertex
of C that connects C to its parent r. Let S′ = {p1 , . . . , pk} be the set of points reserved for C in
consecutive columns ordered from le� to right. �e edges connecting C to the le� and right
subtrees leave the points representing u and v to the le� and right, respectively, while the edge
connecting z to r enters z from above or below, depending on the y-coordinate of the point
chosen to represent z. Let yr be the y-coordinate of r. We analyze the di�erent cases.

1. Vertex z has a neighbor w ≠ u, v in C and k ≥ 5:
Set µ(u) = p1 and µ(v) = pk . Either above or below the horizontal line y = yr we
�nd two points p, p′ ∈ S′ ∖ {p1 , pk}. Let p be the one closer to the line y = yr . We set
µ(z) = p, µ(w) = p′ and draw the edge wz such that p is entered vertically. �en we can
complete the cycle such that each point is incident to a horizontal and a vertical segment;
see Figure 7.16a. It is easy to see that the connections to r and to the children can now be
drawn without overlap.

2. Vertex z has a neighbor w ≠ u, v in C and k = 4:
Let C = (u,w , z, v); the other case is symmetric. If p2 and p3 both lie either below or
above y = yr , we can proceed as shown in case 1. If p2 lies above r and p3 below we have
two subcases depending on the position of p4:

a) p4 lies above p3: We can draw C as shown in Figure 7.16b.
b) p4 lies below p3: Similarly to case 1, we can draw C such that each point is incident
to both a vertical and a horizontal segment as shown in Figure 7.16c.

If p3 is above r and p2 below, the cases are symmetric.

3. �e two neighbors of z are u and v.
a) If there is a point p ∈ S′ ∖ {p1 , pk} that is vertically between p1 and pk , then we
set µ(u) = p1, µ(v) = pk and µ(z) = p and draw C as in Figure 7.16d, where the
second path connecting u and v can be drawn by having a vertical and a horizontal
segment incident to each point.

In the remaining cases, there is no such point vertically between p1 and pk .

b) If k ≥ 5, we �nd, similar to case 1, two points p, p′ ∈ S′ ∖ {p1 , pk} both below or
above r such that p is the one closer to the line y = yr . Again we set µ(z) = p;
if p′ is le� of p we set µ(u) = p′ and µ(v) = pk ; see Figure 7.16e. Otherwise, we
symmetrically set µ(v) = p′ and µ(u) = p1. Now we can draw the cycle without
overlap such that each point is incident to a vertical and a horizontal segment.
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Figure 7.16: Embedding of cycle C in the di�erent cases.
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c) If k = 4, we have C = (u, z, v ,w). If p2 and p3 lie both above or below r we can
proceed as in the previous case. Otherwise, we know that both points are on di�erent
sides of y = yr , and that p1 and p4 are both vertically between, below, or above p2
and p3 (otherwise, we would be in case 3a).
i) In the �rst case, we set µ(u) = p1 , µ(v) = p4 , µ(z) = p2 and µ(w) = p3 and
create the drawing of C as shown in Figure 7.16f.

ii) As above and below are symmetric, the other two cases can be handled as
shown in Figure 7.16g.

d) Finally, if k = 3, we set µ(u) = p1 , µ(v) = p3 and µ(z) = p2, and simply draw C as
shown in Figure 7.16h. �is completes the case analysis and, hence, the proof.

It would, of course, be nice to generalize these embeddability results for binary trees and
cycles (without given mapping) to larger classes of graphs, for example, outerplanar graphs of
maximum degree 3. �is seems, however, quite di�cult.

7.7 Concluding Remarks
We have investigated both planar and nonplanar orthogonal point-set embeddability on the
grid. For the version without prescribed mapping we have proven NP-hardness of all problem
variants.
In the setting with prescribed mapping we have given e�cient algorithms for deciding PO1

PSE and NPO1 PSE. We have further shown hardness for NPO2 PSE and NPO3 PSE with
prescribed mapping, and for their area-minimization variants. In contrast, we have seen that
any graph of maximum degree 4 can be embedded on any 1-spaced point set in the NPO3 style.
For NPO2, this is the case at least for any graph of maximum degree 3. We have also shown
that PO∞ PSE, that is, planar orthogonal point-set embeddability, with prescribed mapping is
NP-hard even for matchings.

Open Problems. �ere are still several open problems; here, we give a list of the most
interesting ones.

• We know the complexity of NPOk PSE with prescribed mapping for k ≤ 3: For k = 0 and
k = 1 we have given e�cient solutions; for k = 2 and k = 3 we have shown hardness. What
happens if we allow more than three bends per edge? �at is, what is the complexity of
NPOk PSE and NPO∞ PSE with prescribed mapping for k ≥ 4?

• We have seen that PO∞ PSE with prescribed mapping is NP-hard. Is planar orthogonal
PSE hard even if we bound the number of bends, that is, is there some constant k such
that POk PSE with prescribed mapping is NP-hard?

• In the hardness proof for the problem versions without prescribed mapping we made
heavy use of vertices of degree 4. Do the problem variants stay NP-hard even for graphs
with smaller maximum degree? Recall that Rendl and Woeginger [RW93] showed that
PO0 PSE is NP-hard even for matchings, that is, graphs of maximum degree 1. Are there
similar properties for other variants?
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• Does every n-node binary tree have a PO1 embedding, that is, a planar embedding with
one bend per edge, on any 1-spaced set of grid points? �is was also posed as an open
question by Kano and Suzuki [KS12]. We have seen that it is true for the nonplanar
version.

• Does every n-node ternary tree have an NPO1 embedding on any 1-spaced set of grid
points? What about outerplanar graphs?

• Can we e�ciently decide whether a given graph has an NPO1 embedding on a given
1-spaced set of grid points (without mapping)?

• Does any graph of maximum degree 4 allow an NPO2 embedding on any 1-spaced set of
grid points? If this is the case, does it even hold for any prescribed mapping? If we cannot
always �nd an NPO2 embedding, is NPO2 PSE NP-hard even for 1-spaced point sets?
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Chapter 8

Algorithms for Labeling Focus Regions

When exploring maps or diagrams, there o�en is a focus region in which the user is currently
interested. Especially, there can be point sites within the focus region that must be labeled. �is
problem occurs, for example, when the user of a mapping service wants to see the names of
restaurants or other POIs in a crowded downtown area but keep the overview over a larger area.
Our approach for this problem is to place the labels at the boundary of the focus region and

connect each site with its label by an edge, which is also called a leader. In this way, we move
labels from the focus region to the less valuable context region surrounding it. In order to make
the leader layout well readable, we present algorithms that rule out crossings between leaders
and optimize other characteristics such as total leader length and distance between labels. �is
yields a new variant of the boundary labeling problem. Other than in traditional boundary
labeling, where leaders are usually schematized orthogonal or octilinear polylines, we focus on
leaders that are either straight-line segments or Bézier curves.
We also present algorithms that, given the sites, �nd a position of the focus region that

optimizes the above characteristics. Moreover, we consider a variant of the problem where we
have more sites than space for labels. In this situation, we assume that the sites are prioritized by
the user. Alternatively, we take a new facility-location perspective which yields a clustering of
the sites. We label one representative of each cluster. If the user wishes, we apply our approach
to the sites within a cluster, giving details on demand.

8.1 Introduction

Users of maps normally expect answers to speci�c queries, for example, where to �nd a good
restaurant or how to reach a certain destination. General-purpose topographic maps do not
answer such queries satisfactorily, and, thus, have become almost obsolete. Instead, Internet
mapping services such as Google Maps or Bing Maps o�er interfaces that allow for user in-
teractions and sophisticated map visualization. Still, the existing systems do not fully support
focus-and-context visualization, which generally aims at emphasizing regions and themes of
interest while showing overview information for orientation.
In order to emphasize a focus region (for example, the user’s vicinity), many researchers have

proposed to (locally) increase the map scale in that region, which allows more details to be
presented. Di�erent methods have been proposed to de�ne a seamless transition between a
large-scale focus region and a small-scale context region, including �sh-eye projections [YOT09]
and, for network maps, optimization-based graph drawing methods [HS11]. Another common
approach is to use portals [OW00], that is, windows with detailed information superimposed
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on an overview map. Additionally, emphasis can be put on map objects by appropriately setting
their colors [ZR02].
Considering that the focus and the context region of a map serve di�erent purposes, we

argue that special labeling techniques are needed for focus-and-context maps. Map space can
be regarded as a resource that is more expensive in the focus region; thus, text annotations and
iconic labels for points of interest (POIs) or sites in the focus region should preferably be moved
to the context region. �e di�culty herein is that correspondences between labels and sites
have to remain clear. One possibility to achieve this is to display such correspondences as linear
connections called visual links [SWS+11] or leaders [BKSW07]. We use the latter term, which is
more common in the literature on map labeling.
In this chapter, we apply boundary labeling to focus-and-context maps. Boundary labeling

commonly means to place labels at the boundary of amap and, for each label, to draw a leader
that connects a point—called port—on the label boundary with the corresponding site in the
map. In a focus-and-context map, we suggest placing labels at the boundary of the focus region,
which may be given explicitly as part of a user’s query. �is is the case in the scenario shown
in Figure 8.1, where a user speci�es a circular region in order to query the restaurants in that
region. If the user does not specify a focus region, however, a visualization system should still
be able to produce a good focus-and-context map. As a general rule, focus should be put on
regions with many interesting sites. Taking this rule into account, we develop also algorithms
that determine a circular focus region of given radius such that the maximum number of sites is
labeled given our boundary-labeling model.
�e general problem with boundary labeling is that the leaders produce additional clutter

and that the correspondence between labels and sites may become unclear, especially if leaders
are zig-zagging, crossing each other, long, or close to each other. �erefore, we designed our
boundary-labeling algorithms to avoid such unfavorable leader properties. For example, we
consider a variant of the labeling problem where the leaders are straight-line segments, crossings
are forbidden, and the total length of all leaders is minimized. We also present algorithms that
visually improve solutions to this problem variant by transforming the straight-line segments
into Bézier curves that have at most one in�ection point. �is allows us to control the slope of a
leader in its site and port, for example, to ensure that a leader connects horizontally or vertically
to its port and thus has the same slope as the boundary of its adjoining label. According to
the Gestalt criterion of good continuation [Wer38] this is favorable, as it allows map users to
understand the label-site correspondences more easily.
Maps o�en contain too many points of interest to label them all. �erefore, in addition to

choosing label positions and drawing leaders, we have to select a subset of the sites that will
become labeled. An approach that is common in the literature on map labeling is to search for a
maximum-cardinality set of sites that allows for a feasible labeling. If we have space for k labels
at the boundary of the focus region, however, we can select any subset of k sites to become
labeled. Among these solutions we may search for a labeling with short leaders, but this means
that mainly sites at the boundary of the focus region will become selected. �is is unfavorable,
since normally users are particularly interested in the center of the focus region. Moreover, we
argue that the selected subset should re�ect the spatial distribution of all sites. If the input set
contains a dense cluster (for example, a city center with many restaurants), the selected subset
should also contain a cluster (which may be less dense) in the same area. In order to take this
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additional criterion into account, we suggest a novel approach by modeling map labeling as a
facility location problem.

Our Contribution. Our contribution is as follows.

• We discuss two leader models; the radial-leader model (see Figure 8.2a) and the free-
leader model (see Figure 8.2b) 1 and formally state the corresponding layout problems
(Section 8.2). While the problems concerning the free-leader model can be reduced
to speci�c matching problems on graphs for which e�cient algorithms are known, we
present new, e�cient algorithmic solutions to our problems in the radial-leader model
(Section 8.3). Other than Plaisant and Fekete [FP99] who have used radial leaders before
(see Figure 8.3 and the discussion of previous work), our leaders do not bend since we
place the labels directly at the boundary of the focus region. In order to strengthen the
visual connection between labels and objects, we deliberately decided not to place our
labels as blocks of le�-aligned text, but rather in the immediate vicinity of the focus region.
While the approach of Plaisant and Fekete is meant for interactive exploration, ours also
makes sense in a static environment where the aesthetic quality of the leader and label
placement is crucial. For example, we optimize the layout in case there are more sites
than space for labels. We are particularly interested in the algorithmic challenges behind
these optimization problems.

• Among the algorithms for the radial-leader model, we also address a new optimization
goal for circular focus regions: given the region’s radius, we �nd a position of the region
that maximizes the number of sites whose labels can be placed—without overlap—at the
region’s boundary; see Section 8.3.3.

• We present two extensions (Section 8.4) that can be applied to our models, namely a
facility-location model that allows us to simultaneously cluster and label a set of sites
and a postprocessing for (non-crossing) straight-line leaders that transforms them into
(non-crossing) Bézier curves; see Figure 8.2 (bottom). To the best of our knowledge,
neither clustering nor Bézier curves have been used for (boundary) labeling, so far.

• We use the clustering from extension (i) to partition the focus region into subregions,
one for each cluster. If the user clicks on the label that corresponds to the cluster (or into
the subregion), we display the subregion enlarged and apply our labeling method to the
sites in the subregion; see Figure 8.1c and Section 8.4.1.

We present results of some experiments that we performed with implementations of our algo-
rithms; the experiments and results are described in various sections of this chapter.

Previous Work. Labeling geographic maps is a central problem in cartography. Labeling
maps manually is a tedious task that, in the 1980’s, was estimated to consume 50% of a map’s
production time [Mor80]. Typically, a label should not occlude features of the image and it
should not overlap with other labels. In map labeling, due to the small size of labels (usually a
1A video demo showing both models is available under http://www1.informatik.uni-wuerzburg.de/pub/
videos/infovis2012.mp4 and http://vimeo.com/user12598215/circlelab.
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(d) Free-leader model, Bézier leaders.

Figure 8.2: Example labelings with our two leader models, top: drawn as straight-line segments,
bottom: with Bézier postprocessing applied to the above straight-line solutions.
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(a) ordered (b) radial

Figure 8.3: Examples of excentric labeling. Clipped �gures from [FP98].

single word/name) and our ability to control the feature density, we usually manage to place
the labels on the map so they are in the immediate vicinity of the feature they describe. Map
labeling has been studied in computer science for more than two decades [FW91]. A survey on
algorithmic map labeling and an extensive bibliography are given by Neyer [Ney01] and Wol�
and Strijk [WS], respectively. However, internal labeling is not feasible when large labels are
employed, a typical situation in technical drawings and medical atlases; this also happens when
trying to label sites in a dense focus region.

Traditionally, labels are placed directly on the map; leaders are used very rarely. A sim-
ple model to establish a relationship between internal labels and sites is the four-position
model [CMS95, WWKS01]. Here a label is represented by a rectangular box and the label is
placed such that one of the four rectangle corners coincides with the associated site.

�e idea to label data along a circular boundary has been applied before. �e excentric
labeling approach by Fekete and Plaisant [FP99] extends the infotip paradigm to label dense
maps interactively. �ey draw a circular focus region of �xed radius around the current cursor
position, and label the sites that fall into the circle. Labels are le�-aligned in one or two stacks to
the le� and/or right of the circle, depending on where space is available. �e labels are connected
to the sites by leaders. For drawing the leaders, Fekete and Plaisant present twomain approaches.
In the �rst approach, they insist on ordering the labels within each stack according to the vertical
order of the corresponding sites. As a result, leaders may cross; see Figure 8.3a. In the second
approach, a leader goes from a site via its projection on the focus circle and then, in the case of a
right stack, to the mid-point of a le� label edge. In the case of a le� stack, a third segment may be
needed in order to reach the right label edge of a very short label without introducing crossings
between the leader of that label and other labels [FP99]. �e authors call this approach the
non-crossing or radial approach. Obviously, the higher the label stacks are the smaller the angles
between the leaders get. If more sites lie in the focus region than can be labeled, an arbitrary
subset of representatives is chosen and labeled; additionally, the number of sites in the disk is
displayed (see Figure 8.3a).
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Figure 8.4: Di�erent leader styles for boundary labeling.

Fekete and Plaisant recommend the �rst approach as a default; the focus of their work was on
interactive speed and on a comparison to statically labeled maps where users had to zoom and
pan in order to �nd speci�c sites. �ey conducted a user study (with eight subjects) that showed
that users completed the task using interactive labeling nearly twice as fast as when using static
labeling. Fekete and Plaisant did not specify the asymptotic running times of their approaches,
but it is easy to see that they run in O(n log n) time, where n is the number of points inside the
focus region.
Bertini et al. [BRL09] presented extensions for excentric labeling. �ey added scrolling

through lists of labels if the stacks were to large. Furthermore, they developed an automatic
adjustment of the size of the focus region based on the density of sites; they also implemented
�ltering, sorting of labels, and inheritance of visual features. Bertini et al. also conducted a user
study whose main result was that users could intuitively use most of the implemented functions;
only scrolling through lists of labels caused problems for some participants of the study.
Bekos et al. [BKSW07, BKSW05] introduced boundary labeling for labeling static maps. In

this model, the sites are contained in a rectangular focus region and labels are placed outside
the rectangle. �e model supports three types of leaders: straight-line segments and orthogonal
polylines with one or two bends per line, called the po- and the opo-style, respectively; see
Figure 8.4. Labels are either placed along one, two or all four sides of the boundary rectangle.
�e authors show how to construct a non-crossing labeling with minimum total leader length
or minimum number of bends for some variants of their model.
Later, other variants of boundary labeling have been investigated. Bekos et al. [BKNS10]

introduced octilinear leaders, including, for instance, the do-style; see Figure 8.4d. In this style,
any leader is drawn as an octilinear edge, consisting of a horizontal segment incident to the
label and a diagonal segment incident to the site.
Benkert et al. [BHKN09] presented a polynomial-time algorithm for �nding boundary label-

ings in the po- or do-style (see Figure 8.4b and Figure 8.4d, respectively) that allows to optimize
quality measures for the leaders, for example, the total leader length or the number of bends.
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�eir approach is �exible enough to work with general quality measures for a single leader, but
cannot take the interaction between di�erent leaders into account.
Bekos et al. [BKPS11] studied techniques for combining boundary labels with interior labels

placed on the map. In this setting, one has to make sure that labels do not intersect interior
labels. As, in their model, sites could be labeled with either an interior or a boundary label,
intersections could be avoided by moving intersected interior labels to the boundary.
Most of the previous work has been focused on placing the labels either on just one side

of a rectangular focus regions, or on two opposite sides. In a recent work, Kindermann et
al. [KNR+13] gave algorithms for po-leaders with labels placed on two adjacent sides of the
focus region.
Gemsa et al. [GHN11] presented an algorithm targeted to label panorama images using vertical

straight-line leaders. �ey place labels in several layers and present algorithms that minimize
the number of layers needed for labeling all sites or that maximize the number of sites that can
be labeled using a �xed number of layers.
A survey article by Kaufmann [Kau09] presents the di�erent boundary labeling models that

have been studied in the literature.
Hartmann et al. [HGAS05] introduced a more general model for boundary labeling. In

particular, they suggested a classi�cation scheme that takes also more complex boundary shapes
of the map into account, that is, the boundary can be a circle or more generally an arbitrary
silhouette. A �rst algorithm for the silhouette scenario (based on the force-directed approach)
is due to Ali et al. [AHS05].
Recently, Speckmann and Verbeek [SV10] introduced necklace maps to visualize statistical

data on geographic domains. �e size of the label is used to encode the value of the statistical
variable and the labels are placed on circles or silhouettes. Necklace maps do not use leaders,
but establish relations between geographic objects and labels by matching colors and proximity.
�is idea is e�ective if the geographic objects to be labeled have some spacial extent; here, in
contrast, we assume that we are given point data.

8.2 Problem Statements andMotivations

We study several incarnations of the problem of labeling focus regions. We distinguish two
general models. In the �rst model, the focus region is a disk and each leader is a section of
a ray that emanates from the center of the disk and connects a site to the boundary of the
focus region; see Figure 8.2a. We refer to this model as the radial-leader model and discuss it in
Section 8.2.1. Note that, if no two sites lie on the same ray, leaders are disjoint by construction.
In the second model, the free-leader model (see Figure 8.2b and Section 8.2.2), every port is
placed on a prescribed position on the boundary of the focus region. We do not insist on any
speci�c direction of the leaders; instead, we explicitly require leaders to not cross each other.
Note that, in the free-leader model, there is no need to restrict oneself to circular focus regions.
In fact, all results in this model hold for convex focus regions.
�e choice of the model does not necessarily determine the orientation of the text labels.

We think, however, that the radial-leader model suits radially oriented labels particularly well.
In contrast, we suggest using the free-leader model in conjunction with horizontally oriented
labels. For examples, see Figure 8.2 (top).
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Figure 8.5: In a disk D = (c, r), point sℓ is connected by a leader to the port pℓ of its label ℓ on
the boundary ∂D. �e points s and s′ are in con�ict since∠scs′ < α.

8.2.1 Radial Leaders

For the radial-leader model, we assume that the focus region is a disk D = (c, r) with center c
and radius r. Given a label ℓ, we de�ne the port pℓ of ℓ by radially projecting the site sℓ labeled
by ℓ onto the boundary ∂D of D, that is, pℓ is the intersection of ∂D with the ray that emanates
from c and goes through sℓ ; see Figure 8.5.
Clearly, this model makes it di�cult to accommodate labels if the projections of several sites

lie in a very small part of ∂D. We model this by saying that two sites s and s′ are in con�ict if
the angle∠scs′ is smaller than a prede�ned value α > 0; see Figure 8.5. Our aim is to �nd (and
label) a maximum-cardinality subset of the sites that is con�ict-free, in the sense that no two
sites in the subset are in con�ict.
�is model makes sense, for example, if (as in Figure 8.2a) each label contains one line of

text and has the same orientation as its leader. In this case each label ℓ is a unit-height rectangle
(which may contain some text), the lower and upper edges of ℓ have the same slope as the leader
of ℓ, and the port of ℓ is the midpoint of either the le� or right edge of ℓ. Correspondences
between labels and sites are particularly easy to comprehend in this case, since the leaders can
be perceived as continuations of their labels. On the downside, the user has to read rotated text.
According to a user study of Wigdor and Balakrishnan [WB05], however, rotating a text by not
more than 90○ leads to only a small decrease in the reading speed of users and only a small
increase in the number of reading errors if the text consists of a single word with �ve to six
letters. �erefore, we suggest using this model if the label texts are not much longer than this.
We now formally de�ne the label maximization problem with given center.

Problem 8.1 (Label maximization with given center).
Input: Disk D = (c, r), set S ⊂ D of n point sites, angle α.
Output: Maximum-cardinality con�ict-free subset S′ ⊆ S, that is, the angle formed by any two

rays that emanate from c and go through points in S′ is at least α and ∣S′∣ is maximized.

In practice, the radius r of D and the �xed font size determine the angle α.
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Next, we take priorities among the sites into account, which occur, for example, if some sites
match a user query better than others. In the literature on map labeling, this is commonly
modeled by de�ning weights for the sites and by selecting a maximum-weight set of sites that
allows a feasible labeling. �e weighted version of the problem is de�ned as follows.

Problem 8.2 (Weighted label maximization with given center).
Input: Disk D = (c, r), set S ⊂ D of n point sites, weight function w∶ S → R+, angle α.
Output: Con�ict-free subset S′ ⊆ S such that the total weightw(S′) = ∑s∈S′ w(s) ismaximized.

For the remaining two variants of the radial-leader model, we support the user by �nding a
good position of the focus region. In many applications the focus is speci�ed by a �xed set of
sites rather than by a �xed focus region. In order to make sure that as much useful information
as possible is displayed, we place the focus region such that it admits a maximum-cardinality
con�ict-free subset of sites.

Problem 8.3 (Label maximization with variable center position).
Input: Set S ⊂ R2 of n point sites, angle α.
Output: Center c ∈ R2∖S, maximum-cardinality subset S′ ⊆ S that is con�ict-free with respect

to c and α.

For this problem, we also consider the weighted version, which we de�ne analogously to
Problem 8.2.
As the last problem of this section we ask for the disk center c, whichmaximizes theminimum

angular separation of the sites with respect to c.

Problem 8.4 (Sector maximization).
Input: Set S ⊂ R2 of n point sites.
Output: Center c ∈ R2 ∖ S and angle α such that S is con�ict-free with respect to α and α is the

largest angle with this property.

Our main motivation for studying Problem 8.4 stems from the case where all sites need to be
labeled. Note that such a labeling exists if we make the radius r of the focus disk large enough.
�erefore, we can assume that a small separating angle α su�ces for having disjoint labels. In
practice, however, we cannot arbitrarily increase r since the available space is limited. �erefore,
it is reasonable to ask for the smallest disk that allows us to label all sites. If α is the smallest
angle formed by two rays emanating from c and going through two sites in S, then r has to be
greater than 1/α—assuming that labels have height 1. �erefore, minimizing the radius of the
disk is equivalent to maximizing the smallest angle between any two rays.
Problem 8.4 also occurs when we have a solution to Problem 8.3, but two labels may be

unnecessarily close to each other, even though they do not intersect. In this case we could
relocate the focus disk to obtain a more balanced spacing between the labels.
Note that maximizing the smallest angle may be in con�ict with minimizing the size of the

focus disk.

Experiment 8.1. For n = 5, . . . , 20, we selected a sample of n random points under normal
distribution and computed the radius of the disk maximizing the smallest angle between leaders
and covering all sites—the smallest-angle focus disk—and the radius of the smallest enclosing
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(a) Radius of the smallest-angle focus disk relative
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Experiment 8.1. �e (upper) blue line shows the
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Figure 8.6: Plots showing the results of Experiments 8.1 and 8.2.

disk. For each instance size, we repeated the experiment 50 times. �e result was that the radius
for the smallest-angle focus disk was on average only 30% larger than the radius of the smallest
enclosing disk, with a standard deviation of about 20% (see Figure 8.6a).

Using the smallest enclosing disk as the focus disk can result in arbitrarily bad angles. To
see this, note that we can add a site near the disk center that introduces a small angle between
leaders, but will not a�ect the minimum enclosing disk. Another heuristic for locating the
focus disk is the center of gravity. �is is motivated by distributing the sites inside the focus
disk evenly. We can, however, add two sites that preserve the center of gravity but introduce
arbitrarily small angles.

Experiment 8.2. We repeated Experiment 8.1, but this time we computed the smallest angle
between leaders of the smallest-angle focus disk, the smallest enclosing disk, and the center of
gravity disk (see Figure 8.6b). We observed that, on average, the angle of the smallest-angle disk
is twice as large as the angle of the two other disks. �is ratio gets even larger for larger point
sets.

We repeated Experiments 8.1 and 8.2 with uniformly distributed point sets and skewed point
sets in which all points lie close to a straight-line segment (that is, we de�ned the x-coordinates
to be uniformly distributed in a small interval and the y-coordinates to be normally distributed).
�e results (again 50 samples for n = 5, . . . , 20) were very similar to what we recorded in
Experiments 8.1 and 8.2.
Due to our theoretical considerations and the outcome of our experiments we are convinced

that the computationally harder sector-maximization technique (see Section 8.3.4) is worth
being applied when selecting the focus disk. Figure 8.7 shows a point set with focus disks
obtained by the three strategies we just discussed.
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(ang) (med) (cog)

Figure 8.7: An example point set with disk that maximizes the minimum angle between leaders
(ang). For comparison: the minimum enclosing disk (med) and the disk centered at the center
of gravity (cog). All three disks are drawn with the same radius.

8.2.2 Free Leaders

In the free-leader model we do not require that the focus region is a disk, but we assume that it
is a (connected) convex region F . As in the radial-leader model, the focus region contains the
sites that we want to label and the leaders are straight-line segments, each of which connects a
site with a port on ∂F . �e locations of the ports on ∂F may be given as a set P. Alternatively,
in case P is not given, we suggest computing the port locations as shown in Figure 8.8.
�emethod applied in Figure 8.8 requires a vertical distance ∆y ∈ R+ between two consecutive

ports on F as input, that is, the spacing between two lines of text. Any intersection between a
line and the boundary ∂F of the focus region de�nes the location of a label port in the set P.
Usually, we de�ne the set of lines such that no line intersects the uppermost or lowermost point
of F—due to their prominent positions, labels placed at such points would be perceived to
dominate other labels, which we normally want to avoid. In any case, setting ∆y to a value
greater than twice the height of a label and using the classical four-position point-labeling
model [BKSW07] that allows any corner of a label to coincide with the label’s port, we can
always place the labels such that they intersect neither each other nor the interior of F . As
the focus region is convex and contains all sites in its interior, every straight-line segment that
connects a port with a site lies completely in F . Hence, intersections between leaders and labels
(apart from label ports) are impossible. We have to ensure, however, that no two leaders cross.
We �rst consider the case that the number of sites and the number of locations for label ports

are equal, that is, ∣S∣ = ∣P∣. In this case, the core question is which sites are assigned to which
ports. �is can be formalized using graph-theoretic terms. We de�ne the graphG = (S∪P, S×P)
that contains a vertex for each site, a vertex for each port location, and an edge for each pair of a
site and a port location. �en a labeling is de�ned by a perfect matching in G, that is, a subsetM
of S × P containing exactly one edge incident to each vertex; each edge {s, p} ∈ M de�nes a
leader between a site s and a port p.
Not all perfect matchings in G yield equally good labelings; some may actually imply crossing

leaders. To reduce visual clutter, we prefer short leaders. Let d(s, p) be the Euclidean distance
of points s and p in the plane. We minimize the sum of the distances over all matched pairs of a
site and a port location.
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dots) for a convex focus region F based on a set of
horizontal lines (dashed) with vertical spacing ∆y.
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Figure 8.9: A crossing of two leaders (solid
edges) can always be resolved (dashed
edges) while reducing the total leader
length.

Problem 8.5 (Minimum distance port assignment).
Input: Convex region F , set S ⊂ F of n sites, set P ⊂ ∂F of n ports.
Output: Perfect matching M in the graph G = (S ∪ P, S × P) such that ∑{s ,p}∈M d(s, p) is

minimized and no two leaders de�ned by edges in M cross.

To simplify our discussion, we observe that the explicit requirement for non-crossing leaders
can be dropped. Even without that requirement, every optimal solution to Problem 8.5 is
crossing-free as Bekos et al. [BKSW07] observed.

Observation 8.1 ([BKSW07]). Every perfect matching M in G = (S ∪ P, S × P) that minimizes∑{s ,p}∈M d(s, p) de�nes a crossing-free labeling.
To see that this is true, we consider two leaders L1 = {p1 , s1} and L2 = {p2 , s2} that cross each

other in point x; see Figure 8.9. Since d(p1 , s1) = d(p1 , x) + d(x , s1), d(p2 , s2) = d(p2 , x) +
d(x , s2), and d satis�es the triangle inequality, both leaders have total length

d(p1 , x) + d(x , s1) + d(p2 , x) + d(x , s2)= (d(p1 , x) + d(x , s2)) + (d(p2 , x) + d(x , s1))< d(p1 , s2) + d(p2 , s1).
�us, replacing L1 and L2 by the leaders {p1 , s2} and {p2 , s1} reduces the total leader length.
Due to Observation 8.1, Problem 8.5 reduces to the problem of �nding a minimum-weight

perfect matching in a bipartite graph whose nodes represent points in R2 and whose edges have
weights representing Euclidean distances; for any ε > 0, this problem can be solved in O(n2+ε)
time [AES99].
As discussed in Section 8.2.1, we o�en cannot label all sites. Interestingly, if we are given n

sites and k ≤ n port locations, we can �nd a crossing-free labeling for any subset S′ ⊆ S of k sites.
�is also follows from Observation 8.1. If the sites are weighted and we aim at maximizing the
total weight of all labeled sites, we simply have to select the k sites of largest weights, which can
be done in O(n) time [BFP+73], and can then apply the algorithm for Problem 8.5 to these sites.
�is requires O(n + k2+ε) time in total. If there are multiple sites of the same weight, however,
selecting an arbitrary subset S′ of maximum weight can result in unnecessarily long leaders.
Generally, we may even want to relax our requirement for a maximum-weight set of sites to

achieve a labeling with shorter leaders, for example, to avoid that clusters of heavy-weighted
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sites result in clusters of sites labeled with long leaders. In order to de�ne the trade-o� between
our preferences for sites of high weights and leaders of short length, we introduce a weight factor
λ ∈ [0, 1].
Problem 8.6 (Best trade-o� between weight and leader length).
Input: Convex region F , set S ⊂ F of n sites with weights w∶ S → R+, set P ⊂ ∂F of k ports,

weight factor λ ∈ [0, 1].
Output: Matching M with ∣M∣ = min{k, n} in the graph G = (S ∪ P, S × P) that maximizes

the objective λ∑{s ,p}∈M w(s) − (1 − λ)∑{s ,p}∈M d(s, p).
Note that we do not require anymore that the matching is perfect, thus allowing some sites or

port locations to remain unmatched. By requiring ∣M∣ = min{k, n}, however, we ensure that
the largest possible number of matches is selected—which is still true if there are fewer sites
than locations for ports.
For λ < 1 we are sure that, if we reduce the leader length and keep the same set of sites labeled,

the objective always increases. Hence, by Observation 8.1, every optimal solution to Problem 8.6
is free of crossings. For λ = 1 we can �nd an optimal solution without crossings by selecting a
set S′ ⊆ S of highest weight that contains min{k, n} sites and labeling S′ with minimum leader
length (by solving Problem 8.6 with S ∶= S′ and λ ∶= 0).
We can solve Problem 8.6 by �nding a maximum-weight matching in the bipartite graph

G = (S ∪ P, S × P) if we de�ne the weight of an edge {s, p} in G to be
λ ⋅w(s) − (1 − λ) ⋅ d(s, p) + C ,

where C is a large constant ensuring that all edge weights are positive. For example, we may set
C to the diameter of the focus region. �is problem can be solved in O(k3 + n3) time, using the
Hungarian method [Kuh55].

8.3 Algorithms for the Radial-Leader Model

8.3.1 Label Maximization with Given Center
We now present an algorithm for Problem 8.1, that is, we maximize the number of labels in a
radial-leader labeling such that, when seen from center c, every two labeled sites are separated
by an angle of at least α.
We �rst select an arbitrary start node s1 ∈ S and sort the sites in S lexicographically according

to their angles and distances with respect to c. Let the resulting sequence be S = ⟨s1 , s2 , . . . , sn⟩.
�en, we de�ne the directed graph G = (S , E) that contains the edge (s i , s j) with i < j if the
angle ∠s i cs j between s i and s j in c is at least α. We are looking for a longest closable path P
in G, that is, a path whose start and end vertex also form an angle of at least α.
Let POPT be a longest closable path in G. Assume that, for two consecutive sites s, s j in POPT,

there is a site s i with i < j and (s, s i) ∈ E. In this case, we can replace s j with s i and obtain
another longest closable path. �erefore, we can always assume that for every site s in POPT
(except for the last site) the next site t in S with (s, t) ∈ E is also contained in POPT. �is allows
us to remove many edges from G while still having the guarantee that a longest closable path
yields an optimal solution. More precisely, we compute the longest closable path in the reduced
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graph G′ = (S , E′); see Figure 8.10. �e set E′ ⊆ E contains at most one outgoing edge for each
node s ∈ S, that is, the edge (s, s i) ∈ E with smallest index i (if such an edge exists). Clearly, the
complexity of G′ is O(n) and, if we have already computed the sequence S , we can compute G′

in O(n) time.
Choosing a dynamic-programming approach, we now compute for i = n down to 1 the

length κ i and the end σi of a longest (not necessarily closable) path in G′ that starts in s i .
Obviously, for i = n, this is the trivial path containing only sn , which implies κn = 1 and σn = sn .
Similarly, if s i with i < n does not have a successor, that is, a node s j with (s i , s j) ∈ E′, the
longest path starting there consists only of s i and we can set κ i = 1 and σi = s i . If a site s i with
i < n has a successor s j in G′, we compute κ i and σi based on the values computed before as
κ i = κ j + 1 and σi = σ j . Hence, computing κ i and σi for 1 ≤ i ≤ n takes O(n) time in total.
For each of the paths computed with the dynamic program (that is, for 1 ≤ i ≤ n) we can test

in O(1) time whether it is closable, simply by testing whether or not∠σi cs i ≥ α holds. If the
longest path Pi starting at node s i is closable, then it is obviously longest among all closable paths
starting at s i . On the other hand, if Pi is not closable we can be sure that there is no closable path
of length κ i starting at s i and that we can obtain a closable path of length κ i − 1 by removing the
last node from Pi . In any case, we obtain a longest closable path starting at s i , which we denote
by P i

OPT. Obviously, a path that is longest among P1OPT , P2OPT ,⋯, Pn
OPT is a longest closable path

in G′.
Summing up, it takes us O(n) time to compute a longest closable path, which is dominated

by the time (O(n log n)) needed for sorting S.
�eorem 8.1. We can solve Problem 8.1 in O(n log n) time, that is, given a set S of n sites in a
disk D = (c, r), and an angle α, we can �nd a maximum-cardinality con�ict-free subset S′ ⊆ S
with respect to the angle α in O(n log n) time.

8.3.2 Weighted Label Maximization with Given Center

We now consider Problem 8.2, that is, the weighted version of the previous problem. In order
to �nd a set S′ of maximum weight, we again use the circular order of sites around c, and the
graph G′ de�ned in Section 8.3.1 with a small modi�cation. We now have an edge connecting
a site s i to the next con�ict-free site s j in circular order even if i > j; see Figure 8.11. We
choose some starting site s′ ∈ S, and suppose that s′ ∈ S′. �en, we go through all sites in
counter-clockwise order, starting at s′. During this process we store for each s ∈ S the maximum
weight T[s] of a con�ict-free set in the range from s to and including s′. We compute T[s] as
follows.
For s′, the range contains just s′, and, hence, T[s′] = w(s′). If a site s does not have a

successor t in G′ such that t lies in the range from s to and including s′, then none of the sites in
this range (excluding s′) can be labeled together with s′. Hence, a maximum-weight con�ict-free
set in this range consists just of s′, that is, T[s] = w(s′). Now, assume we have a site s for which
the successor t in G′ lies in the range from s to and including s′. Let s̃ be the successor of s
in clockwise order; see Figure 8.11. If we select s, then the next con�ict-free site is t and an
maximum-weight con�ict-free solution consists of s and an optimum solution for t. Otherwise,
that is, if s is not contained in an optimum solution, an optimum solution for s̃ is also optimum
for s. Combining the two cases, we get T[s] = max{w(s) + T[t], T[s̃]}. Hence, we can �nd a
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α
c

s1
s2

s3
s4s5

s6

s7

Figure 8.10: A reduced graph G′ for sites S =⟨s1 ,⋯, s7⟩. For site s there is an edge to the next
site t with∠sct ≥ α (if such a site exists). �e
longest path in G′ is ⟨s1 , s3 , s5 , s7⟩, which is not
closable since ∠s7cs1 < α. A longest closable
path is, for example, ⟨s1 , s3 , s5⟩.

c

s′

s

s̃t

t̃

Figure 8.11: Amaximum-weight con�ict-free
set of sites in the range from s to s′ (marked by
boxes). Here, T[s] = T[t] +w(s). In contrast,
T[t] has been computed as T[t] = T[t̃].

s1

s2

α

Figure 8.12: A partial double disk U α
s1 ,s2 .

maximum-weight set S′ with s′ ∈ S′ in O(n) time. By starting this algorithm at each site s′, we
maximize the total weight of visible labels in O(n2) time.
�eorem 8.2. We can solve Problem 8.2 in O(n2) time, that is, given a set S of n sites in a
disk D = (c, r), a weight function w∶ S → R+, and an angle α, we can �nd a maximum-weight
con�ict-free subset S′ ⊆ S with respect to the angle α in O(n2) time.

8.3.3 Label Maximization with Variable Center Position

We now present an algorithm for Problem 8.3, that is, we maximize the number of non-
con�icting sites separated by an angle α, but now, the center c of the circular focus region
is not prescribed.
For each pair of sites s1 , s2 ∈ S the points from which the line segment s1s2 appears at an

angle of at least α form a region U α
s1 ,s2 = {c ∈ R2 ∣ ∠s1cs2 ≥ α}. According to the inscribed angle

theorem, the angle at vertex c of a triangle abc does not change if c moves on the circumcircle of
the triangle (while staying on the same side of the straight line supported by a and b). �erefore,
U α

s1 ,s2 is the union of two partial disks, one on each side of s1s2. We thus call U
α
s1 ,s2 a partial

double disk; see Figure 8.12.
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α
s1

s2

I

Figure 8.13: Arrangement Aα
S containing the

boundary of each partial double diskU α
u ,v with

u, v ∈ S. Region I is the intersection of all par-
tial double disks. In this example, for every
point c ∈ I, (c, S) is an optimum solution to
Problem 8.3.

Figure 8.14: Arrangement Aα
S of Figure 8.13

extended by adding all straight lines formed by
pairs of sites.

We denote by Aα
S the arrangement given by the union of the boundaries of the n2 partial

double disks for all pairs of sites; see Figure 8.13. Since two partial double disks can only intersect
O(1) times, the arrangement has a combinatorial complexity of O(n4). We can traverse the
whole arrangement and visit every cell in O(n4 log n) time by using a sweep line algorithm.
For doing so, we just need to maintain a linked list for the order of disk boundaries that the
vertical sweep line intersect, as well as an event queue for the event points in which disks start,
end, or intersect; maintaining the event queue causes logarithmic overhead. During the sweep
we determine for each cell C a set S′ ⊆ S of maximum size such that for every point c ∈ C the
sites in S′ are separated by an angle of at least α (when seen from c). With our algorithm from
Section 8.3.1 we can do this in O(n log n) time. Together with the time needed for traversing all
cells we get an O(n5 log n)-time algorithm for �nding an optimal center.
We can reduce the running time of the algorithm toO(n5) by updating the circular order from

cell to cell instead of sorting the pointsO(n4) times. To this end, we extend the arrangementAα
S

by adding all straight lines formed by a pair of sites; see Figure 8.14. Note that the complexity
of this extended arrangement is still O(n4) and that the arrangement can be traversed by a
sweep line algorithm in O(n4 log n) time. When moving a center c inside any of the O(n4)
cells of the extended arrangement, the circular order in which the sites are seen from c does not
change. Furthermore, when moving the center from one cell to an adjacent cell, the order can be
updated. �is is done by a single swap of two sites if the cells are separated by the straight-line
supporting the two sites (and the separation is not part of the straight-line segment between the
sites).
Hence, we can easily update the circular orders in one step of our sweep line algorithm in

O(1) time. As �nding an optimum set S′ ⊆ S of sites needs only O(n) time for each cell, the
total running time for �nding an optimum center improves to O(n5).
�eorem 8.3. We can solve Problem 8.3 in O(n5) time, that is, given a set S of n sites and an
angle α, we can �nd a center c and amaximum-cardinality con�ict-free subset S′ ⊆ S with respect
to the center c and the angle α in O(n5) time.
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In the weighted setting, we can combine the traversal of the disk arrangement with the
technique presented in Section 8.3.2. �is yields anO(n6)-time algorithm that �nds an optimum
center position.

8.3.4 Sector Maximization
Let us �rst address the decision problem derived from Problem 8.4, that is, we want to decide if
we can �nd a center such that all sites are separated by a given angle α. �is question can be
answered with the help of the arrangementAα

S introduced in the previous section. We can �nd
such a center c, if there is a cell in Aα

S that is covered by all possible partial double disks. In
order to �nd such a cell, or to report that none exists, we use again a sweep line algorithm. We
keep track of the number of partial double disks that cover the cells we are observing during the
sweep. When traversing from one cell to another we can update this information in O(1) time.
Hence the decision problem can be solved in O(n4 log n) time.
In order to maximize α such that a center cα with minimum angle at least α exists, we use

the following technique: Consider the arrangementAα′
S parametrized by α′. As long as there

exists a cell with positive volume that is covered by all partial double disks, we can decrease the
angle α′ and obtain a new arrangement with such a cell. It follows that for an optimal angle α,
there has to be at last one degenerated cell, formed by a single point, that is covered by all partial
disks. �is means, however, that three or two of the partial double disks meet in one point.
Hence, it su�ces to compute for all triplets and tuples of input point pairs the angle where their
induced three (or two, respectively) partial double disks meet in a single point. �e smallest
such angle determines the value α. �e running time of this strategy is O(n6).
�eorem 8.4. We can solve Problem 8.4 in O(n6) time, that is, given a set S of n sites we can
�nd an angle α and a center c such that S is con�ict-free with respect to c and α, and α is the
largest angle for which we can �nd a feasible center position.

For Experiment 8.1 and 8.2 we have used a prototypical implementation to solve the sector
maximization problem. We did not use the proposed (exact) O(n6)-time solution, but solved
the sector maximization problem numerically. More precisely, we formulated Problem 8.4
as a minimax problem and solved it by the computer algebra so�ware Mathematica via the
di�erential evolutionmethod. Our solutions converged for almost all computed instances within
reasonable time (see Table 8.1).

#sites 5 15 25 35 45 55 65 75 85
time[s] 1.83 2.10 2.68 3.82 5.26 6.80 10.07 12.59 15.38

Table 8.1: Runtime for the numerical solution of the sector maximization problem on a standard
2-core 3 GHz desktop computer.

8.4 Extensions
In this section we discuss two extensions that can be applied to our leader models. First, we show
how to simultaneously cluster sites and label a representative site from each cluster (Section 8.4.1).
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(a) λ = 0 (b) λ = 0.45 (c) λ = 0.50 (d) λ = 0.55 (e) λ = 1

Figure 8.15: Solutions to Problem 8.6 obtained with di�erent values for λ. Since sites close to
the center c of the focus region are assumed to be important, the weight w(s) of a site s was set
to the Euclidean distance between s and c. Gray dots show sites that did not become labeled.

Second, we transform, in a post-processing step, our straight-line leaders into well-shaped Bézier
curves. For the radial-leader model, this gives us more �exibility in the placement of the ports
as compared to straight-line leaders. Hence, we can either place more or larger labels. For the
free-leader model, Bézier curves help to lead the user’s eye in a natural, bend-free way from the
site to the label (or vice versa).

8.4.1 Simultaneous Clustering and Labeling

When discussing the free-leader model (Section 8.2.2) we dealt with the problem that the input
map may contain signi�cantly more sites than we have leader ports available. In this case, we
had to select a subset of sites that are actually labeled and to assign these sites to the ports.
In Problem 8.6, we addressed both issues (selection and assignment) by an extension of

bipartite matching. Our experiments indicate, however, that the sites selected by optimum
solutions to Problem 8.6 do not su�ciently re�ect the spatial distribution of the sites. Consider
Figure 8.15 that shows various solutions for the same input but di�erent values of the weight
factor λ. We used a non-uniform weight functionw where the weight of a site equals its distance
to the center of the circle. �is can be justi�ed by the assumption that sites closer to the center
of the focus region could be considered more important for the user. Simultaneously, this avoids
that only sites close to the boundary are labeled, which happens if we use a uniform weight
function or if we set λ = 0 (see solution (a)). Interestingly, this preference of sites close to
the boundary persists even if we increase λ to values slightly below 0.5 (see solution (b)). As
soon as we increase λ to values greater than or equal to 0.5 (see solutions (c)–(e)) the optimum
solution exhibits a preference for sites closer to the center. What we actually want is, however,
that the labeled sites are evenly distributed thereby re�ecting their spatial distribution. �is is
not su�ciently accomplished by the solutions for Problem 8.6 shown in Figure 8.15.
For example, if the set of sites contains a dense cluster, the selected subset of labeled sites

should also contain a (possibly less dense) cluster in the same area. Simultaneously we want to
construct a suitable assignment of the labeled sites to the ports, which is represented by the sum
of leader lengths.
We now present a novel free-leader model that is based on facility location. Our model

simultaneously addresses the problem of selecting a suitable subset of sites that are labeled and
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of obtaining a good assignment of the selected sites to the leader ports. �e main bene�t of
this model in comparison to Problem 8.6 is that the subset of labeled sites re�ects the spatial
distribution of the complete set of sites.
�e problem of selecting a subset of given cardinality k from a set of input points so that the

selected points “represent” the entire set in a spatial sense is a common problem that arises, for
example, in clustering and location theory. Popular formulations as an optimization problem
are the k-means and the (Euclidean) k-median problem. For the k-median problem the input
is a set S of points (sites) and a number k ≤ ∣S∣. �e goal is to �nd a k-element set of facilities
and to connect each site to a facility so that the total connection cost, that is, the sum of the
Euclidean distances from the sites to their respective facilities is minimized. In clustering theory,
the facilities opened by an optimum solution are considered as cluster centers that re�ect the
spatial distribution of the set S and the clusters are the subsets of sites that are connected to the
same cluster center (facility).
A natural idea is to select, in a �rst stage, the sites that we want to label by computing a

solution to the corresponding k-means or k-median problem and choosing the cluster centers
as the selected sites. �en, in a second stage, one can compute a good assignment of these
cluster centers to ports. �is can, for example, be accomplished by computing a minimum
weight bipartite perfect matching between the cluster centers and the ports. �e drawback of
this approach is that it divides the problem into two separate optimization stages (selection and
assignment) and exclusively prefers the selection goal to the assignment goal.
In what follows we present a capacitated extension of the Euclidean k-median problem and

the closely related facility location problem that incorporates selection and assignment into one
neatly formulated optimization problem. We aim at selecting k sites for labeling (considered as
facilities) and connecting the remaining sites in S (considered as customers) to a facility. �e
k-median problem can then be considered as the problem of opening k facilities and connecting
each site to a facility such that the total connection cost (sum of distances of sites to their facilities)
is minimized. Moreover, we need to ensure that each facility (labeled site) is connected to a port.
�is �ts nicely into our location model as we can simply consider the ports as additional, special
customers that need to be connected to the facilities. �e previously con�icting goals of �nding
a good selection of sites and �nding a good assignment of these sites to ports are then subsumed
by the single goal of minimizing the total connection cost. We have to require, however, that
each facility serves exactly one port in order to ensure a one-to-one correspondence between
labeled sites and ports. Problem 8.7 gives a formal description of our model.

Problem 8.7 (Facility-location-based labeling).
Input: Convex regionF , set S ⊂ F of n sites with opening costs c∶ S → R+

0 , set P ⊂ ∂F of k ≤ n
ports, factor λ ∈ [0, 1].

Output: A feasible solution consists of a k-element set S′ ⊆ S of facilities and an assignment
σ ∶ S∪P → S′ specifying for each site or port to which facility it is connected. Each facility
must be connected to exactly one port and to at most ⌈∣S∣/k⌉ sites. A feasible solution has
a total opening cost of∑ f ∈S′ c( f ) and a total connection cost of λ∑p∈P d(p, σ(p)) +(1− λ)∑s∈S d(s, σ(s)). �e output is a feasible solution that minimizes the sum of total
opening and connection cost.

We assign to each site s a cost c(s) that is incurred if a facility is opened at s. �is cost re�ects
the importance of labeling the site s where a smaller opening cost means higher importance.
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�e overall goal is to minimize the sum of opening costs and total connection cost. We impose
an additional capacity constraint on each facility that ensures that each facility is connected to
roughly the same number of sites. �e reason is that in the uncapacitated variant optimum solu-
tions tend to place a comparatively small number of facilities into a spatially dense accumulation
of points since all the sites in such an accumulation can e�ciently be served by few facilities. By
adding the capacity constraint we ensure that dense accumulations lead also to accumulations
in the set of facilities.
Another nice property of our model is that in optimum solutions there are no intersections

between port-facility connections and no intersections between site-facility connections. �is
can be shown analogously to Observation 8.1. See also Figure 8.16.

Integer Linear Program

We now present a formulation of Problem 8.7 as an integer linear program (ILP). To this end, we
introduce for each site i ∈ S a binary variable y i ∈ {0, 1} specifying whether a facility is opened
at i. For each pair (i , j) ∈ S × (S ∪ P) we introduce a binary variable x i j ∈ {0, 1} indicating
whether j is connected to facility i. We can formulate our objective function as a linear function
as follows:

Minimize ∑
i∈S

c(i)y i + λ ∑
i , j∈S

d(i , j)x i j + (1 − λ) ∑
(i , j)∈S×P

d(i , j)x i j .
It remains to formulate linear constraints ensuring that the variables y i and x i j describe a

feasible solution to the input instance. First, we ensure that each j ∈ S ∪ P can only be connected
to a site i where a facility is actually opened by means of the constraint

x i j ≤ y i for each i ∈ S , j ∈ S ∪ P .

To make sure that each j ∈ S ∪ P is connected to exactly one facility, we require that

∑
i∈S

x i j = 1 for each j ∈ S ∪ P .

�e requirement that each port is connected to exactly one facility can be described by

∑
i∈S

x i j = 1 for each j ∈ P .
We further require that each facility is connected to only one port, which we can model by

∑
j∈P

x i j ≤ 1 for each i ∈ S .
�e combination of the last two constraints ensures a one-to-one correspondence between ports
and opened facilities.
To make sure that the maximum number of sites per facility is not exceeded we require

∑
j∈S

x i j ≤ ⌈∣S∣/k⌉ for each i ∈ S .
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(a) Selected sites and leaders connecting them to
the assigned ports.

(b) Site-facility connections.

Figure 8.16: Optimum solution to Problem 8.7 for the Seattle instance (n = 95).
Finally, we ensure that exactly k facilities are opened by means of the constraint

∑
i∈S

y i = k .

Experiment 8.3. We implemented the integer linear program in C++ using the optimizer
Gurobi (version 4.6.1). We computed an optimum solution for the same data set that we used in
Figure 8.15 for discussing Problem 8.6. It consists of n = 95 sites (restaurants on a map excerpt of
Seattle) and k = 20 ports. �e result is shown in Figure 8.16. Observe that the selection of labeled
sites much better represents the spatial distribution of all sites than the solutions to Problem 8.6.
�e computation of the optimum solution took 124s on a PCwith an Intel Core2Duo E8400 CPU
with 2 cores at 3 GHz each and 4 GB RAM. In comparison, the computation of the optimum
solutions to Problem 8.6 with 50 di�erent values of α took less than 1s in total on the same PC.
As the integer programming solution is not suitable for interactive usage, we also tested a

heuristic approach for �nding good solutions quickly in two steps. First, we use a randomized
algorithm for �nding k cluster centers. �e algorithm chooses new centers one a�er the other,
where, in each step, the probability of choosing a point is proportional to its distance to the closest
center chosen so far. �is algorithm is known to �nd a solution to the k-median problem with
an expected approximation ratio of O(log k) [AV07]. Next, we compute crossing-free leaders
connecting the chosen centers to the ports by using our matching approach. �e algorithm for
�nding the cluster centers is even faster than the matching algorithms, and yields solutions in
which labeled points tend to be in dense regions, but not too close to each other. If a complete
clustering is needed, the unlabeled points may be assigned to their closest center; see also the
section on the uncapacitated relaxation on page 168.
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Figure 8.17: Example where the convex hulls of two optimum clusters intersect and where the
Voronoi cells of the sites of one cluster are not connected.

Disk-in-Disk Visualization for Labeling Large Point Sets

When dealing with large and dense point sets, we face the problem that only a small fraction of
the sites can actually be labeled since labels must be large enough and may not overlap in order
to be readable. We present a natural method based on our facility location model that clusters
the sites into connected, non-overlapping subregions, one for each label. �e user can select
a subregion—for example, by clicking the corresponding label—which is then scaled up and
labeled in more detail; see Figure 8.1. In the new labeling, we keep the selected label �xed, even
if this causes crossings with leaders of other labels. We think that this is less distracting than if
the selected label jumped to its new position.
We associate each facility f with the set C f of all sites that are connected to that facility. �is

set C f forms a cluster, and the label for C f is the unique label L f that is connected to facility f .
Note that no cluster contains more than ⌈∣S∣/k⌉ sites due to the capacity constraints. Our goal is
to embed each cluster C f into a connected subregion R f ⊆ F so that no two subregions overlap.
A possible use case is to visually highlight the region R f whenever the cursor hovers over the
label L f . We want to identify subregions that can be easily recognized by the user. Unfortunately,
it is not always possible to �nd convex subregions that meet the above requirements.
Figure 8.17 shows an instance with optimum solution for k = 4 labels where the convex hulls

of the two clusters overlap. �e instance contains sites f , f1 , f2, and f3 where f1 , f2, and f3 are
each surrounded by a large number Ω of sites at small distance ε. Similarly, f is surrounded by
Ω − 2 many sites at distance ε. Moreover, there are two more distant sites s1 and s2. If Ω is large
enough the optimum solution must choose f , f1 , f2, and f3 as the locations for the facilities.
If ε is small enough the sites are connected to the facilities as shown in the picture since all
facilities must serve the same number of sites due to the capacity constraints. �e convex hull of
cluster C f2 is contained in the convex hull of C f .
�e same example also shows that the Voronoi cells of the sites s1 and s2 can be disconnected

from the Voronoi cells of the remaining sites in cluster C f . Hence, also using the Voronoi cells
does not yield a nice partition of the region F .
Triangulation-Based Partitioning. We now propose a simple approach that partitions F
into a collection of subregions containing one cluster each. Our approach is similar to the
computation of skeletons based on constrained Delaunay triangulations [CBB91, BW97] and
on the work of Reinbacher et al. [RBvK+08] who deal with the problem of computing polygons
that separate two given point sets in the plane.
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Let S′ ⊆ S be the set of cluster centers that are to be labeled. We de�ne the star S f for facility
f ∈ S′ as the set of line segments f s with s ∈ C f . Note that no two stars intersect since site-
facility connections do not cross. We assume that the boundary ∂F of F is given as a polygon.
(Otherwise, we can choose a set F ′ of su�ciently many points from ∂F and replace F with the
convex hull of F ′.) We compute the union of ∂F with all stars S f for f ∈ S′ and complete the
resulting set of non-intersecting line segments to a complete triangulation T . For example, we
can compute a constrained Delaunay triangulation in O(n log n) time [Che89].
We then partition the region F into connected subregions R f for each f ∈ S′ such that C f

is contained in R f . �is is accomplished by partitioning each triangle separately as shown in
Figure 8.18a.
Consider a triangle spanned by three sites. (We treat the vertices on ∂F as sites of a special

cluster.) If all three sites belong to the same cluster, we do not partition the triangle. If the sites
belong to two di�erent clusters, we partition the triangle into two pieces by cutting along the line
segment that connects the midpoints of the two edges whose end points lie in di�erent clusters.
In case the three sites belong to three di�erent clusters, we partition the triangle into three pieces
by cutting along the three line segments that connect the midpoints of the edges with the center
of gravity of the triangle; compare Figure 8.18a for occurrences of the three cases. Note that we
partitioned the triangle according to the clustering, that is, sites of the same cluster lie in the
same piece and sites of di�erent clusters lie in di�erent pieces. �erefore, we can assign each
piece of the triangle to a unique cluster. We perform the above partitioning for every triangle.
For each cluster C f , the region R f is the union of all pieces that are assigned to the cluster C f .
�e above algorithm ensures that each site of a cluster C f is contained in R f and that two

distinct regions R f and R f ′ are interior-disjoint. Every region R f is connected as it contains the
star S f . Finally, it is easy to verify that, for each facility f , the boundary ∂R f of R f is a simple
polygon that consists only of line segments along which we cut triangles.

Uncapacitated Relaxation and Voronoi-Based Partitioning

An interesting relaxation of Problem 8.7 is to drop the capacity constraints for sites, that is, to
allow that an arbitrary number of sites is connected to the same facility. Of course, we still insist
on exactly one port per facility. �is relaxation, gives less incentive to place multiple facilities
into spatially dense accumulations of sites since all sites in such an accumulation can e�ciently
be served by one facility.
A nice property of this relaxed version is that we now can determine a natural decomposition

of F into convex and pairwise disjoint regions that cover the clusters of an optimum solution.
To this end, consider an optimum solution to the relaxed problem with a set S′ of facilities. Now
consider the Voronoi diagram for the point set S′. �en each facility f lies in a unique Voronoi
cell Vf ; see Figure 8.18b. �ese cells form a natural decomposition of F into interior-disjoint
convex regions. It is easy to see that for each f the cluster C f is contained in the Voronoi cell Vf .
Assume to the contrary that a site s ∈ C f lies in the interior of a cell Vf ′ with f ′ ≠ f . �en s
would be strictly closer to f ′ than to f . �erefore, we could obtain a strictly cheaper solution
by re-connecting s to f ′, which would not a�ect the feasibility since we impose no capacity
constraints on f ′. �is contradicts the optimality of the solution.
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(a) Triangulation-based (b) Voronoi-based

Figure 8.18: Partitioning the focus region.

8.4.2 Bézier Post-Processing

In all our previous methods, we used crossing-free straight-line leaders for connecting sites
and labels. Now we want to improve these drawings by using more �exible leaders. In previous
works on boundary labeling, the only drawing styles for leaders have been straight-line segments
and polylines. We, however, use Bézier curves, which are easier to follow than polylines since
they do not have sharp bends. More precisely, we use cubic Bézier curves, which are de�ned by
their endpoints and two intermediate control points; see Section 2.2.
For computing the new leader layout, we use the force-directed approach similar to the algo-

rithm for drawing metro maps using Bézier curves presented in Chapter 3. Our algorithms start
with a straight-line drawing and let forces, de�ned by physical analogies, iteratively transform
the drawing. In contrast to Chapter 3, we have several vertices (the sites) that must not be moved.
Again, we de�ne several forces that are applied to the Bézier curves; each force optimizes a
certain aspect of the drawing. In each iteration, the desired movement vectors for all curves are
computed by summing up the single forces. Before applying these movements to the current
drawing, we limit some movements, if necessary, to ensure that the new drawing is crossing-free.
Our algorithms terminate when a prespeci�ed number of iterations is reached or the maximum
movement per iteration is very small compared to the distances between the input sites.

Horizontal Labels with Given Ports

For the free leader model (Section 8.2.2) our main requirement is that the new leaders enter
the labels horizontally from within the focus region. Additionally, the drawing should stay
crossing-free. Subject to these constraints, we would like the curves to be as smooth as possible;
see Figure 8.1b at the beginning of the chapter (page 147).
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Figure 8.19: Placing the control points of a Bézier leader for a horizontal label.

Problem 8.8 (Bézier leaders for horizontal labels and given ports).
Input: Disk D = (c, r), sites s1 ,⋯, sn ∈ D, ports p1 ,⋯pn ∈ ∂D such that the segments

s1p1 , . . . , sn pn are crossing-free.
Output: Bézier curves B1 ,⋯, Bn such that, for i = 1,⋯, n, curve B i connects s i to p i and enters

port p i horizontally, and no two Bézier curves intersect. Curves should not be too close
to each other and should not have high curvature.

During our force-directed algorithm, sites and ports will, of course, stay �xed. For i = 1,⋯, n,
we initialize curve B i by making s i and p i its endpoints and by placing the two intermediate
control points a i and b i on their closer endpoint, that is, on s i and p i , respectively. Hence,
initially B i = s i p i and, according to our assumption, this initial drawing is crossing-free. In
order to improve the shapes of our curves, we must move the control points.
It is clear that, if we want the leader to enter port p i horizontally, b i must move, but stay on

the horizontal line through p i and inside the focus region. We must also move a i away from s i
to get a good curve. For a nice-looking curve, it makes sense to place the control points so
that the three segments of the polyline s ia ib i p i have roughly equal length r i . As Figure 8.19a
indicates, there are—under this restriction—two possible positions for a i if r i is large enough.
On the other hand, we strive to keep the leader short in order tomake it easier to follow. Hence,

we try to keep r i = d(b i , p i) as small as possible. In this situation, the only possible position
for a i is the center of s ib i ; see Figure 8.19b. To keep visual and computational complexity small,
we �x a i to this position. Our algorithm modi�es, therefore, only the parameter r i = d(b i , p i),
while a i will automatically always be in the middle between s i and b i . Let rOPTi be the optimal
value of r i for B i , that is, the value resulting in d(b i , s i) = 2rOPTi . �en the attracting force on b i
is

fattr(B i) = rOPTi − r i ,

that is, the “vector” from the current to the desired position.
An additional criterion for a pleasant-looking leader layout is that two leaders do not come

too close. To this end, we add a repelling force between two leaders. Suppose that we have a
pair of leaders B i and B j , as shown in Figure 8.20. We �rst compute the minimum distance
d(B i , B j) between the two curves. Note that this can easily be approximated by a polygonization
of the curves. Given the relative position of the curves in Figure 8.20, the control point b i of B i
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Figure 8.20: Curve B j repels curve B i .

should be repelled towards its port p i . It is reasonable to make this repelling force larger when
the distance between the curves gets smaller. Hence, we set

frep(B i , B j) = −r i
d(B i , B j)

for the force repelling B i from B j . If the relative position of the curves is di�erent, the force is
de�ned analogously but the direction may change.
Finally, the total force on the control point b i of a curve B i is

f (B i) = cattr fattr(B i) + crep ∑
B j≠B i

frep(B i , B j),
where the weights cattr and crep are still �exible. In our tests, cattr = crep = 0.5 turned out to be a
reasonable choice.
Once all forces are computed they should be applied onto the current drawing, that is, the

new value of r i should be r′i = r i + f (B i). Simply applying the forces could, however, lead to
crossings, despite the repelling forces between leaders. �erefore we introduce limitations to the
forces, that is, a maximum allowed change of the absolute value of r i . We set this limitation to

fmax(B i) = 0.45 min
B j≠B i

d(B i , B j) .
It is easy to see that, with a maximummovement of d on b i , all points on the new curve B′i lie
within a distance of at most d from the old curve B i . Hence, by moving b i and b j by at most
0.45d(B i , B j) we cannot create an intersection of the two leaders. It follows that limiting the
absolute value of f (B i) to fmax(B i)—where necessary—before applying the forces guarantees
that the drawing stays crossing-free.
�e algorithm terminates when an equilibrium of forces is reached. In practice, it su�ces

that the maximum change in an iteration is very small, that is, much smaller than the distance
between any two sites. Note that it su�ces to compute forces just for pairs of leaders that can
actually come close. Disregarding all unnecessary pairs gave a huge speedup in our experiments.

Experiment 8.4. We tested a Java prototype implementation of our algorithm on the same
machine used for Experiment 8.3. We �xed the port positions at equal distances as described
in Section 8.2.2 (see Figure 8.8 in this section). We were mainly interested in the increase of
total leader length caused by improving the shape of the leaders. For the test, we used growing
subsets of the Seattle instance (see Figure 8.1) where all sites had to be labeled (that is, k = n).
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Figure 8.21: Rectangular boundary labeling with leaders drawn as Bézier curves.g

In each new subset, we added sites farther from the city center and increased the radius of the
focus region accordingly. For each instance, the algorithm did 200 iterations. Table 8.2 shows
the results.

#sites (n) 10 20 30 40 50 60 70 80 90
time[ms] 25 169 123 141 121 170 168 253 354
incr. [%] 4.07 3.09 2.69 2.14 2.57 1.51 1.37 1.90 1.83

Table 8.2: Runtime for Bézier postprocessing; increase of leader length.

As we can see, the postprocessing increases the total leader length only by a small percentage
while producing nice-looking leaders. For comparison, we refer to the Bézier leader layout
in Figure 8.1b: �ere, the increase of leader length compared to the straight-line version was
only 3.1%; the running time was 0.3s. Note that the running time heavily depends on the
distribution of sites. If there are very dense regions such as the cluster in the center, the algorithm
is slower due to strong repelling forces which increase the number of necessary iterations. If,
however, the sites are better distributed, for example, a�er selecting a subset with the method
presented in Section 8.4.1, the postprocessing is faster and produces better-looking leaders.

Traditional Boundary Labeling

Traditional, two-sided boundary labeling for rectangular maps has, so far, only been approached
with straight-line or polyline leaders. It is, however, easy to create such a labeling using Bézier
curves as leaders by using our techniques. Note that we did not use the shape of the focus region
in the force-directed algorithm. Suppose that we are given a rectangular focus region with sites
inside and ports on the boundary. �en we can compute a port–label assignment such that
straight-line leaders do not cross by the matching technique that solves Problem 8.5. Using
this assignment, we can apply the Bézier postprocessing presented above to get a crossing-free
layout of Bézier leaders; see Figure 8.21.
Our approach can also be applied to further types of focus regions if we can ensure that the

Bézier leaders stay inside the region.

172



8.4 Extensions

si ai

bi

si+1

si−1

pi

c

Figure 8.22: Bézier curve B i between neighbors B i−1 and B i+1.

Radial Labels without Given Ports

In the radial-leader scenario we cannot improve much by simply rerouting the leaders using
Bézier curves: �e leaders already leave sites as well as ports radially and have—as straight-line
segments—minimum length. �ere could, however, be pairs of ports forming a small angle at
the center compared to the necessary average angle 360○/n, even a�er optimizing the smallest
angle by using the algorithm presented in Section 8.3.4. We can optimize these angles by moving
the ports on the boundary and rerouting the leaders using Bézier curves. We still want the
leaders to leave sites and ports radially and insist on crossing-free leaders.

Problem 8.9 (Bézier leaders for radial labels without given ports).
Input: Disk D = (c, r), sites s1 ,⋯, sn ∈ D.
Output: Ports p1 ,⋯pn ∈ ∂D and Bézier curves B1 ,⋯, Bn such that the circular order of the

ports is the same as the order of their respective sites, for i = 1, . . . , n, curve B i leaves
site s i radially and enters port p i radially, and no two Bézier curves intersect. �e gaps
between the ports should be of approximately equal length and the ports should be close
to their sites.

�is problem can again be tackled using a force-directed algorithm: We start by setting, for
i = 1, . . . , n, port p i to the projection of s i onto ∂D, and by using the straight-line leader s i p i ,
which is a special Bézier curve. In each iteration of the algorithm, we try to improve the
distribution of the ports on ∂D under the additional requirements of Problem 8.9. We assume
that the indices are chosen in such a way that the ports p1 , . . . , pn occur in clockwise order
on ∂D. We will keep this property during the iterations of the algorithm.
As we want to enter/leave sites and ports radially, the intermediate control points a i and b i of

the curve B i connecting site s i and port p i must lie on the straight lines cs i and cp i , respectively;
see Figure 8.22. �us, our algorithm keeps track of three parameters for each Bézier leader B i :
the position of port p i and the distances d(s i , a i) and d(b i , p i). We introduce the following
forces:

• A force attracting port p i to the midpoint of p i−1 and p i+1 on ∂D, which is in the middle
of the circular arc with center c connecting p i−1 and p i+1 in clockwise order. In an
equilibrium, that is, if all ports have equal distance to both of their neighbors, all gaps are
of equal length.

• A force attracting each port p i towards its initial position, that is, the radial projection of
s i , for straightening the Bézier curve.
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Figure 8.23: Improvement of radial leaders by postprocessing with Bézier curves.

• Repelling forces on the control points if two neighboring curves are too close. �is should
avoid small distances between the leaders. We try to move both control points of B i to
the same direction such that a i stays closer to the center of the disk than b i .

• A force that tries to move a i and b i such that both distances d(s i , a i) and d(b i , p i) are
1/3 of the distance of s i to the original position of p i , which is r − d(c, s i).

For any force, it is enough to consider the two neighboring sites s i−1 and s i+1 in circular order.
To avoid crossings between labels we limit forces if necessary. �is can, again, be done based on
the minimum distances to the two neighboring curves.

Experiment 8.5. �e algorithm was implemented in Java and tested on the same machine and
the same instances as in Experiment 8.4. We did 200 iterations per instance. As the positions of
ports are �exible, we also measured the optimization criterion, that is, the smallest angle, and
compared it to the upper bound 360○/n. Table 8.3 shows the results.

#sites (n) 10 20 30 40 50 60 70 80 90
time [ms] 218 281 324 292 353 400 445 506 574
angle [%] 64.8 26.7 43.3 39.9 48.5 29.3 31.3 37.3 29.2
incr. [%] 11.9 6.4 0.9 1.2 1.0 0.6 0.6 0.4 0.3

Table 8.3: Runtime, minimum angle (% of 360○/n), increase of length.
For n ≥ 20, the initial straight-line solution had—due to the dense region of sites in the

center—an initial minimum angle of less than (0.001○). Our post-processing always improved
this to a reasonable percentage of the upper bound 360○/n. As in Experiment 8.4, the relative
increase of the total leader length was very small. For a visual inspection of the improvement,
see Figure 8.23: when using Bézier curves, the minimum angle increased from 11○ to 35○ (upper
bound 45○), whereas the total leader length increased by a mere 6.3%.
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Figure 8.24: Leaders consisting of a straight-line and a circular arc.

8.5 Concluding Remarks

We have investigated the problem of labeling sites in a focus region by placing labels at the
boundary of the focus region and connecting sites and their labels by leaders. We have considered
the free-leader model and a new radial-leader model. Usually, users will insist on horizontal
labels, which we recommend to combine with the free-leader model. If, however, it is crucial
to label a lot of sites— especially with short labels—, it is better to place leaders and labels
radially. We strongly recommend to take advantage of the Bézier postprocessing, especially
for the radial-leader model which otherwise su�ers from small port distances. In a dynamic
environment, we suggest using straight leaders during user interaction. As soon as an interaction
ends, one could turn the straight leaders into Bézier leaders by animating the execution of our
force-directed algorithm.

Open Problems. Also for labeling focus regions, there are some open problems. We have
presented an algorithm that creates a boundary labeling with curvy leaders. While the results in
our tests looked nice and their computation was fast, we stress that the Bézier curves were only
computed as a post-processing from an initial straight-line labeling. Potentially, better results
could be obtained by directly computing curvy leaders using a new, specialized algorithm. As
Bézier curves are not very easy to handle, also other leader styles with curves could be tried,
for example, a horizontal line segment combined with a circular arc in smooth transition; see
Figure 8.24. Another problem is the evaluation of curvy leaders in a user study. �e main
questions are whether users prefer the look of curvy leaders over other leader styles and whether
curvy leaders make it easier for users to solve tasks like �nding a certain site or �nding the label
for a highlighted site.
Both for the radial and the free-leader model, we presented fast algorithms for �nding a

labeling that maximizes the weight of labeled sites, if not all sites in the focus region can be
labeled at the same time. �e algorithms are fast enough for interactive use, that is, if the focus
region is moved by the user. In such a move, some new sites can enter the focus region, some old
sites leave the focus region, and other sites will remain in the focus region. So far, our solution
would be to compute a new labeling independent of the old solution if the focus region is moved.
In practice, however, one would like some stability of the labeling; that is, if a site is labeled in
the �rst solution, it should preferably stay labeled even if the focus region is moved a bit—at least
for a certain time span, so that the user can read the label. We suggest approaching this problem
by modifying the weights of sites over time. For instance, if a site is labeled for the �rst time, its
weight should be increased so that it preferably stays labeled in the next solution—unless the
site leaves the focus region. A�er some time, some new sites should also get the opportunity to
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be labeled; hence, we can decrease the weight again. �e most di�cult task is to evaluate the
right weight function—over time—and to test the method in an interactive application.

176



Chapter 9

Many-to-One Boundary Labeling with
Backbones

In the previous chapter, we have studied problems in the context of boundary labeling, where
one wants to label sites in a focus region so that each point has its individual label that is to
be placed at the boundary of the focus region. �ere are, however, also applications in which
several sites must get the same label. For example, one may want to label sites by their class,
for example, if di�erent types of restaurants must be labeled. Instead of labeling each site of
a class by an individual label and having several labels with the same text, we can also allow
that multiple sites of the same class are connected to the same label. �is problem setting is
known as many-to-one boundary labeling, meaning that several sites can be connected to the
same label via leaders.

More speci�cally, we studymany-to-one boundary labeling with backbone leaders. In this new
many-to-one model, a horizontal backbone reaches out of each label into the (rectangular)
focus region. Sites that need to be connected to this label are linked via vertical line segments
to the backbone; see Figure 9.1. We present dynamic programming algorithms for minimizing
the total number of label occurrences and for minimizing the total leader length of crossing-
free backbone labelings. When crossings are allowed, we aim at obtaining solutions with the
minimum number of crossings. �is can be achieved e�ciently in the case of �xed label order;
however, in the case of �exible label order we show that minimizing the number of leader
crossings is NP-hard.

Figure 9.1: A crossing-free many-to-one boundary labeling with backbone leaders.
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Figure 9.2: Di�erent types of many-to-one labelings.

9.1 Introduction

So far, most work on boundary labeling has been devoted to the case where each label is
associated with a single site; see the description in Section 8.1. However, the case where each label
is associated with more than one site (the topic of this chapter) is also common in applications.
We can think of groups of sites sharing common properties (for example, identical components
of technical devices or locations of plants/animals of the same species in a map), which we
express as having the same color. �en, we need to connect these identically colored sites via
leaders to a label of the same color.

PreviousWork. Many-to-one boundary labeling was formally introduced by Lin et al. [LKY08].
In their initial de�nition of many-to-one labeling each label had one port for each connecting
site, that is, each point uses an individual leader (see Figure 9.2a). �is inevitably lead to (i)
tall labels, (ii) a wide track-routing area between the labels and the enclosing rectangle (since
leaders are not allowed to overlap), and (iii) leader crossings in the track routing area. Lin
et al. [LKY08] examined one and two-sided boundary labeling using so-called opo-leaders;
see Fig. 9.2a. �ey showed that several crossing minimization problems are NP-complete and,
subsequently, developed approximation and heuristic algorithms. In a variant of this model,
referred to as boundary labeling with hyperleaders, Lin [Lin10] resolved the multiple port issue
by joining together all leaders attached to a common label with a vertical line segment in the
track-routing area; see Figure 9.2b. At the cost of label duplications, leader crossings could be
eliminated.

OurContribution. We studymany-to-one boundary labeling with backbone leaders (for short,
backbone labeling). In this new model, a horizontal backbone reaches out of each label into
the site-enclosing rectangle. Sites connected to a label are linked via vertical line segments
to the label’s backbone (see Figure 9.3a). �e backbone model does not need a track routing
area and thus overcomes several disadvantages of previous many-to-one labeling models, in
particular the issues (ii) and (iii) mentioned above. As Figure 9.3 shows, backbone labelings also
require much less “ink” in the image than the previous methods and thus are expected to be
less disturbing for the viewer. We note that backbone labeling can be seen as a variation of Lin’s
opo-hyperleaders. Lin [Lin10] posed it as an open problem to study po-hyperleaders (which is
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Figure 9.3: Di�erent types of many-to-one labelings with backbone leaders.

his terminology for backbones), in particular to minimize the number of duplicate labels in a
crossing-free labeling.
We study three aspects of backbone labeling, label number minimization (Section 9.2), total

leader length minimization (Section 9.3), and crossing minimization (Section 9.4). �e �rst two
aspects require crossing-free leaders. We consider both �nite backbones (see Figure 9.3a) and
in�nite backbones (see Figure 9.3b). Finite backbones extend horizontally from the label to the
furthest point connected to the backbone, whereas in�nite backbones span the whole width of
the rectangle (thus one could use duplicate labels on both sides). Furthermore, our algorithms
vary depending on whether the order of the labels is �xed or �exible and whether more than
one label per color class can be used.
For crossing-free backbone labeling we derive e�cient algorithms based on dynamic pro-

gramming to minimize label number and total leader length (Sections 9.2 and 9.3), which solves
the open problem of Lin [Lin10]. �emain idea is that backbones can be used to split an instance
into two independent subinstances. For in�nite leaders faster algorithms are possible since each
backbone generates two independent instances; for �nite backbones the algorithms require
more e�ort since a backbone does not split the whole point set and thus the outermost point
connected to each backbone must be considered. For the case where crossings are allowed,
we present an e�cient algorithm for crossing minimization with �xed label order and show
NP-completeness for �exible label order (Section 9.4).

ProblemDefinition. Before we start investigating the problem variants, we properly de�ne
the notation used in this chapter.
In backbone labeling, we are given a set P of n points in an axis-aligned rectangle R, where

each point p ∈ P is assigned a color c(p) from a color set C. Our goal is to place colored labels
on the boundary of R and to assign each point p ∈ P to a label l(p) of color c(p).
All points assigned to the same label will be connected to the label through a single backbone

leader. A backbone leader consists of a horizontal backbone attached to the le� or right side of
the enclosing rectangle R and vertical line segments that connect the points to the backbone.
Only a single backbone leader can be attached to a label. Hence, we can use the terms label

and backbone interchangeably. Since the backbones are horizontal, we consider labels to be
fully described by the y-coordinate of their backbone. Note that, at �rst sight, this may imply
that labels are of in�nitely small height. However, by imposing a minimum separation distance
between backbones, we can also accommodate labels of �nite height.
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Let L be a set of colored labels and consider label l ∈ L. By c(l), y(l), and P(l) we denote
the color of label l , the y-coordinate of the backbone of label l on the boundary of R and the set
of points that are connected/associated to label l , respectively.
A backbone (boundary) labeling for a set of colored points P in a rectangle R is a set L of

colored labels together with a mapping of each point p ∈ P to some c(p)-colored label in L. �e
drawing can be easily produced since the backbone leader for label l is fully speci�ed by y(l)
and P(l). A backbone labeling is called legal if and only if (i) each point is connected to a label
of the same color, and (ii) there are no backbone leader overlaps (though crossings are allowed
in some cases).
Several restrictions on the number of labels of a speci�c color may be imposed: �e number

of labels may be unlimited, e�ectively allowing us to assign each point to a distinct label.
Alternatively, the number of labels may be bounded by K ≥ ∣C∣. If K = ∣C∣, all points of the
same color have to be assigned to a single label. We may also restrict the maximum number
of allowed labels for each color in C separately by specifying a color vector k⃗ = (k1 , . . . , k∣C∣).
A legal backbone labeling that satis�es all of the imposed restrictions on the number of labels
is called feasible. Our goal in this chapter is to �nd feasible backbone labelings that optimize
di�erent quality criteria.
A backbone labeling without leader crossings is called crossing-free. An interesting variation

of backbone labeling concerns the size of the backbone. A �nite backbone attached to a label
at, say, the right side of R extends up to the le�most point that is assigned to it. An in�nite
backbone spans the whole width of R; see Figure 9.3 for examples of both types of backbones.
Note that, in the case of crossing-free labelings, in�nite backbones may result in labelings with
a larger number of labels and increased total leader length.
In the remaining part of the chapter, we denote the points of P as {p1 , p2 , . . . , pn} and we

assume that no two points share the same x- or y-coordinate. For simplicity, we consider the
points to be sorted in decreasing order of y-coordinates, with p1 being the topmost point in all
of our relevant drawings.

9.2 Minimizing the Total Number of Labels

In this section we study the problem of �nding a many-to-one boundary labeling that minimizes
the total number of labels. If we allow crossings, we can, of course, always �nd a labeling with
just one label per color. In this case, the problem of minimizing the number of crossings arises,
which will be covered in Section 9.4.
In this section, we will insist on solutions without crossings. Hence, we try to minimize the

total number of labels in a crossing-free solution. We can, therefore, set K = n so that there is
e�ectively no upper bound on the number of labels.

9.2.1 Infinite Backbones

We �rst investigate the case of in�nite backbones. As, in this setting, a backbone cuts the whole
instance into two parts, it is clear that the points enclosed by two consecutive backbones can
only have the colors of these backbones. Similarly, we canmake an important observation on the
structure of crossing-free labelings between two consecutive points; see the following lemma.
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one backbone per color.

Lemma 9.1. Let p i and p i+1 be two points that are vertically consecutive. Let p j (with j < i) be
the �rst point above p i with c(p j) ≠ c(p i), and let p j′ (with j′ > i + 1) be the �rst point below
p i+1 with c(p j′) ≠ c(p i+1) if such points exist.
In any crossing-free backbone labeling p i and p i+1 are vertically separated by at most two back-

bones. Furthermore, any separating backbone has color c(p i), c(p i+1), c(p j), or c(p j′).
Proof. Suppose that there are three separating backbones. �en the middle one could not
be connected to any point. Now, suppose a separating backbone is connected to a point pk
above p i and has color c(pk) ∉ {c(p j), c(p i)}. �en k < j < i. �e backbone for p j has to be
above pk . Hence, point p i is lying between two backbones of other colors; see Figure 9.4. Its
own backbone cannot be placed there without crossing a vertical segment connecting pk or p j
to their corresponding backbone. Symmetrically, we see that a backbone separating p i and p i+1
that is connected to a point below p i+1 can only have color c(p i+1) or c(p j′).
Clearly, if all points have the same color, one label always su�ces. Even in an instance with

two colors, one label per color is enough: We place the backbone of one color above all points,
and the backbone of the second color below all points; see Figure 9.5. However, if a third color
is involved, then many labels may be required.
We denote the number of labels of an optimal crossing-free solution of P by NL(P). In the

general case of the problem, P may contain several consecutive points of the same color. We
proceed by constructing a simpli�ed instance C(P) based on the instance P; in C(P), there
are no two consecutive points of the same color. To do so, we identify each maximal set of
identically-colored consecutive points of P and we replace all points of such a set by a single
point of the same color that lies in the position of the topmost point of the set. Note that in
order to achieve this, a simple top-to-bottom sweep is enough. Let C(P) = {p′1 , p′2 , . . . , p′k}
be the clustered point set, that we just constructed. For the sake of simplicity, we assume that
f ∶ P → C(P) is a function that computes the representative for a point of P in the simpli�ed
instance C(P).
Lemma 9.2. �e number of labels needed in an optimal crossing-free labeling of P with in�nite
backbones is equal to the number of labels needed in an optimal crossing-free solution of C(P),
that is, NL(P) = NL(C(P)).
Proof. Since C(P) ⊆ P, it trivially follows that NL(C(P)) ≤ NL(P). So, in order to complete
the proof it remains to show that NL(P) ≤ NL(C(P)). Let S(C(P)) be an optimal solution
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of C(P) with NL(C(P)) labels. If we manage to construct a solution of P that has exactly the
same number of labels as the optimal solution of C(P), then obviously NL(P) ≤ NL(C(P)).
Let p′i with 1 ≤ i ≤ k, be an arbitrary point of C(P) and let {p j , p j+1 , . . . , p j+m} be the

maximal set of consecutive, identically-colored points of P that has p′i as its representative
in C(P). Let S(p′i) be the horizontal strip that is de�ned by the two horizontal lines through p j
and through p j+m , respectively. Clearly, in a legal solution for P, S(p′i) can accommodate
at most one backbone, namely the one of {p j , p j+1 , . . . , p j+m}, as we look for crossing-free
solutions. Now, observe that S(p′1), S(p′2), . . . , S(p′k) do not overlap with each other, since we
have assumed that our point set P is in general position, and, subsequently, all maximal sets
of consecutive, identically-colored points of P are well separated. We proceed to derive a �rst
solution S(P) of P from S(C(P)) as follows: We connect each point p i to the backbone of
its representative f (p i) in S(C(P)). Clearly, S(P) is not necessarily crossing-free. However,
all potential crossings should appear in horizontal strips S(p′1), S(p′2), . . . , S(p′k); otherwise
S(C(P)) is not crossing-free as well.
Let S(p′i)with 1 ≤ i ≤ k, be a horizontal strip that contains crossings. As already stated, S(p′i)

can accommodate at most one backbone, namely the one of {p j , p j+1 , . . . , p j+m}. We proceed to
move all backbones in S(p′i) that are above (below, respectively) the one of {p j , p j+1 , . . . , p j+m}
to the top of (below, respectively) S(p′i), without changing their relative order and without
in�uencing the strips above and below S(p′i); recall that S(p′1), S(p′2), . . . , S(p′k) do not overlap
with each other, which implies that this is always possible. From the above it follows that the
constructed solution is crossing-free and has the same number of labels as the one of C(P),
which completes the proof.

With the help of the previous lemmas, we are now ready to present a linear-time algorithm
for minimizing the number of in�nite backbones.

�eorem 9.1. Let P = {p1 , p2 , . . . , pn} be an input point set consisting of n points sorted from
top to bottom. �en, a crossing-free labeling of P with the minimum number of in�nite backbones
can be computed in O(n) time.

Proof. In order to simplify the proof, we assume that no two consecutive points have the
same color, with the help of Lemma 9.2. If this is not already the case, we can �rst replace P
by the simpli�ed instance C(P). A�er �nding a solution for the simpli�ed instance, we can
transform this solution into a solution for P as we did in the proof of Lemma 9.2. Note that both
transformations can be done in O(n) time.
We will use dynamic programming on simpli�ed instances. For i = 1, 2, . . . , n, colors{cbak , cfree} ⊆ C, and cur ∈ {true, false}, let nl[i , cur, cbak , cfree] be the optimal number

of backbones above or at p i in the case where:
• �e lowest backbone has color cbak.
• If cur = true, the lowest backbone coincides with p i ; hence, it is c(p i)-colored, that is,
cbak = c(p i). Otherwise the lowest backbone is above p i . Note that in the latter case p i
might be unlabeled (for instance if the color of the lowest backbone is not c(p i), that is,
cbak ≠ c(p i)).

• �e point that, by Lemma 9.1, may exist between p i and the lowest backbone has color cfree.
Obviously, in the case where cur = true (that is, the lowest backbone coincides with p i)
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Figure 9.6: Di�erent con�gurations that arise in case 1.1 of the proof of �eorem 9.1.

this point does not exist. So, in general, if this point does not exists, we assume that
cfree = ∅.

Obviously, nl[1, true, c(p1),∅] = 1 and nl[1, false,∅, c(p1)] = 0. Now assume that we have
computed all entries of table nl that correspond to di�erent labelings induced by the point p i .
In order to compute the corresponding table entries for the next point p i+1, we distinguish two
cases:

1. �e lowest backbone coincides with p i+1: In this case, the lowest backbone should be
c(p i+1)-colored, cur = true, and obviously there is no unlabeled point between the
backbone through p i+1 and the point p i+1, that is, cfree = ∅. Hence, we need to compute
entry nl[i + 1, true, c(p i+1),∅]. To do so, we distinguish the following subcases with
respect to the color of the lowest backbone b above or at point p i .

1.1 b is above or at point p i and c(p i)-colored. If b is at point p i (see Figure 9.6a),
then trivially there is no unlabeled point below it. Hence, a feasible solution can
be derived from nl[i , true, c(p i),∅] by adding a new backbone, namely the one
incident to p i+1.
If b is above point p i , then we distinguish two subcases.
(a) If there is no unlabeled point below b (see Figure 9.6b), then a feasible solution
can, again, be derived from nl[i , false, c(p i),∅] by adding a new backbone,
namely the one incident to p i+1.

(b) On the other hand, if there is an unlabeled point below b, then we need to
distinguish two subcases based on the color of this point.
(b.1) If the unlabeled point is colored c(p i+1) (see Figure 9.6c), then a single

additional backbone incident to p i+1 su�ces. �e corresponding solution
is derived from nl[i , false, c(p i), c(p i+1)].

(b.2) However, in the case where the unlabeled point is c-colored and c ∉{c(p i), c(p i+1)} (see Figure 9.6d), two backbones are required and the
corresponding feasible solution is derived from nl[i , false, c(p i), c] with
c ∉ {c(p i), c(p i+1)}. Note that the case where the unlabeled point below b
is of color c(p i) cannot occur, since we have assumed that consecutive
points are not of the same color.

1.2 b is above p i and c(p i+1)-colored. Again, we distinguish two subcases.
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Figure 9.7: Di�erent con�gurations that arise in cases 1.2 and 1.3 of the proof of �eorem 9.1.

(a) If there is no unlabeled point below b (see Figure 9.7a), then a feasible solution
can be derived from nl[i , false, c(p i+1),∅] by adding two new backbones,
that is, the one incident to p i and the one incident to p i+1.

(b) If there is an unlabeled point below b (see Figure 9.7b), then its color should be
c(p i+1). If this is not the case, it is easy to see that the backbone above p i is not
c(p i+1)-colored. Again two backbones are required, that is, the one incident to
p i and the one incident to p i+1. �e corresponding solution is derived from
nl[i , false, c(p i+1), c(p i+1)].

1.3 b is above p i and c-colored, where c ≠ c(p i) and c ≠ c(p i+1). In this case, either
there is no unlabeled point below b (see Figure 9.7c) or there is one which is c-
colored (see Figure 9.7d). In both cases, two backbones have to be placed: one
incident to p i and one incident to p i+1. In the former case, the corresponding
feasible solution is derived from nl[i , false, c,∅] with c ∉ {c(p i), c(p i+1)}, while
in the latter it is derived from nl[i , false, c, c] with, c ∉ {c(p i), c(p i+1)}.

From the above cases, it follows:

nl[i + 1, true, c(p i+1),∅] = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nl[i , true, c(p i),∅] + 1
nl[i , false, c(p i),∅] + 1
nl[i , false, c(p i), c(p i+1)] + 1
nl[i , false, c(p i), c] + 2, c ∉ {c(p i), c(p i+1)}
nl[i , false, c(p i+1],∅) + 2
nl[i , false, c(p i+1], c(p i+1)) + 2
nl[i , false, c,∅] + 2, c ∉ {c(p i), c(p i+1)}
nl[i , false, c, c] + 2, c ∉ {c(p i), c(p i+1)}

2. �e lowest backbone is above p i+1: Again, we distinguish subcases with respect to the color
of the lowest backbone b above or at point p i :

2.1 b is above or at point p i and c(p i)-colored. If b is at point p i (see Figure 9.8a) or b
is above point p i and either there is no unlabeled point below b (see Figure 9.8b) or
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Figure 9.8: Di�erent con�gurations that arise in case 2.1 of the proof of �eorem 9.1.

the unlabeled point below it is c(p i+1)-colored (see Figure 9.8c), then no additional
backbone is required. �en, the corresponding feasible solutions are as follows:

nl[i + 1, false, c(p i),∅] = min{nl[i , true, c(p i),∅],
nl[i , false, c(p i),∅]}

nl[i + 1, false, c(p i), c(p i+1)] = nl[i , false, c(p i), c(p i+1)]
However, in the case where the unlabeled point below b is c-colored, where c ≠
c(p i) and c ≠ c(p i+1), a new backbone is required (see Figure 9.8d). Hence, the
corresponding feasible solution can be derived as

nl[i + 1, false, c,∅] = nl[i , false, c(p i), c] + 1 for c ∉ {c(p i), c(p i+1)}.
2.2 b is above p i and c(p i+1)-colored. In this case, either there is no unlabeled point
below b (see Figure 9.9a) or there is one which is c(p i+1)-colored (see Figure 9.9b).
In both cases no backbone is required. Hence, the corresponding feasible solutions
can be derived as follows:

nl[i + 1, false, c(p i+1),∅] = nl[i , false, c(p i+1),∅]
nl[i + 1, false, c(p i+1), c(p i+1)] = nl[i , false, c(p i+1), c(p i+1)]

2.3 b is above p i and c-colored, where c ≠ c(p i) and c ≠ c(p i+1). In this case, if there
is no unlabeled point below b (see Figure 9.9c) or there is one which is c-colored
(see Figure 9.9d), then one backbone is required for p i . �e corresponding feasible
solution can be derived as follows:

nl[i + 1,false, c(p i),∅]= min{nl[i , false, c,∅] + 1, nl[i , false, c, c]} + 1
with c ∉ {c(p i), c(p i+1)}

�emost interesting case of our case analysis arises when a forth color is involved, say
c′ ∉ {c(p i), c(p i+1), c}. In this case, either the c′-colored point remains unlabeled
and p i is labeled (see Figure 9.9e), or, the c′-colored point is labeled and p i remains
unlabeled (see Figure 9.9f). �e corresponding feasible solutions can be described
as follows.
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Figure 9.9: Di�erent con�gurations that arise in cases 2.2 and 2.3 of the proof of �eorem 9.1.

nl[i + 1, false, c(p i), c′]= nl[i , false, c, c′] + 1, c ∉ {c(p i), c(p i+1)}, c′ ∉ {c(p i), c(p i+1), c}
nl[i + 1, false, c′ , c(p i)]= nl[i , false, c, c′] + 1, c ∉ {c(p i), c(p i+1)}, c′ ∉ {c(p i), c(p i+1), c}

Having computed table nl, the number of labels of the optimal solution of P equals the
minimum entry of the form nl[n, false, ⋅,∅]. Since the algorithmmaintains an n×2×∣C∣× ∣C∣
table and each entry is computed in constant time, the time complexity of our algorithm is
O(n∣C∣2). However, with the help of Lemma 9.2, it can be reduced to O(n) (since there is a
constant number of possible colors that surround each point). A solution with the minimum
number of labels can be found by backtracking in the dynamic program.

9.2.2 Finite Backbones

We now consider the problem of minimizing the total number of labels for �nite backbones.
First, note that we can always slightly shi� the backbones in a given solution so that backbones
are placed only in gaps between points. We number the gaps from 0 to n where gap 0 is above
point p1, gap n is below point pn , and gap i is between point p i and point p i+1 for 1 ≤ i < n.
Suppose that a point pℓ lies between a backbone of color c in gap д and a backbone of color c′

in gap д′ with 0 ≤ д < ℓ ≤ д′ ≤ n such that both backbones horizontally extend to at least the
x-coordinate of pℓ ; see Figure 9.10. Suppose that all points except the ones in the rectangle
R(д, д′ , ℓ), spanned by the gaps д and д′ and limited by pℓ to the le� and by the boundary to
the right, are already labeled. An optimum solution for connecting the points in R(д, д′ , ℓ)
cannot reuse any backbone except for the two backbones in gaps д and д′; hence, such a partial
solution is independent of the rest of the solution.
We use this observation for minimizing the number of backbones by a dynamic program.

For 0 ≤ д ≤ д′ ≤ n, ℓ ∈ {д + 1, . . . , д′} ∪ {∅}, and two colors c and c′ let T[д, c, д′ , c′ , ℓ] be the
minimum number of additional labels that are needed for labeling all points in the rectangle
R(д, д′ , ℓ) under the assumption that there is a backbone of color c in gap д, a backbone of
color c′ in gap д′, between these two backbones there is no backbone placed yet, and both
backbones extend to the le� of pℓ as in Figure 9.10. Note that for ℓ = ∅ the rectangle is empty
and T[д, c, д′ , c′ ,∅] = 0. Furthermore, also the case д′ = д can occur; in this case, as there is
no point inside a gap, the relevant entry of table T is T[д, c, д, c′ ,∅] = 0.
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д

д′
pℓ

R(д, д′, ℓ)

Figure 9.10: A partial instance in the rectangle R(д, д′ , ℓ) bounded by the two backbones in
gaps д and д′ and the le�most point pℓ .

д

д′
pℓ

д̃
le�(д, д̃, ℓ)
le�(д̃, д′, ℓ)

Figure 9.11:�e partial instance in the rectangle R(д, д′ , ℓ) is split by a new backbone for pℓ
into two partial instances in rectangles R(д, д̃, le�(д, д̃, ℓ)) and R(д̃, д′ , le�(д̃, д′ , ℓ)).
We distinguish cases based on the connection of point pℓ . First, if c(pℓ) = c or c(pℓ) = c′, it

is always optimal to connect pℓ to the top or bottom backbone, respectively, as all remaining
points will be to the right of the new vertical segment. Hence, in this case,

T[д, c, д′ , c′ , ℓ] = T[д, c, д′ , c′ , le�(д, д′ , ℓ)],
where le�(д, д′ , ℓ) is the index of the le�most point in the interior ofR(д, д′ , ℓ) or le�(д, д′ , ℓ) =∅ if no such point exists.
Otherwise, suppose that c(pℓ) ∉ {c, c′}. For connecting pℓ we need to place a new backbone

of color c(pℓ); this is possible in any gap д̃ with д ≤ д̃ ≤ д′. Note that reusing gap д or д′ is
allowed. �e backbone splits the instance into two parts, one between gaps д and д̃ and one
between gaps д̃ and д′; see Figure 9.11. Hence, we obtain the recursion

187



Chapter 9: Many-to-One Boundary Labeling with Backbones

T[д, c, д′ , c′ , ℓ] = min
д≤ д̃≤д′

(T[д, c, д̃, c(pℓ), le�(д, д̃, ℓ)]
+T[д̃, c(pℓ), д′ , c′ , le�(д̃, д′ , ℓ)]) + 1.

Finally, let c̄ ∉ C be a dummy color, and let p ℓ̄ ∈ P be the le�most point. �en the value
T[0, c̄, n, c̄, ℓ̄] obtained by using dummy backbones above and below all points yields the
minimum number of labels needed for labeling all points. We can compute each of the (n+1) ×∣C∣ × (n + 1) × ∣C∣ × (n + 1) entries of table T in O(n) time. Note that all le�(⋅, ⋅, ⋅)-values can
easily be precomputed in O(n3) total time by �rst sorting the points from le� to right and then,
for each pair of gaps д and д′ with д < д′, sweeping once over the points {pд+1 , . . . , pд} in this
direction. Summing up, we get the following result.

�eorem 9.2. Given a set P of n colored points and a color set C, we can compute a feasible
labeling of P with the minimum number of �nite backbones in O(n4∣C∣2) time.

MinimumDistances. Our algorithm might place many labels inside a gap, which can result
in a solution with very small distances between backbones. In practice, we may want to ensure a
minimum distance of ∆ between backbones, and between a backbone and a point not connected
to this backbone. To this end, in any gap, we insert as many candidate positions for backbones
as possible (up to n). Now, instead of using gaps in table T , we use these candidate positions; a
position must never be used twice. As there are O(n2) instead of n + 1 candidate positions, the
number of entries of the table increases by a factor of O(n2), and we now need O(n2) time for
computing an entry. Hence, the total running time is now O(n7∣C∣2).

9.3 LengthMinimization

In the previous section, we have presented algorithms for �nding backbone labelings with the
minimum number of labels. However, even two labelings with the same number of labels can
look quite di�erently. For making the leaders easy to follow, it is important that they have small
length. Hence, the objective is that the total length of leader segments is minimum. In order to
avoid that the number of labels is very large in solutions with this new objective, we allow to
specify an upper bound for the number of labels as part of the input.
In this section we minimize the total length of all leaders in a crossing-free solution, either

including or excluding the horizontal lengths of the backbones. We distinguish between a global
bound K on the number of labels or a vector k⃗ of individual bounds per color.

9.3.1 Infinite Backbones

First, we care about labelings with in�nite backbones. We use a parameter λ to distinguish
between the two minimization goals, that is, we set λ = 0 if we want to minimize only the sum
of the lengths of all vertical segments, and we set λ to be the width of the rectangle R if we also
take the length of the backbones into account.
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Figure 9.12: Candidates for �ve points. Red points are circles, blue points are crosses, and the
green point is a square. Candidates through a point have the same color as the point. Candidate
p±i has the same color as the �rst point with a di�erent color as p i that is met when walking
from p±i over p i . Candidates p+1 , p+2 , and p−5 will not be used and have no color.

Single Color. As a �rst simple case, we assume that all points have the same color. In this
case, we have to choose a set S of at most K y-coordinates where we draw the backbones and
connect each point to its nearest backbone; this does, of course, not lead to crossings. Hence,
we must solve the following problem: Given n points with y-coordinates y(p1) > ⋅ ⋅ ⋅ > y(pn),
�nd a set S of at most K y-coordinates that minimizes

λ ⋅ ∣S∣ + n∑
i=1
min
y∈S

∣y − p i ∣. (9.1)

We can optimize the value in Equation 9.1 by choosing S ⊆ {y(p1), . . . , y(pn)}, that is, by
selecting only backbones that pass through input points: For a backbone position y ∈ S ∖{y(p1), . . . , y(pn)} let {p i , . . . , p j} be the set of points that we would connect to the backbone
through y. Let y(p i) > ⋅ ⋅ ⋅ > y(p i′) > y > y(p i′+1) > ⋅ ⋅ ⋅ > y(p j). If i′ − i + 1 ≥ j − i′, that is, if
the majority of sites connected to the backbone at position y lies above the backbone, replace y
by y(p i′). Otherwise replace y by y(p i′+1). �en the objective value in Equation 9.1 can at most
improve. Hence, the problem can be solved in O(Kn) time if the points are sorted according to
their y-coordinates using the algorithm of Hassin and Tamir [HT91]. Note that the problem
corresponds to the 1-dimensional K-median problem if λ = 0.
Multiple Colors. If the n points have di�erent colors, we can no longer assume that all
backbones go through one of the given n points since we have to avoid crossings. However, by
Lemma 9.1, it su�ces to add between any pair of vertically consecutive points two additional
candidates for backbone positions, plus one additional candidate above all points and one below
all points. Hence, we have a set of 3n candidate lines at y-coordinates

p−1 > y(p1) > p+1 > p−2 > y(p2) > p+2 > ⋅ ⋅ ⋅ > p−n > y(pn) > p+n (9.2)

where for each i the values p−i and p+i are as close to y(p i) as the label heights allow. Clearly, a
backbone through p i can only be connected to points with color c(p i). If we use a backbone
through p−i (or p+i , respectively), it will have the same color as the �rst point below p i (or
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above p i , respectively) that has a di�erent color than p i ; compare Lemma 9.1. For example, in
Fig 9.12, p−1 is colored blue, since p3 is the �rst point below p1 that has a di�erent color than red,
namely blue. Hence, the colors of all candidates are �xed or the candidate will never be used as
a backbone. For an easier notation, we denote the y-coordinate of the ith point in Equation 9.2
by y i and its color by c(y i).
We minimize the total leader length by using dynamic programming. For each i = 1, . . . , 3n,

and for each vector k⃗′ = (k′1 , . . . , k′∣C∣) with k′1 ≤ k1 , . . . , k′∣C∣ ≤ k∣C∣, let L[i , k⃗′] denote the
minimum length of a feasible backbone labeling of p1 , . . . , p⌊ i+1

3 ⌋ using k′c in�nite backbones
of color c for c = 1, . . . , ∣C∣ such that the bottommost backbone is at position y i , if such a
labeling exists. Otherwise L[i , k⃗′] = ∞. In the following, we describe, how to compute the
values L[i , k⃗′].
Assume that we want to place a new backbone at position y i and that the previous backbone

was at position y j with j < i. �en, we have to connect each point px with ( j+ 2)/3 ≤ x ≤ i/3 to
one of the backbones through y i or y j as these points are enclosed between the two backbones.
Let link( j, i) denote the minimum total length of the vertical segments linking these points
to their respective backbone. We set link( j, i) = ∞ if there is a point px between y i and y j
with c(px) ∉ {c(y i), c(y j)} because px cannot be connected to the surrounding backbones.
Otherwise, we have

link( j, i) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
j+2
3 ≤x≤ i

3

min (y j − y(px), y(px) − y i) if c(y i) = c(y j)
∑

j+2
3 ≤x≤ i

3
c(px )=c(y j)

(y j − y(px)) + ∑
j+2
3 ≤x≤ i

3
c(px )=c(yi )

(y(px) − y i) if c(y i) ≠ c(y j) (9.3)

�e base cases are

L[i , 0, . . . , 0, k′c(y i) = 1, 0, . . . , 0] = ∑
0<x≤i/3

(y i − px)
if all points above y i have the color c(y i) and L[i , 0, . . . , 0, k′c(y i) = 1, 0, . . . , 0] = ∞ otherwise,
as well as L[i , 0⃗] = ∞.
For computing an entry L[i , k′1 , . . . , k′∣C∣] we test all candidate positions y j > y i for the

previous backbone; to the length of the corresponding solution we have to add the connection
cost link( j, i) as well as λ for the new backbone at position y i . Hence, we get the following
recursion:

L[i , k′1 , . . . , k′∣C∣] = λ +min
j≤i

(L[ j, k′1 , . . . , k′c(y i) − 1, . . . , k′∣C∣] + link( j, i)) (9.4)

Note that we need to interpret any entry of table L for which a color bound is negative as∞.
In order to see that each entry of table L can be computed in O(n) time, we have to show,

that, for a �xed index i, all values link( j, i) with j < i can be computed in O(n) time. Let c′
be the �rst color of a point above y i that is di�erent from c(y i). For a �xed i, starting from
j = i − 1, we scan the candidates twice in decreasing order of their indices until we �nd the �rst
point that is neither colored c′ nor c(y i).
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For color c ∈ {c(y i), c′}, we traverse the points above y i from bottom to top. For any point px′
that we see, we store two values: the number nc(x′) of points of color c that we have seen so far
and the sum of distances of these c-colored points to y i , that is,

lc(x′) = ∑
x′≤x≤ i

3 ,c(px)=c
(y(px) − y i).

Note that we can easily compute lc(x′ − 1) in constant time from lc(x′): If px′−1 is not c-colored,
then lc(x′− 1) = lc(x′); if c(px′−1) = c, then we have to connect the point px′−1 to y i and, hence,
lc(x′ − 1) = lc(x′) + (y(px′−1) − y i).
With these values we can compute any value link( j, i) as follows. First, suppose that c(y i) ≠

c(y j) as in the second case of Equation 9.4. Let px′ be the point immediately below y j . �en

∑
j+2
3 ≤x≤ i

3
c(px )=c(yi )

(y(px) − y i) = lc(y i)(x′).

Furthermore, we can also compute the length needed for connecting the points of color c(y j)
to the backbone at position y j since we know their number nc(y j)(px′) and y j − y = (y j − y i) −(y − y i) for y j ≥ y ≥ y i :

∑
j+2
3 ≤x≤ i

3
c(px )=c(y j)

(y j − y(px)) = ∑
x′≤x≤ i

3
c(px )=c(y j)

((y j − y i) − (y(px) − y i))
= nc(y j)(x′) ⋅ (y j − y i) − lc(y j)(x′)

Hence, we can compute all values link( j, i) with c(y j) ≠ c(y i) in O(n) total time for �xed i.
Now, assume that c(y i) = c(y j) and let again be px′ the point immediately below y j . If

nc′(x′) > 0 there is a point of color c′ ≠ c(y i) between the two backbones; as this point cannot
be connected, link( j, i) = ∞. If no such point exists, every point connects to the closer backbone,
either y j or y i . Hence, the points are split into two subsets, where px′′ is the topmost point
that connects down to y i and all points px′ , . . . , px′′−1 connect to y j . Similar to the previous
computation, we get that

link( j, i) = ∑
x′≤x≤ i

3

min (y j − y(px), y(px) − y i)
= ∑

x′≤x<x′′
(y j − y(px)) + ∑

x′′≤x≤ i
3

(y(px) − y i)
= (nc(y i)(x′) − nc(y i)(x′′)) ⋅ (y j − y i) − (lc(y i)(x′) − lc(y i)(x′′)) + lc(y i)(x′′).

�is can be computed in constant time. Note that by simply sweeping once over the backbone
positions y j and the points from y i to the top in parallel, we can easily �nd the right x′′ for
each y j in O(n) total time.
We have now seen that we can compute all values link(⋅, i) in O(n) total time. As a conse-

quence, we know that we can compute any entry of table L in O(n) time. For computing all
entries of the table, we need, hence, O(n2∏∣C∣

i=1 k i) time.
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Chapter 9: Many-to-One Boundary Labeling with Backbones

Let S be the set of candidates y i such that all points below y i have the same color as y i . Any
solution with y i as the lowest backbone is a candidate for the optimum solution; we do, however,
have to consider the cost of connecting the points below y i to the backbone through y i . Note
that y3n−1 = y(pn) and y3n are always included in the set S. Summing up, we can compute
the minimum total length of a backbone labeling of p1 , . . . , pn with at most kc labels per color
1 ≤ c ≤ ∣C∣ as

min
y i∈S ,k′1≤k1 , . . . ,k′∣C∣≤k∣C∣

⎛⎝L[i , k′1 , . . . , k′∣C∣] + ∑
i+2
3 ≤x≤n

(y i − px)⎞⎠.
Hence, we get the following theorem.

�eorem 9.3. Aminimum length backbone labeling with in�nite backbones for n points with ∣C∣
colors can be computed in O(n2 ⋅ ∏∣C∣

i=1 k i) time if at most k i labels are allowed for color i ∈ C.
If we globally bound the total number of labels by K, we can use a similar dynamic program;

in the table L, we replace the individual bounds kc for color c ∈ C with the global bound K, that
is, we compute values L[i , k] with 1 ≤ i ≤ 3n and k ≤ K. �e only di�erence in the dynamic
program is, hence, that we always use the global bound instead of the speci�c bounds for colors.
We get the following result.

�eorem 9.4. Aminimum length backbone labeling with in�nite backbones for n points with ∣C∣
colors can be computed in O(n2K) time if up to K labels in total are allowed.

Note that our dynamic program can also be used for deciding whether a feasible crossing-free
solution subject to the bounds on the numbers of labels exists. If no feasible solution exists, the
reported minimum length will be∞.
9.3.2 Finite Backbones

We now turn to leader length minimization for labeling with �nite backbones. Here, the length
of a backbone segment may di�er heavily; hence, we do not use a parameter λ as we did for
in�nite backbones in Section 9.3.1, but we always count both horizontal and vertical lengths.
Recall that we solved the minimization of the number of backbones with the help of a dynamic
program based on rectangular subinstances bounded by two backbones and a le�most point;
see Section 9.2.2. We modify this dynamic program for minimizing the total leader length.
As a �rst obvious change, we now denote by the T-values the additional length of segments

and backbones needed for labeling the points of the subinstance. However, we have to adjust
more details. By the case of a single point connected to a backbone, we see that we have to allow
backbones passing through input points of the same color for length minimization. Additionally,
for computing the vertical length needed for connecting to a backbone placed in a gap, we need
to know its actual y-coordinate.
Suppose that there is a set B of backbones that all lie in the same gap between points p i

and p i+1. Let b⋆ be the longest of these backbones; see Figure 9.13. �e backbone b⋆ vertically
splits the set B; any backbone b′ ∈ B above b⋆ can only connect to points above itself and any
backbone b′′ ∈ B below b⋆ can only connect to points below itself. By moving b′ to the top and
b′′ to the bottom as far as possible the total leader length decreases. Hence, in any optimum
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b⋆

pi

pi+1

Figure 9.13:�e longest backbone b⋆ splits the backbones between p i and p i+1.

solution, the backbones above b⋆ will be very close to y(p i) and the backbones below b⋆ will
be very close to y(p i+1). Furthermore, depending on the numbers of connected points above
and below, by either moving b⋆ to the top or to the bottom we will �nd a solution that is not
worse, and in which any backbone of B is close to p i or p i+1.
If we allow backbones to be in�nitely close to points or other backbones, we can use backbone

positions p−i and p+i that lie in�nitely close above and below p i , respectively, and share its
y-coordinate. Each of these positions may be used for an arbitrary number of backbones.
Now, in the case distinction, we have to be a bit more careful. When the le�most point pℓ

in the subinstance bounded by backbones of color c to the top and of color c′ to the bottom,
respectively, has color c or c′, we can no longer alway connect pℓ to the existing backbones.
Although such a connection is always possible, opening a new backbone may save leader length
in this step or in later steps. Hence, we have to additionally test all positions for placing a new
backbone in the same way as we do if pℓ has a di�erent color. Note that this does not increase
the runtime.
With the new positions as well as the input points as possible label positions and the updated

case analysis, we can then �nd a solution with minimum total leader length in O(n4∣C∣2) time,
if the number of labels is not bounded, by adding the length of the newly placed segments in
any calculation.

BoundedNumbersofLabels. If we want to integrate an upper bound K on the total number
of labels, or, for each color c ∈ C, an upper bound kc on the number of labels of color c, into
the dynamic program—as we did for in�nite backbones—, we need an additional dimension
for the remaining number of backbones that we can use in the subinstance (or a dimension
for each color c ∈ C for the remaining number of backbones of that color); that is, we now use
table entries of the form T[i , c, i′ , c′ , ℓ,K′] (or T[i , c, i′ , c′ , ℓ, k⃗′]) where y i and y i′ with i < i′
are the positions of the upper and lower backbone, respectively, c and c′ are their respective
colors, pℓ with (i + 2)/3 ≤ ℓ ≤ i′/3 (or ℓ = ∅) is the le�most point of the subinstance (if such a
point exists), and K′ (or k⃗′) is the number of labels (per color) that we allow for the subinstance.
Additionally, when splitting the instance into two parts, we have to consider not only the position
of the splitting backbone of color c(pℓ), but also the di�erent combinations of distributing
the allowed numbers of backbones among the subinstances. For a global bound K, we need,
hence, O(nK) time for computing an entry of the table. If we have individual bounds kc for
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b⋆
pi

pi+1

∆

∆
∆

(a) Backbones placed with the minimum leader
length.

∆ n times
⎫⎪⎪⎬⎪⎪⎭
∆n times

⎧⎪⎪⎨⎪⎪⎩

pi

pi+1

∆

∆

(b) Candidate positions for backbones inside the
gap.

Figure 9.14: Situation between two consecutive points for �nite backbones.

c ∈ C, we need O(n∏c∈C kc) time. Together with the additional dimension(s) of the table, we
can minimize the total leader length in O(n4∣C∣2K2) time if we have a global bound K, and
in O(n4∣C∣2(∏c∈C kc)2) time if we have an individual bound kc for each color c ∈ C. Note
that we can easily detect cases where we have to add a backbone of color c(pℓ) but the current
bound kc(pℓ) = 0 (or K = 0) in the subinstance. In such a case, we report +∞ as the total leader
length, indicating that no feasible solution with the given bounds exists.

Minimum Distances. So far, we allowed backbones to be in�nitely close to unconnected
points and other backbones, which will, in practice, lead to overlaps, for instance between
consecutive labels. One would rather enforce a small distance between two backbones or a
backbone and a point, even if this increases the total leader length a bit. Let ∆ > 0 be the
minimum allowed distance, which depends, for example, on the font size used for the labels. In
an optimum solution, there will be two sequences of backbones on the top and on the bottom of
a gap between p i and p i+1, such that inside a sequence consecutive backbones have distance ∆;
see Figure 9.14a. We get all possible backbone positions inside the gap by taking all y-coordinates
inside whose y-distance to either p i or p i+1 is an integer multiple of ∆; see Figure 9.14b. Note
that n positions of each type su�ce in a gap; if the gap is too small, there might even be fewer
positions. �e two sequences can overlap. In this case, we have to check that we do not combine
two positions with a distance smaller than ∆ in the dynamic program.
Together with the input points, we get a set of O(n2) candidate positions for backbones, each

of which can be used at most once. �is increases the number of entries of table T by a factor of
O(n2), and the running time of computing a single entry by a factor of O(n). �e resulting
running time of our dynamic program is O(n7∣C∣2) if we do not bound the number of labels,
O(n7∣C∣2K2) if we have a global bound K on the number of labels, and O(n7∣C∣2(∏c∈C kc)2)
if we have an individual bound kc for each color c ∈ C.
�eorem 9.5. Given a set P of n colored points, a color set C, and a label bound K (or vector k⃗
of bounds per color), we can compute a feasible labeling of P with �nite backbones that minimizes

194



9.4 Crossing Minimization

the total leader length in O(n7∣C∣2K2) time (or in O(n7∣C∣2(∏c∈C kc)2) time).

Note that, as in the case of in�nite backbones, also for �nite backbones we can use the dynamic
program for deciding whether a feasible solution for the given bounds on the numbers of labels
exists: If no such solution exists, the reported total leader length will be∞.
9.4 CrossingMinimization
In this section we allow crossings between backbone leaders, which generally allows us to use
fewer labels. More precisely, if crossings are allowed, it is trivially possible to label all points
using just one label per color. Such a solution may, however, lead to many crossings between
backbones and vertical leader segments. �erefore, we are interested in minimizing the number
of such crossings. We concentrate on he case that K = ∣C∣ labels, that is, one per color, are
allowed. We will �rst consider the case that the relative order of labels for the colors from
top to bottom is prescribed. For this case we will present e�cient algorithms for minimizing
the number of crossings. �en, we will see that without this restriction the problem becomes
NP-hard, at least for �nite backbones.

9.4.1 Fixed y-Order of Labels
We �rst assume that the color set C is ordered and we require that for each pair of colors i < j
the label of color i is above the label of color j. We will develop a fast algorithm for crossing
minimization with in�nite backbones. �en, we will show how this algorithm can be modi�ed
for the case of �nite backbones.

Infinite Backbones

Since the order of the labels is �xed, the order in which the backbones appear from top-to-
bottom should also be �xed. �is implies that the i-th backbone in the given y-ordering from
top to bottom is connected to the points of color i.
Observe that it is always possible to slightly shi� the backbones of a solutionwithout increasing

the number of crossings such that no backbone contains a point. �us, the backbones can be
assumed to be positioned in the gaps between vertically adjacent points; we number the gaps
from 0 to n as in Section 9.2.2.
Suppose that we �x the position of the i-th backbone to gap д. For 1 ≤ i ≤ ∣C∣ and 0 ≤ д ≤ n, let

cross(i , д) be the number of crossings of the vertical segments of the non-i-colored points when
the color-i backbone is placed at gap д. Note that this number depends only on the y-ordering
of the backbones, which is �xed, and not on their actual positions. So, we can precompute table
cross, using dynamic programming, as follows.
All table entries of the form cross(⋅, 0) can clearly be computed in O(n∣C∣) total time because,

for color i, cross(i , 0) is equal to number of points having some color < i. �en, cross(i , д) =
cross(i , д − 1) + 1, if the point pд between gaps д − 1 and д has color j with j > i. In the
case where pд has color j with j < i, cross(i , д) = cross(i , д − 1) − 1. If pд has color i, then
cross(i , д) = cross(i , д − 1). From the above, it follows that the computation of the table cross
takes O(n∣C∣) time.
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Now, we use another dynamic program for computing the minimum number of crossings.
Let T[i , д] denote the minimum number of crossings on the backbones 1, . . . , i in any solution
subject to the condition that the backbones are placed in the given ordering and backbone i is
positioned in gap д. Clearly T[0, д] = 0 for д = 0, . . . , n. For computing an entry T[i , д] with
i > 0, we test all positions for the previous backbone i − 1 in a gap д′ above (and including)
gap д. In addition to the number of crossings from the entry T[i − 1, д′], we also have to take
the number cross(i , д) of crossings of the new backbone into account. Hence, we have

T[i , д] = cross(i , д) +min
д′≤д

T[i − 1, д′].
Having precomputed table cross and assuming that for each entry T[i , д], we also store the small-
est entry T[i , д′] with д′ ≤ д, each entry of table T can be computed in constant time. Hence,
tableT can be �lled in timeO(n∣C∣). �en, theminimumcrossing number ismin0≤д≤n T[∣C∣, д].
A corresponding solution can be found by backtracking in the dynamic program. Let us sum-
marize.

�eorem 9.6. Given a set P of n colored points and an ordered color set C, a backbone labeling
with one label per color, labels in the given color order, in�nite backbones, and minimum number
of crossings can be computed in O(n∣C∣) time.

Finite Backbones

We can easily modify the approach used for in�nite backbones for minimizing the number of
crossings for �nite backbones, if the y-order of labels is �xed, as the following theorem shows.

�eorem 9.7. Given a set P of n colored points and an ordered color set C, a backbone labeling
with one label per color, labels in the given order, �nite backbones, and minimum number of
crossings can be computed in O(n∣C∣) time.

Proof. We develop a dynamic program very similar to the one presented for in�nite backbones.
�e only part that we have to change is that the computation of the number of crossings when
�xing a backbone at a certain position should take into consideration that the backbones are
not of in�nite length. Recall that the dynamic program could precompute these crossings, by
maintaining an n × ∣C∣ table cross, in which each entry cross(i , д) corresponds to the number
of crossings of the non-i-colored points when the color-i-backbone is placed at gap д, for
1 ≤ i ≤ ∣C∣ and 0 ≤ д ≤ n. For �nite backbones, cross(i , д) = cross(i , д − 1) + 1, if the point
between gaps д− 1 and д is right of the le�most i-colored point and has color j with j > i. In the
case, where the point pд between gaps д − 1 and д is right of the le�most i-colored point and
has color j with j < i, cross(i , д) = cross(i , д − 1) − 1. Otherwise, cross(i , д) = cross(i , д − 1).
Again, all table entries of the form cross(⋅, 0) can clearly be computed in O(n) time.
9.4.2 Flexible y-Order of Labels
We now no longer assume that the order of labels is prescribed, that is, we need to minimize the
number of crossings over all label orders. While there is an e�cient algorithm for a restricted
variant of the problem with in�nite backbones, the problem is NP-complete for �nite backbones.
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Infinite Backbones

We give an e�cient algorithm for the case where there areK = ∣C∣ �xed label positions y1 , . . . , yK
on the right boundary of R, for instance, uniformly distributed.

�eorem9.8. Given a set P of n colored points, a color set C, and a set of ∣C∣ �xed label positions,
we can compute a feasible backbone labeling with in�nite backbones that minimizes the number
of crossings in O(n + ∣C∣3) time.

Proof. First observe that if the backbone of color k with 1 ≤ k ≤ ∣C∣ is placed at position y i
with 1 ≤ i ≤ ∣C∣, then the number of crossings created by the vertical segments leading to this
backbone is �xed, since all label positions will be occupied by an in�nite backbone. Let nk be
the number of points of color k. �e crossing number cr(k, i) can be determined in O(nk +∣C∣)
time. In fact, by a sweep from top to bottom, we can even determine all crossing numbers
cr(k, ⋅) for backbone k with 1 ≤ k ≤ ∣C∣ in O(nk + ∣C∣) time. Now, we construct an instance of
a weighted bipartite matching problem, where for each position y i with 1 ≤ k ≤ ∣C∣ and each
backbone k with 1 ≤ k ≤ ∣C∣, we establish an edge {k, i} of weight cr(k, i). In total, this takes
O(n + ∣C∣2) time. �e minimum-cost weighted bipartite matching problem can be computed
in O(∣C∣3) time using the Hungarian method [Kuh55] and yields a backbone labeling with the
minimal number of crossings.

Note that the previous approach does not work for �nite backbones. In contrast to in�nite
backbones a crossing of a vertical segment for some color with a backbone depends on the
horizontal extend and, hence, on the color of this backbone. �erefore, it is not possible to
calculate a simple number cr(k, i) of crossings for the placement of backbone k on position y i .

Finite Backbones

Next, we consider the variant with �nite backbones and prove that it is NP-hard to minimize the
number of crossings. Here, we do not restrict ourselves to candidate positions for backbones.
For simplicity, we allow points that share the same x- or y-coordinates. �is can be remedied by
a slight perturbation. Our arguments do not make use of this special situation and, hence, carry
over to the perturbed constructions. We �rst introduce a number of gadgets that are required
for our proof and explain their properties, before describing the hardness reduction.
�e �rst gadget is the range restrictor gadget. Its construction consists of a middle backbone,

whose position will be restricted to a given vertical range R, and an upper and a lower guard
gadget that ensure that positioning the middle backbone outside range R creates many crossings;
see Figure 9.15. We assume that the middle backbone is connected to at least one point further
to the le� such that it extends beyond all points of the guard gadgets. Additionally, the middle
backbone is connected to two range points whose y-coordinates are the upper and lower bound-
ary of the range R. �eir x-coordinates are such that they are on the right of the points of the
guard gadgets. A guard consists of a backbone that connects to a set ofM points, whereM > 1
is an arbitrary number. �e M points of a guard lie le� of the range points. �e upper guard
points are horizontally aligned and lie slightly below the upper bound of range R. �e lower
guard points are horizontally aligned and are placed such that they are slightly above the lower
bound of range R. We placeM upper andM lower guards such that the guards form pairs for
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Figure 9.15:�e range restrictor gadget.

which the guard points overlap horizontally. �e upper (respectively lower) guard gadget is
formed by the set of upper (respectively lower) guards. We callM the size of the guard gadgets.
�e next lemma shows the important properties of the range restrictor gadget.

Lemma 9.3. �e backbones of the range restrictor gadget can be positioned such that there are
no crossings. If the middle backbone is positioned outside the range R, there are at least M − 1
crossings.

Proof. �e�rst statement is illustrated by the drawing in Figure 9.15. Suppose for a contradiction
to the second statement that the middle backbone is positioned outside range R and that there
are fewer thanM − 1 crossings. Assume, without loss of generality, that the middle backbone is
embedded below range R; the other case is symmetric.
First, observe that all backbones of guards must be positioned above the middle backbone, as

a guard backbone below the middle backbone would createM crossings, namely between the
middle backbone and the segments connecting the points of the guard to its backbone. Hence
the middle backbone is the lowest. Now observe that any guard that is positioned below the
upper range point crosses the segment that connects this range point to the middle backbone.
To avoid having M − 1 crossings, it follows that at least M + 1 guards (both upper and lower)
must be positioned above range R. Hence, there is at least one pair consisting of an upper and a
lower guard that are both positioned above the range R. �is, however, independent of their
ordering, creates at leastM − 1 crossings; see Figure 9.16, where the two alternatives for the lower
guard are drawn in black and bold gray, respectively. �is contradicts our assumption.

Let B be an axis-aligned rectangular box and let R be a small interval that is contained in
the range of y-coordinates spanned by B. A blocker gadget of width m consists of a backbone
that connects to 2m points, half of which are positioned on the top and on the bottom side of B,
respectively. Moreover, a range restrictor gadget is used to restrict the backbone of the blocker
to the range R. Figure 9.17 shows an example. Note that, due to the range restrictor, this drawing
is essentially �xed. We say that a backbone crosses the blocker gadget if its backbone crosses
the box B. It is easy to see that any backbone that crosses a blocker gadget creates m crossings,
where m is the width of the blocker.
We are now ready to show that the crossing minimization problem with �exible y-order of

the labels is NP-complete.
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R

Figure 9.16: Crossings caused by a pair of an up-
per and a lower guard that are positioned on the
same side outside range R.

B

m points
range
restrictor

Figure 9.17:�e blocker gadget.

�eorem 9.9. Given a set P of input points in k = ∣C∣ di�erent colors and an integer Y it is
NP-complete to decide whether a backbone labeling with one label per color and at most Y leader
crossings exists.

Proof. �eproof of NP-hardness is by reduction from theNP-complete Fixed LinearCrossing
Number problem [MNKF90], which is de�ned as follows. Given a graphG = (V , E), a bijective
function f ∶V → {1, . . . , ∣V ∣}, and an integer Z, one has to decide whether there is a drawing
of G with the vertices placed on a horizontal line (the spine) in the order speci�ed by f and the
edges drawn as semi-circles above or below the spine so that there are at most Z edge crossings.
Masuda et al. [MNKF90] showed that the problem is NP-complete even if G is a matching.
Let G be a matching. �en the number of vertices is even and we can assume that the vertices

V = {v1 , . . . , v2n} are indexed in the order speci�ed by f , that is, f (v i) = i for 1 ≤ i ≤ 2n.
Furthermore, we direct every edge {v i , v j} with i < j from v i to v j . Let {u1 , . . . , un} be the
ordered source vertices and let {w1 , . . . ,wn} be the ordered sink vertices. Figure 9.18 shows an
example graph G drawn on a spine in the speci�ed order.
In our reduction we will create an edge gadget for every edge of G. �e gadget consists of �ve

blocker gadgets and one side selector gadget. Each of the six sub-gadgets uses its own color and
thus de�nes one middle backbone. �e edge gadgets are ordered from le� to right according
to the sequence of source vertices (u1 , . . . , un). Figure 9.19 shows a sketch of the instance IG
created for the matching G with four edges shown in Figure 9.18.
�e edge gadgets are placed symmetrically with respect to the x-axis. We create 2n + 1 special

rows below the x-axis and 2n+1 special rows above, indexed by−(2n+1),−2n, . . . , 0, . . . , 2n, 2n+
1. �e gadget for an edge (v i , v j) uses �ve blocker gadgets (denoted as central, upper, lower,
upper gap, and lower gap blockers) in two di�erent columns to create two small gaps in rows j
and − j, see the hatched blocks in the same color in Figure 9.19. �e upper and lower blockers
extend vertically to rows 2n + 1 and −2n − 1, respectively. �e gaps are intended to create two
alternatives for routing the backbone of the side selector. Every backbone that starts le� of
the two gap blockers is forced to cross at least one of these �ve blocker gadgets as long as it is
vertically placed between rows 2n + 1 and −2n − 1.
�e blockers have width m = 8n2. �eir backbones are �xed to lie between rows 0 and −1 for

the central blocker, between rows 2n and 2n + 1 (−2n and −2n − 1) for the upper (respectively
lower) blocker, and between rows j and j + 1 (− j and − j − 1) for the upper (respectively lower)
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Figure 9.18: An instance of Fixed Linear Crossing Number with four edges.
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Figure 9.19: Sketch of the reduction of the graph of Figure 9.18 to a backbone labeling instance.
Hatched rectangles represent blockers, thick segments represent side selectors, and �lled shapes
represent guard gadgets or range restrictor gadgets.
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gap blocker; recall that this can easily be done by placing the range restrictor gadget of the
blocker at the respective position.
�e side selector consists of two horizontally spaced selector points s(i)1 and s(i)2 in rows i and−i located between the le� and right blocker columns. �ey have the same color and thus de�ne

one joint backbone, the selector backbone, which is supposed to pass through one of the two
gaps in an optimal solution. �e n edge gadgets are placed from le� to right in the order of their
source vertices; see Figure 9.19.
�e backbone of every selector gadget is vertically restricted to the range between rows 2n + 1

and −2n − 1 in any optimal solution by augmenting each selector gadget with a range restrictor
gadget. �is means that we add two more points for each selector to the right of all edge gadgets,
one in row 2n + 1 and the other in row −2n − 1. �ey are connected to the selector backbone. In
combination with a corresponding upper and lower guard gadget of sizeM = Ω(n4) between
the two selector points s(i)1 and s(i)2 this achieves the range restriction according to Lemma 9.3.
�is completes the backbone labeling instance. We will now show two important properties

of optimal solutions for the constructed instance. We �rst show that the selector backbones do
indeed pass through one of their two gaps.

Property 1. In a crossing-minimal labeling the backbone of the selector gadget for every edge(v i , v j) passes through one of its two gaps in rows j or − j.
Proof. �ere are basically three di�erent options for placing a selector backbone: (a) outside
its range restriction, that is, above row 2n + 1 or below row −2n − 1, (b) between rows 2n + 1
and −2n − 1, but not in one of the two gaps, and (c) in rows j or − j, that is, inside one of the
gaps. In case (a) we get at least M = Ω(n4) crossings by Lemma 9.3. So we may assume that
case (a) never occurs for any selector gadget; we will see that in this case there are only O(n4)
crossing in total for the selector gadgets. In cases (b) and (c) we note that the backbone will
cross one blocker for each edge whose source vertex is right of v i in the order (u1 , . . . , un). Let k
be the number of these edges. Additionally, in case (b), the backbone crosses one of its own
blockers. In cases (b) and (c) the two vertical segments of the range restrictor of edge (v i , v j)
cross every selector and blocker backbone regardless of the position of its own backbone, which
yields 6n − 1 crossings. �us, case (b) causes at least (k + 1) ⋅m + 6n − 1 crossings.
For giving an upper bound on the number of crossings in case (c) we note that the backbone

can cross at most three vertical segments of any other selector gadget: the two segments con-
nected to its selector points and one segment connected to a point in either row 2n + 1 or row−2n − 1, which is part of the range restrictor gadget. �e two vertical segments connected to
points s(i)1 and s(i)2 together will cross the backbone of each central blocker at most once, the
backbones of each pair of upper/lower gap blockers at most twice, and each selector backbone at
most twice. Backbones of upper and lower blockers are never crossed in case (c). So in case (c)
the segments of the selector gadget cross at most km + 8n − 1 segments, which is less than the
lower bound of (k + 1)m + 6n − 1 in case (b). We conclude that each backbone indeed passes
through one of the gaps in an optimal solution. Any violation of this rule would create at leastm
additional crossings, which is more than what an arbitrary assignment of selector backbones to
gaps yields.

Next, we show how the number of crossings in the backbone labeling instance relates to the
number of crossings in the instance of the Fixed Linear Crossing Number problem. �ere is
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a large number of unavoidable crossings regardless of the backbone positions of the selector
gadgets. By Property 1 and the fact that violating any range restriction immediately causes
M = Ω(n2) crossings, we can assume that every backbone adheres to the rules, that is, stays
within its range as de�ned by the range restriction gadgets or passes through one of its two gaps,
in the case of selector backbones.

Property 2. An optimal solution of the backbone labeling instance IG created for a matching G
with n edges has X+2Z crossings, where X is a constant depending onG and Z is the minimum
number of crossings of G in the Fixed Linear Crossing Number instance.

Proof. Aside from guard backbones, which never have crossings, there are two types of back-
bones in our construction, blocker and selector backbones. We argue separately for all four
possible types of crossings and distinguish �xed crossings that must occur and variable crossings
that depend on the placement of the selector backbones. �e types of crossings are

(i) crossings between blocker backbones and vertical blocker segments,

(ii) crossings between blocker backbones and vertical selector segments,

(iii) crossings between selector backbones and vertical blocker segments, and

(iv) crossings between selector backbones and vertical selector segments.

We will analyze the numbers of crossings for these types individually.

Case (i): By construction each blocker backbone must intersect exactly one blocker gadget of
width m for each edge gadget to its right. �us we obtain

X1 = 5m n−1∑
i=1

i = 5m ⋅ n2 − n
2

�xed crossings in total from Case (i).

Case (ii): Each blocker backbone crosses, for each edge, exactly one vertical selector segment
that is part of the range restrictor gadget on the right-hand side of our construction.
Each central blocker backbone additionally crosses for each edge gadget to its right one
vertical segment incident to one of the selector points, regardless of the selector position.
�e two gap blocker backbones for gaps in rows j and − j together cause two additional
crossings for each edge gadget to its right whose target vertex vk satis�es k > j. To see
this we need to distinguish two cases. Let e = (v i , vk) be the edge of an edge gadget with
k > j. If i < j, then both vertical selector segments either cross the lower gap blocker
backbone or they both cross the upper gap blocker backbone (see edges (v1 , v4) and(v2 , v5) in Figure 9.19). If i > j, then one of the two vertical selector segments crosses both
gap blocker backbones, and the other one crosses none (see edges (v1 , v4) and (v6 , v7)
in Figure 9.19). �e backbones of the upper and lower blockers do not cross any other
vertical selector segment.
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Let κ = ∣{{(v i , v j), (vk , v l)} ∈ E2 ∣ i < k and j < l}∣ = O(n2) be the number of pairs of
edges causing crossings with gap blocker backbones. �en we obtain

X2 = 5n2 + n2 − n
2

+ 2κ
�xed crossings from Case (ii).

Case (iii): Each selector backbone that passes through one of its gaps crosses exactly one blocker
gadget for each edge gadget to its right. �us, we obtain

X3 = m
n−1∑
i=1

i = m ⋅ n2 − n
2

�xed crossings in Case (iii).

Case (iv): Let e = (v i , v j) and f = (vk , v l) be two edges in G, and let i < k. �en there are
three sub-cases: (a) e and f are sequential, that is, i < j < k < l , (b) e and f are nested,
that is, i < k < l < j, or (c) e and f are interlaced, that is, i < k < j < l . For every pair of
sequential edges there is exactly one crossing, regardless of the gap assignments (see edges(v1 , v4) and (v6 , v7) in Figure 9.19). For every pair of nested edges there is no crossing,
regardless of the gap assignments (see edges (v3 , v8) and (v6 , v7) in Figure 9.19). Finally,
for every pair of interlaced edges there are no crossings if the respective side selector
backbones are assigned to opposite sides of the x-axis or two crossings if they are assigned
to the same side. �erefore, pairs of interlaced edges do not contribute to the number
of �xed crossings. Let τ = ∣{{(v i , v j), (vk , v l)} ∈ E2 ∣ i < j < k < l}∣ = O(n2) be the
number of pairs of sequential edges. �en we obtain

X4 = τ

�xed crossings from Case (iv).

From the discussion of the four cases we can immediately see that all crossings are �xed,
except for those related to pairs of interlaced edges (see, for example, edges (v1 , v4) and (v3 , v8)
or (v2 , v5) in Figure 9.19). �ese are exactly the edge pairs that create crossings in the Fixed
Linear Crossing Number problem if assigned to the same side of the spine. As discussed
in Case (iv) the selector gadgets of two interlaced edges create two extra crossings if and only
if they are assigned to gaps on the same side of the x-axis. If we create a bijection that maps
a selector backbone placed in the upper gap to an edge drawn above the spine, and a selector
backbone in the lower gap to an edge drawn below the spine, we see that an edge crossing on the
same side of the spine in a drawing of G corresponds to two extra crossings in a labeling of IG
and vice versa. So, if Z is the minimum number of crossings in a spine drawing of G, then 2Z is
the minimum number of variable crossings in a labeling of IG . By setting X = X1 +X2 +X3 +X4
this proves Property 2.

From Property 2 it follows immediately that crossing minimization with �nite backbones
is NP-hard since the size of the instance IG is polynomial in n (more precisely, we need only
O(n5) points for IG).
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Furthermore, we can guess an order of the backbones and then, by using the algorithm of
�eorem 9.7, compute the minimum crossing number for this order. �is shows that crossing
minimization is contained in NP. Hence, the problem is NP-complete.

9.5 Concluding Remarks
We have introduced the new model of many-to-one labeling with backbones; this model gener-
alizes the po-leader model of classic boundary labeling to many-to-one boundary labeling. For
both settings, �nite and in�nite backbones, we have seen that minimizing the total number of
labels as well as minimizing the total length of leaders can be achieved in polynomial time by
using dynamic programming. On the other hand, only very restricted versions of crossing mini-
mization can be solved e�ciently. In general, crossing minimization with a bounded number of
labels per color is NP-hard for �nite backbones.

OpenProblems. In the setting of crossing minimization, we have just seen hardness for �nite
backbones. In our hardness proof it was essential that backbones do not extend in�nitely to the
right; hence, the hardness proof we gave cannot simply be modi�ed for showing hardness for
in�nite backbones. It is, therefore, an open problem whether the simpler structure of many-to-
one labelings with in�nite backbones allows for e�ciently minimizing the number of crossings
or the problem is also NP-hard.
�e other optimization criteria, that is, minimizing the total number of labels or the total

leader length can be solved optimally. We did, however, only consider the case where just one
side of the focus region is used for placing the labels. For in�nite backbones, using both the le�
and the right boundary does not make a di�erence. However, we get much more �exibility in
the case of �nite backbones. An open question is, hence, whether the 2-sided problem variant is
still solvable in polynomial time.
For labeling circular focus regions (see Chapter 8), we developed algorithms that maximize

the number (or the weight) of sites that can be labeled subject to constraints such as a �xed
number of labels or a minimum gap between two labels. Similar problems can be considered
for the backbone labelings discussed in this chapter. For example, subject to upper bounds on
the number of labels for the di�erent colors, we want to maximize the number of sites (or the
total weight of sites, respectively) that are connected to a label of their color. Both for �nite
and in�nite backbones this problem should be solvable in polynomial time by modifying the
respective dynamic programs presented for leader length minimization in Section 9.3. To this
end, entries of the tables must represent the maximum weight of sites that can be labeled in
subinstances and minimization must be changed to maximization. Some further modi�cations
will be necessary, but should not be too hard to realize.
In the previous chapter, we presented a post-processing step for classic straight-line boundary

labeling that replaced the straight-line leaders by Bézier curves. A similar approach could
be tried for many-to-one backbone boundary labeling. Any site would be connected to its
horizontal backbone via a Bézier curve with a horizontal tangent at the backbone, that is, with a
smooth transition. Since many sites may be connected to the same backbone, this can create a
nice con�uent appearance; see Figure 9.20.
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Figure 9.20: Sketch of a backbone labeling with Bézier curves.
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Chapter 10

Conclusion
In this thesis, we have investigated three areas of graph drawing: metro maps, point-set embed-
dability, and boundary labeling. In all three areas, we have presented algorithms for tractable
cases, but we have also seen that there are NP-hard subproblems by providing hardness proofs.
In the case of metro lines and boundary labeling, minimizing the number of crossings is NP-
hard, while for many point-set embeddability problems deciding whether a feasible solution
exists—without restricting the number of crossings—is itself NP-hard.
In these results, the problems considered are quite representative for the area of graph drawing.

�e same holds for the type of results we presented. We have seen very practical algorithms that
have been implemented and tested in Chapters 3 and 8, as well as provably optimal algorithms,
but also many theoretical results.

Perspectives for Future Work. In the concluding remarks of the individual chapters, we
have seen some speci�c open problems in the context of the respective chapter. In what follows,
we will see a few perspectives for possible future work that generalize or extend the considered
problems in a broader way.
For metro maps, we have seen methods for creating curvy drawings of the network and

for minimizing crossings between metro lines. An interesting direction for future research is
the transfer of drawing conventions and algorithms for metro maps to other areas in which
some relevant lines—that is, mainly paths—in networks should be visualized. Nesbitt [Nes04]
discussed the use of thismetro map metaphor for di�erent purposes such as navigating through
web pages or visualizing business plans. For tours through the internet, the automatic creation
of metro-map like drawings has been studied by Svandad et al. [SGSK01]. Stott et al. [SRB+05]
presented a method for visualizing project plans in the style of metro maps. However, no
general purpose algorithm—independent of speci�c applications—for creating metro-map like
drawings is available. �e input of such an algorithm would be just a graph and paths on that
graph, that will play the role of metro maps. �e most important di�erence to real-world metro
networks is that no geographic positions of vertices are given. On the one hand, this allows
more �exibility for creating nice drawings. On the other hand, it makes it also more complicated
to �nd a �rst feasible drawing, for example, when trying to adapt our method presented in
Chapter 3.
�ere has been previous work pointing out relations between metro-line crossing minimiza-

tion and edge bundling. More speci�cally, the edges of the original graph become lines in the
graph a�er bundling. In this setting, there can be edges with a large number of lines—much
larger than in real-world metro maps. We think that block crossings as considered in Chapter 5
can help a lot in improving the readability of bundled graph drawings.
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For point-set embeddability, there have already been some results, and we have added some
more. However, in a practical application, a small deviation between the desired positions (that
is, the input points) and the actual vertex positions could o�en be tolerated because a user will
hardly realize such a deviation. �is relaxation gives rise to two new variants of embeddability
problem. We can either de�ne the largest deviation that is allowed for a vertex, or we can
measure all deviations and try to �nd a feasible embedding that minimizes the deviations. In
both cases, relaxing the position constraint a bit can allow us to �nd a feasible embedding if
there has not been one for the stricter version, or it can allow us to �nd a nicer embedding.
Lö�er [Löf11] considered the version with maximum deviation for planar straight-line drawings
and showed hardness even for cycles. For general graphs and nonplanar drawings, Abellanas et
al. [AAPS05] developed a force-directed heuristic by adding a force that tries to keep the vertex
in its desired region; this is similar to what we did in Chapter 3 for modeling that metro stations
should be drawn close to their geographic position.
In boundary labeling, there are algorithms that �nd feasible solutions for various styles of

leaders. In few cases, even the interaction with the underlying map can already be taken into
account. However, the interaction between di�erent leaders—except for intersections—is rarely
considered as an optimization criterion. In some drawing styles, algorithms o�en even use a
track routing area which can contain many parallel segments placed close together. In practice,
we want to have large gaps between leaders such that it is easy to distinguish between di�erent
leaders. Furthermore, we would also like that leaders do not come close to sites—with the
exception of their own site.
�e open problems we have mentioned here are examples for a general tendency in graph

drawing: several problems are solved in theory, while the resulting drawings are, in practices,
not very nice.

208



Bibliography

[AAPS05] Manuel Abellanas, Andrés Aiello, Gregorio Hernández Penalver, and Rodrigo I.
Silveira. Network drawing with geographical constraints on vertices. Actas XI
Encuentros de Geometra Computacional, pages 111–118, 2005. [see page 208]

[ABKS10] Evmor�a N. Argyriou, Michael A. Bekos, Michael Kaufmann, and Antonios Symvo-
nis. On metro-line crossing minimization. Journal of Graph Algorithms and Ap-
plications, 14(1):75–96, 2010. [see pages 45, 47, 48, 49, 51, 55, 63, and 71]

[ACMM05] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev.
O(√log n) approximation algorithms for Min UnCut, Min 2CNF deletion, and
directed cut problems. In Proceedings of the 37th Annual ACM Symposium on
�eory of Computing (STOC’05), pages 573–581, New York, 2005. ACM. [see
page 59]

[AES99] Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of
shallow levels in 3-dimensional arrangements and its applications. SIAM Journal
on Computing, 29(3):912–953, 1999. [see page 157]

[AFK+12] Karin Arikushi, Radoslav Fulek, Balázs Keszegh, Filip Morić, and Csaba Tóth.
Graphs that admit right angle crossing drawings. Computational Geometry: �eory
and Applications, 45(4):169–177, 2012. [see pages 109, 113, and 116]

[AGM08] Matthew Asquith, Joachim Gudmundsson, and Damian Merrick. An ILP for
the metro-line crossing problem. In James Harland and Prabhu Manyem, editors,
Proceedings of 14thComputing: �eAustralasian�eory Symposium (CATS’08), vol-
ume 77 of CRPIT, pages 49–56. Australian Computer Society, 2008. [see pages 47,
48, and 55]

[AHS05] Kamran Ali, Knut Hartmann, and�omas Strothotte. Label layout for interactive
3D illustrations. Journal of WSCG, 13(1):1–8, 2005. [see page 152]

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: �e advantages of careful
seeding. In Nikhil Bansal, Kirk Pruhs, and Cli�ord Stein, editors, Proceedings of
the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07), pages
1027–1035. SIAM, 2007. [see page 166]

[Bar83] Francisco Barahona. On some weakly bipartite graphs. Operations Research Letters,
2(5):239–242, 1983. [see page 61]

[BCDE13] Michael J. Bannister, Zhanpeng Cheng, William E. Devanny, and David Eppstein.
Superpatterns and universal point sets. In Stephen Wismath and Alexander Wol�,

209



Bibliography

editors, Proceedings of the 21st International Symposium onGraphDrawing (GD’13),
volume 8242 of Lecture Notes in Computer Science, pages 208–219. Springer-Verlag,
2013. [see page 109]

[BCF+13] Michael A. Bekos, Sabine Cornelsen, Martin Fink, Seok-Hee Hong, Michael Kauf-
mann, Martin Nöllenburg, Ignaz Rutter, and Antonios Symvonis. Many-to-one
boundary labeling with backbones. In Stephen Wismath and Alexander Wol�,
editors, Proceedings of the 21st International Symposium onGraphDrawing (GD’13),
volume 8242 of Lecture Notes in Computer Science, pages 244–255. Springer-Verlag,
2013. [see page 10]

[Ber99] François Bertault. A force-directed algorithm that preserves edge crossing prop-
erties. In Jan Kratochvíl, editor, Proceedings of the 7th International Symposium on
Graph Drawing (GD’99), volume 1731 of Lecture Notes in Computer Science, pages
351–358. Springer-Verlag, 1999. [see page 33]

[BFP+73] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.
Tarjan. Time bounds for selection. Journal of Computer and System Sciences,
7(4):448–461, 1973. [see page 157]

[BFR12] Laurent Bulteau, Guillaume Fertin, and Irena Rusu. Sorting by transpositions
is di�cult. SIAM Journal on Discrete Mathematics, 26(3):1148–1180, 2012. [see
pages 76 and 77]

[BHKN09] Marc Benkert, Herman J. Haverkort, Moritz Kroll, and Martin Nöllenburg. Al-
gorithms for multi-criteria boundary labeling. Journal of Graph Algorithms and
Applications, 13(3):289–317, 2009. [see page 151]

[BHNP13] Sergey Bereg, Alexander E. Holroyd, Lev Nachmanson, and Sergey Pupyrev. Draw-
ing permutations with few corners. In Stephen Wismath and Alexander Wol�,
editors, Proceedings of the 21st International Symposium onGraphDrawing (GD’13),
volume 8242 of Lecture Notes in Computer Science, pages 484–495. Springer-Verlag,
2013. [see pages 71 and 103]

[BKK+13] Michael A. Bekos, Michael Kaufmann, Robert Krug, Stefan Näher, and Vincenzo
Roselli. Slanted orthogonal drawings. In Stephen Wismath and Alexander Wol�,
editors, Proceedings of the 21st International Symposium onGraphDrawing (GD’13),
volume 8242 of Lecture Notes in Computer Science, pages 428–439. Springer-Verlag,
2013. [see page 121]

[BKNS10] Michael A. Bekos, Michael Kaufmann, Martin Nöllenburg, and Antonios Symvonis.
Boundary labeling with octilinear leaders. Algorithmica, 57(3):436–461, 2010. [see
page 151]

[BKPS08] Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios Symvonis.
Line crossing minimization on metro maps. In Seok-Hee Hong, Takao Nishizeki,
and Wu Quan, editors, Proceedings of the 15th International Symposium on Graph
Drawing (GD’07), volume 4875 ofLectureNotes in Computer Science, pages 231–242.
Springer-Verlag, 2008. [see pages 46, 47, 48, 63, and 90]

210



Bibliography

[BKPS11] Michael A. Bekos, Michael Kaufmann, Dimitrios Papadopoulos, and Antonios
Symvonis. Combining traditional map labeling with boundary labeling. In Ivana
Cerná, Tibor Gyimóthy, Juraj Hromkovic, Keith G. Je�ery, Rastislav Královic,
Marko Vukolic, and Stefan Wolf, editors, Proceedings of the 37th Conference on
Current Trends in �eory and Practice of Computer Science (SOFSEM’11), volume
6543 of Lecture Notes in Computer Science, pages 111–122. Springer-Verlag, 2011.
[see page 152]

[BKSW05] Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander Wol�.
Boundary labeling: Models and e�cient algorithms for rectangular maps. In János
Pach, editor, Proceedings of the 12th International Symposium on Graph Drawing
(GD’04), volume 3383 of Lecture Notes in Computer Science, pages 49–59. Springer-
Verlag, 2005. [see page 151]

[BKSW07] Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander Wol�.
Boundary labeling: Models and e�cient algorithms for rectangular maps. Compu-
tational Geometry: �eory and Applications, 36(3):215–236, 2007. [see pages 146,
151, 156, and 157]

[BMS97] Prosenjit Bose, Michael McAllister, and Jack Snoeyink. Optimal algorithms to
embed trees in a point set. Journal of Graph Algorithms and Applications, 1(2):1–15,
1997. [see page 109]

[BNUW07] Marc Benkert, Martin Nöllenburg, Takeaki Uno, and AlexanderWol�. Minimizing
intra-edge crossings in wiring diagrams and public transport maps. In Michael
Kaufmann and Dorothea Wagner, editors, Proceedings of the 14th International
Symposium on Graph Drawing (GD’06), volume 4372 of Lecture Notes in Computer
Science, pages 270–281. Springer-Verlag, 2007. [see pages 43, 47, and 48]

[Bos02] Prosenjit Bose. On embedding an outer-planar graph in a point set. Computational
Geometry: �eory and Applications, 23(3):303–312, 2002. [see page 109]

[BP98] Vineet Bafna and Pavel A. Pevzner. Sorting by transpositions. SIAM Journal on
Discrete Mathematics, 11(2):224–240, 1998. [see pages 75, 76, 77, and 79]

[BRL09] Enrico Bertini, Maurizio Rigamonti, and Denis Lalanne. Extended excentric
labeling. Computer Graphics Forum, 28(3):927–934, 2009. [see page 151]

[BW97] Matthias Bader and Robert Weibel. Detecting and resolving size and proximity
con�icts in the generalization of polygonalmaps. InProceedings of the 18th ICA/ACI
International Cartographic Conference (ICC’97), pages 1525–1532, Stockholm, 1997.
[see page 167]

[BW00] Ulrik Brandes and Dorothea Wagner. Using graph layout to visualize train connec-
tion data. Journal of Graph Algorithms and Applications, 4(3):135–155, 2000. [see
page 28]

211



Bibliography

[Cab06] Sergio Cabello. Planar embeddability of the vertices of a graph using a �xed point
set is NP-hard. Journal of Graph Algorithms and Applications, 10(2):353–366, 2006.
[see pages 108, 109, and 110]

[CBB91] Raju Chithambaram, Kate Beard, and Renato Barrera. Skeletonizing polygons for
map generalization. In Technical papers, ACSM-ASPRS Convention, Cartography
and GIS/LIS, volume 2, pages 44–54, 1991. [see page 167]

[CCG+12] Roman Chernobelskiy, Kathryn I. Cunningham, Michael T. Goodrich, Stephen G.
Kobourov, and Lowell Trott. Force-directed lombardi-style graph drawing. In
Marc J. van Kreveld and Bettina Speckmann, editors, Proceedings of the 19th Inter-
national Symposium on Graph Drawing (GD’11), volume 7034 of Lecture Notes in
Computer Science, pages 320–331. Springer-Verlag, 2012. [see page 28]

[Che89] Paul L. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97–108, 1989.
[see page 168]

[CI01] David A. Christie and RobertW. Irving. Sorting strings by reversals and by transpo-
sitions. SIAM Journal on Discrete Mathematics, 14(2):193–206, 2001. [see pages 76
and 78]

[CL98] Hsiao-Feng Steven Chen and D. T. Lee. On crossing minimization problem. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17:406–
418, 1998. [see page 48]

[CLRS09] �omas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
Introduction to Algorithms. MIT Press, Cambridge, MA, USA, third edition, 2009.
[see page 11]

[CMS95] Jon Christensen, Joe Marks, and Stuart Shieber. An empirical study of algorithms
for point-feature label placement. ACM Transactions on Graphics, 14(3):203–232,
1995. [see page 150]

[Coo71] Stephen A. Cook. �e complexity of theorem-proving procedures. In Michael A.
Harrison, Ranan B. Banerji, and Je�rey D. Ullman, editors, Proceedings of the 3rd
Annual ACM Symposium on the �eory of Computing (STOC’71), pages 151–158.
ACM, 1971. [see page 18]

[CR11] Md. Emran Chowdhury and Md. Saidur Rahman. Orthogonal point-set embed-
dings of 3-connected and 4-connected planar graphs. In Proceedings of the 14th In-
ternational Conference on Computer and Information Technology (ICCIT’11), pages
327–332, 2011. [see page 121]

[CZQ+08] Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, and Xiaoming Li.
Geometry-based edge clustering for graph visualization. IEEE Transactions on
Visualization and Computer Graphics, 14(6):1277–1284, 2008. [see page 44]

[DEG+12] Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov,
andMartinNöllenburg. Lombardi drawings of graphs. Journal of GraphAlgorithms
and Applications, 16(1):85–108, 2012. [see page 28]

212



Bibliography

[DEG+13] Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov,
and Martin Nöllenburg. Drawing trees with perfect angular resolution and polyno-
mial area. Discrete & Computational Geometry, 49(2):157–182, 2013. [see page 28]

[DEL11] Walter Didimo, Peter Eades, and Giuseppe Liotta. Drawing graphs with right angle
crossings. �eoretical Computer Science, 412(39):5156–5166, 2011. [see pages 107,
110, and 116]

[DETT99] Guiseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999. [see
page 11]

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Mono-
graphs in Computer Science. Springer-Verlag, 1999. [see page 20]

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer-Verlag, 2013. [see page 20]

[dFPP90] Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph
on a grid. Combinatorica, 10(1):41–51, 1990. [see page 14]

[DHM08] Tim Dwyer, Nathan Hurst, and Damian Merrick. A fast and simple heuristic
for metro map path simpli�cation. In George Bebis, Richard D. Boyle, Bahram
Parvin, Darko Koracin, Paolo Remagnino, Fatih Murat Porikli, Jörg Peters, James T.
Klosowski, Laura L. Arns, Yu Ka Chun, �eresa-Marie Rhyne, and Laura Mon-
roe, editors, Proceedings of the 4th International Symposium onAdvances in Visual
Computing (ISVC’08), volume 5359 of Lecture Notes in Computer Science, pages
22–30. Springer-Verlag, 2008. [see page 25]

[Die10] Reinhard Diestel. Graph �eory, volume 173 of Graduate Texts in Mathematics.
Springer-Verlag, 4th edition, 2010. [see page 11]

[DJP+94] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour,
and Mihalis Yannakakis. �e complexity of multiterminal cuts. SIAM Journal on
Computing, 23(4):864–894, 1994. [see pages 19 and 97]

[Ead84] Peter Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,
1984. [see page 15]

[EEK07] Alon Efrat, Cesim Erten, and Stephen G. Kobourov. Fixed-location circular arc
drawing of planar graphs. Journal of Graph Algorithms and Applications, 11(1):145–
164, 2007. [see page 109]

[EH06] Isaac Elias and Tzvika Hartman. A 1.375-approximation algorithm for sorting by
transpositions. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 3(4):369–379, 2006. [see pages 76 and 77]

[EIS76] Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and
multicommodity �ow problems. SIAM Journal on Computing, 5(4):691–703, 1976.
[see pages 57 and 124]

213



Bibliography

[Epp13] David Eppstein. Planar Lombardi drawings for subcubic graphs. In Walter Didimo
and Maurizio Patrignani, editors, Proceedings of the 20th International Symposium
on Graph Drawing (GD’12), volume 7704 of Lecture Notes in Computer Science,
pages 126–137. Springer-Verlag, 2013. [see page 28]

[FHM+12] Martin Fink, Jan-Henrik Haunert, Tamara Mchedlidze, Joachim Spoerhase, and
Alexander Wol�. Drawing graphs with vertices at speci�ed positions and crossings
at large angles. In Md. Saidur Rahman and Shin-ichi Nakano, editors, Proceedings
of the 6th Workshop on Algorithms and Computation (WALCOM’12), volume 7157
of Lecture Notes in Computer Science, pages 186–197. Springer-Verlag, 2012. [see
pages 7 and 8]

[FHN+13] Martin Fink, Herman Haverkort, Martin Nöllenburg, Maxwell Roberts, Julian
Schuhmann, and Alexander Wol�. Drawing metro maps using Bézier curves. In
Walter Didimo and Maurizio Patrignani, editors, Proceedings of the 20th Inter-
national Symposium on Graph Drawing (GD’12), volume 7704 of Lecture Notes in
Computer Science, pages 463–474. Springer-Verlag, 2013. [see page 5]

[FHS+12] Martin Fink, Jan-Henrik Haunert, André Schulz, Joachim Spoerhase, and Alexan-
der Wol�. Algorithms for labeling focus regions. IEEE Transactions on Visualiza-
tion and Computer Graphics, 18(12):2583–2592, 2012. [see page 8]

[FLR+09] Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, and StéphaneVialette.
Combinatorics of Genome Rearrangements. MIT Press, 2009. [see page 76]

[FLW14] Martin Fink, Magnus Lechner, and Alexander Wol�. Concentric metro maps. In
Maxwell J. Roberts and Peter Rodgers, editors, Abstracts of the Schematic Mapping
Workshop 2014, 2014. Poster. [see pages 41 and 42]

[FP98] Jean-Daniel Fekete and Catharine Plaisant. Excentric labeling: Dynamic neighbor-
hood labeling for data visualization. Technical Report HCIL-98-09, Department of
Computer Science, University of Maryland, 1998. [see page 150]

[FP99] Jean-Daniel Fekete and Catharine Plaisant. Excentric labeling: Dynamic neigh-
borhood labeling for data visualization. In Proceedings of the ACM CHI 1999
Conference on Human Factors in Computing Systems (CHI’99), pages 512–519, 1999.
[see pages 148 and 150]

[FP13a] Martin Fink and Sergey Pupyrev. Metro-line crossing minimization: Hardness,
approximations, and tractable cases. In Stephen Wismath and Alexander Wol�,
editors, Proceedings of the 21st International Symposium onGraphDrawing (GD’13),
volume 8242 of Lecture Notes in Computer Science, pages 328–339. Springer-Verlag,
2013. [see page 6]

[FP13b] Martin Fink and Sergey Pupyrev. Ordering metro lines by block crossings. In
Krishnendu Chatterjee and Jiri Sgall, editors, Proceedings of the 38th International
Symposium onMathematical Foundations of Computer Science (MFCS’13), volume
8087 of Lecture Notes in Computer Science, pages 397–408. Springer-Verlag, 2013.
[see page 7]

214



Bibliography

[FR91] �omas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-
directed placement. So�ware: Practice and Experience, 21(11):1129–1164, 1991. [see
pages 15 and 31]

[FT05] Benjamin Finkel and Roberto Tamassia. Curvilinear graph drawing using the
force-directed method. In János Pach, editor, Proceedings of the 12th International
Symposium on Graph Drawing (GD’04), volume 3383 of Lecture Notes in Computer
Science, pages 448–453. Springer-Verlag, 2005. [see page 28]

[FW91] Michael Formann and Frank Wagner. A packing problem with applications to
lettering of maps. In Proceedings of the 7th Annual Symposium on Computational
Geometry (SCG’91), pages 281–288. ACM, 1991. [see page 150]

[GDLM11] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Henk Meijer. Area,
curve complexity, and crossing resolution of non-planar graph drawings. �eory of
Computing Systems, 49(3):565–575, 2011. [see pages 109, 110, 114, and 118]

[GFF+13] Emilio Di Giacomo, Fabrizio Frati, Radoslav Fulek, Luca Grilli, and Marcus Krug.
Orthogeodesic point-set embedding of trees. Computational Geometry: �eory
and Applications, 46(8):929–944, 2013. [see pages 108, 121, and 137]

[GHN11] Andreas Gemsa, Jan-Henrik Haunert, and Martin Nöllenburg. Boundary-labeling
algorithms for panorama images. In Isabel F. Cruz, Divyakant Agrawal, Chris-
tian S. Jensen, Eyal Ofek, and Egemen Tanin, editors, Proceedings of the 19th ACM
SIGSPATIAL International Symposium onAdvances in Geographic Information Sys-
tems (ACM-GIS’11), pages 289–298. ACM, 2011. [see page 152]

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the �eory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
[see pages 11, 18, 59, and 60]

[GJ83] Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM
Journal on Algebraic and Discrete Methods, 4(3):312–316, 1983. [see pages 3 and 13]

[GKO+09] Xavier Goaoc, Jan Kratochvíl, Yoshio Okamoto, Chan-Su Shin, Andreas Spillner,
and Alexander Wol�. Untangling a planar graph. Discrete & Computational Ge-
ometry, 42(4):542–569, 2009. [see page 109]

[GMPP91] Peter Gritzmann, Bojan Mohar, János Pach, and Richard M. Pollack. Embedding a
planar triangulation with vertices at speci�ed positions. �e American Mathemat-
ical Monthly, 98:165–166, 1991. [see pages 107 and 109]

[GP81] Martin Grötschel and William R. Pulleyblank. Weakly bipartite graphs and the
Max-Cut problem. Operations Research Letters, 1(1):23–27, 1981. [see page 61]

[Gro89] Patrick Groeneveld. Wire ordering for detailed routing. IEEE Design & Test of
Computers, 6(6):6–17, 1989. [see pages 44 and 47]

215



Bibliography

[GT01] Ashim Garg and Roberto Tamassia. On the computational complexity of upward
and rectilinear planarity testing. SIAM Journal on Computing, 31(2):601–625, 2001.
[see page 121]

[Hal91] John H. Halton. On the thickness of graphs of given degree. Information Sciences,
54(3):219–238, 1991. [see page 109]

[HGAS05] Knut Hartmann, Timo Götzelmann, Kamran Ali, and�omas Strothotte. Metrics
for functional and aesthetic label layouts. In Andreas Butz, Brian Fisher, Antonio
Krüger, and Patrick Olivier, editors, Proceedings of the 5th International Sympo-
sium on Smart Graphics (SG’05), volume 3638 of Lecture Notes in Computer Science,
pages 115–126. Springer-Verlag, 2005. [see page 152]

[HHE08] Weidong Huang, Seok-Hee Hong, and Peter Eades. E�ects of crossing angles. In
Proceedings of the IEEE Paci�c Visualisation Symposium 2008 (Paci�cVis’08), pages
41–46, 2008. [see pages 4 and 107]

[HMdN06] Seok-Hee Hong, Damian Merrick, and Hugo A. D. do Nascimento. Automatic
visualisation ofmetromaps. Journal of Visual Languages and Computing, 17(3):203–
224, 2006. [see pages 24 and 25]

[Hol06] Danny Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. IEEE Transactions on Visualization and Computer Graphics,
12(5):741–748, 2006. [see page 44]

[HS11] Jan-Henrik Haunert and Leon Sering. Drawing road networks with focus regions.
IEEE Transactions on Visualization and Computer Graphics, 17(12):2555–2562, 2011.
[see page 145]

[HT74] John E. Hopcro� and Robert E. Tarjan. E�cient planarity testing. Journal of the
ACM, 21(4):549–568, 1974. [see page 14]

[HT91] Refael Hassin and Arie Tamir. Improved complexity bounds for location problems
on the real line. Operations Research Letters, 10(7):395–402, 1991. [see page 189]

[HV98] Lenwood S. Heath and John Paul C. Vergara. Sorting by bounded block-moves.
Discrete Applied Mathematics, 88(1–3):181–206, 1998. [see page 76]

[Kau09] Michael Kaufmann. On map labeling with leaders. In Susanne Albers, Helmut Alt,
and Stefan Näher, editors, E�cient Algorithms: Essays Dedicated to Kurt Mehlhorn
on the Occasion of His 60th Birthday, volume 5760 of Lecture Notes in Computer
Science, pages 290–304. Springer-Verlag, 2009. [see page 152]

[KKRW10] BastianKatz,MarcusKrug, Ignaz Rutter, andAlexanderWol�. Manhattan-geodesic
embedding of planar graphs. In David Eppstein and Emden R. Gansner, editors,
Proceedings of the 17th International Symposium on Graph Drawing (GD’09), vol-
ume 5849 of Lecture Notes in Computer Science, pages 207–218. Springer-Verlag,
2010. [see pages 120, 122, 131, and 132]

216



Bibliography

[KNR+13] Philipp Kindermann, BenjaminNiedermann, Ignaz Rutter, Marcus Schaefer, André
Schulz, and Alexander Wol�. Two-sided boundary labeling with adjacent sides. In
Frank Dehne, Roberto Solis-Oba, and Jörg-Rüdiger Sack, editors, Proceedings of
the 13th International on Algorithms and Data Structures (WADS’13), volume 8037
of Lecture Notes in Computer Science, pages 463–474. Springer-Verlag, 2013. [see
page 152]

[Kob13] Stephen G. Kobourov. Force-directed drawing algorithms. In Roberto Tamas-
sia, editor, Handbook of Graph Drawing and Visualization, volume 81 of Discrete
Mathematics and Its Applications, chapter 12. Chapman & Hall/CRC, 2013. [see
page 16]

[KS12] Mikio Kano and Kazuhiro Suzuki. Geometric graphs in the plane lattice. In Alberto
Márquez, PedroRamos, and JorgeUrrutia, editors, Proceedings of the XIVth Spanish
Meeting on Computational Geometry (ECG’11), volume 7579 of Lecture Notes in
Computer Science, pages 274–281. Springer-Verlag, 2012. [see pages 121, 138, and 142]

[Kuh55] Harold W. Kuhn. �e Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1–2):83–97, 1955. [see pages 158 and 197]

[Kur04] Maciej Kurowski. A 1.235 lower bound on the number of points needed to draw
all n-vertex planar graphs. Information Processing Letters, 92(2):95–98, 2004. [see
page 109]

[KW01] Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs: Methods and
Models, volume 2025 of Lecture Notes in Computer Science. Springer-Verlag, 2001.
[see page 11]

[KW02] Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few bends
su�ce for planar graphs. Journal of GraphAlgorithms andApplications, 6(1):115–129,
2002. [see pages 107 and 109]

[Lin10] Chun-Cheng Lin. Crossing-free many-to-one boundary labeling with hyperlead-
ers. In Proceedings of the IEEE Paci�c Visualization Symposium 2010 (Paci�cVis’10),
pages 185–192. IEEE, 2010. [see pages 178 and 179]

[LKY08] Chun-Cheng Lin, Hao-Jen Kao, and Hsu-Chun Yen. Many-to-one boundary
labeling. Journal of Graph Algorithms and Applications, 12(3):319–356, 2008. [see
page 178]

[LN13] Maarten Lö�er and Martin Nöllenburg. Planar Lombardi drawings of outerpaths.
In Walter Didimo and Maurizio Patrignani, editors, Proceedings of the 20th Inter-
national Symposium on Graph Drawing (GD’12), volume 7704 of Lecture Notes in
Computer Science, pages 561–562. Springer-Verlag, 2013. [see page 28]

[Löf11] Maarten Lö�er. Existence and computation of tours through imprecise points.
International Journal of Computational Geometry & Applications, 21(1):1–24, 2011.
[see page 208]

217



Bibliography

[MG07] Damian Merrick and Joachim Gudmundsson. Path simpli�cation for metro map
layout. In Michael Kaufmann and Dorothea Wagner, editors, Proceedings of the
14th International Symposium on Graph Drawing (GD’06), volume 4372 of Lecture
Notes in Computer Science, pages 258–269. Springer-Verlag, 2007. [see page 25]

[MM96] Kurt Mehlhorn and Petra Mutzel. On the embedding phase of the hopcro� and
tarjan planarity testing algorithm. Algorithmica, 16(2):233–242, 1996. [see page 14]

[MNKF90] Sumio Masuda, Kazuo Nakajima, Toshinobu Kashiwabara, and Toshio Fujisawa.
Crossing minimization in linear embeddings of graphs. IEEE Transactions on
Computers, 39(1):124–127, 1990. [see page 199]

[Mor80] Joel L. Morrison. Computer technology and cartographic change. In David R.F. Tay-
lor, editor,�e Computer in Contemporary Cartography. Johns Hopkins University
Press, 1980. [see page 148]

[MS95] Malgorzata Marek-Sadowska and Majid Sarrafzadeh. �e crossing distribution
problem. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 14(4):423–433, 1995. [see pages 47 and 76]

[Nes04] Keith V. Nesbitt. Getting to more abstract places using the metro map metaphor.
In Proceedings of the 8th International Conference on Information Visualisation
(IV’04), pages 488–493. IEEE Computer Society, 2004. [see page 207]

[Ney01] Gabriele Neyer. Map labeling with application to graph drawing. In Michael
Kaufmann and DorotheaWagner, editors,Drawing Graphs, volume 2025 of Lecture
Notes in Computer Science, pages 247–273. Springer-Verlag, 2001. [see page 150]

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006. [see page 20]

[Nöl09] Martin Nöllenburg. Network Visualization: Algorithms, Applications, and Com-
plexity. PhD thesis, Fakultät für Informatik, Universität Karlsruhe (TH), 2009. [see
pages 48 and 65]

[Nöl10] Martin Nöllenburg. An improved algorithm for the metro-line crossing minimiza-
tion problem. In David Eppstein and Emden R. Gansner, editors, Proceedings of the
17th International Symposium on Graph Drawing (GD’09), volume 5849 of Lecture
Notes in Computer Science, pages 381–392. Springer-Verlag, 2010. [see pages 45, 47,
and 74]

[NW11] Martin Nöllenburg and Alexander Wol�. Drawing and labeling high-quality metro
maps by mixed-integer programming. IEEE Transactions on Visualization and
Computer Graphics, 17(5):626–641, 2011. [see pages 24, 25, 36, and 37]

[Ola91] Stephan Olariu. An optimal greedy heuristic to color interval graphs. Information
Processing Letters, 37(1):21–25, 1991. [see page 128]

[O’R88] Joseph O’Rourke. Uniqueness of orthogonal connect-the-dots. Computational
Morphology, pages 97–104, 1988. [see page 120]

218



Bibliography

[OTU13a] Yoshio Okamoto, Yuichi Tatsu, and Yushi Uno. Exact and �xed-parameter al-
gorithms for metro-line crossing minimization problems. In Stephen Wismath
and Alexander Wol�, editors, Proceedings of the 21st International Symposium on
Graph Drawing (GD’13), volume 8242 of Lecture Notes in Computer Science, pages
520–521. Springer-Verlag, 2013. [see pages 47, 58, and 68]

[OTU13b] Yoshio Okamoto, Yuichi Tatsu, and Yushi Uno. Exact and �xed-parameter algo-
rithms formetro-line crossingminimization problems. ArXiv e-print abs/1306.3538,
2013. [see page 47]

[Ove03] Mark Ovenden. Metro maps of the world. Harrow Weald: Capital Transport
Publishing, 2nd edition, 2003. [see page 24]

[OW00] Chris Olston andAllisonWoodru�. Getting portals to behave. In JockD.Mackinlay,
Steven F. Roth, and Daniel A. Keim, editors, Proceedings of the 6th IEEE Sympo-
sium on Information Visualization 2000 (InfoVis’00), pages 15–25. IEEE Computer
Society, 2000. [see page 145]

[Pat01] Maurizio Patrignani. On the complexity of orthogonal compaction. Computational
Geometry, 19(1):47–67, 2001. [see page 121]

[PBP02] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-Spline
Techniques. Mathematics and Visualization. Springer-Verlag, 2002. [see page 16]

[PNBH12] Sergey Pupyrev, Lev Nachmanson, Sergey Bereg, and Alexander E. Holroyd. Edge
routing with ordered bundles. In Marc J. van Kreveld and Bettina Speckmann,
editors, Proceedings of the 19th International Symposium onGraphDrawing (GD’11),
volume 7034 of Lecture Notes in Computer Science, pages 136–147. Springer-Verlag,
2012. [see pages 44, 47, 48, 71, and 74]

[PT00] Achilleas Papakostas and Ioannis G. Tollis. E�cient orthogonal drawings of high
degree graphs. Algorithmica, 26(1):100–125, 2000. [see page 116]

[PW01] János Pach and RephaelWenger. Embedding planar graphs at �xed vertex locations.
Graphs and Combinatorics, 17(4):717–728, 2001. [see pages 107, 108, and 109]

[Rap86] David Rappaport. On the complexity of computing orthogonal polygons from a
set of points. Technical report, Technical Report SOCS-86.9, McGill University,
Montréal, Canada, 1986. [see page 120]

[RBvK+08] Iris Reinbacher, Marc Benkert, Marc van Kreveld, Joseph S.B. Mitchell, Jack
Snoeyink, and Alexander Wol�. Delineating boundaries for imprecise regions.
Algorithmica, 50(3):386–414, 2008. [see page 167]

[RCS86] Raghunath Raghavan, James Cohoon, and Sartaj Sahni. Single bend wiring. Journal
of Algorithms, 7(2):232–257, 1986. [see pages 120, 121, and 122]

219



Bibliography

[RNL+13] Maxwell J. Roberts, Elizabeth J. Newton, Fabio D. Lagattolla, Simon Hughes, and
Megan C. Hasler. Objective versus subjectivemeasures of Paris metromap usability:
Investigating traditional octolinear versus all-curves schematics. International
Journal of Human-Computer Studies, 71:363–386, 2013. [see pages 5 and 24]

[RO09] Igor Razgon and Barry O’Sullivan. Almost 2-SAT is �xed-parameter tractable.
Journal of Computer and System Sciences, 75(8):435–450, 2009. [see page 59]

[Rob12] Maxwell J. Roberts. Underground maps unravelled: Explorations in information
design. Published by the author, Wivenhoe, 2012. [see pages 24 and 27]

[RRL12] João Tiago Ribeiro, Rui Rijo, and António Leal. Fast automatic schematics for
public transport spider maps. Procedia Technology, 5:659–669, 2012. [see page 25]

[RW93] Franz Rendl and Gerhard Woeginger. Reconstructing sets of orthogonal line
segments in the plane. Discrete Mathematics, 119:167–174, 1993. [see pages 108, 109,
120, 134, and 141]

[Sch90] Walter Schnyder. Embedding planar graphs on the grid. In David S. Johnson, edi-
tor, Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’90), pages 138–148. SIAM, 1990. [see page 14]

[Sch02] Falk Schreiber. High quality visualization of biochemical pathways in BioPath. In
Silico Biology, 2(2):59–73, 2002. [see page 44]

[SGSK01] Elmer S. Sandvad, Kaj Grønbæk, Lennert Sloth, and Jørgen Lindskov Knudsen.
A metro map metaphor for guided tours on the web: �e webvise guided tour
system. In Proceedings of the 10th International Conference on World Wide Web
(WWW’01), pages 326–333, New York, NY, USA, 2001. ACM. [see page 207]

[Sku02] San Skulrattanakulchai. 4-edge-coloring graphs of maximum degree 3 in linear
time. Information Processing Letters, 81(4):191–195, 2002. [see page 129]

[SRB+05] Jonathan M. Stott, Peter Rodgers, Remo Aslak Burkhard, Michael Meier, and
Matthias �omas Jelle Smis. Automatic layout of project plans using a metro
map metaphor. In Proceedings of the 9th International Conference on Information
Visualisation (IV’05), pages 203–206. IEEE Computer Society, 2005. [see page 207]

[SRMW11] Jonathan M. Stott, Peter Rodgers, Juan Carlos Martínez-Ovando, and Stephen G.
Walker. Automatic metro map layout using multicriteria optimization. IEEE
Transactions on Visualization and Computer Graphics, 17(1):101–114, 2011. [see
pages 24 and 25]

[SV10] Bettina Speckmann and Kevin Verbeek. Necklace maps. IEEE Transactions on
Visualization and Computer Graphics, 16(6):881–889, 2010. [see page 152]

[SWS+11] Markus Steinberger, Manuela Waldner, Marc Streit, Alexander Lex, and Dieter
Schmalstieg. Context-preserving visual links. IEEE Transactions on Visualization
and Computer Graphics, 17(12):2249–2258, 2011. [see page 146]

220



Bibliography

[Tam87] Roberto Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM Journal on Computing, 16(3):421–444, 1987. [see pages 15 and 121]

[Tam13] Roberto Tamassia, editor. Handbook of Graph Drawing and Visualization, vol-
ume 81 of Discrete Mathematics and Its Applications. Chapman & Hall/CRC, 2013.
[see page 11]

[TL14] Peng Ti and Zhilin Li. Generation of schematic network maps with automated
detection and enlargement of congested areas. International Journal of Geographical
Information Science, 28(3):521–540, 2014. [see page 28]

[VB06] Oswald Veblen and William H. Bussey. Finite projective geometries. Transactions
of the American Mathematical Society, 7(2):241–259, 1906. [see page 95]

[Viz64] Vadim G. Vizing. On an estimate of the chromatic class of a p-graph (in Russian).
Metody Diskretnogo Analiza, 3:25–30, 1964. [see page 129]

[vK10] Marc van Kreveld. �e quality ratio of RAC drawings and planar drawings of
planar graphs. In Ulrik Brandes and Sabine Cornelsen, editors, Proceedings of the
18th International Symposium on Graph Drawing (GD’10), volume 6502 of Lecture
Notes in Computer Science. Springer-Verlag, 2010. [see page 110]

[WB05] Daniel Wigdor and Ravin Balakrishnan. Empirical investigation into the e�ect
of orientation on text readability in tabletop displays. In Hans Gellersen, Kjeld
Schmidt, Michel Beaudouin-Lafon, and Wendy E. MacKay, editors, Proceedings of
the 9th European Conference Computer-Supported Cooperative Work (ECSCW’05),
pages 205–224. Springer-Verlag, 2005. [see page 153]

[WC11] Yu-Shuen Wang and Ming-Te Chi. Focus+context metro maps. IEEE Transactions
on Visualization and Computer Graphics, 17(12):2528–2535, 2011. [see page 28]

[Wer38] Max Wertheimer. Laws of organization in perceptual forms. In Willis D. Ellis,
editor, A Source Book of Gestalt Psychology, pages 71–88. Routledge & Kegan Paul,
London, 1938. [see page 146]

[WS] Alexander Wol� and Tycho Strijk. �e Map-Labeling Bibliography (1996). Online:
http://i11www.ira.uka.de/map-labeling/bibliography. [see page 150]

[WWKS01] FrankWagner, AlexanderWol�, Vikas Kapoor, and Tycho Strijk. �ree rules su�ce
for good label placement. Algorithmica, 30(2):334–349, 2001. [see page 150]

[YOT09] Daisuke Yamamoto, Shotaro Ozeki, and Naohisa Takahashi. Focus+glue+context:
an improved �sheye approach forwebmap services. InDivyakantAgrawal,WalidG.
Aref, Chang-Tien Lu, Mohamed F. Mokbel, Peter Scheuermann, Cyrus Shahabi,
and OuriWolfson, editors, Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (ACM-GIS’09), pages
101–110. ACM, 2009. [see page 145]

221



Bibliography

[ZR02] Alexander Zipf and Kai-Florian Richter. Using focus maps to ease map reading:
Developing smart applications for mobile devices. Künstliche Intelligenz, 16(4):35–
37, 2002. [see page 146]

222



The visualization of data is an important topic in computer sci    ence; 
with an increasing amount of data available, making data sets 
well-readable for users is a frequent task. A lot of data that contains 
connections between persons or objects can be represented as a 
graph. Hence, graph drawing, that is, the visualization of graphs, is 
a specialized research area.
This book covers research results in different areas of graph draw-
ing. Its focus is on drawing metro maps and on labeling maps with 
external labels that are connected to the points of interest by lines. 
In both areas, the use of curves and the effects of crossings are 
investigated.
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