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Preface

In this thesis, Martin Fink deals with the visualization of graphs. A graph consists of a set of
objects called vertices and a set of connections between pairs of objects called edges. Graphs
are used to model networks, both abstract (such as social networks) and physical (such as river
or subway networks). In order to help users to understand the structure of networks and their
underlying graphs, the field of Graph Drawing studies problems related to the layout of graphs.
The central question is how to best draw the vertices and edges of a given graph in the plane (or
some other space) such that certain features of the graph are revealed. Typically, vertices are
drawn as points, little disks, or squares, and edges are drawn as curves (so-called Jordan arcs)
that connect the corresponding vertices. Such drawings are called node-link representations.

In Martin FinK’s thesis, the three words that make the title reappear many times: crossings,
curves, and constraints. Clearly, in a node-link representation, crossings cannot be avoided—
except if the given graph is planar, which holds only for a small subset of graphs. Hence, it is
fundamental for Graph Drawing algorithms to deal with crossings. Martin Fink’s thesis contains
some important contributions to the treatment of crossings. Traditionally, edges have mostly
been drawn as straight-line edges, polygonal, or rectilinear paths; these are called (edge) drawing
styles. Only very recently, other drawing styles such as (Bézier) curves have appeared in the
literature. For two specific application areas, Martin Fink is the first to use such curves. Last
but not least, constraints have long been used in Graph Drawing to model application-driven
requirements beyond the drawing style of edges. In this thesis, constraints usually concern the
placement of vertices; a vertex must either be placed at a specific position, at one within a given
set of positions or simply not “too far” from a given position.

The thesis consists of three parts, which can be read independently of each other. It pays,
however, to check the preliminaries in Chapter 2, where the author gives a gentle introduction
into graphs and Graph Drawing, and establishes some basic complexity-theoretic concepts.

In part I, Martin Fink considers the problem of drawing metro maps, an application of Graph
Drawing that has received considerable attention over the last few years. The author presents the
first algorithm that draws the metro lines of a metro map using Bézier curves. The algorithm is
based on a spring embedder, that is, an iterative procedure that simulates a physical system with
attracting and repelling forces. Martin Fink also considers a very different, more theoretical
type of problem related to metro maps: how to avoid crossings between different metro lines. In
particular, the author introduces a new way to define and count crossings, which he calls block
crossings, and presents provably good algorithms. In my opinion, this new approach to an old
problem in Graph Drawing makes for a very solid contribution.

Part II deals with point-set embeddability of graphs. In this setting, which has been studied
for more than twenty years, one is not only given a graph to be drawn, but also a set of points,
and the task is to place each vertex on one of the given point such that the graph can be drawn
in a specific drawing style. Martin Fink combines this old problem with new constraints: he
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allows crossings between edges of the graph, but insists on large crossing angles (that is right
angles or near-right angles).

In the final part of the thesis, part III, the author investigates two versions of the boundary
labeling problem. In this problem, one is given a map with some sites and the objective is to place
the labels outside the map and connect them with the sites they label. Usually the connections
must not intersect each other. Such a label placement is advantageous if the map background is
important and should not be superimposed by labels. In the first version of the problem, Martin
Fink uses, among others, Bézier curves in order to label sites in focus-and-context maps. In the
second version of the problem, labels must be connected to several sites (which are of the same
type, for example, cafés).

In his thesis, Martin Fink presents some profound research, both practical and theoretical. He
does an excellent job in motivating his problems and in explaining and illustrating his solutions,
some of which are technically quite involved. I enjoyed reading this thesis, and I wish it will
have many readers.

Alexander Wolft

Chair I - Efficient Algorithms and Knowledge-Based Systems
Institute of Computer Science

University of Wiirzburg
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Chapter 1

Introduction

Graphs are one of the most frequently used tools for modeling data. In computer science, graphs
are used both for solving problems—with the help of graph-based algorithms—and for making
information accessible to users of applications. This is possible because many problems and
many types of information can be modeled using graphs. Any graph consists of two sets: a set
of well-distinguishable objects, called vertices, and a set of connections, called edges. Any edge
of a graph models a relation connecting one vertex of the graph to another vertex. Hence, the
simplest example of data that can be modeled by a graph is a physical network.

For example, the street network of a city can be modeled by making any junction a vertex.
An edge connects two vertices if there is a single street segment that connects the two junc-
tions corresponding to the vertices; this street segment must not be split by a junction in its
middle. Similarly, a wired computer network can be modeled as a graph by making the devices
(computers, switches, etc.) vertices of the graph while wires connecting two devices become
edges. Another example are transportation networks such as the metro network of a city, for
example, the London Underground or the Métro de Paris. In this setting, the stations of the
network become vertices; two stations are connected by an edge if there is a direct connection
between these stations that does not have an intermediate stop.

Graph Drawing. If a graph is just used internally by some software for solving a problem
with the help of a graph algorithm, it is not important for the user how the graph is represented.
As the user will only see the solution of the problem, the graph representation best suitable for
the algorithm may be used. However, if we use a graph for showing information to the user, the
right visualization is crucial. Presenting lists of vertices and edges as text to the user only works
for very small graphs. Even for such a small graph, a drawing is usually much easier to read
and interpret; see Figure 1.1. Therefore, and due to the importance of graphs for modeling data,
there is a need for algorithms that compute good visualizations of graphs.

With a good drawing, the human ability of quick visual perception of structures enables a
user to intuitively understand the structure of a graph. Also certain tasks, like finding a shortest
path that connects two vertices of the graph, can be answered much faster and more easily
with a good visualization. The research area of graph drawing is primarily concerned with the
development of algorithms for drawing graphs.

In a drawing of a graph, the vertices are usually represented by points in the plane (or by small
disks) and the edges are drawn as curves connecting vertices; see Figure 1.1b and Figure 1.1d.
Such drawings are sometimes also called node-link diagrams. Alternative methods for visually
representing graphs exist. An example is shown in Figure 1.1f where the vertices are drawn as
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arcs.

Figure 1.1: An example of a graph shown as a list of edges compared to drawings of the same
graph in different styles.

disks in the plane and an edge is represented by a contact of the disks of the corresponding
vertices. However, in this thesis, we will always use the classic—and most commonly used—
drawings of graphs as node-link diagrams.

There are several styles for drawing the edges of a graph. An edge may be drawn as a straight-
line segment (see Figure 1.1b), a polyline (see Figure 1.1c), a circular arc (see Figure 1.1d), a
parametric curve (see Figure 1.1e), or in other styles. Furthermore, we can distinguish drawings
in which edges cross (as in Figure 1.1b) and drawings which are crossing-free; drawings without
edge crossings are called planar. Unfortunately, only a relatively small, but well-studied, subset
of all graphs can be drawn in a planar way—the planar graphs.

Constraints. In most applications in which a graph is used for displaying information and,
therefore, needs to be drawn, one does not simply want to present some drawing of the graph, but
a drawing that follows certain constraints. As a first example, one may insist on a planar drawing.
This is a hard constraint, which means that we are only interested in drawings that satisfy this
constraint. Such hard constraints determine the drawing style or drawing convention. We
can also think of the corresponding soft constraint or optimization constraint. An optimization
constraint aims at optimizing the aesthetics of drawings. In our example, we could allow crossings



between edges but try to find a drawing with as few crossings as possible, that is, we want to
minimize the number of crossings. This is a first example of an NP-hard problem in graph
drawing, as Garey and Johnson showed [G]83]; there are many more graph drawing problems
that are NP-hard as we will see. Apart from planarity, also the restriction to a certain style for
drawing the edges is a very common hard constraint in graph drawing. In the following, we will
see more constraints that are used in this thesis.

Vertex Positions. If one wants to draw a graph in order to show additional information on
top of a previous visualization, the position of vertices may already be fixed. As an example,
one may want to show the flight connections between different airports or trading connections
between different cities on top of map. Under this constraint, a drawing with straight-line edges
is already fixed. If, however, we have more freedom when drawing the edges, the drawing can
be optimized, for instance, by trying to avoid crossings, or by maximizing the angles occurring
between crossing edges.

Also the optimization variant of this constraint can occur; that is, we have a desired position
for each vertex. We do not require that the vertex is drawn exactly at the desired position, but
we prefer drawings in which it is drawn close to this position. As a possible objective, we want
to find a drawing that minimizes the sum of the distances between the vertices and their desired
positions. We will see this optimization criterion for creating drawings of metro networks in
Chapter 3: in such a drawing, the user must be able to find the location of a station of the network
on the map and, therefore, the distance to the geographic location should be small. However,
deviations from the desired positions are allowed if they help to improve the readability of the
drawing.

In a variant of the previous hard constraint, it is also possible that we want to draw a graph
such that only a prescribed set of positions is used for placing vertices. However, the exact
position for each individual vertex is not given, which means that we have to map any vertex
to a distinct point of the given set, and then find a feasible drawing. The problem of finding a
drawing under these constraints is known as point-set embeddability which is covered in Part II.
Very special constraints for the vertex positions occur in boundary labeling (handled in Part III),
where the exact position of only a part of the vertices is prescribed.

Edges and Crossings. As already mentioned, there are several possible styles for drawing
the edges of a graph. A natural constraint is to restrict the drawings to use only a specific style
for edges. There are, however, several degrees of such restrictions. For instance, if the edges
have to be drawn as polylines, one may further restrict that any edge consists only of at most
three straight-line segments, or that all straight-line segments have to be axis-parallel, that
is, horizontal or vertical; the drawing style resulting from the latter constraint is called the
orthogonal drawing style; see Figure 1.2 for an example. We will consider orthogonal drawings
in Chapter 7.

A very common constraint is to insist on a planar drawing. Since such a drawing does not
always exist, other constraints for the crossings can also make sense. As already mentioned, the
soft constraint of minimizing the number of crossings has been investigated and is NP-hard.
Also hard constraints for the numbers of crossings have been considered. For example, the class
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(a) Small crossing angle. (b) Larger crossing angle.

Figure 1.2: An orthogonal Figure 1.3: Comparison between crossing angles.
drawing.

of I-planar graphs is a generalization of planar graphs; a graph is 1-planar, if it can be drawn
such that any edge is involved in at most one crossing.

The angle of crossings has also been considered as a constraint. If two edges cross with a very
large angle, it is much easier to distinguish between the edges than if the crossing angle is small.
There have been studies indicating that drawings of graphs in which all crossing angles are large
are almost as readable as crossing-free drawings [HHEO08]; see Figure 1.3. Formulated as a hard
constraint, we can insist that any crossing angle is at least o for a constant angle « close to 90°.
We will use constraints of this type in Chapter 6.

We will also consider another crossing problem in which not crossings between edges of the
graph, but crossings between paths drawn on top of the graph are considered. This problem
occurs when visualizing transportation networks like metro networks: Often several transporta-
tion lines of such a network run in parallel, that is, they share edges of the underlying graph.
At the end of a parallel subpath, however, the lines split, which can make crossings between
them necessary. Hence, we try to visualize the lines in such a way that the number of crossings
is minimized. Crossings between metro lines will be considered in Chapters 4 and 5.

Curves. A special drawing style for edges are smooth curves such as circular arcs. Drawing
edges using smooth curves allows us to have more flexibility for routing the edges, compared
to straight-line edges, while we can still avoid having sharp bends, which happens if we use
polylines. In Chapters 3 and 8 we will use a special class of parametric curves called Bézier
curves, or, more formally, curves in Bézier representation. They allow us to choose the direction
in which the edge leaves an incident vertex. For drawing metro maps, we will use this in order
to ensure that a metro line does not have sharp bends although it is composed of several edges
of the network.

Outline of the Thesis

This thesis consists of three parts, each dealing with a different area of graph drawing. Part I is
devoted to drawing metro maps, that is, visualizations of metro networks. Part I covers point-set
embeddability problems; in this setting, the positions of vertices are restricted to a prescribed
set of points. Finally, Part III deals with boundary labeling; in boundary labeling, interesting



Figure 1.4: A metro network drawn using Bézier curves.

sites on a map are labeled by connecting the label text to the site via an edge. Before starting
with the three main parts, a brief introduction into terminology, techniques, and related topics
is given in Chapter 2.

Part I: Metro Maps

In the first part of the thesis, we consider the problem of drawing metro maps. More specifically,
we consider two subproblems independently. We first want to create a drawing of the graph
modeling the network of metro stations. In a second step, the different metro lines running in
this network should be visualized on top of the drawing.

Chapter 3: Drawing Metro Maps using Bézier Curves

Chapter 3 is devoted to drawing the graph that represents a metro network. Traditionally, most
metro maps are drawn in the octilinear drawing style. In octilinear drawings of graphs, edges
are drawn as polylines consisting only of horizontal, vertical, and diagonal segments (at an angle
of 45°). However, a user study of Roberts et al. [RNL*13] shows that the planning speed for
trips in the network can be increased by using curvy metro maps in which edges are drawn as
smooth curves. We present an algorithm for drawing metro maps using curves; more specifically,
our algorithm uses Bézier curves for drawing the edges; see Figure 1.4 for an example. We try
to optimize the drawing by having a small visual complexity. This is done by minimizing the
number of single curves used in the drawing.

This chapter is based on joint work with Herman Haverkort, Martin Nollenburg, Maxwell
Roberts, Julian Schuhmann, and Alexander Wolff [FHN*13].
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(a) 12 individual crossings. (b) 3 block crossings.

Figure 1.5: Metro lines drawn on top of a part of a metro network with different distribution of
the crossings.

Chapter 4: Metro-Line Crossing Minimization

In Chapter 4, we turn to the problem of visualizing the metro lines. The method presented in the
previous chapter, that is, in Chapter 3, is—similar to other algorithms for drawing metro maps—
focused on drawing the underlying graph of the metro network. An essential feature of metro
maps is, though, the visualization of the metro lines on top of the network (see Figure 1.5a for an
example): only the visualization of the metro lines makes it possible to plan trips in the metro
network. Hence, we want to make it easy for users to follow a metro line on the map, so that
they can see which stations are served by the line. The most important optimization criterion
for making the lines easy to follow is to have as few crossings between lines as possible; the
problem of minimizing the number of crossings is known as metro-line crossing minimization.

In this chapter, we show that the most general version of metro-line crossing minimization is
NP-hard. For a well-known version of the problem, we present the first approximation algorithm,
and we develop an efficient algorithm for a restricted set of networks. Finally, we develop a
fixed-parameter algorithm for metro networks whose graph is a tree.

This chapter is based on joint work with Sergey Pupyrev [FP13a] and—for Section 4.5—on
joint work with Sergey Pupyrev and Alexander Wolft (not yet published).

Chapter 5: Ordering Metro Lines by Block Crossings

In Chapter 5, we introduce and study a variant of metro-line crossing minimization. We improve
visualizations of metro networks by not only minimizing the number of crossings between metro
lines, but also taking the distribution of the crossings into account. Our idea is the following (see
Figure 1.5b for an illustration). Suppose, on some edge of the network there are two contiguous
blocks of lines running in parallel. If each line of the first block crosses each line of the second
block, we can arrange all these crossings in one block crossing, in which the whole blocks change
their order, while the lines within a block stay parallel. This improves the readability compared
to a random distribution of the individual crossings; see Figure 1.5.

We thus study the problem of minimizing the number of block crossings between metro lines.
We show that also block crossing minimization is NP-hard—even for networks of small degree
and edges that have not more than eleven metro lines passing through them. Furthermore, we
present a heuristic that finds a solution on general graphs with a bounded number of block
crossings. For some restricted classes of networks, we present approximation algorithms. Finally,
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(a) The graph G = (V, E). (b) The point set S. (c) A planar orthogonal embed-
ding of G on S.

Figure 1.6: A point-set embedding of a graph on a point set with no prescribed vertex-point
mapping

we adjust the fixed-parameter algorithm for ordinary metro-line crossing minimization to
minimize the number of block crossings.

This chapter is based on joint work with Sergey Pupyrev [FP13b] and—for Section 5.6—on
joint work with Sergey Pupyrev and Alexander Wolff (not yet published).

Part Il: Point-Set Embeddability

In the second part of the thesis, we study point-set embeddability problems. In point-set embed-
dability, the task is to draw a graph using a set of prescribed positions for placing the vertices; see
Figure 1.6 for an example. There are two main subsettings depending on whether the mapping of
the vertices to the points in the given set is prescribed or can be chosen when finding a drawing.
We study point-set embeddability problems in which edges must be drawn as polylines with a
small number of bends. We are especially interested in nonplanar drawings. However, we allow
only crossings with large crossing angles.

Chapter 6: Point-Set Embeddability and Large Crossing Angles

In Chapter 6, we introduce and study point-set embeddability with large crossing angles. We
first show that the problem is NP-hard if the edges must be drawn as straight-line segments. We,
hence, focus on the versions with polyline edges and prescribed vertex-point mapping. We show
how to embed any graph on any point set with three bends per edge and right-angle crossings.
Furthermore, we present embeddings of any graph on any point set with one or two bends
per edge such that all crossings have an angle of at least 90° — ¢, where we can choose ¢ > 0
arbitrarily small. For all embeddings that we construct, we also analyze the area requirement.

This chapter is based on joint work with Jan-Henrik Haunert, Tamara Mchedlidze, Joachim
Spoerhase, and Alexander Wolff [FHM*12].

Chapter 7: Orthogonal Point-Set Embeddability on the Grid

In Chapter 7, we study point-set embeddability in the orthogonal drawing style; that is, edges
must be drawn as polylines consisting only of horizontal and vertical segments. Furthermore,
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we insist that vertices and bends of edges must be placed on grid points, that is, points with
integer coordinates. This constraint is natural for orthogonal drawings; any orthogonal drawing
can be converted by moving vertices and bends until all of them lie on integer positions.

We show that, under these constraints, point-set embeddability without prescribed vertex-
point mapping is NP-hard; this is independent of the number of bends that we allow per edge.
Surprisingly, the problem remains NP-hard even if we allow crossings. For the problem variants
in which we are given the precise position of each vertex, we show that point-set embeddability
can be solved efficiently for up to one bend per edge. For two or three bends, the nonplanar
version is NP-hard. For the planar version we show hardness if the number of bends is not
restricted.

This chapter is based on joint work with Jan-Henrik Haunert, Tamara Mchedlidze, Joachim
Spoerhase, and Alexander Wolff [FHM*12] and—for the hardness results—on joint work with
Alexander Wolff (not yet published).

Part Ill: Boundary Labeling

The third part of the thesis is devoted to a style of labeling maps, called boundary labeling. In
boundary labeling problems, one wants to label interesting sites on the map; that is, the sites
have to be annotated by a label text, which often is the name of the site. In normal map labeling,
the labels are placed on the map next to the corresponding sites. However, this approach has
two disadvantages. First, in regions with too many sites, the labels can overlap. Second, parts of
the map are hidden behind the labels. To overcome these problems, boundary labeling can be
used: The labels are moved away from their sites to the boundary of the map or of a focus region.
For showing the correspondence between a label and a site, the two objects are then connected
via an edge, called leader; see Figure 1.7. Hence, boundary labeling is a special graph drawing
problem (related to point-set embeddability), in which the position of a part of the vertices (the
sites) is completely fixed, while the possible positions for the remaining vertices (the labels) are
restricted to the boundary of the map or of the focus region.

Chapter 8: Algorithms for Labeling Focus Regions

In Chapter 8, we study boundary labeling with circular focus regions. We use two main styles
depending on the placement of the labels. In the first style, we use conventional horizontal text
labels which are connected to the sites via straight-line leaders. In the second style, we use radial
labels whose text runs radially away from the center of the focus region. For both styles we
also present methods that improve the solutions by replacing the straight-line leaders by Bézier
curves that enter the label in the direction of the text.

We present algorithms that label as many sites as possible and ensure that the leaders are
crossing free and the labels do not overlap. We extend these results to the version with preferences
for labeling the sites. We also present approaches for selecting a subset of the sites that can be
labeled simultaneously; as an additional requirement, we want the labeled sites to represent the
spatial distribution of sites in the focus region

This chapter is based on joint work with Jan-Henrik Haunert, André Schulz, Joachim Spoer-
hase, and Alexander Wolff [FHS*12].
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Figure 1.7: Boundary Labeling used for showing positions of restaurants in Seattle.

11k

Figure 1.8: Many-to-one boundary labeling with backbones.

Chapter 9: Many-to-One Boundary Labeling with Backbones

In the final chapter, we study many-to-one boundary labeling with backbones. In this scenario
of boundary labeling, the sites are not annotated by their respective name but by their class.
For example, when labeling restaurants in a city map, one may want to indicate the type of
cuisine offered by each restaurant. In this setting, we allow that sites of the same class are
connected to the same instance of their label. We draw each label as a polyline consisting of a
horizontal segment—incident to the label—and a vertical segment; we allow that the horizontal
segments overlap for sites connected to the same label because this does not cause ambiguity;
see Figure 1.8. We call the overlapping horizontal segment the backbone of the label instance.
We present algorithms for labeling all sites with the minimum number of label instances or with
the minimum total length of the leaders. We also consider the version in which only one label
may be placed for each class. In this case we have to allow crossings because otherwise there
might be no feasible drawing. We show that minimizing the number of crossings is NP-hard.



Chapter 1: Introduction

This chapter is based on joint work with Michalis Bekos, Sabine Cornelsen, Seok-Hee Hong,
Michael Kaufmann, Martin Néllenburg, Ignaz Rutter, and Antonios Symvonis [BCF*13].
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Chapter 2

Preliminaries

This chapter contains a brief introduction to graphs, graph drawing, complexity, and related
topics. This is not meant as a full introduction to these topics, but as an opportunity for
developing a common terminology and for introducing the basic concepts that we will use
later. For real introductory works we refer to the literature. An introduction to graphs and
graph theory is given in the book of Diestel [Diel0]. The books Graph Drawing by Di Battista
et al. [DETT99] and Drawing Graphs edited by Kaufmann and Wagner [KWO01] both give an
introduction to basic concepts and algorithms for drawing graphs. The recently published
Handbook on Graph Drawing and Visualization edited by Tamassia [Taml13] comprises many
topics on graph drawing and related areas. An introduction to many elementary algorithms and
to the runtime analysis of algorithms can be found in the book Introduction to Algorithms by
Cormen et al. [CLRS09]. For additional information on complexity classes and especially on
NP-hard problems, we refer to the book of Garey and Johnson [G]79].

2.1 Graphs

A directed graph is defined by a pair G = (V, E) where V is a set of distinguishable objects,
the vertices of the graph, and E € V x V is the set of edges. The vertices are often also called
nodes. Usually, n = |V| denotes the number of vertices and m = |E| denotes the number of edges.
Naturally, m € O(n?). Any directed edge e € E is a pair e = (u,v) with two vertices u,v € V.
We say that e is the edge from u to v and call u and v the endvertices of the edge e. Sometimes,
the notation uv = (u,v) is used as an abbreviation.

An undirected graph is defined by a pair G = (V, E), where any edge e € E is a set of two
different vertices, that is, E € {{u,v} | u,v € V and u # v}. Frequently, the notation e = (u,v)
from directed graphs is also used for undirected graphs; in this case (u,v) and (v, u) are
identified. In the graph drawing problems in this thesis, we usually work with undirected
graphs.

If there is an edge e = {u, v} (or e = (u,v)), we say that the vertices u and v are adjacent
or neighbors; similarly, we say that the edge e is incident to the vertex u. We denote the set of
neighbors of a vertex v € V by N(v) := {u € V | {u,v} € E}. The degree of a vertex v is the
number of adjacent vertices (or of incident edges), denoted by degv = [N(v)|. Vertices with
degree 0 are called isolated. The maximum degree A in a graph is the maximum over the degrees
of all vertices, that is, A = max,cy degv.

A subgraph of G = (V,E) is a graph G’ = (V',E’) with V' ¢ V and E’ ¢ E. For a set
V' c V, we say that G’ = (V', E’) is the subgraph induced by V' if E’ contains any edge of G

11
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whose endvertices are both contained in V’, thatis, E' = {{u,v} € E | u,v € V'}. The subgraph
induced by V' can also be denoted by G[ V'].
A pathina graph G = (V, E) from a vertex u to a vertex v is a sequence

P= (l/l =V0>,V1, V2505 Vi—15 Vi :V)

of vertices with {v;,v;.1} € E (or (v;,v;41) € E) fori = 0,..., k — 1. We say that P is a path of
length k because P consists of k edges. The vertices u and v are also called the endvertices of the
path P. For any i with 0 < i < k, we say that P traverses the vertex v; or that it passes through v;.
A path is simple if it contains any vertex at most once. A cycle is a path C = (v, ..., v, ) with
vo = vi and k > 0. A cycle is simple if it contains any vertex except vy = v at most once.

A graph G = (V, E) is connected, if, for any pair of vertices u,v € V, there is a path from u
to v. A connected component of a graph is a maximal subset V' € V such that the induced
subgraph G[ V'] is connected; often also G[ V'] is called the connected component. Any graph
can be uniquely partitioned into connected components; a connected graph consists only of
one connected component. In graph drawing, connected components can often be drawn
independently. Hence, many algorithms assume that the input is a connected graph.

A graph that does not contain any simple cycle is called a forest; a connected forest T = (V, E)
is a tree. It is well-known and easy to check that any tree consists of exactly n — 1 edges and that
any pair of vertices in a tree is connected by a unique simple path. Any tree can be rooted at
some arbitrary vertex r € V. For a rooted tree, we call the unique neighbor of a vertex v € V
that lies on the unique simple path connecting v to the root r the parent of v, or p(v). The other
neighbors of v are called its children. It is easy to see that all children of v have v as their parent
vertex because the unique path connecting a children to r passes through v. If we remove the
edge {v, p(v)}, the graph is split into two connected components; the connected component
containing v is called the subtree of v, denoted by T[v].

A vertex v € V of degree 1 in a tree is called a leaf; sometimes the term leaf is even used for a
vertex of degree 1 in any graph. The interior vertices of a tree are the vertices of a degree higher
than L

We call a graph P = (V, E) for which there exists a simple path containing all edges also a
path. Similarly, a graph with a simple cycle containing all edges is also called a cycle. Note that a
path is a special case of a tree. Any path has exactly two leaves; all interior vertices have degree 2.
Another special type of a tree is the caterpillar. A tree T = (V, E) is a caterpillar if the subgraph
induced by the set V' € V of interior vertices is a path.

A (perfect) matching is a graph G = (V, M) in which each vertex has degree 1. Any vertex in
G is adjacent to exactly one other vertex, its matching partner. For an arbitrary graph G = (V, E),
a subset M C E of the edges is called a matching if each vertex has degree 0 or 1 in the subgraph
(V,M).

2.2 Graph Drawing
Let G = (V, E) be an undirected graph. A drawing of G is a function I that maps the vertices

and edges of G into the plane R?. The image of a vertex v is a point I'(v); the points of vertices
have to be distinct, that is, ['(#) # ['(v) for u # v. The image of an edge e = {u, v} is a simple
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2.2 Graph Drawing

e
c d
a b
(a) No feasible drawing due to overlaps. (b) A feasible drawing.

Figure 2.1: Infeasible and feasible drawings of the same graph.

open Jordan curve I'(e) whose two endpoints are the points T'(u) and I'(v). We insist that the
interior of the curve T'(e) does not contain I'(w) for any vertex w € V.

There is a huge difference between a graph and its drawing. For any graph, there are many
different drawings. However, when speaking about a specific drawing, the vertices and edges are
often identified with their representation in the drawing, that is, we speak about the position of
a vertex v when we mean ['(v) and about an edge e when we mean the drawn I'(e) of this edge.

Crossings and Planarity. While the drawing of an edge must not contain a vertex in its
interior, it is allowed that the drawings of two edges e; and e, share a point of their interior.
In this case, we say that e; and e, cross in the drawing. However, we do not allow that the
edges overlap, that is, that there is a part of the drawing of e;—more than a finite number of
points—that is also contained in the drawing of e,; see Figure 2.1. In general, drawings with
few crossings are preferred. If a drawing does not have any crossing, we say that the drawing is
planar; we also call a graph planar, if there exists a planar drawing of this graph. Most graphs are
nonplanar: Following from Euler’s formula, any planar graph has at most 3n — 6 edges. However,
alot of research in graph drawing is devoted to planar graphs.

For graphs that are not planar, there are two main ideas for creating drawings. First, a drawing
should have as few crossings as possible. Unfortunately, finding a drawing with the minimum
number of crossings is NP-hard as Garey and Johnson showed [G]83]. The second idea is that
crossing angles—the angles defined by the curves representing the two edges in a crossing—
should be large, that is, as close to 90° as possible. A drawing in which any crossing angle is
90° is called a right-angle crossing (or RAC) drawing. A generalization are large-angle crossing
drawings, in which any crossing angle must be at least o for a constant angle « € (0;90°]. In
Chapter 5 we will use these requirements for crossing angles.

Faces and Embeddings. Suppose, we are given a planar drawing I of a graph G = (V, E).
We can observe that the representation of the vertices and edges in the drawing divides the plane
into several regions, called faces. Any face is bounded vertices and edges lying on its boundary.
Furthermore, there is always exactly one face of infinite area, called the outer face; see Figure 2.2
for an example.

Certainly, any edge can be incident to at most two different faces in a drawing, one on each
of its sides. Similarly, any vertex is adjacent to at most degv different faces. Furthermore,
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41 fo (a) Drawing with the same em- (b) Drawing with different

bedding as in Figure 2.2. (outerplanar) embedding.

Figure 2.2: Planar drawing of a Figure 2.3: Two drawings of the graph shown in Fig-
graph with three faces f, fi, and f,, ure2.2.
where f; is the outer face.

we can describe each face of a drawing by the clockwise order of edges and vertices on its
boundary; here, clockwise means that when following the sequence of edges, the described face
is always to the right of the current edge. We call the description of all faces of a planar drawing
a (combinatorial) embedding of the graph. Note that—following from the description of the
faces—the combinatorial embedding implicitly also describes the clockwise order of the edges
incident to each vertex.

Clearly, the combinatorial embedding corresponding to a given planar drawing I' of a
graph G = (V,E) is unique. In contrast, there are many drawings with the same combi-
natorial embedding. Furthermore, G can have several different combinatorial embeddings; see
Figure 2.3. A special type of planar graphs are outerplanar graphs. A graph is outerplanar if it has
a combinatorial embedding in which all vertices are incident to the outer face; see Figure 2.3b.

Suppose, the drawing T' is nonplanar. By replacing each crossing in the drawing by a dummy
vertex, we get a modified planar graph G’, also called a planarization of G, together with a
planar drawing I'". The combinatorial embedding corresponding to I’ then also describes the
nonplanar drawing I of G. By this modification, we can also speak about nonplanar embeddings.

Basic Algorithms. An essential problem in graph drawing is deciding whether a given
graph G = (V,E) is planar. This problem can be solved efficiently, and there are several
algorithms for planarity testing with a linear runtime, for example, the algorithm of Hopcroft
and Tarjan [HT74]. Usually, such algorithms do not only decide whether G is planar, but also
output a combinatorial embedding if the graph is planar; see, for example, the work of Mehlhorn
and Mutzel [MM96] based on the algorithm of Hopcroft and Tarjan. Therefore, many algorithms
for drawing planar graphs assume that a combinatorial embedding is part of the input; then,
usually, a drawing realizing the given embedding is computed.

Not all planar embeddings of a graph can be realized in any drawing style for the edges.
A remarkable exception to this are straight-line edges: Any combinatorial embedding of any
planar graph can be realized as a straight-line drawing, for instance by using the algorithm
of de Fraysseix, Pach, and Pollack [dFPP90] or the one of Schnyder [Sch90]. Another well-
known result exists for orthogonal drawings, that is, drawings in which the edges are polylines
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2.2 Graph Drawing

Input: a graph G = (V,E), ¢ > 0, integer K > 0

Obtain initial drawing.

while number of iterations < K and maximum displacement > ¢ do
Compute forces on vertices.
Sum up forces and obtain movement vector for each vertex.
Apply the forces to the current drawing.

return output drawing

Algorithm 2.1: Basic structure of force-directed algorithms.

consisting of vertical and horizontal segments only. Clearly, only planar graphs of maximum
degree 4 can be drawn in this style; otherwise, a pair of edges incident to the same vertex would
overlap. However, any embedding of a planar graph of maximum degree 4 can be realized in
the orthogonal drawing style. Even the total number of bends of the edges can be minimized
efficiently as Tamassia showed [Tam87].

Force-Directed Algorithms. A well-known class of graph drawing algorithms are force-
directed algorithms. These heuristics are popular because they are easy to understand and extend
and, especially, because they can be used for drawing any graph, not just planar graphs. The force-
directed approach was introduced in 1984 by Eades in his spring embedder algorithm [Ead84].
Later, many other force-directed algorithms were developed; one of the most popular is the
one of Fruchterman and Reingold [FR91]. Here, we give only a brief introduction and focus on
the version of Fruchterman and Reingold. In Chapter 3, we will develop a new force-directed
algorithm for drawing metro maps. In Chapter 8, we will develop very simple force-directed
algorithms for boundary labeling with Bézier curves.

Normally, force-directed algorithms create a straight-line drawing of a graph. As all edges are
drawn as straight-line segments, the only relevant output is the position of each vertex.

The idea is simple: We start with some arbitrary—in some cases even random—drawing
of the graph. Then, iteratively the drawing is improved, until we finally get some satisfactory
result. For force-directed algorithms, the main ingredient for improving the current drawing
are forces. Any force is a function assigning to any vertex of the drawing a desired movement
vector. Usually, forces are defined locally, taking into account only the position of one or two
vertices, for example, the endvertices of an edge. In an iteration, all forces exerted by edges or by
other vertices on each vertex are computed. For each vertex, the forces sum up to a movement
vector. At the end of each iteration, the computed movements are applied and the drawing is
modified. Then, the next iteration starts. The basic structure of force-directed algorithms is
shown in Algorithm 2.1.

There are two very common forces: An attractive force between adjacent vertices and a
repelling force between all pairs of vertices. The basic idea idea is that all edges should have
approximately equal length / and that non-adjacent vertices should have larger distance than
adjacent vertices. Here, we use the forces defined by Fruchterman and Reingold [FR91].
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First, suppose that the vertices v and u are adjacent, that is, there is an edge {u, v} € E. Then,
the vertex u exerts the attracting force

d(L;)V) T

F(u,v) =

on v. This movement vector points from v to u, that is, the force tries to move v to be closer
to u. Furthermore, the force is stronger if the distance d(u, v) between v and u is larger in the
current drawing.

Additionally, any vertex u exerts on any vertex v the repulsive force

F*P(u,v) = (d(bf,v)) - uv.

This force tries to move v away from u. The closer the two vertices are, the stronger is the force.

Note that an adjacent vertex u exerts both an attractive and a repelling force on v. These two
forces can then be seen as a combined force F**(u,v) + F*P(u,v), which moves v towards
u if d(u,v) < I and moves v away from u if d(u,v) > . If d(u,v) = I, we have F*"'(u,v) +
F*P(u,v) = 0.

Many different optimized and specialized algorithms based on the force-directed approach
have been developed; see, for example, Kobourov’s recent survey [Kobl13] in the Handbook on
Graph Drawing.

Edge Styles. We have already mentioned several styles for drawing the edges of a graph. The
simplest edge drawings are shortest connections between the endvertices, that is, straight-line
segments. Another drawing style, which we will especially use in Part II, are polylines, that
is, sequences of straight-line segments that are connected by bends. If an edge consists of k
segments, it has k — 1 bends. Hence, we can measure the complexity of an edge by the number
of its bends. For limiting the complexity of drawings, we often restrict ourselves by setting
an upper bound for the number of bends of an edge. We did already mention the orthogonal
drawing style. This style is a restricted version of polyline edges, in which only horizontal and
vertical segments are allowed. As mentioned before, only graphs of maximum degree 4 can
be drawn in the orthogonal style, while any planar graph of maximum degree 4 has a planar
orthogonal drawing.

Another style for drawing edges are smooth curves. They overcome the problem of polylines,
that is, they do not have sharp bends, but still yield more flexibility for routing the edges than
straight-line edges do. A simple example of smooth curves are circular arcs. Often, however,
parametric curves with even more flexibility are used. We will next introduce an example of
such parametric curves that we will use in this thesis.

Bézier Curves. We use so-called cubic Bézier curves. For more information about Bézier
curves in general, we refer to the book of Prautzsch et al. [PBP02]. A cubic Bézier curve C is
given by the cubic polynomial

Pc:[0,1] » Rt (1-t)°p+3(1-t)*tp’ +3(1 - t)t*q' + g,
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P *q

Figure 2.4: A cubic Bézier curve.

where p, p’, q', and q are the control points of C; see Figure 2.4. We call p and q also the endpoints
of C, because Pc(0) = p and Pc(1) = q.

By considering the derivative of Pc, it is not hard to see that the curve C leaves the endpoint
p in the direction of p’, that is, the line pp’ is the tangent of C at p, since P.(0) = 3(p’ - p).
Similarly, one can check that the curve C enters the point g coming from the direction of ¢,
that is, the line g'q is the tangent of C at g, since P,(1) =3(q — ¢').

Another well-known property of a Bézier curve is that the curve is always contained in the
convex hull of its control points (see the gray shaded region in Figure 2.4).

When creating drawings with Bézier curves, we often need to check whether two Bézier
curves intersect or come too close to each other. Computing intersections of cubic curves is
not easy. Since we just want to ensure that curves are not too close, it suffices to test polygo-
nizations of the curves at hand. Given a cubic Bézier curve with polynomial P and an accu-
racy A € Zs, we define the polygonization of C to be the polygonal chain connecting the points
P(0),P(1/A),...,P((A-1)/A), P(1). The larger we make A, the more precise but also the slower
our closeness check gets. As a speed-up, we can first test whether the convex hulls intersect.

2.3 Complexity and NP-Hardness

In this thesis, we often have to speak about the complexity of algorithms and of problems. As
everywhere, also in graph drawing, there are decision problems and optimization problems.
An example is the crossing number problem. In its optimization version, one has to find a
drawing of a given graph such that the number of crossings is minimum. We can turn this into
a decision problem by asking whether a drawing with a most k crossings exists. Of course, if
we can optimally solve the optimization version, we can also solve the decision variant. When
we say that a problem is (NP-)hard, we normally mean that its decision version is hard. By a
correspondence as in the example, we can however, also speak about hardness of optimization
problems.

We assume that the reader is familiar with the basic knowledge about the runtime analysis of
algorithms. When denoting the asymptotic runtime of algorithms, we usually use the big O
notation. Recall that the runtime of an algorithm is a function f:N — N that maps the input
size of the algorithm to the time necessary for solving an input of this size. The class

O(f) ={g:N > N[ 3s0,n,enV n2n, g(n) < - f(n)}

contains all runtime functions that are asymptotically at least as fast as f.
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Polynomial-Time Algorithms. We are especially interested in the classes O(n*) for a con-
stant k. If a constant k exists such that the runtime of an algorithm is in O(#n*), then we say
that it is a polynomial-time algorithm, or an efficient algorithm. Note that here, efficient just
means that the runtime is bounded by some polynomial; it does not necessarily mean that the
algorithm is fast enough for practical use.

The class P consists of all problems for which a deterministic algorithm exists that solves
the problem in polynomial time. There is also the class NP which contains all problems that
can be solved by a nondeterministic polynomial-time algorithm. It is well-known that P ¢ NP.
However, the question whether P = NP is still open; it is one of the most important questions
in computer science.

NP-Hardness. For many problems it is known that they are in NP; however, no efficient
algorithm is known. A well-known class of problems is the class of NP-hard problems. Informally,
a problem is NP-hard if it is as hard as any problem in N P; that is, if this problem can be solved
efficiently, we can solve any problem in NP efficiently. Therefore, as most people assume that
P # NP, there is little hope for solving NP-hard problems efficiently.

More formally, a decision problem A is NP-hard, if, for any problem B in NP, there exists a
polynomial-time reduction from B to A. A polynomial-time reduction from B to A transforms
any instance Ig of B of size n in polynomial time into an instance I, of size p(n)—for a
polynomial function p—such that there is a feasible solution to I if and only if there is a feasible
solution to I4.

A special class of NP-hard problems are problems that are NP-complete, which means that
these problems are both NP-hard and contained in NP.

There are many problems that are known to be NP-hard or even NP-complete; the book of
Garey and Johnson [G]79] contains many of them. Usually, NP-hardness of a problem A is
proven by giving a polynomial-time reduction from some known NP-hard problem B to A.
Since this reduction can be concatenated with a polynomial-time reduction from any problem
C in NP to B, this yields that there is a polynomial-time reduction from any problem in NP to
A; hence, A is NP-hard.

In this thesis, we will show that some of the considered problems are NP-hard. Hence, we
now list some important NP-hard problems that we will use in hardness proofs.

SAT The input of the Satisfiability problem (or SAT, for short) consists of a boolean formula F
in conjunctive normal form over a set X = {x;, ..., x, } of variables; that is, the formula
F is a conjunction of clauses. Any clause ¢ has the form ¢ = (], v... Vv I;), where, for
i=1,...,k, ;isaliteral. Anyliteral is a negated or an unnegated variable, that is, /; = -x;
or [; = x;j for some variable x; € X. Note that the formula F is fully described by its set C
of clauses. Hence, we can describe the SAT instance by (X, C).

Given such a boolean formula F, one has to decide whether there exists a truth assignment
X — {false, true} such that F is satisfied, that is, it evaluates to true. This is the case,
if for each clause ¢ € C at least one literal [; € ¢ evaluates to true, meaning that x; is true
if l; = x;j or that x; is false if ; = —-x;.

Note that SAT has been the first problem known to be NP-complete. In 1971, Cook showed
this in a fundamental proof [Coo071].
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3SAT The problem 3SAT is the version of SAT in which any clause consists of at most three
literals. This restriction is still NP-complete. In contrast, the version 2SAT—with at most
two literals in a clause—can be solved efficiently. Note that, if there is a clause containing
only one literal, then its variable can easily be eliminated by fixing it to the adequate truth
value. Hence, we can assume that each clause contains two or three literals.

Planar 3SAT A version of 3SAT that is still NP-hard, and that is especially relevant for showing
hardness of graph drawing problems is PLANAR 3SAT. An instance (X, C) of PLANAR
3SAT is an instance of 3SAT for which the graph Gxc = (X U C, Exc) is planar. Gxc is
defined by the edge set

Exc={{x,c}|xeX,ceCandxecor-xec},

that is, there is an edge connecting a variable x and a clause ¢ if x occurs in c.

PLANAR 3SAT is known to be NP-hard even if any variable occurs in exactly three different
clauses [DJP*94], that is, | {ce C | x e cor ~x € ¢} | = 3 for each x € X.

Not-All-Equal 3SAT A variant of 3SAT with modified definition of satisfiability is NoT-ALL-
EqQuaL3SAT. Aninstance (X, C) is also an instance of 3SAT. However, in NoT-ALL-EQUAL
3SAT, the instance (X, C) is satisfiable if and only if there exists a truth assignment to
the variable set X so that each clause ¢ € C contains a literal that evaluates to true and a
literal that evaluates to false. NoT-ALL-EQUAL 3SAT is also NP-complete.

3Partition Partitioning problems are another example of a problem class containing many

hard problems. In the problem 3PARTITION, we are given a set A = {a;, ..., as, | of 3n
positive integers. We have to decide whether there exists a partition of A into # sets
Ajy,..., A, of three numbers each, such that all A; have the same sum s =1/n - Z?Zl a;.

3PARTITION is known to be strongly NP-hard. This means that we can assume that each
number a; € A is only polynomial in #n. As a practical consequence for proving hardness
of problems, this allows us to model a; by a set of a; objects, like vertices or edges, as a
unary encoding.

Approaches for Hard Problems. For NP-hard problems, there is little hope to find an
efficient algorithm. For optimization problems, however, we still can try to find feasible solutions
of reasonable quality.

The simplest approach for hard problems is developing a heuristic, that is, an algorithm that
finds a feasible solution using reasonable operations. We do not know anything about the quality
of the solution. Alternatively, we can give an algorithm that promises at least a bound on the
quality of the solution. For instance, for a minimization problem, we can try to find an algorithm
that outputs a solution whose cost we can bound with respect to the input size, for example, the
size of the input graph. We do, however, still not know how the quality relates to an optimum
solution.

A more advanced approach is to find an approximation algorithm. Suppose that an algorithm
for a minimization problem finds a solution of value ALG for an instance where the value
of an optimum solution is OPT. If we can find a constant ¢ such that for any input we have
ALG < ¢- OPT, we say that we have a c-approximation algorithm. There are also approximation
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algorithms where ¢ is not a constant but a value whose size depends just on the size of the
input—but not on the actual input itself. As an example, we can have a (log n)-approximation
algorithm where # is the input size.

Fixed-Parameter Tractability. A relatively new approach is fixed-parameter tractability.
Additionally to the regular input of a problem, a fixed-parameter algorithm has an additional
parameter k. The algorithm then needs to solve the problem exactly in O(f(k)-n°) time, where
f:k — R* is a computable function, # is the input size, and ¢ is constant. The runtime can,
hence, be separated into two factors: a polynomial factor, depending only on the input size, and
a factor of arbitrary (computable) time, depending only on the parameter k. If such an algorithm
exists, we say that the problem is fixed-parameter tractable with respect to the parameter k.

There are two main cases for the parameter k. On the one hand, k can be part of the output
of the optimization variant of the problem. For example, for crossing minimization, we can
ask whether there exists a solution with at most k crossings, where k is the parameter. One the
other hand, k can also describe a property of the input instance such as the maximum degree of
an input graph. In this thesis, we will use both types of parameters. For further information on
fixed-parameter tractability, we refer to the books of Downey and Fellows [DF99, DF13] or of
Niedermeier [Nie06].

20



Partl

Metro Maps






Chapter 3

Drawing Metro Maps using Bézier
Curves

The automatic layout of metro maps is a well-known problem in graph drawing that has been
investigated quite intensely over the last few years. Previous work has focused on the octilinear
drawing style where edges are drawn horizontally, vertically, or diagonally at 45°; this is the style
used in many official metro maps in cities like London, Paris, or Tokyo. Due to the limitation to
segments of four different slopes, octilinear metro maps naturally have a schematized look. On
the downside, however, they also contain sharp bends in metro lines.

We suggest the use of the curvilinear drawing style, inspired by manually created curvy metro
maps; instead of straight-line segments, we use Bézier curves for drawing edges of the metro
network. In this drawing style, we are able to forbid metro lines to bend (even in stations);
this allows the user of such a map to trace the metro lines more easily. In order to create
such drawings, we use the force-directed framework; the drawing is gradually optimized, based
on forces that can be defined using physical analogies. Our method is the first that directly
represents edges as curves and operates on these curves.

3.1 Introduction

The problem of drawing metro maps automatically has been investigated by a number of pub-
lications over the last decade. Using the terminology of graph drawing, it is stated as follows.
The input is a plane graph G = (V, E), a map II: V — R? that associates with each vertex its
geographic location, and a line cover L of G; the elements of £ are paths in G with the property
that every edge is contained in at least one path. The desired output is a drawing of G that fulfills
or optimizes a set of aesthetic constraints. The paths in £ are the metro lines; hence, we also
call the vertices of G stations. In this chapter, as well as in other methods for drawing metro
maps, the focus is on drawing the graph. The metro lines are taken into account in so far as
they should have few bends when drawn on top of the graph. However, the actual insertion of
the metro lines into a drawing of the graph is an additional problem that is usually solved as a
post-processing. Since one wants to have as few crossings between metro lines, the problem is
known as metro-line crossing minimization; we will care about metro-line crossing minimization
in Chapters 4 and 5.

Note that, in theory—especially for metro-line crossing minimization—, it is often assumed
that the metro lines are simple paths. In practice, this is the case for most lines. However, some
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Chapter 3: Drawing Metro Maps using Bézier Curves

lines can also be cycles or traverse a vertex more than once. The algorithm presented in this
chapter creates feasible drawings even if there are lines that are not simple paths.

Previous algorithmic approaches [HMdN06, SRMW11, NW11] for drawing metro maps have
all used a similar set of constraints comprising topology preservation, bend minimization,
minimization of geographic distortion, edge length uniformity, non-overlapping station label
placement, and octilinearity, that is, the requirement that edges must be drawn horizontally,
vertically, or diagonally at 45°; see Figure 3.1a.

Octilinearity vs. Curvilinearity. Geographic designers seem to use a set of constraints,
similar to the ones mentioned for previous algorithmic approaches. Especially octilinearity is
used for most metro maps; see, for example, the book of Ovenden [Ove03]. Such schematic
maps potentially offer usability benefits by simplifying line trajectories, and hence reducing the
amount of information that is irrelevant for deciding how to travel from one station to another.
However, there is often a mistaken belief that it is merely the use of straight lines and a restricted
angle set that benefits the user, and as a consequence many human designers fail to optimize
octilinear maps, converting chaotic real-life line trajectories into complex sequences of short
straight-line segments and bends [Rob12].

In other instances, the network structure itself makes the benefits of octilinearity difficult to
realize. A number of systems worldwide suffer from this, including the Paris Métro. In some
cases, using a different level of linearity may help. For example, one could use multiples of 30°,
that is, horizontal and vertical segments, as well as segments with slopes of 30° and 60°. If
these slopes better match the line trajectories of the network, they can permit more effective
optimization. However, in the case of a dense interconnected network, where line trajectories
are complex, a linear schematic may simply fail to offer sufficient simplification because of the
network structure—irrespective of whether a human or a computer attempts the design.

Under such circumstances, where the density of bends cannot be reduced, a curvilinear
schematic map may be attempted instead; see Figure 3.1b and Figure 3.2 for curvilinear drawings
of the metro networks of Montréal and of Sydney, respectively. Such a map seeks to simplify
line trajectories, using curves rather than straight lines. The underlying logic is that if a linear
schematic yields sequences of many visually disruptive bends, then gentle curves with imper-
ceptible radius change are preferable. This translates into using (fixed-degree) Bézier curves
subject to the following criteria:

(B1) Any pair of Bézier curves that are consecutive on a metro line must meet in a station and
must have the same tangent there.

(B2) The aim for each individual metro line is to consist of the smallest number of Bézier
curves necessary in order to maintain interchanges.

(B3) Points of inflection should be avoided.

In the specific case of the Paris Métro, such a design is able to smooth and to emphasize the
orbital lines (lines 2 and 6), simplifying the appearance of the network and making salient its
underlying structure. In a user study, a hand-drawn curvilinear design based on the above criteria
out-performed the conventional octilinear Paris metro map, with up to 50% improvement in
planning speed [RNL*13]. Figure 3.3 shows a manually created example of a curvilinear metro
map that tries to take the criteria into account.
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3.1 Introduction

(a) Octilinear drawing. (b) Curvilinear drawing created by our algorithm.

Figure 3.1: Octilinear and curvilinear drawings of the metro network of Montréal.

Previous Work. Previous algorithmic work on drawing metro maps used (mostly) octilinear
polylines rather than smooth curves for representing edges. Hong et al. [HMdNO6] presented a
force-directed algorithm for drawing metro maps; their algorithm finds a drawing with slopes
approximating octilinearity. Afterwards they use an interactive external labeling system to place
station labels with few overlaps.

The algorithm of Merrick and Gudmundson [MGO07] first covers the metro network by paths
and then uses a path simplification approach for creating a schematized drawing. Another fast
heuristic based on the schematization of paths was presented by Dwyer et al. [DHMO08].

Stott and Rodgers [SRMW11] suggested another approach; who used multicriteria optimiza-
tion based on hill climbing for drawing metro maps. Their approach performs local vertex
moves as long as they improve the quality measure. This way, they are able to create drawings in
which almost all edges are octilinear. They also integrated a label placement heuristic, so that
one iteration of vertex movements alternates with one label placement iteration until no more
local improvements are possible.

Nollenburg and Wolff [NWI11] used mixed-integer linear programming (MIP) for producing
metro maps. Their approach always satisfies hard constraints like octilinearity and overlapping-
free labeling, and optimizes soft constraints, for example, the number of bends or geographic
distortion. The runtime is high and determined by the time needed to solve the MIP with an
external solver; an instance of their model may have no feasible solution at all. Yet, the layout
quality in their case study is high and judged as the most similar to manually designed maps
in an expert survey conducted with 41 participants who compared their layouts with those of
Hong et al. [HMdNO06] and Stott and Rodgers [SRMW11].

Ribeiro et al. [RRLI2] presented a fast force-directed algorithm for drawing metro maps.
Their algorithm uses straight-line edges and allows configuration with different parameters. It
does, however, not use a specific style such as octilinearity.
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Chapter 3: Drawing Metro Maps using Bézier Curves

Figure 3.2: Metro Network of Sydney drawn by our algorithm.
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Chapter 3: Drawing Metro Maps using Bézier Curves

Tiand Li [TL14] presented a method that first enlarges dense areas of the network by distorting
the geographic map and then schematizes the resulting distorted network using an external
stroke-based algorithm.

Wang and Chi [WCI1] developed a system for octilinear on-demand focus-and-context metro
maps; in their maps, they highlight routes returned by a route planning system while showing
the rest of the network as less important context information. Their approach can also be used
for drawing non-focused metro maps. They deform the given geographic map by minimizing a
set of energy terms modeling the aesthetic constraints. Labeling is performed independently.
Their method is both fast and creates good layouts, for example, for mobile devices.

In graph drawing—without the metro map setting—, curves have been used before. For
example, several works considered Lombardi drawings, introduced by Duncan et al. [DEG*12].
In this drawing style, edges are drawn as circular arcs. As an additional requirement, for each
vertex all angles occurring between the incident edges have to be equal. Planar Lombardi
drawings exist for trees [DEG*13], outerpaths [LN13] (a special type of outerplanar graphs), and
all planar graphs of maximum degree 3 [Eppl3].

Chernobelskiy et al. [CCG*12] presented heuristics—based on the force-directed approach—
that create near-Lombardi drawings; in this style, edges are still drawn as circular arcs, but one
does no longer insist on equal angles around vertices.

Similarly, Finkel and Tamassia [FT05] developed a force-directed algorithm for general-
purpose graph drawing using Bézier curves for drawing the edges. Brandes and Wagner [BW00]
did the same in the context of transportation networks for visualizing train connection data
with fixed positions of stations. They developed a force-directed algorithm that draws single
edges between fixed locations as Bézier curves. In both cases, the authors turned all control
points into vertices of the graph and used algorithms for straight-line drawings.

Our Contribution. Our drawing algorithm is based on the force-directed approach. In
contrast to the algorithms of Finkel and Tamassia [FT05] and of Brandes and Wagner [BW00],
our algorithm does not turn the control points of the curves into vertices. We introduce new
forces that operate on the curves by moving vertices and control points in different ways. Our
new forces aim at producing drawings that take the above requirements (B1) to (B3) into account.

We first describe our basic algorithm (see Section 3.3). By construction, it ensures require-
ment (B1), that is, there are no bends within metro lines. We improve the visual complexity of
the output of the basic algorithm by merging pairs of Bézier curves that are consecutive along a
metro line, wherever this is possible; see Section 3.4 (and Figure 3.13). This optimizes require-
ments (B2) and (B3). Force-directed algorithms depend a lot on their initial configuration; we
run our algorithm on both octilinear drawings and geographic layouts (see Section 3.5). We
have implemented our algorithm (in Java) and tested it on the metro maps of London, Montréal,
Sydney, and Vienna; see Section 3.6 for the results.

3.2 Preliminaries

In what follows, we review the two main ingredients that we use, with a focus on the properties
that we will need for our algorithm (see also Section 2.2 for a more detailed introduction): First,
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3.2 Preliminaries

Figure 3.4: Cubic Bézier curve. ~ Figure 3.5: A smooth concatenation of Bézier
curves C and D in point p.

we detail how our algorithm treats the Bézier curves which we use for drawing edges. Second,
we quickly recall the force-directed approach.

Bézier Curves. Bézier curves are a special type of parametric curves; see Section 2.2 for a
brief introduction. We use cubic Bézier curves. Recall that a cubic Bézier curve C is given by
the cubic polynomial

Pc:[0,1] = R:, t > (1-t)°p +3(1-t)*tp’ +3(1 - t)t*q + g,

where p, p’, ¢, and q are the control points of C; see Figure 3.4. We call p and q also the endpoints
of C. We say that p’ is the control point of C at p and that g’ is the control point of C at g.

We use the fact that the curve leaves p in the direction of p’, that is, the line pp’ is the tangent
of C at p. Now, if there is another curve D with a control point p at p such that its tangent is the
same but p is on the opposite side of p with respect to p’, then the concatenation of C and D
is smooth in p; see Figure 3.5. Our algorithm will ensure this behavior for consecutive edges
of a metro line by construction. This makes it easier for the user of our metro maps to trace
metro lines visually because we avoid bends in metro lines. Technically, we encode the position
of p’ by a unit-length vector p¢ that gives the direction of the tangent and by the distance r¢(p)
between p and p’. Since we want to share a single tangent, as an object, between multiple curves,
we allow r¢(p) to be negative. This is used when we have to model that an edge of the metro
network leaves a station in exactly the opposite direction as another edge; this is desired, for
instance, if a metro line passes through a station.

Our algorithm repeatedly needs to check whether two Bézier curves intersect or come too
close to each other. As explained in Section 2.2, this can be done by using polygonizations
of the curves. Furthermore, we can speed up our check by first testing the convex hulls for
intersections; if they do not intersect, the curves cannot cross.

Force-Directed Algorithms. Following the force-directed framework (compare the short
introduction in Section 2.2), our algorithm starts with some initial plane drawing, and then,
iteratively, computes forces on the vertices (and control points). A force is a desired movement
vector. At the end of each iteration, the computed forces are applied and the drawing is modified.
Then the next iteration starts. Common forces are repulsive forces between vertices, and
attractive forces between adjacent vertices. In general, forces are defined so that they tend to
improve the drawing gradually. As all the forces together add up to the desired movement
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Chapter 3: Drawing Metro Maps using Bézier Curves

Input: plane graph G = (V,E), ¢ > 0, integer K > 0

Obtain initial crossing-free drawing with Bézier curves.

while number of iterations < K and maximum displacement > ¢ do
Compute forces on vertices.
Compute forces on curves.
Apply the forces to the current drawing.

return improved output drawing

Algorithm 3.1: Basic structure of the force-directed algorithm using curves.

vectors, the forces have to be weighted so that they have the right relative strength. This is
done by multiplying the force vectors with some weight factor; finding well-working factors is a
matter of testing; see Section 3.6.

While we reuse standard forces known from the literature, we also define new forces that
are specific to our drawing style. Whenever we have such a force that works on the shape of
a curve, we will use the representation for control points introduced above: If a force tries to
move a control point, then this is represented as a force that tries to rotate the tangent used by
this control point, and another force that tries to modify the (signed) distance between vertex
and control point.

3.3 Basic Algorithm

Our algorithm follows the general idea of other force-directed algorithms; its basic structure is
shown in Algorithm 3.1.

Additionally, we have to deal with the metro lines in the given set £. From the point of view
of a station, we (usually) want each pair of incident edges that belong to the same metro line to
leave the station in opposite directions. Thus, we need to maintain extra data in addition to the
graph structure and layout. First, we need the set £ of metro lines with access from lines to the
edges they use and, vice versa, from the edges to the lines using them. Second, for each vertex,
we have a set of tangents given by unit-length vectors pointing away from the vertex. Third, for
each edge e incident to a vertex v, we have a pointer to a tangent F of this vertex as well as the
signed distance r.(v). Tangent and distance describe the position of the control point of e at v.

Input Data and Initial Drawing. Our force-directed algorithm needs an initial drawing
which must be crossing-free, with edges drawn as Bézier curves. If several edges incident to
the same vertex v are to use the same tangent—but possibly in opposite directions—then this
must be indicated in the input since such constraints are properties of the metro network. In
each iteration of our algorithm—right from the start—we assume that we have such a feasible
drawing. In Section 3.5 we describe how to compute an initial Bézier drawing given either a
straight-line or an octilinear drawing of the metro network.
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3.3 Basic Algorithm

3.3.1 Forces on Vertices

We use the standard forces defined by Fruchterman and Reingold [FR91] (see also Section 2.2);
they strive to move non-adjacent vertices far apart from each other and to make adjacent vertices
have a common distance /. The second goal is especially useful for metro maps as the number of
intermediate stops is normally a better indicator for the travel time than the geographic distance.
We let any vertex u exert on any vertex v the repulsive force

2
! —
FP"Y™(u,v) = | ——— | -uv.
() d(u,v)
If v and u are adjacent, vertex u additionally exerts the attracting force

d(u,v) —

F"(u,v) = 7 vt

onv.
As a metro map represents a geographic metro network, stations should not be too far away
from their actual location on the map. Therefore, we also have, for any vertex v, a force

FUig(v) = vII(v)

that attracts v to its geographic position IT(v).

3.3.2 Forces on Tangents and Control Points

Whereas previous force-directed graph-drawing algorithms did not directly operate on curves,
we now present new forces for that very purpose—in order to take advantage of the power of
Bézier curves.

Improving the Shape of a Curve. Consider an edge e = uv that is represented as a curve
with control point u” at u. If the distance d(u, u’) is small compared to the length of e, the
curve could be very sharp, and almost have a bend. If, on the other hand, u’ is far from u, the
curve gets too long. As a compromise, we aim at having |r.(u)| = d(u, u’) = d(u,v)/3, which
worked well in our tests. To achieve this, we combine an attracting and a repulsive force on u’
like the Fruchterman-Reingold forces. We do not want to change the tangent, just the (signed)
distance r, (1) between u and u’ in the direction of the tangent vector. Hence, the desired
change is

o ()3 P
F ') = ( @ d(w)/s) “sgnlre(w)).

Note that this force is a scalar and, hence, the same type of object as the distance r.(u).

Additionally, we aim at straightening curves, as a straight-line segment is the simplest type of
Bézier curve and avoids sharp bends within the edge. To this end, we move vertices as well as
tangents.
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V2

v ue

Figure 3.6: Straightening a Bézier curve. Figure 3.7: Rotational forces applied to a tan-
gent used by two edges uv; and uv,. The re-
sulting force is a rotation by angle a.

First, we try to move vertex v so that it lies on the tangent f of uv at u. Let v, be the point
on t at distance / (the desired edge length) from u; see Figure 3.6. Now the force

Fstr-vtx(u) V) — m

moves v towards v;.

Second, we aim at rotating tangent ¢ at vertex u so that v lies on ¢ as also indicated in Figure 3.6.
Let a be the signed angle between t and uv. The basic idea is to rotate the tangent ¢ by angle «
so that the tangent has the direction of uv. There may, however, be multiple edges incident to u
using ¢ as their tangent that all try to rotate ¢ by different angles. A bad curvature of long edges
is worse than a bad curvature of short edges; with the same rotation of the tangent, the control
point—and, thus, the curve—changes much more if the distance between vertex and control
point is high. Therefore, we do not simply sum up the individual forces on ¢, but use a sum
that is weighted by the control point distances (as in the law of the lever); see Figure 3.7. Let

V1,..., Vi be the vertices whose edges uvy, . .., uvy use tangent ¢ with control points cy, .. ., ¢k
and imply a desired change of the tangent by angles «;, . .., ax. Then the rotational force is
YE - d(u,c)
FU8(fu, vy, .., vg) = —’:lk d LA
Yiad(u,ci)

Again, the force is a scalar, as a rotation is a one-dimensional movement.

Improving the Angular Resolution. We also aim at a good angular resolution at vertices,
that is, we want to have large angles between edges leaving a vertex in different directions, that
is, having different tangents. For any pair of different tangents t;, t, at a vertex v we, therefore,
add a repulsive force

[Frep-tng ( t, tz) _

a(t, ty)

on 1, where a(t, t,) € [-m, ] is the (signed) angle formed by #; and #,. Note that, when
measuring the angle, we have to take into account that some vectors are used in both directions
while others are just used at one side of the vertex; see Figure 3.8.
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3.4 Decreasing the Visual Complexity

(a) before (b) after

Figure 3.8: Improving the angular resolution.

3.3.3 Avoiding Crossings by Limiting Forces

In our output drawing we do not want crossings between edges. As we start with a planar
drawing, we can achieve this by ensuring that we never introduce crossings. For straight-line
drawings, Bertault [Ber99] does this in his force-directed algorithm by introducing limitations
of movements. To this end, he uses zones, that is, octants of directions; for each octant of a
vertex, he computes a maximum displacement that is allowed if the drawing should stay planar.
However, intersections of Bézier curves are more difficult to compute and predict than crossings
of straight-line segments. Instead of using a zone-based approach, we therefore check, for each
pair of edges, whether the intended changes to the drawing would result in a crossing. If this is
the case, we change the movement vector of both endpoints so that the absolute value is half of
the original value. We do this until the application of the new forces does not result in a crossing
on any edge.

3.4 Decreasing the Visual Complexity

The main visual complexity of a drawing of a metro map with curves is created by a large number
of inflection points (compare requirement (B3)), especially if adjacent curves of a metro line do
not fit well together. Ideally, a metro line consists of just one Bézier curve, thus making it easy to
trace the line visually (compare requirement (B2)). Often, this is not possible as intersections
of a line with other lines restrict its shape. We can, however, reduce the number of curves
significantly by merging consecutive curves on the same line. In our initial drawing, any edge
of the graph representing the metro network is a single Bézier curve. In a step of our algorithm,
we replace two consecutive curves by a single curve if this does not change the topology of the
network. We now sketch how we handle different cases for merging edges that are incident to a
vertex v. We distinguish the cases depending on the lines passing through v.

Merging Curves on Intermediate Nodes. Suppose a degree-2 vertex v has two incident
edges e; = uv and e, = vw lying on a common metro line ¢. Then the two edges share a tangent
at v and leave v in opposite directions. We merge the edges into a new edge e = uw. We use
the control point of e; at u and the control point of e, at w and check whether the drawing of e
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intersects that of any other edge; see Figure 3.9. If this is not the case, we remove e; and e, and
insert e into the graph and its drawing, otherwise we keep e; and e, and discard e. Theoretically,
the chance of avoiding intersections could be increased by testing different values for the control
point distances of the merged edge. Our tests, however, suggest that this is not necessary, since,
in the final drawings, almost no vertices of degree 2 remained.

To keep track of vertices that are lost by merging edges, we have to maintain a sorted list of
such vertices for each edge. As the lists of both e; and e, may already contain virtual vertices,
we concatenate the two lists with v in between to get the list for e. We do not only use this list
for producing the final drawing, in which we place the virtual vertices evenly distributed along
the drawing of e, but we also use the number of intermediate vertices for adjusting the desired
length of the edge, especially when computing the attraction between u and w. If [ is the desired
length for simple edges and e contains k virtual vertices, then the desired length of e is (k + 1)1
because e represents k + 1 edges of the real metro network.

If deg(v) = 1, that s, if v is the terminal of some line, and the edge incident to v contains some
virtual vertices, then v typically represents a terminal located in a sparsely occupied suburb. We
can give more freedom to the drawing of such end edges by decreasing the influence of the force
F°"8(v) that attracts v to its original position I1(v), for example, by scaling the force by some
value ¢ < 1 (in our tests, we used ¢ = 1/50). This allows v to be placed closer to the center, which
makes the drawing more compact.

Merging Curves on Simple Interchange Nodes. Merging pairs of curves that meet at
vertices of higher degree is difficult since it is not clear how to ensure that three or more merged
curves actually meet in (or close to) a single point. We first restrict ourselves to degree-4 vertices
in which two lines intersect.

Suppose that a vertex v is adjacent to vertices u, u’, w, w' via edges ey, e}, €5, and ej. Line ¢
contains the edges e; = uv and e, = vw, and line ¢’ contains e = u’v and e, = vw'. We want
to replace the concatenation of e; and e, by e = uw and that of ] and ¢} by e’ = u'w’. If we
manage to do so, we represent v as a virtual vertex, that is, as the intersection of e and e’; see
Figure 3.10. At the same time, we have to make sure that the only new crossing that is introduced
is the crossing of e and e’ that represents v. We try to find appropriate curves for e and e’
by adjusting the distances of the control points to the respective endpoints while keeping the
tangents (as we did for vertices of degree 2). For the distance |r.(u)|, we test values in the
interval [|r,, (u)], d(u, w)] at equal distances. It makes sense to require |r, (u)| > |r., ()] since
the combined curve is longer than e; and the new control point should not be too far from u. By
testing all different combinations of discretized distances for the four involved control points,
we found feasible solutions in most cases.

Note that there is an additional constraint: the crossing that now represents v should divide
both new edges e and e’ roughly in proportion to the numbers of virtual vertices on e and ¢’,
respectively, on the two sides of v. If e contains k virtual vertices left of v and k' virtual vertices
right of v, then the intersection with e’ should have a distance to u that is (k +1)/(k + k" + 2)
times the total length of the curve of e. We allow a deviation from this optimal position by a
factor of § (we used § = 20% in our tests) times the length of the part of the curve to the left of v
and to the right of v, respectively. We call the allowed range on e the §-zone of e.

In all further steps of the algorithm, we have to adhere to these zones for crossing edges. A
further merging of lines including e is only allowed if v stays in the allowed §-zone. Furthermore,
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3.5 Creating a Feasible Input Drawing

Figure 3.9: Merging edges e; and e, into anew Figure 3.10: Merging edges e; and e; into anew

edge e; vertex v joining the edges e; and e, will edge e and edges ef and ¢}, into a new edge e';

be drawn at the appropriate position on edge e. vertex v will be drawn at the intersection of the
edgeseand e’.

we do not allow movements that violate these constraints. So we also consider these zones in
the force limitation phase at the end of each iteration.

Additional Possibilities for Merging Curves. To further improve our drawings, we can
also try to merge curves that intersect in vertices of degree other than 2 or 4. Consider a vertex v
of degree 3 that is traversed by a line ¢; and that is the terminal of another line ¢, with a different
tangent. We can then merge the two edges of ¢; and represent v by its position on ¢;. The edge
of ¢, still has to maintain its own tangent and control point at v. This is also possible if there
are several lines whose tangent is not linked to ¢;. Similarly, if two lines ¢; and ¢, traverse a
vertex v, we can merge their edges incident to v so that their crossing represents v—if none of
the remaining edges shares its tangent with ¢; or ¢,; see Figure 3.11 for examples where edges can
be merged in vertices of degrees 3 and 5. Note that it is still possible that some of the remaining
edges have a common tangent.

3.5 Creating a Feasible Input Drawing

As input, our algorithm expects the embedded graph representing the metro network, the
coordinates of stations, and information regarding the metro lines; see Section 3.3. Some of this
information can be guessed automatically. Suppose, for example, that exactly two of the edges
incident to v are used by a line ¢. Then, we assume that ¢ traverses the station and, hence, the
two edges must have the same tangent, leaving v in opposite directions. Otherwise, we assume
that the input contains an annotation saying, for example, that the two edges leave v in the same
direction. If, on the other hand, there are three or more edges incident to v with the same line
on them, then annotation is needed in any case. We will generally assume that annotations exist
at any vertex. In our implementation, however, we do not need an annotation in cases where
there is no doubt on the tangents at a vertex.
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Chapter 3: Drawing Metro Maps using Bézier Curves

(a) Merging edges e; and e; into a new edge e with  (b) Merging edges e, and e, into a new edge e and
an extra edge € incident to the linking node v. edges e; and e; into a new edge e’ with an extra
edge ¢ incident to the linking node v.

Figure 3.11: Examples for merging edges in vertices of degrees other than 2 or 4.

We need an initial feasible Bézier drawing before the first iteration of the force-directed
algorithm starts; see Section 3.3. This drawing must guarantee that (i) tangents obey their
annotations and (ii) the topology (that is, the embedding) is the same as in the plane input
graph. We discuss two ways to obtain such an initial drawing depending on the input graph:
either from an octilinear drawing or from the straight-line drawing induced by the coordinates
of the stations.

Initial Drawing from Octilinear Layout. Suppose that we are given an octilinear layout
which may either be computed, for example, using the mixed integer program of Nollenburg
and Wolftf [NW11], or be a manually generated plan such as an official metro map. If there are
bends in edges, we first transform these bends into dummy vertices that do not correspond to
stations. Later, the algorithm may delete such dummy vertices by merging the two incident
curves. Given the dummy vertices, we now have a straight-line drawing. To get a drawing using
only Bézier curves, we place each control point at its incident endpoint (or, conceptually, at a
very small distance) and let each tangent point towards the other endpoint of the edge. Now,
we still have the same straight-line drawing, but the edges are technically Bézier curves. In this
process, we must respect the annotations of the tangents, so that the right curves have common
tangents at a vertex. Unfortunately, there can be situations in which this is not possible; see
Figure 3.12. In practice, however, such situations are quite unlikely; they never occurred in our
tests.

At any vertex where the tangents are not yet correct, we now choose new tangents. We do
this one after the other, starting at tangents that are shared by edges. We choose the first tangent
so that it is closest to the tangents it replaces. We insert any new tangent so that the clockwise
order of the adjacent vertices is correct (if this is possible). Finally, by moving the control points
very close to the vertex, we get a drawing that is arbitrarily close to the straight-line drawing
and that does, hence, have no crossings.
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Figure 3.12: Example where it is impossible to keep the embedding and ensure that both edges
of each line share the same tangent.

Initial Drawing from Geographic Layout. If we do not have an octilinear drawing, the
initial drawing can also be constructed given just the coordinates of the stations. Similarly to
Nollenburg and Wolff [NW11], we start with the straight-line drawing induced by the station
positions. This drawing may have crossings; we replace them by dummy vertices and get a
crossing-free straight-line drawing. This drawing can then be transformed into a crossing-free
Bézier drawing as presented in the previous paragraph.

Since the introduced crossings, as dummy vertices, are preserved over all iterations, they will
also be present in the output drawing. Fortunately, their number is small in practice. (From a
network point-of-view it indeed makes sense to have stations at crossings.) For example, the
large London network (which was built by competing companies operating single lines) has
only four crossings—the same as in the official tube map.

Note that, in the initial drawing, there are only two different tangents at a dummy vertex,
each for one of the two crossing lines; this is also the case in the final drawing. Additionally,
in the more advanced version of the algorithm, we can even transform the dummy vertex to a
(dummy) virtual vertex before the algorithm starts; see Section 3.4.

3.6 Implementation and Tests

We implemented our algorithm in Java. For testing we used the metro networks of four cities:
London (297 vertices, 217 of which have degree 2, 13 metro lines), Vienna (90/71/5), Montréal
(69/59/4), and Sydney (173/144/10); see Figure 3.14, Figure 3.13d, Figure 3.1b, and Figure 3.2 for
illustrations of the networks. The input data contained the graph structure as well as information
on the lines and geographic positions of stations. We also used octilinear layouts of these cities as
initial drawings, which we generated using the MIP approach of Nollenburg and Wolff [NW11].
In both cases, tangents were annotated where necessary; see Section 3.5.
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Chapter 3: Drawing Metro Maps using Bézier Curves

Effects of Virtual Vertices. We were especially interested in how far making vertices virtual
influenced the visual complexity of metro maps. Figure 3.13 shows the power of virtual vertices
for the metro map of Vienna. Starting with an octilinear layout (Figure 3.13a), the first drawing
(Figure 3.13b) was computed without virtual vertices and, hence, no curves were merged. Clearly,
the drawing does not have any sharp bends. The attraction to the geographic position of vertices,
however, caused some unnecessary inflection points. Next, we added the possibility to create
virtual vertices of degree 2 (Figure 3.13c). For Vienna, this worked on all intermediate vertices,
reducing the number of Bézier curves significantly. Finally, we also enabled virtual vertices of
higher degree (Figure 3.13d). For Vienna, this worked for 8 of 9 possible vertices. Two metro
lines were represented by just one curve, while the three other lines need two curves each.

It turned out that including virtual vertices of degree 2 always worked well, and that they
were fast to handle. There were almost no remaining vertices of this type even after the very first
iteration; hence, testing the remaining degree-2 vertices was fast in all following iterations. In
contrast, trying to merge edges at vertices of higher degree was much slower because potentially
many combinations of control point positions had to be tested. Additionally, we observed that
once many virtual vertices of higher degree had been added, the drawing did not change much
any more. Apparently, the additional constraints on the crossings make the drawing more rigid,
and many movements get forbidden. Therefore, we decided to first have many, that is, hundreds,
of iterations without caring about virtual vertices of degree more than 2, and then treat them in
a single (more time-consuming) final iteration.

Running Time. On the largest instance, the Underground of London, the running time for
creating a drawing starting with an octilinear layout (see Figure 3.14) was 935 seconds on a
3 GHz dual-core computer with 4 GB RAM. This includes the 872 seconds spent on the last
iteration, in which curves were merged by inserting virtual vertices of degree higher than 2. In
contrast, the first 500 iterations just took 63 seconds.

Weights of Forces. As noted in Section 3.2, weight factors are needed that let different forces
work well together. We group the forces depending on the object on which they operate. In our
tests, the following factors turned out to work well:

FIE, = (F*PY™ 4 P L 10F°"8 4 3F5"V™) /100 for vertices,

vert

FIS =150F"P"'™8 1+ 0.03F*"'™8  for tangents, and

tan

res

epdist = F*" /20 for control point distances.

Initial Drawing and F°"'8, We tested the algorithm both with a straight-line drawing and an
octilinear layout as input. When we defined F°"'8 using the geographic station locations, the
version using the octilinear layout performed slightly better. The best results, however, were
achieved when using the octilinear layout as input and defining F°"'8 with respect to the vertex
positions in the octilinear input drawing. In this case, the center had more space, and more
curves could be merged, which reduced the visual complexity. Figures 3.2, 3.1b, 3.13 and 3.14
were computed this way.
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(c) Drawing with virtual vertices of degree 2 (high-  (d) Drawing with virtual vertices of degree 2 and ad-
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Figure 3.13: Metro network of Vienna: Initial octilinear drawing and drawings produced by
our algorithm, with increasing use of virtual vertices.
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Figure 3.14: Metro Network of London drawn by our



3.7 Concluding Remarks

3.7 Concluding Remarks

The implementation of our algorithm performed well on small and medium-size networks
(Vienna, Sydney, and Montreal in our tests) as well as sparse regions of large networks. In such
cases, many curves could be merged so that, in the end, lines consisted only of few curves. We
conclude that spending the extra time for merging as many curves as possible should always be
invested. In denser regions, such as the center of London, many curves were actually merged, but
there are also a number of vertices that did not allow this, making the drawing rather complex.

Open Problems. A first open problem is incorporating the placement of station labels into
our algorithm. One can, of course, try to use an external labeling algorithm on the output
drawing. However, it is possible that there is no space for all station labels in the output drawing.
Taking the labels into account while creating the drawing would overcome this problem—but
also make the algorithm more complicated.

Global Optimization. As future work, however, we suggest studying an alternative approach
to generating curvy metro maps automatically by approximating each metro line globally as one
C?-continuous cubic spline right from the start rather than piece-by-piece for every edge. Curve-
fitting techniques from computer graphics could be applied for finding splines that interpolate
or approximate the input points with low error; the challenge would be to additionally define
and implement appropriate constraints that allow for a sufficient and maybe context-dependent
amount of distortion to smooth unimportant bends and yet ensure, for example, the desired
angular properties in vertices of degree at least 3.

Drawings with Circular Arcs. As an alternative to Bézier curves, circular arcs may also be
used for drawing metro maps. Note that representing any edge by a single circular arc will
normally not suffice since the tangents on the two endpoints cannot be chosen independently.
Drawing edges as a combination of two circular arcs connected at a point of common tangent
can, however, be tried.

For smaller networks and networks that have many lines that either go from the center to the
suburbs or go round a central region, we suggest concentric drawings. One first has to choose
a center in the central region of the network. Then, edges can be represented by sequences of
circular arcs—with the fixed center—and segments that are radial with respect to the same
center; see Figure 3.15 for an example. If the structure of the networks allows such a concentric
drawing, it should be easier to find one—at least with a fixed center—since the drawing style is
more restricted. Furthermore the concentric drawing style by itself reduces the complexity of
the drawing due to its focus on the center; see also our poster [FLW14] (with Magnus Lechner
and Alexander Wolff) on the ongoing work on concentric metro maps.
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Figure 3.15: Sketch of a concentric drawing of the metro network of Vienna; intermediate
stations are not shown. The drawing was automatically generated using a work-in-progress
implementation [FLW14].

42



Chapter 4

Metro-Line Crossing Minimization

In the previous chapter, we presented an algorithm for creating curvy drawings of metro
networks. In our algorithm, as well as in other algorithms for drawing metro maps, what is
actually drawn is the underlying graph. As a postprocessing, the metro lines are then inserted
into the drawing. When doing so, one has to care about several lines sharing an edge of the
network. Crossings between metro lines will often be necessary. In order to make the metro
lines in the drawing easy to follow, we want to insert them in such a way that the total number of
crossings is minimized; this is known as the metro-line crossing minimization (MLCM) problem:
Given an embedded graph G and a set £ of simple paths in G, called lines, order the lines on
each edge so that the total number of crossings is minimized.

Although there has been some research on metro-line crossing minimization, the complexity
of MLCM has been an open problem, so far. In contrast, the problem variant MLCM-P, in
which line ends must be placed in outermost position on their edges, is known to be NP-hard.

In this chapter, our main results answer two open questions: First, we show that the general
MLCM problem is NP-hard. Second, we give an O(y/log|L|)-approximation algorithm for
MLCM-P.

Our further results are as follows. For both problem variants, we can efficiently check whether
a solution without crossings exists. For MLCM-P, we develop a fixed-parameter tractable
algorithm with respect to the number of crossings; we also solve MLCM-P optimally on some
non-trivial instances. Finally, we present a fixed-parameter tractable algorithm for both MLCM
and MLCM-P on trees with respect to the sum of the maximum degree of the underlying graph
and the maximum number of lines per edge.

4.1 Introduction

An important part of transportation networks like metro networks are transportation lines
that connect different points using streets or railway tracks of the underlying network. As we
have seen, such networks can be modeled as graphs. The edges represent railway track or road
segments connecting the vertices. The lines become paths in the graph.

Usually, lines that share an edge are drawn individually along the edge in distinct colors;
see Figure 4.1. Often, some lines must cross, and one normally wants to have as few crossings
of metro lines as possible. The metro-line crossing minimization (MLCM) problem has been
introduced by Benkert et al. [BNUWO7]. The goal is to order the lines along each edge such that
the number of crossings is minimized. Although the problem has been studied, many questions
remain open.
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Figure 4.1: A part of the official metro map of Paris.!

We present our results in terms of the problem of metro-map visualization; however, crossing
minimization between paths on an embedded graph is used in various fields. In very-large-scale
integrated (VLSI) chip layout, a wire diagram should have few wire crossings [Gro89]. Another
application is the visualization of biochemical pathways [Sch02]. In graph drawing the number
of edge crossings is considered one of the most important aesthetic criteria.

Recently, a lot of research, both in graph drawing and information visualization, has been
devoted to edge bundling. In this setting, some edges are drawn close together—like metro
lines—which emphasizes the structure of the graph [Hol06, CZQ*08, PNBHI2]; minimizing
crossings between parallel edges arises as a subproblem [PNBHI12]. More precisely, bundled
graph drawings can be interpreted as drawings of a modified graph, in which the edges of
the original graph are paths—like metro lines—that often share edges. Metro-line crossing
minimization then helps to have few crossing between these paths.

Problem Definitions. The input is an embedded graph G = (V,E) together with a set
L = {&,...,¢} of simple paths in G. We call G the underlying network or the underlying
graph, the vertices stations, and the paths lines. The endpoints vy, v ofaline € = (vq,...,vx) € L
are terminals, and the vertices vy, . . ., vx_; are infermediate stations. For each edge e = (u,v) € E

let L, be the set of lines passing through e.

ICropped from the official metro map, which is available online at http: //www.ratp.fr/fr/ratp/c_23590/
plans-metro/ (Accessed on December 14, 2013). © Régie autonome des transports parisiens (RATP), Paris
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vertex crossing of ¢, and €5 in vs is avoidable, the
solution is not feasible.

Figure 4.2: 9 lines on an underlying network of 6 vertices and 9 edges.

Following previous work [ABKS10, N6110], we use the k-side model; each station v is repre-
sented by a polygon with k sides, where k is the degree of v in G; see Figure 4.2. Note that for
k = 2 we can still represent the station by a rectangle and use two opposite sides for connecting
the edges to it; for k = 1 we use just one side. Each side of the polygon is called a port of v and
corresponds to an incident edge (v, u) € E. Recall that the input is an embedded graph; hence,
the clockwise order of edges incident to a vertex is fixed. A line (vo, ..., v,) is represented by a
polyline starting at a port of vy (on the boundary of the polygon), passing through two ports
of v; for1< i < r, and ending at a port of v,.

For each port of u € V corresponding to (u, v) € E, we define the line order m,,, = (€1...¢),,|)
as an ordered sequence of the lines in L, ; 7,,, specifies the clockwise order at which the lines L,,,,
are connected to the port of u with respect to the center of the polygon. Note that there are two
different line orders 7, and 7,, on any edge (u,v) of the network, describing the orders at
the two ends of the edge (u, v). A solution, or a line layout, specifies line orders 7, and 7, for
each edge (u,v) € E.

A line crossing is a crossing between a pair of polylines corresponding to a pair of lines on
the graph. We distinguish two types of crossings; see Figure 4.2a. An edge crossing between
lines ¢; and ¢, occurs whenever 71, = (... ¢;...¢;...)and 7, = (... &;...¢,...) for some
edge (u,v) € E since line ¢, is above ¢, at vertex u and below ¢, at vertex v, assuming that the
edge is drawn horizontally with u to the left. Note that the line order at a port is always described
relative to the vertex. Hence, even if the order of lines does not change on edge e = (u, v), that
is, there is no crossing on e, the permutation m,, is reversed compared to 7,,. We still say that
the oder does not change, with the obvious meaning that there is no crossing.

We now consider the concatenated cyclic sequence 7, of the orders m,,,, ..., 7,,,, where
(4,v1), ..., (u,vg) are the edges incident to u in clockwise order. Note that lines that pass
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(a) Avoidable vertex crossing. (b) Avoidable vertex crossing of (c) Unavoidable vertex
(a) moved to an edge. crossing.

Figure 4.3: Avoidable and unavoidable vertex crossings.

through vertex u are found twice in the sequence m,,. A vertex crossing between ¢; and ¢, occurs
inuifm, =(..06...6...0...6...)orm, = (...0...8...8,...6...). Intuitively, the
lines change their relative order inside u.

A crossing of lines ¢; and ¢, is called unavoidable if £, and €, cross in any line layout; otherwise
the crossing is avoidable. A crossing is unavoidable if neither ¢; nor ¢, have a terminal on their
common subpath and the lines split on both ends of this subpath in such a way that their relative
order has to change; see Figure 4.2 for examples of the crossing types. Following previous work,
we insist that avoidable vertex crossings are not allowed in a solution, that is, these crossings are
not hidden below a station symbol; this is called the edge crossings model. Furthermore, we do
not count unavoidable vertex crossings since they occur in any solution; see Figure 4.3.

A pair of lines may share several common subpaths, and the lines may cross multiple times
on the subpaths. For the simplicity of presentation, we always assume that there is at most
one common subpath of two lines; we call this the path intersection property. Our results do,
however, also hold for the general case as every common subpath can be considered individually.

Problem Variants. Several variants of metro-line crossing minimization have been consid-
ered so far. The original metro-line crossing minimization (MLCM) problem is formulated as
follows.

Problem 4.1 (MLCM). For an instance (G, L) consisting of an embedded graph G = (V, E) and
a set L of lines on G, find a line layout with the minimum number of crossings.

Note that the embedding of the graph does not necessarily have to be planar; the crucial
part for metro-line minimization is that the clockwise order of edges incident to each vertex is
prescribed by the embedding. Crossings between edges are allowed. As the lines on two crossing
edges cross in any line layout, there is no need to count such crossings.

In practice, it is desirable to avoid gaps between adjacent lines; to this end, every line is
drawn so that it starts and terminates in the topmost or bottommost part of a port; see Fig-
ure 4.2b. In fact, many manually created maps follow this periphery condition introduced by
Bekos et al. [BKPS08]. Formally, we say that a line order m,,, at the port of u satisfies the periph-
ery condition if 77, = (&1...€,...44...¢,,) with p < g, where u is a terminal for the lines

w|
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6,5 €p, €y, ..., €, and u is an intermediate station for the lines €., . .., £,-1. The problem
is known as metro-line crossing minimization with periphery condition (MLCM-P).

Problem 4.2 (MLCM-P). For an instance (G, L) consisting of an embedded graph G = (V,E)
and a set L of lines on G, find a line layout with the minimum number of crossings that satisfies
the periphery condition on each port.

In the special case of MLCM-P with side assignment (MLCM-PA), the input additionally
specifies for each line end on which side of its port it terminates; Nollenburg [N6110] showed that
MLCM-PA is computationally equivalent to the version of MLCM in which all lines terminate
at vertices of degree one.

As MLCM and MLCM-P are NP-hard even for very simple networks, we introduce the
additional constraint that no line is a subpath of another line. This is often the case for bus
and metro transportation networks; if, however, there is a line that is a subpath of a longer line
then one can also visualize it as a part of the longer line. We call the problems with this new
restriction PROPER-MLCM and PROPER-MLCM-P.

Previous Work. Line crossing problems in transportation networks were first studied by
Benkert et al. [BNUWO07], who introduced the metro-line crossing minimization (MLCM) prob-
lem. They described a quadratic-time algorithm for MLCM on instances whose underlying
network consists of a single edge with attached leaves. As far as we are aware, this is the only
known result on MLCM so far; no efficient algorithms are known for the case of two or more
edges. The complexity status of MLCM has been open.

However, the variants MLCM-P and MLCM-PA have been considered. First, Bekos et
al. [BKPS08] studied MLCM-P and proved that the variant is NP-hard on paths. Motivated by
the hardness, they introduced the variant MLCM-PA and presented efficient algorithms for paths
and “left-to-right” trees (in which all lines have a common direction). Later, polynomial-time
algorithms for MLCM-PA on general graphs were found with gradually improving running time
by Asquith et al. [AGMO08] (O(|£|? - |E|*/?) time), Argyriou et al. [ABKS10] (O((|Z|* + |E])|E|)
time), and Nollenburg [N6110] (O(|£|*|V]) time), until Pupyrev et al. [PNBHI2] presented a
linear-time algorithm (O(|V| + |E| + k) time, where k is the total length of the metro lines).
Asquith et al. [AGMO08] formulated MLCM-P as an integer linear program that finds an optimal
solution for the problem on general graphs; note that this approach requires exponential time in
the worst case. Okamoto et al. [OTU13a] worked on MLCM-P on paths (see also the full version
of their paper [OTU13b]). They showed how to efficiently decide whether there is a solution
without crossings. In Section 4.3, we will show how this can be done for general graphs. Further-
more, they presented an exact algorithm for paths and a fixed-parameter tractable algorithm
with respect to the number of lines per edge of the path.

A lot of recent research, both in graph drawing and information visualization, is devoted to
edge bundling where some edges are drawn close together—like metro lines The linear-time
algorithm for MLCM-PA of Pupyrev et al. [PNBHI2] has been developed in this context.

In VLSI design, the problem of minimizing intersections between nets (physical wires)
arises [Gro89, MS95]. Net patterns with fewer crossings are likely to have better electrical char-
acteristics and require less wiring area as crossings consume space on the circuit board; hence,
it is an important optimization criterion in circuit board design. This problem is equivalent to
MLCM-PA. Groeneveld [Gro89] suggested an algorithm for MLCM-PA on general graphs in
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] problem | graph class | result | reference |
caterpillar NP-hard Thm. 4.1
single edge O(|£]*) time [BNUWO07]

MLEM tree FPT for A + ¢ Thm. 4.9
general graph crossing-free test Thm. 4.2
path NP-hard [ABKSI0]
tree FPT for A + ¢ Thm. 4.11

MLCM-P general graph ILP [AGMO08]
general graph O(y/log|L])-approx. Thm. 4.5
general graph crossing-free test Thm. 4.3
general graph FPT for #crossings Thm. 4.4
Proper-MLCM-P | 8eneral graph with | o1 r21/ 151y time | Thm. 4.7
consistent lines
MLCM-PA general graph O(JE| +|V||£]) time [PNBH12]

Table 4.1: Overview of results for the metro-line crossing minimization problem.

this context. Another method for graphs of maximum degree four was developed by Chen and
Lee [CL98].

Our Results. Table 4.1 summarizes our contributions and previous results. We first prove
that MLCM is NP-hard even on caterpillars, that is, paths with attached leaves (Section 4.2.1),
thus, answering an open question of Benkert et al. [BNUWO07] and Néllenburg [N6109]. As
crossing minimization is hard, it is natural to ask whether there exists a crossing-free solution.
We show that there is a crossing-free solution if and only if there is no pair of lines forming an
unavoidable crossing; this criterion can easily be checked (Section 4.2.2).

We then study MLCM-P (Section 4.3). Argyriou et al. [ABKS10] and Néllenburg [N6109]
asked for an approximation algorithm. To this end, we develop a 2SAT model for the problem.
Using the 2SAT formulation we obtain an O(y/log|L|)-approximation algorithm for MLCM-P.
This is the first approximation algorithm in the context of metro-line crossing minimization.
We also show how to find a crossing-free solution in polynomial time, if such a solution exists.
Moreover, we prove that MLCM-P is fixed-parameter tractable with respect to the maximum
number k of allowed crossings, via the fixed-parameter tractability of 2SAT.

Next, we study the new variant PROPER-MLCM-P (Section 4.4). We present efficient algo-
rithms for solving PROPER-MLCM-P optimally on caterpillars, left-to-right trees, and many
other instances described in Section 4.4. The class of left-to-right trees was also considered
by Bekos et al. [BKPS08] and by Aryriou et al. [ABKSI10] in the context of metro-line crossing
minimization. Actually, our algorithm can be applied to any graph if the lines on the graph
satisfy a simple property that we call consistent line directions. On such instances, with the help
of some transformations, we can reduce the problem of finding a crossing-minimum solution to
the problem of finding a minimum edge cut in a flow network. This is the first polynomial-time
exact algorithm for the variant in which avoidable crossings may be present in an optimal
solution.
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For both MLCM and MLCM-P, we consider the restricted variant of the problems in which
the maximum degree A as well as the maximum edge multiplicity c, that is, the maximum
number of lines per edge, are bounded (Section 4.5). For the case where the underlying network
is a tree, we show that both MLCM and MLCM-P are fixed-parameter tractable with respect to
the combined parameter A + c.

Finally, we consider practical aspects of metro-line crossing minimization. We show how to
find a (not necessarily optimal) line layout in the cases where some of the required constraints
are not fulfilled.

4.2 General Metro-Line Crossing Minimization

We begin with the most flexible problem variant MLCM, and show that it is hard to decide
whether there is a solution with at most k > 0 crossings, even if the underlying network is a
caterpillar. In contrast, we give polynomial-time algorithms for deciding whether a crossing-free
solution exists.

4.2.1 NP-Completeness

Argyriou et al. [ABKS10] showed that the restricted version MLCM-P is NP-hard even if the
underlying graph is a path. It is easy to see that this does not hold for the general version MLCM.
In fact, any such instance has a crossing-free solution. Later, we can see this with the help of
Theorem 4.2 since, on a path, there is no pair of lines with an unavoidable crossing. There is,
however, also a very simple algorithm for creating such a solution: Traverse the path from left to
right and maintain an ordered sequence of the lines. Whenever a line starts, add it at the end of
the sequence; when a line ends, it is simply removed. This does not create any crossings. Since
in MLCM lines can end anywhere on their respective port, the solution is feasible.

If, however, the graphs become just slightly more complex than paths, MLCM is NP-hard: We
show that the problem is NP-complete even for caterpillar graphs, that is, paths with attached
vertices of degree 1.

Theorem 4.1. MLCM is NP-complete even on caterpillar graphs.

Proof. We prove hardness by reduction from MLCM-P; as mention above, MLCM-P is known
to be NP-hard on paths [ABKSI10]. Suppose that we have an instance of MLCM-P consisting of
apath G = (V,E) and a set £ of lines on the path. We want to decide whether it is possible to
order the lines with periphery condition and at most k crossings.

We create a new underlying network G’ = (V’, E") by adding some vertices and edges to
G. We assume that the path G is embedded along a horizontal line and specify new positions
relative to this line. For each edge e = (u,v) € E, we add vertices uy, u,, v1, and v, and edges
(u,u1), (4, 42), (v,v1), and (v, ;) such that v; and u; are above the path and v, and u, are
below the path. Next, we add ¢ = |£|? lines connecting u; and v, and c lines connecting u,
and v; to L’ 2 £; see Figure 4.4. We call the added structure the red cross of e, the added lines
red lines, and the lines of L old lines. We claim that there is a number K such that a solution
of MLCM-P for (G, £) with at most k crossings exists if and only if a solution of MLCM for
(G', L") with at most k + K crossings exists.
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(a) MLCM-P-solution on edge (u,v). (b) Insertion of a red cross into the solution with
minimum number of additional crossings.

Figure 4.4: Insertion of the red lines of our red cross gadget into an MLCM-P solution on an
edge (u,v).
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(a) No crossings necessary. (b) 2¢ crossings.
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(c) ¢ crossings. (d) 2¢ crossings.

Figure 4.5: Crossings of lines with the red cross on an edge.

Let e = (u,v) € E be an edge of the path, and let € € L, be a line on e. If £ has its terminals at
u and v, that is, € lies completely on e, then € never has to cross any other line in G or G’ (see
Figure 4.5a); hence, we can assume that such a line £ does not exist.

Now, assume that the line ¢ has none of its terminals at u or v. It is easy to see that £ has
to cross all 2¢ lines of the red cross of e (see Figure 4.5b). Finally, suppose that € has just one
terminal at a vertex of e, say at u. If the terminal is placed above the edge (u, u;) then £ has to
cross all red lines connecting u, and v; but can avoid the red lines connecting u; and v,; that
is, ¢ crossings with red lines are necessary on edge e (see Figure 4.5c). Symmetrically, if the
terminal is below (u, u,) then only the ¢ crossings with the red lines from u; to v, are necessary.
If the terminal is between the edges (u, u;) and (u, u, ), however, then all 2¢ red lines must be
crossed (see Figure 4.5d). There are, of course, always ¢? unavoidable internal crossings of the
red cross of e.
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Let c, = ¢! + ¢ be the number of old lines on e, where ¢! is the number of old lines on e that
have a terminal at u or v, and ¢}’ is the number of old lines on e that have no terminal at u or v.
In any solution there are at least ¢’ - ¢ + 2 ¢™ - ¢ + ¢* crossings on e in which at least one red
line is involved. It is easy to see that placing a terminal between red lines leaving towards a leaf
never brings an advantage. On the other hand, if just a single line has an avoidable crossing
with a block of red lines, the number of crossings increases by ¢ = |£]?, which is more than the
number of crossings in any solution for (G, £) without double crossings. Hence, no optimal
solution of the lines in G’ has avoidable crossings with red blocks and, therefore, any optimal
solution satisfies the periphery condition; thus, after deleting the added edges and red lines, we
obtain a feasible solution for MLCM-P on G.

Let K := |E|-c* + ¥ e (¢t +2¢™) - ¢ be the minimum number of crossings involving red lines
in the graph G'. Suppose that we have an MLCM-solution on G’ with at most K + k crossings.
Then, after deleting the red lines, we obtain a feasible solution for MLCM-P on G with at most k
crossings. On the other hand, if we have an MLCM-P-solution on G with k crossings, then we
can insert the red lines with just K new crossings as follows. Suppose that we want to insert the
block of red lines from u; to v, on an edge e = (u, v) € E. We start by putting them immediately
below the lines with a terminal on the top of u. Then we cross all lines below until we see the
first line that ends on the bottom of v and, hence, must not be crossed by this red block. We go
to the right and just keep always directly above the block of lines that end at the bottom side
of v; see Figure 4.4. When we reach v, we have not created any avoidable crossing. Once we
have inserted all blocks of red lines, we obtain a solution for the lines on G” with exactly K + k
crossings. This completes the proof of the NP-hardness.

It remains to show that MLCM is contained in NP. As Argyriou et al. [ABKS10] observed
for MLCM-P, one can simply guess orders for all ports and then check, for any combination of
orders, in polynomial time whether the orders form a feasible solution with at most k crossings.
This also works for MLCM,; the only difference is that more line layouts are feasible for MLCM.
Hence, MLCM is NP-complete. O

4.2.2 Recognition of Crossing-Free Instances

As we have seen, MLCM in general is NP-hard. In contrast, we will now see that it is easy to
check whether an instance of the problem allows a crossing-free solution.

Suppose that we are given an instance (G, £) of MLCM and we want to check whether there
exists a solution without any crossings. If a crossing-free exists solution, then, obviously, there
cannot be a pair of lines with an unavoidable crossing. We show that this necessary condition is
already sufficient.

Consider a pair of lines ¢, £, with a common subpath P = (v, v, ..., u;, u); see Figure 4.6.
Suppose that the lines split at v, that is, neither ¢; nor ¢, terminates at v. Since vertex crossings
are not allowed in our model, there is a unique order between ¢; and ¢, at the port vv; in any
feasible solution of MLCM. Furthermore, in any crossing-free solution, the relative order of ¢;
and ¢, is the same on all ports.

We arbitrarily fix a direction for each edge of the underlying network. For an edge e =
(u,v) € E directed from u to v and for a pair of lines ¢, &, € L,,, we say that ¢, is above ¢, if
Tyy = (... 81... €5 ...) in any crossing-free solution taking just these two lines into account—
and disregarding all other lines. Otherwise, if 7, = (...¢,... ¢ ...) in any crossing-free
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(a) Line ¢; is above line ¢, at the port vv; but be-  (b) A terminal on a common subpath of ¢, and ¢,
low ¢, at the port uuy; a crossing of ¢ and &5 is at u; the crossing is avoidable.
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Figure 4.6: Avoidable and unavoidable crossings.

Figure 4.7: A separator € of lines ¢; and ¢,.

solution, we say that ¢; is below £,. Note that on some other edge e, £; may be below ¢,
depending on the direction of e’. We say that a line € lies between ¢; and ¢, if ¢, is above £ and £
is above ¢, on e. First, a useful observation.

Observation 4.1. The lines ¢, £, have an unavoidable crossing if and only if they split in such a
way that, on some edge e, £1 has to be above ¢, and at the same time €, has to be above ¢;.

We assume that no line is a subpath of another line because a subpath can be reinserted
parallel to the longer line in a crossing-free solution. Consider a pair of lines ¢; and ¢, whose
common subpath P starts in u and ends in v. If u (or, similarly, v) is a terminal neither for ¢; nor
¢, then either there is a unique relative order of the lines along P in any crossing-free solution
or a crossing is unavoidable; see Figure 4.6. Hence, we assume that u is a terminal for £;, visa
terminal for ¢,, and we call such a pair of lines overlapping. Suppose there is a separator for ¢,
and ¢, that is, a line £ on the common subpath of ¢; and ¢, that has to be below ¢; and above ¢,
(or the other way round) as shown in Figure 4.7. Then, ¢; has to be above ¢, in any crossing-free
solution.

The only remaining case is a pair of lines without a separator. With the help of the following
lemma we will be able to simplify the instance by merging such pairs.

Lemma 4.1. Let €y, ¢, be a pair of overlapping lines without a separatot, for which the number of
edges of the common subpath is minimum. If there exists a crossing-free solution, then then there
also exists a crossing-free solution in which €, and €, are immediate neighbors in the orders on
their common subpath, that is, they are never separated by a line lying between them.

Proof. First, let us show that no line has its terminal in an intermediate station of the common
subpath of ¢; and ¢,. Suppose there is such a line €. Then € forms an overlapping pair with either
¢, or £,—say ¢; without loss of generality—, whose common subpath is shorter than the one of
¢, and £,. Hence, there is a separator £’ of ¢; and ¢;; €’ also separates ¢; and £, in contradiction
to the choice of ¢; and ¢,.
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(a) Lines S between ¢; and £. (b) Lines between ¢; and € reordered.

Figure 4.8: Rerouting lines between ¢; and ¢,. All shown lines share a subpath, which is shown
in the drawings. At any position with a terminal, there is a node (not drawn).

Now, suppose that there is no crossing-free solution in which ¢; and ¢, are immediate neigh-
bors on their complete subpath. We fix a crossing-free solution in which the number of lines
lying between ¢; and ¢, is minimal and suppose that, without loss of generality, ¢; is above ;.

Let € be a line lying between ¢; and ¢,. If we follow line ¢ to the left and to the right, it either
ends at a subpath with £; or ¢;, or it leaves these two lines. If £ leaves both ¢, to the left and ¢, to
the right, then £ must be a separator, a contradiction. On the other hand, if £ leaves only one of
the lines, say €, it overlaps with the other one, that is, with ¢,, and forms an overlapping pair
with it.

Let € be the topmost line that lies between ¢; and ¢, in the solution and overlaps with ¢;
(or, symmetrically, the bottommost line that overlaps with ¢,). By modifying the ordering,
considering lines above € and below ¢;, and some lines not overlapping with ¢y, it is possible
to reroute ¢ so that it does not lie between ¢; and ¢,, hence decreasing the number of lines
between ¢; and ¢, in contradiction to the choice of the solution. To this end, let S 2 {#;, £}
be the smallest superset of £ and ¢; such that for any pair of lines &', £’ € S any line that lies
between ¢’ and ¢” in the solution is also contained in S; see Figure 4.8a. Note that no pair of
lines in S has a separator because this separator would also be a separator for ¢, and ¢,.

If S = {&, £} we can easily reroute ¢ to be above ¢;. Otherwise, we apply the following
procedure. For any pair of overlapping lines in S that are immediate neighbors—that is, there is
no line lying in between—, we reroute the right line to be immediately above the left line, which
is possible as there is no separating line. Eventually, £ will be above ¢;; otherwise, there would
still be steps to be performed; see Figure 4.8b. Hence, we can create a solution in which there is
at least one line less between ¢; and ¢,, a contradiction. O

In the situation of the previous lemma, we can safely merge ¢; and ¢, into a new line € that
starts and ends at the terminals of ¢; and ¢, that are not on the common subpath of the two
lines. We will now use this merging for simplifying the instance so that we can conclude that
any instance without unavoidable crossings allows a crossing-free line layout.

Theorem 4.2. Let (G = (V,E), L) be an instance of MLCM. A crossing-free solution exists if
and only if there is no pair of lines with an unavoidable crossing.

Proof. If there is a pair of lines with an unavoidable crossing, then naturally there is no crossing-
free solution. Now assume that there is no unavoidable crossing. We will show how to find a
crossing-free solution.

Using Lemma 4.1, we can merge a pair of overlapping lines without a separator into a new
line. The merging cannot introduce an unavoidable crossing as we will see. Suppose there would
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Figure 4.9: Unavoidable crossing of two separators of ¢; and 5.

be a line ¢ forming an unavoidable crossing with the merged line ¢’ of ¢, and ¢,. The lines ¢
and ¢’ have to split on both ends with with different side constraints. The splits have to be on
different sides of the common subpath of ¢; and ¢,, otherwise there already was an unavoidable
crossing of ¢ with ¢; or ¢,. From the splits we get relative orders of £ with ¢; and ¢, such that
either ¢; is above £ and ¢ is above ¢,, or ¢, is above € and ¢ is above ¢;. In both cases ¢ already
was a separator for ¢; and ¢, and we would not have merged the lines.

We iteratively perform merging steps until any overlapping pair has a separator. Note that
there might be multiple separators for a pair, but all of them separate the pair in the same relative
order; otherwise, we would have a pair of separators with an unavoidable crossing; see Figure 4.9.

After the merging steps, for any pair of lines sharing an edge, we either obtain a unique
relative order for crossing-free solutions, or the pair has a separator.

We now create a directed relation graph G, for each edge e € E. Vertices of the graph are the
lines L, passing through e. Edges of G, model the relative order of the lines in a crossing-free
solution; we have an edge (¢, £,) (similarly, (¢,, ¢1)) in G, if ¢; and ¢, split in such a way that
¢, is above (below) ¢, in any crossing-free solution.

Let us prove that all relation graphs are acyclic. Suppose there is a cycle in a relation graph
G.. We choose the shortest cycle C. A cycle of length 2 is equivalent to a pair of lines with an
unavoidable crossing; hence, such a cycle cannot exist.

Now, suppose there is a cycle C = (£, €5, €3) of length 3. Lines #; and ¢, share a common
subpath and split on one side in the order (£, £;). The splitting for realizing the edge (£,, ¢3)
can not be realized on this subpath; otherwise, we would also get the edge (¢, £3). Similarly,
the splitting for (£3, €;) also can not be realized on the subpath. Hence, we have to distribute
the two splittings to the two sides of the subpath, which is not possible without introducing an
unavoidable crossing with ¢; or ;5 see Figure 4.10.

Finally, if the shortest cycle C has length at least four, then there exists a path (&, &5, 3, €4)
of length four without chords. As there is no edge between ¢, and ¢3, ¢; and ¢; have to be an
overlapping pair and ¢, is a separator for them. On the other hand, ¢, is also a separator for ¢
and ¢, but separates them in another relative order. It is easy to see that there is an unavoidable
crossing of ¢, and ¢4, a contradiction; see Figure 4.9. Hence, the relation graphs are acyclic.

Now, in a relation graph G, for any pair of lines ¢, ¢, € L., there is either a directed edge
connecting the lines in G,, or the lines are overlapping; in the latter case, there has to exist
a separator for ¢; and ¢, and, hence, a directed path of length 2 connecting ¢, and ¢, in G,.
Since G, is acyclic, there exists a topological ordering of the lines L. Due to the existence of
separators—and, hence, connecting paths for overlapping lines—the topological ordering is
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(a) & and ¢, split on both sides. (b) £ and ¢, split only on one side.

Figure 4.10: Situations occurring in the proof of Theorem 4.2 for lines ¢;, £5, and ¢5 that have a
common edge e.

unique. We obtain a crossing-free solution by using the ordering for every edge. As the relative
order of any pair of lines is the same for all edges, there cannot be a crossing. O

The proof yields an algorithm for finding a crossing-free solution if there is no unavoidable
crossing. It needs O(|L|*|E|) time for deleting subpaths as well as iteratively merging the shortest
unseparated overlapping pair. Finally, we can get the relative order of each pair of lines on all
edges in O(]£|*|E|) time and we can order the lines on all edges. Hence, after reinserting the
deleted or merged lines, we obtain a crossing-free solution in O(|£|*|E|) time.

4.3 Metro-Line Crossing Minimization with Periphery
Condition

We now turn to the problem variant MLCM-P, that is, the version of MLCM in which line ends
must be outermost at their ports. As mentioned in the previous section, MLCM-P has been
shown to be NP-hard by Argyriou et al. [ABKS10]. Similar to what we did for MLCM, we will
show that checking whether there is a crossing-free solution can be achieved in polynomial
time also for MLCM-P. We will also show that the problem variant is fixed-parameter tractable
and develop an approximation algorithm. Our results are based on a 2SAT model that we will
develop first.

4.3.1 A 2SAT model for MLCM-P

Let (G = (V,E), L) be an instance of MLCM-P. Our goal is to decide, for each line end, on
which side of its terminal port the line end should be placed. For convenience, we arbitrarily
choose one side of each port and call it “top”, the opposite side is called “bottom” For each line ¢
starting at vertex u and ending at vertex v, we create binary variables £, and ¢,, which are true
if and only if £ terminates at the top side of the respective port. We formulate the problem of
finding a truth assignment that leads to a crossing-free solution as a 2SAT instance for the given
instance of MLCM-P. Note that Asquith et al. [AGMO08] already used 2SAT clauses as a tool for
developing their ILP for MLCM,; the variables in the clauses represent above/below relations
between line ends. In contrast, in our model a variable directly represents the position of a
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(a) The lines cross. (b) Crossing eliminated by rerouting.

Figure 4.11: Avoiding a crossing of lines with a common terminal by rerouting.

line on the top or bottom side of a port. This allows us to derive further results using the 2SAT
formulation.

As a preparation, we show that lines sharing a terminal never have to cross. As a consequence,
we later will not have to care about pairs of such lines.

Lemma 4.2. Let €, ¢ be a pair of lines sharing a terminal v. We can transform any solution in
which € and €' cross into a solution with fewer crossings in which € and €' do not cross.

Proof. Assume that £ and ¢’ cross in a solution. We switch the positions of the line ends at the
common terminal v between € and ¢’ and reroute the two lines between the crossing’s position
and v. By reusing the route of £ for ¢’ and vice versa, the number of crossings does not increase;
see Figure 4.11. On the other hand, the crossing between € and ¢’ is eliminated. O

Let £, £’ be two lines whose common subpath P starts at vertex « and ends at vertex v. Observe
that terminals of £ and ¢’ that lie on P can only be at u or v. If neither € nor ¢’ has a terminal on
P then a crossing of the lines does not depend on the positions of the terminals; it only depends
on how the lines split at  and v. Hence, we assume that there is at least one terminal at u or v.
We model a possible crossing between ¢ and ¢’ by a 2SAT formula, the crossing formula of €
and ¢, consisting of at most two clauses. The crossing formula evaluates to true if and only if £
and ¢’ do not cross. For simplicity, we assume that the top sides of the terminal ports of u and v
are located on the same side of P. If this is not the case, the variable £, must be substituted by
its inverse —£,, in the formula. We consider four cases; see Figure 4.12 for illustrations.

(f1) Suppose that u and v are terminals for £ and intermediate stations for ¢, that is, £ is a
subpath of ¢'; see Figure 4.12. Then, € does not cross £ if and only if both terminals of £
lie on the same side of P. This is expressed by the crossing formula

(Lunt) v (=, An=L,)= (=€, vEe)A(L,V-E).

Note that only variables for line £ occur in this formula. The same formula may occur
multiple times, caused by a different line £'.

(f2) Suppose that u is a terminal for € and an intermediate station for ', and v is a terminal
for ¢ and an intermediate station for ¢; see Figure 4.12. Then there is no crossing if and
only if both terminals lie on opposite sides of P. This is expressed by the crossing formula

(Eu A —f:) \4 (—|€u A €1',) = (fu \ €1',) A (—|€u \ —\81,/)
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Figure 4.12: The four cases for crossing formulas.

(f3) Suppose that both € and ¢’ terminate at the same vertex, say at v; see Figure 4.12. By
Lemma 4.2, a solution of MLCM-P with a crossing of £ and ¢’ can be transformed into a
solution with fewer crossings in which ¢ and ¢’ do not cross. Hence, we do not need to
introduce a crossing formula in this case. Instead, we can find a line layout in which the
lines possibly cross and, afterwards, improve the line layout by removing the crossing of £
and .

(f4) In the remaining case, there is only one terminal of £ and ¢’ on P. Without loss of
generality, let € terminate at u; see Figure 4.12. The lines have to cross if and only if the
line end of ¢ at u is placed on the wrong side of the line £. Hence, a crossing is triggered
by a single variable. Depending on the fixed terminals or leaving edges at v and u, the
crossing formula consists of the single clause

(€,) or (=&,).

Note that, like in case (f1), the same clause can occur multiple times, caused by different
lines ¢'.

4.3.2 Crossing-Free Solutions

The first thing we can do with the help of the 2SAT formulation is checking whether there exists
a crossing-free solution of an MLCM-P instance. We can do this using the following algorithm.
First, we check for unavoidable crossings by analyzing every pair of lines individually. Second,
the 2SAT model is satisfiable if and only if there is a solution of the MLCM-P instance without
avoidable crossing. Note that assigning sides to the line ends at the ports using a satisfying truth
assignment of the 2SAT model could still result in crossings since we did not introduce crossing
formulas in case (f3); such crossings can, however, easily be remove with the help of Lemma 4.2.
Since 2SAT can be solved in linear time [EIS76], there are at most |£|* crossing formulas, and
we can compute the 2SAT formulation in O(|E||£|*) time by checking all pairs of lines on any
edge, we conclude as follows.
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J

]
Figure 4.13: An instance of MLCM-P that does not have a crossing-free solution. There is,
however, no small substructure of lines that gives a contradiction to the assumed existence of a

crossing-free solution. Any proper subset of the lines allows a crossing-free solution. Note that
the example can easily be extended to an arbitrary number of lines.

Theorem 4.3. Let (G = (V,E), L) be an instance of MLCM-P. Deciding whether there exists a
crossing-free solution for (G, L) can be accomplished in O(|E||L]*) time.

Recall that for MLCM the existence of a crossing-free solution is equivalent to the absence of
unavoidable crossings; see Theorem 4.2. In contrast, instances of MLCM-P without unavoidable
crossings do not always allow crossing-free solutions. Moreover, for any k, there is an instance
with k lines such that any subset of k—1lines admits a crossing-free solution, while the instance of
all k lines requires at least one crossing; see Figure 4.13 for an example. Hence, there is no simple
criterion for the existence of crossing-free solutions based on small forbidden substructures.
Nevertheless, we can efficiently check whether a solution without avoidable crossings exists by
using the 2SAT model.

For the special case that G is a path, Okamoto et al. [OTU13a] presented an algorithm that
decides in linear time whether a crossing-free solution of MLCM-P exists.

4.3.3 Fixed-Parameter Tractability

We have seen that we can check whether an instance of MLCM-P allows a solution without
crossings in polynomial time. Now, we will see that we can also check whether a solution with
at most k crossings exists—if k is a constant—in polynomial time. More precisely, we will
even show that MLCM-P is fixed-parameter tractable with respect to the number k of allowed
crossings. We will use the 2SAT model for obtaining a fixed-parameter tractable algorithm.
Recall that we must show that we can check in O(f (k) -poly(I)) time whether there is a solution
with at most k avoidable crossings, where f must be a computable function and I is the input
size.

We want to relate crossings in a solution to unsatisfied clauses in the 2SAT formulation.
In case (f4) this is easily possible because the crossing formula consists of just one clause. In
cases (f1) and (f2), however, the crossing formulas consist of two clauses. By analyzing the
truth assignments it is easy to see that for any truth assignment at least one of the two clauses is
satisfied. Hence, we get the following observation.

Observation 4.2. Let € and €' be two lines whose possible crossing is described by a crossing
formula of type (f1), (f2), or (f4). For any truth assignment, the crossing formula contains exactly
one unsatisfied clause if € and €' cross in the corresponding line layout; if the lines do not cross,
then all clauses of the crossing formula are satisfied.
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Hence, minimizing the number of crossings is the equivalent to maximizing the number
of satisfied clauses in the corresponding 2SAT instance. Maximizing the number of satisfied
clauses, or solving the MAX-2SAT problem, is NP-hard [G]79].

However, the problem of deciding whether it is possible to remove a given number k of m
2SAT clauses so that the formula becomes satisfiable is fixed-parameter tractable with respect to
the parameter k [RO09]. This yields the following result.

Theorem 4.4. MLCM-P is fixed-parameter tractable with respect to the number k describing the

maximum number of avoidable crossings that a feasible solution may contain, with a runtime of
015" - k- |L]° + | |E])

Proof. We show that the 2SAT formula for the instance (G = (V, E), £) of MLCM-P can be
made satisfiable by removing at most k clauses if and only if there is a line layout with at most k
avoidable crossings.

First, suppose that it is possible to remove at most k clauses from the 2SAT model so that there
is a truth assignment satisfying all remaining clauses. Fix such a truth assignment and consider
the corresponding assignment of sides to the terminals. By Observation 4.2, any crossing leads
to an unsatisfied clause in the 2SAT formula, and no two crossings share an unsatisfied clause.
Furthermore, only the removed clauses can be unsatisfied. Hence, we have a side assignment
that causes at most k avoidable crossings.

Now, we assume that there is an assignment of sides for all terminals that causes at most k
crossings. By Observation 4.2, there are at most k unsatisfied clauses since any crossing just leads
to a single unsatisfied clause. The removal of these clauses creates a new, satisfiable, formula.

Hence, the MLCM-P instance has a solution with at most k avoidable crossings if and only if
the 2SAT formula can be made satisfiable by removing at most k clauses. By using the O (15%km?)-
time algorithm for 2SAT of Razgon and O’Sullivan [RO09]—where m is the number of clauses—,
we obtain a fixed-parameter algorithm for MLCM-P whose runtime is O (15*k|£|°+||*|E]). [

Note that the result of Theorem 4.4 does also hold if k is the number of crossings, also counting
the unavoidable crossings. We just have to determine the number k’ of unavoidable crossings by
comparing all pairs of lines; then, we can apply Theorem 4.4 with the number k — k' of allowed
avoidable crossings.

4.3.4 Approximating MLCM-P

Using insights into the 2SAT formulation that we developed in the previous sections, we can
now derive an approximation algorithm for MLCM-P. The proof of Theorem 4.4 yields that the
number of avoidable crossings in a crossing-minimal solution of MLCM-P equals the minimum
number of clauses that we need to remove from the 2SAT formula in order to make it satisfiable.
Furthermore, a set of k clauses, whose removal makes the 2SAT formula satisfiable, corresponds
to an MLCM-P solution with at most k avoidable crossings. Note that we do not need to consider
unavoidable crossings since they occur both in optimum and approximative solutions. Hence,
an approximation algorithm for the problem of making a 2SAT formula satisfiable by removing
the minimum number of clauses (also called Min 2CNF DELETION) yields an approximation
for MLCM-P of the same quality. As there is an O(y/logm)-approximation algorithm for
MiN 2CNF pELETION [ACMMO5], we obtain the following result.
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(a) An instance (G, £) of PROPER-MLCM-P. (b) Graph Gy;, for the instance (G, £).
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Figure 4.14: A small instance of PROPER-MLCM-P. The generated 2SAT formulas are: (£7,)
for the crossing of £' and € (~£;, ) for the crossing of €> and €% (€5, v €, ) A (€5, v -£;.) for

the crossing of €2 and €% (€2 v ;) A (=€}, v =£; ) for the crossing of ¢ and £°.
Theorem 4.5. There is an O(y/log|L|)-approximation algorithm for MLCM-P.

4.4 The Problem Proper-MLCM-P

In this section, we consider the problem PROPER-MLCM-P; in this variant of MLCM-P no
line in £ is a subpath of another line. First, we focus on graphs whose underlying network is a
caterpillar. There, the top and bottom sides of ports are given naturally; see Figure 4.14a.

Based on the 2SAT model described in the previous section, we construct a graph Gy, =
(Vip, Ep ), which has a vertex ¢, for each variable of the model (and, hence, for each line end)
and two additional vertices t and b, representing the top and bottom side of a port (or true
and false), respectively. Since no line is a subpath of another line, our 2SAT model has only
the two types of crossing formulas (f2) and (f4); compare Section 4.3.1. For case (£2), that is, the
crossing formula (€, v €,) A (=€, v =¢,), we create an edge (£, £,) in G;. The edge models a
possible crossing between lines € and ¢'; that is, the lines cross if and only if £ terminates on
top (bottom) of u and ¢’ terminates on top (bottom) of v. For a crossing formula of type (¢,)
(case (f4)), we add an edge (b, £,,) to Gyp; similarly, we add an edge (t, £,,) for a formula (-¢,,).
The edges (b, ¢,) and (¢, £,) model that there is a crossing if the line end of € at u is on the
bottom or on the top, respectively; see Figure 4.14b for an example.

Any truth assignment to the variables is equivalent to a b-t cut in Gy, that is, a cut separating
b and t. More precisely, the b-side of the partition corresponds to the false variables and
the ¢-side of the partition corresponds to the true variables. Any edge in the graph models
the fact that two variables should not be assigned to the same side as the corresponding line
ends would cause a crossing otherwise. Hence, any line crossing corresponds to an uncut edge.
Therefore, for finding a line layout with the minimum number of crossings, we need to solve the
well-known MIN-UNCUT problem on G, which is defined as follows.

Problem 4.3 (MIN-UNCUT). Given a graph G = (V, E), partition the set V of vertices into
two sets Sy, Sy so that the number of uncut edges (v, u) (with either v,u € S; or v,u € Sp) is
minimized.

As an additional constraint, we want that t € S; and b € S;,. In general, the problem
MIN-UNCUT is NP-hard [G]79] because optimum solutions of MIN-UNCUT are also opti-
mum solutions of the NP-hard maximum cut problem. However, it turns out that the graph Gy,
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has a special structure, which we call almost bipartite; this structure will allow us to solve
MIN-UNCUT efficiently on Gy.

Definition 4.1 (Almost bipartite graphs). A graph G = (V, E) is called almost bipartite if it
is the union of a bipartite graph H = (Vy, Eg) and two additional vertices b, t whose edges
may be incident to vertices of both sides of the partition of H; that is, V = Vy u {b} u {¢} and
E = Ey U E’, where

E c{(bv)|veViu{(tv)|veV)

For the graph G, the bipartition is given by the fact that “left” (similarly, “right”) terminals
of two lines can never be connected by an edge in Gy, since crossing formulas of type (£2) always
involve a left and a right terminal. More formally, let L; be the set of variables for terminals
at the leftmost end of a line and let L, be the set of of variables for terminals on the rightmost
end of a line. Then V;;, = L;UL,U{b, t} and the subgraph induced by L;UL, is bipartite with
respect to the sets L; and L,. We now show that MIN-UNCUT can be solved optimally for
almost bipartite graphs in polynomial time.

Almost bipartite graphs are a subclass of weakly bipartite graphs, see the work of Bara-
hona [Bar83]. Weakly bipartite graphs have no simple combinatorial characterization. It is
known that MAX-CUT and MIN-UNCUT can be solved in polynomial time on weakly bipartite
graphs using the ellipsoid method [GP81]. However, the algorithm might be not fast in practice.
As mentioned by Grétschel and Pulleyblank [GP81], “it remains a challenging problem to find
a practically efficient method for the max-cut problem in weakly bipartite graphs which is of
a combinatorial nature and does not suffer from the drawbacks of the ellipsoid method”. In
the following we present such an algorithm for the special case of almost bipartite graphs. Our
algorithm is based on a maximum flow computation in a modified graph.

Theorem 4.6. MIN-UNCUT can be solved in O(n*) time on almost bipartite graphs of n vertices.

Proof. LetG = (V, E) be an almost bipartite graph consisting of a bipartite graph H = (Vy, Ey),
two additional vertices b and ¢, and a set E’ of edges connecting some vertices of H to b and
t as in Definition 4.1. The special vertices b and t have to belong to different vertex sets S,
and S; of G. We create a new graph G = (V, E) from G as follows. First, we split vertex b into
new vertices b; and b, and we split vertex t into new vertices f; and ¢, such that b, and ¢, are
connected to the vertices of the first side H; of the partition of H, and b, and t, are connected
to the second side H, of the partition of H. Formally, for each edge (b,v) € E with v € H;, we
create an edge (b, v) € E; for each edge (b, v) € E with v € H,, we create an edge (v, b,) € E.
Similarly, edges (v, ;) € E” are created for all (¢,v) € E with v € H}, and edges (t,,v) € E" are
created for all (¢,v) € E with v € H,. The construction is illustrated in Figure 4.15b.

Now, for each edge (u,v) € E, we assign capacity 1, and compute a maximum flow between
the pair of sources by, t, and the pair of sinks b5, t;. After introducing a supersource (connected
to by and t,) and a supersink (connected to b, and #,), this can be done in O(n*) time by using
the maximum flow algorithm of Edmonds and Karp. Note that we find an integral maximum
flow in G because all capacities are integers.
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(c) A minimum cut in G computed using a maxi-  (d) A cut with the minimum number of uncut edges
mum flow. The edges crossing the cut are bold (bold red) based on the minimum cut in G.
red.

Figure 4.15: Solving MIN-UNCUT on an almost bipartite graph. The maximum flow (minimum
cut) with value 3 results in vertex partitions V}} = {b1,4,5,6}, V! = {,,1,2,3}, V}? = {b,}, and

2 = {t,}. The optimal partition S, = {b,4,5,6},S, = {t,1,2,3} induces three uncut edges
(b,6), (b,6),and (t,2).
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A maximum flow corresponds to a maximum set of edge-disjoint paths starting at b, or ¢,
and ending at b, or ;. Such a path corresponds to one of the following structures in the original
graph G since b; and b, correspond to b and ¢, and ¢, correspond to t:

(i) an odd cycle containing vertex b (that is, a cycle with an odd number of edges),
(ii) an odd cycle containing vertex f, or
(iii) an even path between vertices b and ¢ (that is, a path with an even number of edges).

Note that, if a graph has an odd cycle, then at least one of the edges of the cycle is uncut in any
solution of MIN-UNCUT. The same holds for an even path connecting b and t in G because b
and f have to belong to different sides of the partition. Since the maximum flow corresponds to
the edge-disjoint odd cycles and even paths in G, the value of the flow is a lower bound for a
solution of MIN-UNCUT.

We now want to prove that the value of the maximum flow in G is also an upper bound by
showing how to construct a partition of V into S, and S; with b € S, and ¢ € S; such that the
number of uncut edges is equal to the value of the maximum flow. By Menger’s theorem, the
value of the maximum flow in G is the cardinality of the minimum edge cut separating sources
and sinks. Let E* be the minimum edge cut and let G, and G, be the corresponding disconnected
subgraphs of G, where b; € Gy and b, € G,; see Figure 4.15¢c. The graph G; is bipartite since
H n G; is bipartite; vertex b; is only connected to vertices of H; and vertex t, is only connected
to vertices of H,. Therefore, there is a 2-partition of vertices of G; such that b; and ¢, belong
to different sides of the partition; let us denote the sides by V; and V}'. Similarly, there is a
2-partition of G, into V;? and V> with b, € V? and #; € V2. We combine these partitions so that
Sp={b}u (Vi uVZ)\ {by, by, ti, 1.} and Sy = {t} U (VU V) N {b1, by, t1, 12} The sets S,
and S; form the required partition of V for MIN-UNCUT; see Figure 4.15d. The set of uncut
edges is the transformation of E* back to the original graph G, which completes the proof. [

As a direct corollary, we get a polynomial-time algorithm for PROPER-MLCM-P on cater-
pillars: We first build the 2SAT model and then, by analyzing the crossing formulas, we build
the graph G;,. By applying Theorem 4.6 to Gy, we find a partition into S, and S; for the line
ends. By assigning line ends in S, to the bottom side and line ends in S; to the top side of
the respective port, we get a solution for PROPER-MLCM-P, which—after removing potential
crossings of type (£3) with the help of Lemma 4.2—is crossing-minimal.

We can, actually, also use the same method for a larger set of instances. The only special
property of caterpillars that we used was that there is a meaning of left and right line ends and
of the top and bottom side of ports that is consistent over all pairs of lines. We now relate this
property to the directions of lines.

Definition 4.2. Let G = (V, E) be a graph and let £ be a set of lines on G. We say that the lines
allow consistent line directions on G if each line can be directed so that for each edge e € E all
lines ¢ € L, on this edge have the same direction.

If the underlying graph is a path then we can consistently direct the lines from left to right.
Similarly, consistent line directions exist for left-to-right trees, which have been considered by
Bekose et al. [BKPS08] and by Argyriou et al. [ABKS10] for metro-line crossing minimization;
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N

Figure 4.16: An example that does not allow consistent line directions.

they are also called upward trees; see also Section 5.4.2. Upward trees are trees for which there
is an embedding with all lines being monotone in some direction. Note that not all trees
allow consistent line directions; see Figure 4.16. Furthermore, there are also instances whose
underlying graph is not a tree that still allow consistent line directions. This is the case, for
example, if the graph is a simple cycle.

Given a graph G = (V, E) with a set £ of lines, it is easy to test whether there are consistent
line directions—and finding such directions if they exist. This can be done by simply giving an
arbitrary direction to some first line, and then applying the same direction on all lines sharing
edges with the first line until all lines have directions or an inconsistency is found.

Given an instance with consistent line directions, we naturally get a left and a right terminal
for any line; any line starts at its left terminal and ends at its right terminal. Similarly, the top and
bottom side of a port refer to the side if we direct the respective edge so that the lines go from
left to right. Using this idea, we can now show that we can solve PROPER-MLCM-P optimally
on any instance that allows consistent line directions.

Theorem 4.7. Let G = (V, E) be an embedded graph with a set L of lines. If the instance (G, L)
admits consistent line directions, then PROPER-MLCM-P can be solved in O(|L|*(|L]+|E|)) time.

Proof. Given consistent line directions, we assign top and bottom sides of each port as follows.
Consider a port of u € V corresponding to an edge (u,v) € E. Let 7, be the order of the lines at
the port, with 7, = (€1...€,...€,...€y,|) (p < q), where u is a terminal for thelines ¢y, ..., ¢,

and for the lines Cgsenns elel and u is an intermediate station for the lines Cpits..or g1 We
say that the lines £y, ..., £, terminate at the top side of the port if the lines L,,, are directed from
u to v; otherwise, £y, ..., €, terminate at the bottom side of the port. Analogously, £,,..., €,

terminate at the bottom side of the port if the lines are directed from u to v and at the top side
otherwise.

Now, we consider a pair of lines £ and ¢’ that have a common subpath P starting at vertex u
and ending at vertex v. It is easy to see that the top sides of the terminal ports of # and v are
located on the same side of P. Hence, in our 2SAT model, we have only crossing formulas
of the type (¢, v £.) A (=€, v =£]) with variables ¢, and ¢/ and no other combinations of
literals—apart from clauses consisting of a single literal. Therefore, the graph G, contains an
edge (¢,, £}) for the pair of lines.
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Now, we can show that Gy, is almost bipartite. To this end, we prove that there is no odd
cycle containing only vertices £, with u € V, € € £ and neither b nor t. Suppose there is such a
cycle C. Let £}, and £2 be two neighboring vertices of C; we know that the common subpath P of
¢" and ¢ starts at vertex u and ends at vertex v in G. We may assume, without loss of generality,
that the lines are directed from u to v. Consider the port at u corresponding to the first edge
(u,u;) of P. The direction of the lines is aligned with the port; that is, due to the consistent line
directions, the lines are directed from u to u;. We then also say that the line end of ¢! at u is
its left end. Now, consider the port at v corresponding to the last edge (v,v;) of P. Here, the
direction of the lines is opposite to the port; that is, the lines are directed from v; to v. The line
end of £% at v is its right end. It is easy to see that, for the next line end described by the vertex
¢}, in the cycle C, the direction of the lines is again aligned with the corresponding port of w,
and the line end is a left end. Moreover, for every line £2*! the corresponding port is aligned
with the direction of lines, and for every €2 the direction of lines is opposite to the port. Hence,
there cannot exist an odd cycle C.

Now we have seen that Gy, is almost bipartite. Therefore, we can apply Theorem 4.6 for solving
MIN-UNCUT on Gy, The cut then gives rise to an optimum solution of PROPER-MLCM-P for
the instance (G, £).

Recall that building the 2SAT clauses needed O(|£|*|E|) time. Within the same time, we can
build the graph Gy,. Since Gy, has O(|L£|) vertices, we then find optimum side assignments in
O(|£[) time by Theorem 4.6. Hence, the total runtime is O(|£|*(|£| + |E|)). O

4.5 MLCM with Bounded Maximum Degree and Edge
Multiplicity

We now introduce two additional restrictions for metro-line crossing minimization. First, we
consider instances in which the maximum degree A of a station is bounded by some constant.
Second, we assume that on any edge e, there is at most a constant number c¢ of lines, that is,
|Le| < ¢; we say that ¢ is the maximum edge multiplicity. For metro maps both restrictions are
realistic: In the popular octilinear drawing style, the maximum possible degree is 8. Furthermore,
even in huge metro networks, edges that are served by more than 10 lines are unlikely to occur,
as Nollenburg [N6109] pointed out.

We now show that the restricted problem variant of both MLCM and MLCM-P can be solved
in polynomial time if the underlying network is a tree. We first focus on MLCM; we will then
see that the results can easily be extended to MLCM-P.

We develop a dynamic program that solves MLCM on instances whose underlying network is
a tree. First, we root the tree T' = (V, E) at some arbitrary leaf r. Let v € V' \ {r}, and let u be the
parent node of v. We say that a line contributes to the subtree T[v] if at least one of its terminals
is a vertex of T[v]; the line leaves the subtree if one of its terminals is in T[v] and the other one
is outside. Any line that leaves the subtree T[v] passes through the edge e = (1, v). If we fix the
order 7, of L, at the port of v corresponding to the edge e, an optimum solution for T[v] is
independent of an optimum solution for the remaining graph; in other words, we can combine
any optimum solution for T[v] resulting in the order 7, with any optimum solution for the
remaining graph resulting in the same order 7,,,. Let cr[v, 7,, ] be the number of crossings in
an optimum solution for T[v] that results in the order 7,, at node v on the edge (u,v). If there
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231 U Us

(a) Subtree T[v]; the remaining instance, which (b) Remaining instance of constant size for the sub-
is bounded by the orders 7y, 7u;v> Ty, and tree; permutations are replaced by edges leaving
Tlusv 18 drawn bold. in the right order.

Figure 4.17: Computation of cr[v, m,, ] for a subtree T[v] in the dynamic program.

is no feasible solution, that is, if any solution for 7,, has avoidable vertex crossings, then we let
cr[v, my, ] = .

If v is aleaf, then, for any order 7,,, cr[v, m,, | = 0. Now, suppose that v has children uy, . . . , uy,
with k < A. For computing the value cr[v, ,, ], we test all combinations of permutations 7,,,
for u; with i =1,.. ., k; see Figure 4.17a. Given such permutations, we can combine optimum
solutions for the subtrees T[u], ..., T[uy] resulting in orders 7,,,, .. ., 71,,, with an optimum
solution for the remaining instance, which consists of the edges (u,v),..., (1, v) and is
described by the orders m,,,,...,m,,, and m,,; see the bold region in Figure 4.17a and the
transformed instance shown in Figure 4.17b. Let f(v, 7tyy, 7y,y» -« - - » Ty, ) be the number of
crossings in an optimum solution of this remaining instance; note that this value can be computed
in constant time because the remaining instance has only constant size. Then,

k
cr[v,my,] = min (f(v, Tous Mugys -+« > Ty ) + Zcr[ui,nulv]).
i1

Note that f(v, yy, Tyys - - - » Ty, ) = 0o if the permutations lead to an infeasible solution with
avoidable vertex crossings. The table cr[, -] has at most - ¢! = O(n) entries, each of which can
be computed in constant time. Hence, we get the following theorem.

Theorem 4.8. MLCM can be solved optimally in O(n) time on tree instances of maximum degree
A and maximum edge multiplicity c if both A and c are constants.

We now want to analyze the running time for computing an entry cr[v, m,, ] more precisely.
First, there are at most (c!)*~! combinations for the orders 7,y . . . , 77, . Second, for computing
Sy o> Ty« + 5 Ty ), We can try all combinations for the orders on the edges around v. If
such a combination leads to a feasible solution, we can solve each edge—as a permutation of
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constant size—individually. The number of crossing on an edge (u;,v) is exactly the number of
pairs of lines whose order changes between the two ports of the edge. This number can easily be
computed in O(c?) time.

Overall, evaluating f(V, 7Ty, 7y,y - - - » Ty, ) is then possible in O((c!)* ™' Ac?) time. The total
time for finding an optimum solution is, hence, O(nc!-(c!)2-(c!)2Ac?) = O(n(c!)**'Ac?).
As the parameters ¢ and A are well-separated from 7, we can conclude as follows.

Theorem 4.9. MLCM is fixed-parameter tractable on tree instances with respect to the parameter
¢+ A, where A is the maximum degree and c is the maximum edge multiplicity. The problem can
be solved in O(n(c!)*A 1 Ac?) time.

It is now easy to see that the algorithm can be adapted to MLCM-P. The only necessary
change is to enforce the periphery condition for all orders on ports. To this end we just restrict
all permutations used in the table and in the computation of values to this property. Hence, we
get the following theorem.

Theorem 4.10. MLCM-P can be solved optimally in O(n) time on tree instances of maximum
degree A and maximum edge multiplicity c if both A and c are constants.

Checking whether the used permutations are allowed is easy and does not change the runtime.
Hence, we also get fixed-parameter tractability for MLCM-P with the same runtime as for
MLCM.

Theorem 4.11. MLCM-P is fixed-parameter tractable on tree instances with respect to the param-
eter ¢ + A, where A is the maximum degree and c is the maximum edge multiplicity. The problem
can be solved in O(n(c!)*271Ac?) time.

Improved Runtime. With a little more effort, we can improve the runtime for the fixed-
parameter algorithms for MLCM and MLCM-P. So far, the table cr contained, for the edge
(u,v) connecting vertex v to its parent u, an entry of the form cr[v, m,, ] that represent the
minimum number of crossings in a subtree for a fixed order on the port connecting the subtree
T[v] to the rest of the graph. Now, we additionally store an entry cr[u, 7, | where 71,,, is the order
of lines at the port of u on the edge (u, v). The value cr[u, 71, ] describes the minimum number
of crossings in a feasible solution for MLCM (or MLCM-P, respectively) in the subtree T[v]
and on the edge (u,v) connecting T[v] to u, given the order 7.

For computing an entry cr[u, ,, ], we try all possible (feasible) orders at the port of v on the
edge (u,v); the entry is determined by the feasible order 7,, that minimizes the sum of the
number of crossings on the edge (u, v) and the crossings cr[v, ,, ] in the subtree T[v].

We also need to modify the computation of entries of the original type cr[v, 7, ]. Instead of
using other entries of the same type as we did before, we now use the new entries corresponding
to the other ports of v that point downwards into the subtrees. If these orders are fixed, the
remaining instance now consists only of the vertex v. We just have to distinguish whether the
orders lead to avoidable vertex crossings in v. More precisely, for k < A, let uy, ..., uy be the
children of v and let 7,y,, ..., m,,, be orders of the lines on edges (u;,v), ..., (4, v) at the
respective ports of v; see Figure 4.18. Then,

k
ct[v,m,,] = min (f'(v, Tou> Tvuys -« > Pruy ) + Z crlv, ﬂvui])
in1
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Figure 4.18: Computation of cr[v, 7, ]. The recursion is done using values cr[v, 7,,, | with
i=1,...,k, which describe optimum solutions for subtrees including the edges (u,v) connect-
ing the subtrees to v.

The numbers of crossings on the edges incident to v are already counted by the entries cr[v, 7, |,
...» CI[V, Ty, |. Hence, with f” we just have to check whether the orders of lines around v are

feasible; that is, ' (v, Tyu> Tyuys - - - » Py, ) = 0 if the orders m,, and 7., . . ., pyu, do not lead to
avoidable vertex crossings. For MLCM-P, the individual orders must additionally satisfy the
periphery condition. Otherwise, let f' (v, Tyy> Tyuys - -« > Py, ) = 00.

In the improved version, the only thing we have to do when evaluating f” is checking all pairs
of lines with a common edge for possible vertex crossings, which we can do in O(Ac?) time.
As there are at most O((c!)*™") combinations for the orders ,,,, ..., 7,,,, we can compute
any entry of the table cr in O((c!)2™'Ac?) time. As there are still only O(nc!) such entries, the
total runtime of the improved dynamic program is O(n(c!)*Ac?).

Theorem 4.12. MLCM and MLCM-P are fixed-parameter tractable on tree instances with respect
to the parameter c + A, where A is the maximum degree and c is the maximum edge multiplicity.
The problem can be solved in O(n(c!)*Ac?) time.

Note that for the special case of paths, the maximum degree is A = 2 and, hence, constant.
We get a fixed-parameter algorithm with respect to the only parameter c. The algorithm runs
in O(n(c!)?*c?) time. Since only MLCM-P is NP-hard on paths, while MLCM is trivial, this
makes only sense for MLCM-P. However, for the special case of MLCM-P on paths, Okamoto
et al. [OTU13a] presented a specialized fixed-parameter algorithm with a runtime of O(n2°c?).

4.6 Practical Considerations on Metro-Line Crossing
Minimization

Not all real-world transportation network meet the requirements implied by the models for
MLCM and MLCM-P that we used following previous work. For example, lines are not nec-
essarily simple paths as many metro maps have circular or tree-like lines. Thus, the existing
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algorithms cannot be applied. Furthermore, both MLCM and MLCM-P are NP-hard even
for very simple underlying graphs. Therefore, we propose two approaches to overcome these
obstacles for practical purposes; the approaches also point to possible directions for future work.

Line Simplification and Insertion. In many metro networks, there are just few lines that
are no simple paths. We suggest first creating a simplified instance with the desired properties
by deleting few (parts of) lines. Then, after obtaining a solution for the simplified instance, the
deleted parts can be reinserted with as few crossings as possible. We will show that a single
line can be inserted into an existing line layout optimally with respect to the number of newly
introduced crossings. A number of extensions is possible in this direction. For example, how can
we find a good set of edges and lines whose removal results in a simplified instance? Furthermore,
an algorithm that inserts several lines optimally into a given solutions would also be helpful.

Optimal Insertion of a Line into an Existing Solution. We now explore a simple heuristic
for computing line orders. The heuristic works iteratively by inserting lines into an existing
order. Let £y,..., € .| be the input lines. The heuristic consists of |£]| iterations; in iteration i
line ¢; is inserted into the current line orders for lines ¢y, . .., €;_;. This can be done optimally,
that is, the number of crossings that we introduce in a single step is minimum with respect to
the previous line layout. Note that this does not mean that the heuristic is globally optimal since
accepting additional crossings in one iteration may save more crossings later.

Lemma 4.3. Let G = (V, E) be an embedded graph, let L be a set of lines on G, and let 7, be
a fixed order of the lines for each (u,v) € E. There is an O(k|L|*)-time algorithm for inserting
a line € ¢ L with k vertices into the existing line layout so that the number of newly introduced
crossings is minimized.

Proof. Let £ = (v1,v,,...,vg) withv; € Vfori =1,...,k. We need to find positions in the
permutations 7y, y,» Ty, ;> My, ;5 - - - » Ty, fOF line € such that the resulting line layout is both
feasible and crossings-minimal. To this end, we create a directed graph H = (U, E’). The
vertices of H contain all possible positions for £ in the permutations of ports; we will add an
edge between two positions if the respective ports lie on the same edge or at the same vertex.
The idea is to rely the problem of finding positions for ¢ to finding a shortest path in H; see
Figure 4.19 for a sketch.

More precisely, we first create two special vertices s, t € U. Additionally, we create vertices
as follows. Consider an edge (v;,v;.1) that is traversed by line £. The current order of lines on
the ports of v; and v;4; corresponding to (v;,v;,1) contains the lines L,,,,,,. Let h = |L,,,,,,|.
Then both ports contain h + 1 possible positions for inserting line £. We number the positions
from 1 to h + 1 and create a vertex 7}, ,, ., € U for each position in the order 7,,,,,, at the port of
vertex v; and a vertex ﬂf/,-ﬂv,. e U for each position in the order m,,,,,, at the port of vertex v;,;,
with1< j < h+1. Let V;* be the set of vertices modeling positions in the order m,,,,,, and let
V1 be the set of vertices modeling positions in the order 7, ,, ,y,.

We now create edges as follows. First, for each vertex u € V;* we create an edge (s, u) € E’
and for each vertex u’ € V_ we create an edge (', t) € E’. The length of all these edges is 0.
Second, let u; € V;” and uj € V;". A possible edge between u; and u;" models the transition

1
of ¢ from position j at the port of (v;_,v;) at vertex v; to position j’ at the port of (v;, v;4;) at
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Figure 4.19: Insertion of a line £ = (v}, v, v3, v4) (blue) into an existing line layout. Vertices of
the graph H are shown as red boxes; the edges of H are indicated in gray.

vertex v;. Such a transition must not create unavoidable vertex crossings. Hence, we create the
edge (uj, uj) of length 0 if the transition does not result in an avoidable crossing. Finally, we
consider a pair of vertices w; € V;" and wj € V. We create an edge (w;, w; ) that models the
transition of £ from position j in the port of (v;, v;1;) at vertex v; to position j' at the port of
(vi,vis1) at vertex v;,;. Any such transition is feasible. The transition may, however, result in
(new) crossings. We set the length of the edge (w;, wj) to be the number of new crossings for
this transitions; it is easy to determine this number.

Now, any feasible line layout corresponds to an s-t path in H via the positions chosen for £
in the different orders; vice versa, any simple s-t path corresponds to a feasible line layout.
Furthermore, the number of crossings in a feasible solution is equal to the length of the cor-
responding s-t path. Hence, minimizing the number of additional crossings is equivalent to
finding a shortest s-¢ path. Since H is acyclic, this can be done in linear time with respect to the
graph H. There are O(k|L|) vertices and O(k|L|*) edges in H. Hence, we can find a shortest
path in O(k|L|*) time. O

The solution found by the previous algorithm is, of course, feasible for MLCM. For inserting
a line with the minimum number of additional crossings so that the solution is also feasible for
MLCM-P, a simple modification suffices: Instead of creating a vertex for any position in the
order of a port, we just create a vertex for any such position at which line £ may be inserted
without violating the periphery condition.

Fixed-Parameter Algorithms. Both MLCM and MLCM are NP-hard; we were, however,
able to construct fixed-parameter algorithms. In Section 4.3.1, we presented a fixed-parameter
algorithm for MLCM-P with respect to the maximum number of crossings. In the previous
Section, we presented fixed-parameter algorithms for MLCM and MLCM-P on tree instances
with respect to the maximum degree and edge multiplicity. Designing such an algorithm
for general graphs is an interesting open problem. Furthermore, it is unclear whether the
dependency on the degree is actually necessary. In contrast, even for very small constant
maximum degrees both variants certainly remain NP-hard if the edge multiplicity is unbounded:
the problems MLCM-P and MLCM are NP-hard even for paths and caterpillars of maximum
degree 6, respectively. Possibly faster fixed-parameter algorithms with respect to just the edge
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multiplicity are worth to be constructed. Another open question is whether also MLCM is
fixed-parameter tractable with respect to the number of crossings.

Crossing Distribution. So far, the focus has been on minimizing the number of crossings and
not on the visualization of crossings, although two line orders with the same crossing number
may look quite differently; see also the following chapter. Therefore, an important practical
problem is the visual representation of computed line crossings. In our opinion, crossings of lines
should preferably be close to the end of their common subpath as this makes it easier to recognize
that the lines do cross. It is not always possible to find an optimal solution in which every pair of
lines crosses at the end of their common subpath as Pupyrev et al. observed [PNBH12]. It would
be interesting to find a solution with a small number of crossings and a reasonable distribution
of crossings.

For making a metro line easy to follow the important criterion is the number of its bends.
Hence, an interesting question is how to sort metro lines using the minimum total number of
bends. Bereg et al. [BHNP13] studied this problem for the case of a single edge.

4.7 Concluding Remarks

In this chapter, we studied several variants of metro-line crossing minimization. As a main result,
we proved that the general problem version MLCM is NP-hard. For MLCM-P, we presented an
O(y/log|L]|)-approximation algorithm, as well as an exact O(|£|*(|£] + |E]))-time algorithm
for PROPER-MLCM-P on instances with consistent line directions. We also developed simple
polynomial-time algorithms for checking for the existence of crossing-free solutions for MLCM
and MLCM-P. For instances whose underlying graph is a tree, we developed fixed-parameter
algorithms for both MLCM and MLCM-P. The parameter of these algorithms is the combination
of the maximum degree and the maximum edge multiplicity.

Open Problems. From a theoretical point of view, there are still many interesting open
problems; the most important ones are the following.

1. Is there an approximation algorithm for MLCM?

2. Is there a constant-factor approximation algorithm for MLCM-P?

3. What is the complexity status of PROPER-MLCM/PROPER-MLCM-P in general, that is,
for instances without consistent line directions? Note that both in our hardness proof for
MLCM and in the hardness proof of Argyriou et al. [ABKS10] for MLCM-P, many lines
that are subpaths of other lines are used.

On the practical side, we have already discussed several problems; see Section 4.6. The most
important are the development of practically usable algorithms and algorithms that take also the
distribution of crossings into account. We will work on the latter problem in the next chapter.
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Chapter 5
Ordering Metro Lines by Block Crossings

In the previous chapter, we considered metro-line crossing minimization, that is, the problem
of ordering the metro lines a drawing of a metro network so that the total number of crossings
between metro lines is minimized. However, not all solutions with the same number of crossings
are visually equivalent. For improving the readability of metro maps, we suggest merging single
crossings into block crossings, that is, crossings of two neighboring groups of consecutive lines;
see Figure 5.1

Unfortunately, minimizing the total number of block crossings is NP-hard even for very simple
graphs, which follows from a result on sorting permutations by a certain type of operation. We
give approximation algorithms for special classes of graphs and an asymptotically worst-case
optimal algorithm for block crossings on general graphs. Furthermore, we show that the problem
remains NP-hard on planar graphs even if both the maximum degree and the number of lines
per edge are bounded by constants; on trees, this restricted version becomes tractable.

5.1 Introduction

As mentioned above, in metro-line crossing minimization the focus has, so far, been on the
number of crossings of lines and not on their visualization; two line orders with the same
crossing number may, however, look quite differently; see Figure 5.1.

Our aim is to improve the readability of metro maps by computing line orders that are
aesthetically more pleasing. To this end, we merge pairwise crossings into crossings of blocks of
lines minimizing the number of block crossings in the map. Informally, a block crossing is an
intersection of two neighboring groups of consecutive lines sharing the same edge; see Figure 5.1b.
We consider two variants of the problem. In the first variant, we want to find a line ordering

(a) 12 pairwise crossings. (b) 3 block crossings.

Figure 5.1: Optimal orderings of a metro network.
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with the minimum number of block crossings. In the second variant, we want to minimize both
pairwise and block crossings.

As mentioned before, metro-line crossing minimization also arises as a subproblem in edge
bundling. There, many edges of the graph can be drawn close together like metro lines. Hence,
in the corresponding metro-line crossing minimization instance, there can be edges with many
lines—significantly more than in real-world metro maps, where usually not more than ten lines
appear on a common edge. Hence, block crossings can also greatly improve the readability of
bundled graph drawings.

Problem Definition. The input for our problem is the same as for general metro-line
crossing minimization—compare Section 4.1—that is, we are given an embedded underlying
graph G = (V,E) andaset £ = {£),..., ¢} of linesin G.

For i < j < k, a block move (i, j, k) on the sequence 7 = [m,...,7,] of lines on e is the
exchange of two consecutive blocks 7;, ..., 7j and 7,1, ..., 7. Interpreting e = (u,v) directed
from u to v, we are interested in line orders 1°(e), ..., n'(¢)(e) on e, so that 7°(e) is the order
of lines L, at the beginning of e (that is, at the port of vertex u corresponding to the edge e),
'(¢)(¢) is the order at the end of e (that s, at the port of vertex v corresponding to e), and each
7' (e) is an ordering of L, so that 7*!(e) is derived from 7’ (e) by a block move. If t + 1 line
orders with these properties exist, we say that there are t block crossings on edge e.

Recall that, the order of the lines at a port of a vertex is always relative to this vertex. Hence,
seen as a permutation, the order 7'(¢) is actually the reversed order of the port of v corresponding
to e. Furthermore, we stress that the output, that is, the line orders, replace the old output, that
is, the order at the ports; the line orders implicitly contain the orders at the ports.

As in the previous chapter, we use the edge crossings model, that is, we do not hide crossings
under station symbols if possible. Recall that two lines sharing at least one common edge either
do not cross or cross each other on an edge but never in a vertex.

As for MLCM and MLCM-P, unavoidable vertex crossings are allowed and not counted as
they exist in any solution.

The block crossing minimization (BCM) problem is defined as follows.

Problem 5.1 (BCM). Let G = (V, E) be an embedded graph and let L be a set of lines on G. For
each edge e € E, find line orders n1°(e), ..., n'(?) (e) that yield a feasible solution of MLCM such
that the total number of block crossings, Y. i t(e), is minimum.

In this chapter, we restrict our attention to instances with two properties. First, as in the
previous chapter, we assume the path intersection property, that is, two lines share at most one
common subpath. Second, any line terminates at nodes of degree one and no two lines terminate
at the same node (path terminal property). Recall that normal metro-line crossing minimization
can be solved in linear time on such instances—as Pupyrev et al. [PNBHI2] showed—which are
also instances of MLCM-PA.

If both properties hold, a pair of lines either has to cross, that is, a crossing is unavoidable, or
it can be kept crossing-free, that is, a crossing is avoidable; see Figure 5.2. The orderings that are
optimal with respect to pairwise crossings are exactly the orderings that contain just unavoidable
crossings (Lemma 2 in the paper of Nollenburg [N6110]); that is, any pair of lines crosses at
most once, in an equivalent formulation. Intuitively, double crossings of lines can easily be
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Figure 5.2: Lines ¢; and ¢, have an unavoidable edge crossing on the edge (vs, v4). The un-
avoidable crossing of ¢; and ¢5 could also be placed on (v4, vs). An avoidable crossing of ¢, and
¢5 is forbidden in solutions with monotone block crossings.

eliminated by rerouting the two lines, thus decreasing the number of crossings. As this property
is also desirable for block crossings, we use it to define the monotone block crossing minimization
(MBCM) problem. Note that feasible solutions of MBCM must have the minimum number of
pairwise crossings; that is, they must be optimal solutions of MLCM.

Problem 5.2 (MBCM). Given an instance (G = (V,E), L) of BCM, find a feasible solution that
minimizes the number of block crossings subject to the constraint that any two lines cross at most
once.

We will see that there are instances for which BCM allows fewer crossings than MBCM does;
see Figure 5.3 in Section 5.2.

Our Contribution. We introduce the new problems BCM and MBCM. To the best of our
knowledge, ordering lines by block crossings is a new direction in graph drawing. So far BCM
has been investigated only for the case that the skeleton, that is, the graph without terminals, is a
single edge [BP98], while MBCM is a completely new problem.

We first analyze MBCM on a single edge (Section 5.2), exploiting, to some extent, the similar-
ities to sorting by transpositions [BP98]. Then, we use the notion of good pairs of lines, that is,
lines that should be neighbors, for developing an approximation algorithm for BCM on graphs
whose skeleton is a path (Section 5.3); we properly define good pairs so that changes between
adjacent edges are taken into account. Yet, good pairs can not always be kept close; we introduce
a good strategy for breaking pairs when needed.

Unfortunately, the approximation algorithm does not generalize to trees. We do, however,
develop a worst-case optimal algorithm for trees (Section 5.4). It needs 2|£| — 3 block crossings
and there are instances in which this number of block crossings is necessary in any solution. We
then use our algorithm for obtaining approximate solutions for MBCM on the special class of
upward trees.

As our main result, we present an algorithm for obtaining a solution for BCM on general
graphs (Section 5.5). We show that the solutions constructed by our algorithm contain only
monotone block moves and are, therefore, also feasible solutions for MBCM. We analyze the
upper bound on the number of block crossings that the algorithm yields. While the algorithm

75



Chapter 5: Ordering Metro Lines by Block Crossings

| graphclass | BCM MBCM
single edge 11/8-approx. [EHO6] 3-approx. Thm. 5.2
path 3-approx. Thm. 5.3 3-approx. Thm. 5.4
tree <2|L|-3cross. | Thm.55 | <2|£|-3cross. | Thm.5.5
upward tree 6-approx. Thm. 5.1 6-approx. Thm. 5.6
general graph | O(|L|\/|E|) cross. | Thm.5.7 | O(|L|\/|E|) cross. | Thm.5.7
bounded degree & edge multiplicity
tree FPT Thm. 5.9 FPT Thm. 5.9
planar graph NP-hard Thm. 5.11 NP-hard Thm. 5.10

Table 5.1: Overview of our results for BCM and MBCM.

itself is simple and easy to implement, proving the upper bound is non-trivial. Next, we show
that the bound is tight; we use a result from projective geometry for constructing worst-case
examples in which any feasible solution contains many block crossings. Hence, our algorithm is
asymptotically worst-case optimal.

Finally, we consider the restricted variant of the problems in which the maximum degree A as
well as the maximum edge multiplicity ¢ (the maximum number of lines per edge) are bounded
(Section 5.6). For the case where the underlying network is a tree, we show that both BCM and
MBCM are fixed-parameter tractable with respect to the combined parameter A + ¢. On the
other hand, we prove that both variants are NP-hard on general graphs even if both A and c are
constant. Table 5.1 summarizes our results.

RelatedWork. Apart from the relevant work for metro-line crossings minimization in general,
there are some works in the direction of block crossings.

In the context of VLSI layout, Marek-Sadowska and Sarrafzadeh [MS95] considered not only
minimizing the number of crossings, but also suggested distributing the crossings among circuit
regions in order to simplify net routing.

As we will later see, BCM on a single edge is equivalent to the problem of sorting a permutation
by block moves, which is well studied in computational biology for DNA sequences; it is known
as sorting by transpositions [BP98, CI01]. The task is to find the shortest sequence of block
moves transforming a given permutation into the identity permutation. BCM is, hence, a
generalization of sorting by transpositions from a single edge to graphs. The complexity of
sorting by transpositions was open for a long time; only recently it has been shown to be NP-
hard [BFR12]. The currently best known algorithm has an approximation ratio of 11/8 [EH06].
The proof of correctness of that algorithm is based on a computer analysis, which verifies more
than 80, 000 configurations.

To the best of our knowledge, no tight upper bound for the necessary number of steps in
sorting by transpositions is known. There are several variants of sorting by transpositions; see
the survey of Fertin et al. [FLR*09]. For instance, Vergara et al. [HV98] used correcting short
block moves to sort a permutation. In our terminology, these are monotone moves such that the
combined length of exchanged blocks does not exceed three. Hence, their problem is a restricted
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variant of MBCM on a single edge; its complexity is unknown. The general problem of sorting
by (unrestricted) monotone block moves has not been considered, not even on a single edge.

5.2 Block Crossings on a Single Edge

For getting a feeling for the problem, we restrict our attention to the simplest networks consist-
ing of a single edge with multiple lines passing through it, starting and ending in leaves; see
Figure 5.3a. Subsequently, we will be able to reuse some of the ideas for a single edge for longer
paths and even for trees.

On a single edge, BCM can be reformulated as follows. We choose a direction for the edge
e = (u,v), for example, from bottom (u) to top (v). Then, any line passing through e starts on
the bottom side in a leaf attached to u and ends at the top side in a leaf attached to v. Suppose
we have n lines ¢, ..., €,. The indices of the lines and the order of edges incident to u and v
yield a necessary order 7 (as a permutation of {1,. .., n}) of the lines on the bottom side of e,
that is, at u, and a necessary order 7 of the lines at the top side of e; compare Figure 5.3a.

Given these two permutations 7 and 7, the problem now is to find a shortest sequence of
block moves transforming 7 into 7. By relabeling the lines we can assume that 7 is the identity
permutation, and the goal is to sort 7. This problem is sorting by transpositions [BP98], which
is, hence a special case of BCM. Sorting by transpositions is known to be NP-hard as Bulteau et
al. [BFR12] showed. Hence, BCM, as a generalization, is also NP-hard.

Theorem 5.1. BCM is NP-hard even if the underlying network is a single edge with attached
terminals.

As sorting by transpositions is quite well investigated, we concentrate on the new problem of
sorting with monotone block moves; that means that the relative order of any pair of elements
changes at most once. The problems are not equivalent; see Figure 5.3 for an example where
dropping monotonicity reduces the number of block crossings in optimum solutions. Hence, we
do not know the complexity of MBCM on a single edge. The problem is probably NP-hard even
on a single edge, but even for BCM (that is, sorting by transpositions) the NP-hardness proof
is quite complicated. As we are mainly interested in more complex networks, we just give an
approximation algorithm for MBCM on a single edge. Later, we will see that on general planar
graphs, MBCM is indeed NP-hard even if there are few lines per edge (see Section 5.6.2).

For sorting by transpositions and, hence, for BCM on a single edge, there is an 11/8-approxima-
tion algorithm by Elias and Hartmann [EH06]. We will now present a simple 3-approximation
algorithm for MBCM on a single edge.

Terminology. We first introduce some terminology following previous work where possible.
Let 7 = [m, ..., 7, ] be a permutation of n elements. For convenience, we assume that there
are extra elements 77p = 0 and 7,41 = n + 1 at the beginning of the permutation and at the end,
respectively.
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3 2 5 4 1 3 2 5 4 1 3 2 5 4 1

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(a) Input instance with pairwise (b) Two block moves on the central (c) Three monotone block
crossings. edge. moves on the central edge.

Figure 5.3: Sorting Permutation [3, 2, 5, 4, 1] by block moves and by monotone block moves;
block moves are highlighted.

A block in 7 is a sequence of consecutive elements 7;, ..., 7; with 1 < i < j < n. A block move
(i, j, k) with1< i < j < k < n on 7 maps

T=[oo s sty iy s T Tjeds o o - Thes Mkl - - - ] 1O
[---aﬂi—l)ﬂj+lru-)nk’ni-”)nj:ﬂk+1>-'~])
that is, exchanges the blocks 7;, ..., mjand 7y, . .., 7y

A block move (i, j, k) is monotone if my > m, forall i < q < j < r < k, that is, if any element
in the first block 7;, ..., 7 is greater than any element of the second block 74, ..., . We
denote the minimum number of block moves needed to sort 7 by bc(7r) and the minimum
number of monotone block moves needed for sorting 7 by mbe(7).

An ordered pair (71, 7;41) (With 0 < i < n) is a good pair if ;11 = 7; + 1, and a breakpoint
otherwise. Intuitively, sorting 7 is a process of creating good pairs (or destroying breakpoints)
by block moves. The identity permutation [1,. .., n] is the only permutation with only good
pairs and no breakpoints.

A permutation is simple if it contains no good pairs. Any permutation can be uniquely
simplified without affecting its distance to the identity permutation [CI01]. This is done by
“glueing” good pairs together, that is, treating the two lines as one line and relabeling. Let gp(7)
and bp(7) denote the number of good pairs and of breakpoints in 7. As there are n + 1 pairs
(pi>miy1) with 0 < i < n and any such pair is either a good pair or a breakpoint, we have
gp(m) +bp(m) = n+1for any permutation 7. The number bp(7) = n+1-gp(n) of breakpoints
can, hence, be interpreted as the number of missing good pairs because the identity permutation
id = [1,...,n] we have bp(id) = 0 and gp(id) = n + 1. The identity permutation is the only
permutation with this property. Recall that a simple permutation 7 does not have good pairs.
Hence, gp(7) =0 and bp(7) =n + 1.
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A Simple Approximation. It is easy to see that a block move (i, j, k) affects three pairs of
adjacent elements in 7 (the pairs (7}, 7;41), (7}, 7j41), and (g, 7k41)). Therefore the number
of breakpoints can be reduced by at most three in any block move. This implies mbc(7) >
be(r) > [bp(m)/3] for any permutation 7 as Bafna and Pevzner [BP98] pointed out. Clearly,
bp () — 1 moves suffice for sorting any permutation, which yields a simple 3-approximation for
BCM.

We suggest the following algorithm for sorting a simple permutation 7 using only monotone
block moves: In each step find the smallest i such that 77; # i and move element i to position i,
that is, exchange blocks 7;, ..., mx_1 and 7y, where 7y = i. Clearly, the step destroys at least
one breakpoint, namely (77;_; = i — 1, 71;). Furthermore, the move is monotone as element i
is moved only over larger elements. Therefore, mbc(7) < bp(7) and the algorithm yields a
3-approximation.

By first simplifying a general permutation, applying the algorithm, and then undoing the
simplification, we can also find a 3-approximation for permutations that are not simple.

Theorem 5.2. We can find a 3-approximation for MBCM on a single edge in O(n*) time.

Clearly, the 3-approximation can be found in O(n?) time. If we need to output all permu-
tations of block moves, Q(n?) time is also necessary, because there can be a linear number of
block moves (for example, for simple permutations). If we do not want to know the sequence of
permutations but just the sequence of block moves (i, j, k), this can be improved to O(nlogn)
time by proceeding as follows.

Recall that we use simple permutations. In increasing order, we move the elements i =
1,...,n — 1 In any step, the monotone block move is described by (i, k, k), where k is the
current index of the element i. Hence, the crucial part is determining this index without actually
performing the block move. For doing so, we create a binary tree of height O(logn) whose
leaves are the elements 1, .. ., n ordered by their indices in the input; we also store the initial
index in any leave. In any step i, when moving the element i, we will mark its leave as deleted
and update some additional values; we will, however, never change the structure of the tree.
In order to find the element i in the tree, we store, for each inner vertex, the minimum of the
elements i, ..., n in the subtree. When we mark the element i as deleted, we can easily update
the minima, while follow the path to the root, in O(logn) time.

In any vertex of the tree, we store an additional offset value, which is initially 0. Now, suppose
we are in step i, that is, we want to move the element i—which is currently at some position k—to
position i with the move (i, k, k). In this move, several—at positions i, . . ., k — 1—are moved by
back by one position. The moved elements are exactly the elements j > i that have been placed
left of i in the input. In the binary tree, they are represented by the leaves left of the leaf of i that
have not yet been deleted. Hence, we do the following. When deleting i from the tree, we follow
the path to the root and always increment the offset value for subtrees left of the path; that is,
whenever we reach a vertex of the tree coming from a right subtree, we increment the offset for
the root of the neighboring left subtree. If we always do so, we can calculate the new position of
any leaf by adding the sum of the offset values on the path to the root to the original position.
Since updating the values in one step takes only logarithmic time, we need O(nlogn) time in
total.
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Exhaustive Search. We will later need optimum solutions for both BCM and MBCM on a
single edge with a constant number of lines (up to 11) for constructing gadgets for a hardness
proof in Section 5.6.2. Therefore, we now show how to find optimum solutions in terms of
permutations based on exhaustive search.

The idea is simple. For a permutation 7 of length #, that is, a permutation of id = [1,2,..., 1],
we consider the graph G,, = (S,, E,;) whose vertex set S,, is the set of all permutations of length .
Two permutations 7y, 77, are connected by a directed edge (7, 712 ) € E,, if there is a block move
that transforms permutation 7, into 7,. If we are interested in monotone block crossings, then
we add the edge (7, m,) only if this block move is monotone.

Now, it is easy to see that bc(7)/mbe(7) is equal to the length of a shortest path between id
and 7 in G,,. Such a path can be found by breadth first search. This takes O(n!n’) time because
there are n! vertices and O(n'(g’)) = O(n!'n®) edges in G,,.

We make the source code of the implementation used by us available online'. It includes
the breadth first search that computes the (monotone) block crossing distance to the identity
permutation for all permutations of size n, as well as the code that we used for finding suitable
sets of permutations for the different gadgets of our NP-hardness proof (see Section 5.6.2). Note
that—due to the large number of permutations—for computing distances of permutations of
size 11 a lot of RAM is necessary; in our tests we needed 5 GB; a complete breadth first search
needed about an hour, and checking all permutations for finding a suitable set of permutations
for the variable gadget took even longer. The computations for the other gadgets with shorter
permutations need, of course, significantly less RAM and are much faster. If enough memory is
available, just checking all permutations we used can be done within about 15 minutes.

5.3 Block Crossings on a Path

Now we consider an embedded graph G = (V, E) consisting of a path P = (Vp, Ep) with
attached terminals. In every node v € Vp the clockwise order of terminals adjacent to v is given,
and we assume that the path is oriented from left to right. We say that a line € starts at its leftmost
vertex on P and ends at its rightmost vertex on P. As we consider only crossings of lines sharing
an edge, we assume that the terminals connected to any path node v are in such an order that
first lines end at v and then lines start at v; see Figure 5.4. We will first concentrate on developing
an approximation algorithm for BCM. Then, we will show how to modify the algorithm for
monotone block crossings.

5.3.1 BCMon a Path

We suggest a 3-approximation algorithm for BCM. Similar to the single edge case, the basic idea
of the algorithm is to consider good pairs of lines. A good pair is, intuitively, an ordered pair of
lines that will be adjacent—in this order—in any feasible solution when one of the lines ends.
We argue that our algorithm creates at least one additional good pair per block crossing, while
even the optimum creates at most three new good pairs per crossing. To describe our algorithm
we first define good pairs.

1http ://lamut.informatik.uni-wuerzburg.de/blockcrossings/BlockCrossings.java
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5.3 Block Crossings on a Path

a

Figure 5.4: Lines starting and ending Figure 5.5: Inheritance of a good pair; (a,b)
around a vertex of the path. inherits form (¢, b).

Definition 5.1 (Good pair). Let a and b be two lines. The ordered pair (a, b) is a good pair if
one of the following two conditions holds.
(i) Lines a and b end in the same node v € P and a and b are consecutive in clockwise order
around v.
(ii) There are a line ¢ and an interior vertex v of the path P such that c is the first line that
enters P in v from above, a is the last line ending in v above P as shown in Figure 5.5, and
(¢, b) is a good pair.

Note that case (i) of the definition follows the definition of good pairs on a single edge;
compare Section 5.2. In case (ii) we say that the good pair (a, b) is inherited from (c, b) and
identify (a, b) with (¢, b), which is possible as a and ¢ do not share an edge. Analogously, there
is inheritance for lines starting/ending below P.

As a preprocessing step, we add two virtual lines, t, and b,, to each edge e € Ep. The line ¢,
is the last line entering P before e from the top and the first line leaving P after e to the top.
Symmetrically, b, is the last line entering P before e from the bottom and the first line leaving P
after e to the bottom. Although virtual lines are never moved, ¢, participates in good pairs, which
models the fact that the first line ending after an edge must be brought to the top. Symmetrically,
b, participates in good pairs modeling the fact that the first line ending after an edge must be
brought to the bottom.

We now investigate some important properties of good pairs. We first can observe that good
pairs are well-defined, that is, a line participates in at most two good pairs (above and below) on
each edge.

Lemma 5.1. Let e € E,, be an edge and let £ € L,. Then ¢ is involved in at most one good pair
(¢, ¢) for some €' € L, and in at most one good pair (¢, €") for some €' € L,.

Proof. Let e = (u, v) be the rightmost edge with a line € € L, that violates the desired property.
Assume that the first part of the property is violated, that is, there are two different good pairs
(€1, ¢) and (&5, ¢). If € ends at vertex v, there clearly can be at most one of these good pairs
because all good pairs have to be of case (i).

Now, suppose that € also exists on the edge e’ = (v, w) to the right of e on P. If both ¢] and ¢
existed on e’, we would already have a counterexample on e’. Hence, at least one of the lines
ends at v, that is, at least one of the good pairs results from inheritance at v. On the other hand,
this can only be the case for one of the two pairs, suppose for (¢, ). Hence, there has to be
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another good pair (€5, £) on e, a contradiction to the choice of e. Symmetrically, we see that
there cannot be two different good pairs (¢, ¢;") and (¢, £5). O

A line does not have to be part of a good pair everywhere. We can, however, show that any
line is part of a good pair on its last edge of the path.

Lemma5.2. Ife = (u,v) € Ep is the last edge before line € ends to the top, then there exists a
line €' on e that forms a good pair (¢, €) with €. Symmetrically, if e is the last edge before € ends
to the top, then there exists a line £ on e that forms a good pair (€, ") with €.

Proof. We suppose that £ ends to the top; the other case is analogous. We consider the clockwise
order of lines ending around v. If there is a predecessor £’ of ¢, then, by case (i) of the definition,
(¢, ) is a good pair. Otherwise, £ is the first line ending at v above the path. Then, the virtual
line ¢, that we added is its predecessor, and (£, £) is a good pair. O

In what follows, we say that a solution or an algorithm creates a good pair (a, b) in a block
crossing if the two lines a and b of the good pair are brought together in the right order by that
block crossing; analogously, we speak of breaking a good pairs if the two lines are neighbors in
the right order before the block crossings and are no longer after the crossing.

Lemma 5.3. There are only two possibilities for creating a good pair (a, b):
(i) The lines a and b start at the same node consecutively in the right order.
(ii) A block crossing brings a and b together.

Proof. In the interior of the common subpath of a and b, the good pair (a,b) can only be
created by block crossings because either a and b cross each other or lines between a and b
cross a or b. Hence, (g, b) can only be created without a block crossing at the moment when
the last of the two lines, say a, starts at a node v. In this case a has to be the first line starting
at v on the top of P. This implies that, due to inheritance, there is a good pair (¢, b), where ¢
is the last line ending at v to the top. It follows that the good pair (¢, b), which is identical to
(a, b), existed before v. Analogously, we get a contradiction if b is the first line starting at v on
the bottom of P. O

In case (i) of the lemma, we also say that (a, b) is an initial good pair. Analogously to the
lemma, a good pair can only be destroyed by a crossing or the end of both lines.

It is easy to see that any solution, especially an optimal one, has to create all good pairs. As
we identify good pairs resulting from inheritance with the original good pair—resulting from
case (i) of Definition 5.1—, it suffices to consider good pairs resulting from two lines ending at
the same vertex consecutive in clockwise order. As the lines must not cross in this vertex, they
must be together before this vertex is reached.

Recall that our main idea is to use that, in analogy to the case of a single edge, a block crossing
can create at most three new good pairs. There will be few cases in which a block crossing has to
break a good pair. We show that such a crossing cannot increase the number of good pairs at all.

Lemma 5.4. In any block crossing the number of good pairs increases by at most 3. In a block
crossing that breaks a good pair, the number of good pairs does not increase.
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Figure 5.6: Ordering the lines on edge e in a step of the algorithm.

Proof. We consider a block crossing on some edge that transforms the sequence
n=[...,a,b,....,c,d,...,e,f,...] into n'=[...,a,d,....,e,b,....c,f,...],

that is, the blocks b,...,cand d, ..., e are exchanged. The only new pairs of consecutive lines
that 7’ contains compared to 7 are (a,d), (e, b), and (c, f). Even if these are all good pairs, the
total number of good pairs increases only by three.

Now, suppose that the block crossing breaks a good pairs. The only candidates are (a, b),
(c,d),and (e, f). If (a, b) was a good pair, then the new pairs (a,d) and (e, b) cannot be good
pairs because, on one edge, there can only be one good pair (4, -) and one good pair (-, b); see
Lemma 5.1. Hence, only (¢, f) can possibly be a new good pair. Since one good pair is destroyed
and at most one good pair is created, the number of good pairs does not increase. The cases that
the destroyed good pair is (¢, d) or (e, f) are analogous. O

Using good pairs, we formulate our algorithm as follows; see Figure 5.6 for an example. We
traverse P from left to right. On an edge e = (u,v) € Ep of the path, there are red lines that end at
v to the top, green lines that end at v to the bottom, and black lines that continue on the next edge.
We bring the red lines in the right order to the top by moving them upwards. Doing so, we keep
existing good pairs together. If a line is to be moved, we consider the lines below it consecutively.
As long as the current line forms a good pair with the next line, we extend the block that will be
moved. We stop at the first line that does not form a good pair with its successor. Then, we move
the whole block of lines linked by good pairs in one block move to the top. Next, we bring the
green lines in the right order to the bottom, again keeping existing good pairs together. There is
an exception: sometimes one good pair on e cannot be kept together. If the moved block is a
sequence of lines containing both red and green lines, and possibly some—but not all—black
lines, then the block has to be broken; see the block (d, a, b, e) in Figure 5.7. Note that this can
only happen in one move on an edge; there can only be one sequence containing both red and
green lines because all red lines are part of a single sequence and all green lines are part of a
single sequence due to case (i) of Definition 5.1. There are two cases when the sequence of good
pairs has to be broken:

(i) A good pair in the sequence contains a black line and has been created by the algorithm
previously. Then, we break the sequence at this good pair.

(ii) All pairs containing a black line are initial good pairs, that is, they have not been created
by a crossing. Then, we break at the pair that ends last of these. When comparing the end
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Figure 5.7: 'The (necessary) insertion of line ¢ forces breaking a good pair, that is,

(a,b) (= (a,¢)), (d,a) (= (f,a)),or (b,g) (= (b,h)), on edge e.

of pairs we take inheritance into account, that is, a good pair ends only when the last of
the pairs that are linked by inheritance ends.

After an edge has been processed, the lines ending to the top and to the bottom are on their
respective sides in the right relative order. Hence, our algorithm produces a feasible solution.
We show that the algorithm produces a 3-approximation for the number of block crossings. A
key property is that our strategy for case (ii) is optimal.

Lemma 5.5. Let ALG and OPT be the number of block crossings created by the algorithm and
an optimal solution, respectively. Then, ALG < 3 OPT.

Proof. Block crossings that do not break a good pair always increase the number of good pairs.
If we have a block crossing that breaks a good pair in a sequence as in case (i) then there has
been a block crossing that created the good pair previously as a side effect, that is, there was an
additional (red or green) good pair whose creation caused that block crossing. Hence, we can
say that the destroyed good pair did not exist previously and still have at least one new good
pair per block crossing.

If we are in case (ii), that is, all good pairs in the sequence are initial good pairs (see Figure 5.7),
then these good pairs also initially existed in the optimal solution. It is not possible to keep all
these good pairs because the remaining black lines have to be somewhere between the block
of red lines and the block of green lines. Hence, even the optimal solution has to break one of
these good pairs, on this edge or previously.

Let Ealg and Eopt be the numbers of broken good pairs due to case (ii) in the algorithm and the
optimal solution, respectively. In a crossing in which the algorithm breaks such a good pair the
number of good pairs stays the same as one good pair is destroyed and another created. On the
other hand, in a crossing that breaks a good pair the number of good pairs can increase by at most
two even in the optimal solution (actually, this number cannot increase at all; see Lemma 5.4).
Let gp be the total number of good pairs and let gp, ., be the number of initial good pairs.
Note that, according to Definition 5.1, good pairs resulting from inheritance are not counted
separately for gp as they are identified with another good pair. We get gp > ALG —bc,ig + gp;..i¢
and gp < 3-OPT —Eopt +gp;.;;- Hence, ALG < 30PT + (&alg —Eopt) combining both estimates.

To prove an approximation factor of 3, it remains to show that Ealg < Eopt. First, note
that the edges where good pairs of case (ii) are destroyed, are exactly the edges where such
a sequence of initial good pairs exists; that is, the edges are independent of any algorithm or
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Figure 5.8: Line ¢ prevents that (ay, b) inherits from (a;, b).

solution. We show that, among these edges, our strategy ensures that the smallest number of
pairs is destroyed, and pairs that are destroyed once are reused as often as possible for breaking
a sequence of initial good pairs.

To this end, letej,. .., e& be the sequence of edges where the algorithm destroys a new
alg

good pair of type (ii), that is, an initial good pair that has never been destroyed before. We follow
the sequence and argue that the optimal solution destroys a new pair for each of these edges.
Otherwise, there is a pair e, e} (with i < j) of edges in the sequence where the optimal solution
uses the same good pair p on both edges. Let p’ and p”’ be the pairs used by the algorithm on e/
and e, respectively, for breaking a sequence of initial good pairs. As p’ was preferred by the
algorithm over p, we know that p’ still exists on e’. As p' is in a sequence with p, the algorithm
still uses p’ on e”, a contradiction. This completes the proof. O

We can now conclude with the following theorem; the running time is obvious.

Theorem 5.3. Thereisan O(|L|(|L]+n))-time algorithm for finding a 3-approximation for BCM
on instances where the underlying network is a path of length n with attached terminals.

5.3.2 MBCM on a Path

The algorithm for paths presented in the previous section does not guarantee monotonicity
of the solution. It can, however, be turned into a 3-approximation algorithm for MBCM. To
achieve this, we will adjust the definition of inheritance of good pairs, as well as the step of
destroying good pairs, and we will sharpen the analysis.

We first modify our definition of inheritance of good pairs. We prevent inheritance in
the situations in which keeping a pair of lines together at the end of an edge is not possible
without either having a forbidden crossing in the following vertex or violating monotonicity.
We concentrate on inheritance with lines ending to the top; the other case is symmetric.

Suppose we have a situation as shown in Figure 5.8 with a good pair (a;, ). Line ¢ must not
cross b. On the other hand it has to be below a, near node v and separate a, and b there. Hence,
bringing or keeping a, and b together is of no value, as they have to be separated in any solution.
Therefore, we modify the definition of good pairs, so that the pair (a,, b) does not inherit from
(a1, b) in this situation; we say that line c is inheritance-preventing for (ay, b).

Apart from the modified definition of good pairs, one part of our algorithm needs to be
changed in order to ensure monotonicity of the solution. A block move including black lines
could result in a forbidden crossing. We focus on the case, where black lines are moved together
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with red lines to the top. This can only occur once per edge. The case that black lines are moved
together with green lines to the bottom is symmetric. Let by, by, ..., by be the sequence of
good pairs from the bottommost red line r = by on. If there is some line £ above the block that
must not be crossed by a line b; of the block, then we have to break the sequence. We consider
such a case and assume that i is minimal. Hence, we have to break one of the good pairs in
(r,b1), (b1,b2),...,(biz1, b;). Similar to case (i) in the algorithm for BCM, we break a pair of
this sequence that is not initial. If all the pairs are initial (case (ii)), we choose the pair (b;_, b;)
with j < i minimal such that the end node of b; is below the path, and break the sequence there.
Note that line £ must end below the path, otherwise it would prevent inheritance of at least one
of the good pairs in the sequence. Hence, also b; ends below the path, and b; is well-defined.

It is easy to see that our modified algorithm still produces a feasible ordering. We now show
that the solution is also monotone.

Lemma 5.6. The modified algorithm produces an ordering with monotone block crossings.

Proof. We show that any pair of lines that cross in a block crossing is in the wrong order before
the crossing. Monotonicity of the whole solution then follows. We consider moves where blocks
of lines are brought to the top; the other case is symmetric.

Suppose that a red line r is brought to the top. As all red lines that have to leave above r have
been brought to the top before, r crosses only lines that leave below it, that is, lines that have to
be crossed by r. If a black line ¢ is brought to the top, then it is moved together in a block that
contains a sequence of good pairs from the bottommost red line 7’ to £. Suppose that £ crosses a
line ¢ that must not be crossed by €. Line ¢ cannot be red because all red lines that are not in the
block that is moved at the moment have been brought to the top before. It follows that ' has
to cross c. Hence, we can find a good pair (a, b) in the sequence from 7’ to £ such that a has
to cross ¢ but b must not cross c. In this case, the algorithm will break at least one good pair
between r’ and b. It follows that ¢ does not cross ¢, a contradiction. OJ

We have now seen that the modified algorithm creates feasible solutions for MBCM. It remains
to proof the approximation factor as we modified the algorithm. This can be done similar to
BCM.

Lemma 5.7. Let ALGpon be the number of block crossings created by the algorithm for MBCM
and let OPT y,on be the number of block crossings of an optimal solution for MBCM. It holds that
ALGmon <3 OPTon.

Proof. As for the nonmonotone case, all block crossings that our algorithm introduces increase
the number of good pairs, except when the algorithm breaks a sequence of initial good pairs
in case (ii). Again, also the optimal solution has to have crossings where such sequences are
broken. As for BCM, let gp be the total number of good pairs, let gp, .. be the number of initial
good pairs, let bc,y, be the number of broken good pairs of case (ii) for the algorithm, and let
Eopt be the number of such broken pairs for the optimum solution.

In a crossing of case (ii), the two lines of the destroyed pair lose their partner. Hence, there
is only one good pair after the crossing, and the number of good pairs does not change at all;
compare Lemma 5.4.
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Hence, gp > ALGpon —Ealg + 8P, and gp < 3 (OPTmOn —Ropt) + 8Pi ;- Combining both
estimates, we get o o
ALGpon £ 3OPT on +(bcalg — 3bcopt).

Let &alg,top be the number of splits for case (ii) where the block move brings lines to the top,
and let bcyyg ot be the number of such splits where the move brings lines to the bottom. Clearly,
bcalg = bealg top + bCalg,bot- We get

ALGmon

IN

3+ OPTymon +(bcalg — 3+ beopt)

< 3 OPTmon +(Ealg,top - Enpt) + (Ealg,bot - E0pt)~

To complete the proof, we show Ealg,mp < Enpt. Symmetry will yield Ealg,bot < Eopt and,
hence, ALGyon < 30PT 10n-

Letef,...,e.~  be the sequence of edges where the algorithm uses a new good pair as a
1 bcalg,mp

breakpoint for a sequence of type (ii) when lines leave to the top, that is, a good pair that has
not been destroyed before. Again, we argue that even the optimal solution has to use a different
breakpoint pair for each of these edges. Otherwise, there would be a pair ¢’, e” of edges in this
sequence where the optimal solution uses the same good pair p on both edges. Let p” and p”’ be
the two good pairs used by the algorithm on e’ and e”, respectively. Let p’ = (¢', £"). We know
that £’ leaves the path to the top and £’ leaves to the bottom as described in case (ii). Because all
lines in the orders on e’ and e” stay parallel—otherwise they could not form a sequence of good
pairs—, we know that lines above ¢’ leave to the top, and lines below £ leave to the bottom. In
particular, p’ still exists on e”, as p stays parallel and also still exists.

As in the description of the algorithm, let a and b be lines such that (a, b) is the topmost
good pair in the sequence for which a line ¢ exists on e’ that crosses a but not b. If (a,b) is
below p’, then the algorithm would reuse p’ instead of the new pair p”, since (a,b) is in a
sequence below p; hence, also p’ is in the sequence and above (a, b).

Now suppose that (a, b) is above p’. The pair (a, b) is created by inheritance because ¢ ends
between a and b. As both a and b end to the top, separated from the bottom side of the path
by p’, this inheritance takes place at a node, where a is the last line to end on the top side.
But in this case ¢ prevents the inheritance of the good pair (a, b) because it crosses only a, a
contradiction. O

The modified algorithm still needs O(|£|(|£| + #n)) time. We can now conclude with the
following theorem.

Theorem 5.4. There is an O(|L|(|L] + |n|))-time algorithm for finding a 3-approximation for
MBCM on instances where the underlying network is a path of length n with attached terminals.

5.4 Block Crossings on Trees

In the following we focus on instances of BCM and MBCM where the underlying network is a
tree. As we have seen in Section 4.4, there are examples of trees that do not allow consistent line
directions. This is in contrast to paths, where we could direct all lines from left to right and use
this to define good pairs of lines analogously to the case of a single edge. For general trees, we
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C C

(a) Situation before inserting the line. (b) The line is inserted on edges (v, a) and (v, b).

Figure 5.9: Insertion of a new line (red, bold) into the current order on edges (v, a) and (v, b).

do not have an approximation algorithm. We will, however, present an algorithm that yields a
worst-case optimal bound on the number of block crossings. Then, we consider the special class
of upward trees which have an additional constraint on the lines; for upward trees we develop a
6-approximation for BCM and MBCM.

5.4.1 General Trees

We can show that a linear number of monotone block crossings suffices for any tree. More
precisely, 2|£| — 3 block crossings suffice (and are sometimes necessary).

Theorem 5.5. Given an embedded tree T = (V, E) of n vertices and a set L of lines on T, we can
order the lines with at most 2|L| — 3 monotone block crossings in O(|L|(|£] + n)) time.

Proof. We give an algorithm in which paths are inserted one by one into the current orders; for
each newly inserted path we create at most two additional monotone block crossings. The first
line that we insert into the empty orders cannot create a crossing, and the second line crosses
the first one at most once. Hence, we need 2|£| — 3 monotone block crossings in total.

We start with an edge e = (r, w) incident to a terminal 7, that is, a leaf of the tree. Asrisa
terminal, there is only one line ¢ on the edge e which will be the first line that we insert into the
orders of the solution that we are building. We now assume that the tree is rooted at r and that
all edges are directed pointing away from the root.

When the algorithm processes an arbitrary edge e = (u,v), the lines in L, will already be
ordered; that is, they do not need to cross on yet unprocessed edges of T because the necessary
crossings for pairs of lines in L, have been placed on edges treated before. We consider all
unprocessed edges (v, a), (v,b), ... incident to v in clockwise order and build the right order
for them. The relative order of lines that also pass through (u, v) is kept unchanged on the new
edges. For all lines passing through v that have not been treated before, we apply an insertion
procedure; see Figure 5.9.

Consider, for example,the insertion of a line ¢ passing through (v, a) and (v, b). Close to
v, that is, at the ports of v corresponding to (v, a) and (v, b), we add € on both edges at the
innermost position such that we do not get vertex crossings with lines that pass through (v, a)
or (v,b). We find the correct position of € in the current order of L,, at the end of edge (v, a)
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(a) Instance for |£| = 3. (b) The instance for |£| = 4 is created by adding a
line (green, bold) to the instance for |£| = 3.

Figure 5.10: Examples for trees with 2|£| — 3 necessary crossings. By adding more lines using
the same construction by which the instance for |£] = 4 was created from the one for |£| = 3,
instances with an arbitrary number of lines can be created.

at a relative to the lines already inserted so far, and insert € using a single block crossing. This
crossing will be the last one on (v, a) going from v to a. Similarly, £ is inserted into L.

We have to make sure that lines that do not have to cross are inserted in the right order. As
we know the right relative order for a pair of such lines, we can make sure that the one that
has to be innermost at node v is inserted first. Similarly, by considering the clockwise order
of edges around v, we know the right order of line insertions such that there are no avoidable
vertex crossings. When all new paths are inserted, the orders on (v, a), (v, b), ... are correct;
we proceed by recursively processing these edges.

Suppose that monotonicity is violated, that is, there is a pair of lines that crosses twice. Then,
the crossings must have been introduced when inserting the second of those lines on two edges
incident to a node v. This can, however, not happen, as at node v the two edges are inserted in
the right order. Hence, the block crossings of the solution are monotone. O

In comparison to the cases of a single edge and of a path, where we had at most |£]| block
crossings, the bound for trees has doubled. We can, however, show that the new bound 2|£]| - 3
is tight, that is, that there are tree instances where this number of block crossings is necessary
even for an optimum solution.

Worst-Case Examples. Consider the graph shown in Figure 5.10. The new bold green line in
Figure 5.10b is inserted so that it crosses two existing paths. The example can easily be extended
to instances of arbitrary size where 2|£| — 3 block crossings are necessary in any solution.

Unfortunately, there are also examples in which our algorithm creates |£| — 1 crossings while
a single block crossing suffices; see Figure 5.1 for |£| = 5. The extension of the example to any
number of lines is straightforward. This shows that the algorithm does not yield a constant-factor
approximation.
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Chapter 5: Ordering Metro Lines by Block Crossings

(a) Started at the leftmost edge, the algorithm, pro-  (b) In an optimum solution one block crossing suf-
duces 4 crossings. fices.

Figure 5.11: Worst case example for our algorithm for trees shown for five edges. It can easily
be extended to an arbitrary number of edges (and crossings).

1 45263 1 452 6 3 1 45 2 6 3 1 45263
1 23 456 1 23 45 6 1 2 3 45 1 23 456
(a) Input instance with  (b) Simplified instance; (c) Line orderingonsim- (d) Simplification
pairwise crossings. 4 and 5 are merged. plified instance. undone for solution.

Figure 5.12: The algorithm for upward trees in three steps applied to a simple instance. The
instance is drawn in the style of a permutation with lines numbered from 1 to 6.

5.4.2 Upward Trees

Next, we introduce an additional constraint on the lines, which helps us to approximate the
minimum number of block crossings. We consider an upward tree T with a set of lines L.
The instance (T, £) is an upward tree if T has a planar upward drawing—respecting the given
embedding—in which all paths are monotone in vertical direction, and all path sources are on the
same height as well as all path sinks; see Figure 5.12a. Note that upward trees require consistent
line directions, but are even more restricted. Bekos et al. [BKPS08] already considered such
trees (under the name “left-to-right trees”) for the metro-line crossing minimization problem.
Note that a graph whose skeleton is a path is not necessarily an upward tree.

Our algorithm consists of three steps. First, we perform a simplification step that removes
some lines. Second, we use the algorithm for trees presented in the previous section on the
simplified instance. Finally, we re-insert the removed lines into the constructed order without
introducing new block crossings. We first consider MBCM. We start by analyzing the upward
embedding; see Figure 5.12 for an illustration of the steps of the algorithm.

Given an upward drawing of T, we read a permutation 7 produced by the terminals on
the top similar to the case of a single edge; we assume that the terminals produce the identity
permutation on the bottom. Similar to the single-edge case, the goal is to sort 7 by a shortest
sequence of block moves. Edges of T restrict some block moves on 7; for example, the blocks
[1,4] and [5] in Figure 5.12a cannot be exchanged because there is no suitable edge with all these
lines. However, we can use the lower bound for block crossings on a single edge, see Section 5.2:
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For sorting a simple permutation 7, at least [bp(7)/3] = [ (| £| +1)/3] block moves are necessary.
We stress that the simplicity of 7 is crucial here because the algorithm for trees may create up to
2|L| - 3 crossings. To get an approximation, we show how to simplify a tree.

Consider two non-intersecting paths a and b that are adjacent in both permutations and
share a common edge. We prove that one of these paths can be removed without changing the
optimal number of monotone block crossings. First, if any other line ¢ crosses a then it also
crosses b in any solution (i). This is implied by the monotonicity of the block crossings, by
planarity, and by the y-monotonicity of the drawing. Second, if ¢ crosses both a and b then all
three paths share a common edge (ii); otherwise, there would be a cycle in the graph due to
planarity. Hence, given any solution for the paths £ \ {b}, we can construct a solution for £ by
inserting b parallel to a without any new block crossing. To insert b, we must first move all block
crossings involving a to the common subpath with b. This is possible due to observation (ii).
Finally, we can place b parallel to a.

To get a 6-approximation for an upward tree T, we first remove lines until the tree is simple.
Then we apply the insertion algorithm presented in Section 5.4.1, and finally re-insert the lines
removed in the first step. The number of block crossings is at most 2|£’|, where £’ is the set of
lines of the simplified instance. As an optimal solution has at least |£’|/3 block crossings for this
simple instance, and re-inserting lines does not create new block crossings, we get the following
result.

Theorem 5.6. Given an embedded upward tree T = (V, E) of n vertices and a set L of lineson T,
we can find a 6-approximation for MBCM in O(|L|(|£] + n)) time.

If we consider BCM instead of MBCM, we face the problem that we do not know whether
every solution for the simplified instance can be transformed into a solution for the input
instance without additional crossings. However, we can observe that the solutions that our
algorithm finds for the simplified instance are always monotone and, hence, can be transformed
back. Furthermore, dropping lines can never increase the necessary number of block crossings.
Hence, also for BCM we have the lower bound of [ (|£’| + 1) /3] block crossings. Summing up,
we also get a 6-approximation for BCM by using the same algorithm.

Corollary 5.1. Given an embedded upward tree T = (V, E) of n vertices and a set L of lines
on T, we can find a 6-approximation for BCM in O(|L|(|L] + n)) time.

5.5 Block Crossings on General Graphs

In this section, we consider general graphs. We suggest an algorithm that achieves an upper
bound on the number of block crossings and show that it is asymptotically worst-case optimal.
Our algorithm uses only monotone block moves, that is, each pair of lines crosses at most once.
The algorithm works on any embedded graph; it does not even need to be planar, we just need
to know the circular order of incident edges around each vertex.

The idea of the algorithm is as follows. We process the edges in some arbitrary order. When
we treat an edge, we sort the lines that traverse it. A crossing between a pair of lines can be
created on the edge only if this edge is the first one treated by the algorithm that is used by both
lines of the pair; see Algorithm 5.1 for the structure of the algorithm.
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foreach edge e with |L.| > 1 do
Build order of lines on both sides of e.
Merge lines that are in the same group on both sides.
Find the largest group of consecutive lines that stay parallel on e.
Insert all other lines into this group and undo merging.

Algorithm 5.1: Ordering the lines on a graph.

The crucial part is sorting the lines on an edge. Suppose we currently deal with edge e and
want to sort L,. Due to the path intersection property, the edge set used by the lines in L, forms
a tree on each side of e; see Figure 5.13. We cut these trees at the edges that have already been
processed. Then, each line on e starts at a leaf on one side and ends at a leaf on the other side.
Note that multiple lines can start or end at the same leaf representing an edge that has previously
been treated by the algorithm.

From the tree structure and the orders on the ports of the edges processed previously, we get
two orders of the lines, one on each side of e. We consider groups of lines that start or end at a
common leaf of the tree (such as the group of red lines in Figure 5.13). All lines of a group have
been seen on a common edge, and, hence, have been sorted. Therefore lines of the same group
form a consecutive subsequence on one side of e, and have the same relative order on the other
side of e.

Let g and g’ be a group of lines on the left and on the right side of e, respectively. Suppose
that the set £ of lines starting in g on the left and ending in g’ on the right consists of multiple
lines. As the lines of g as well as the lines of g’ stay parallel on e, £’ must form a consecutive
subsequence (in the same order) on both sides. Now, we merge L' into one representative, that is,
we remove all lines of £” and replace them by a single line that is in the position of the lines of £’
in the sequences on both sides of e. Once we find a solution, we replace the representative by the
sequence. This does not introduce new block crossings as we will see. Consider a crossing that
involves the representative of L', that is, the representative is part of one of the moved blocks.
After replacing the representative, the sequence L' of parallel lines is completely contained in
the same block. Hence, we do not need additional block crossings.

We apply this merging step to all pairs of groups on the left and right end of E. Then, we
identify a group g* with the largest number of lines after merging, and insert all remaining lines
into g* one by one. Clearly, each insertion requires at most one block crossing; in Figure 5.13 we
need three block crossings to insert the lines into the largest (red) group g*. After computing
the crossings, we undo the merging step and obtain a solution for edge e.

Theorem 5.7. Given an instance (G = (V,E), L) of MBCM, Algorithm 5.1 computes a feasible

solution in O(|E*|L|) time. The resulting number of block crossings is bounded by |L|\/|E’|,
where E' C E is the set of edges with at least two lines.

Proof. First, it is easy to see that no avoidable crossings are created, due to the path intersection

property. Additionally, we treat all edges with at least two lines, which ensures that all unavoidable
crossings will be placed. Hence, we get a feasible solution using only monotone crossings.
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\

~

(a) Cutting edges (marked) define groups. The lines marked in gray are merged as they are in the same
group on both sides.

| : 0
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(b) Sorting by insertion into the largest group g* (red, fat). The merged lines always stay together, in
particular, when their block crosses other lines.

Figure 5.13: Sorting the lines on an edge e in a step of our algorithm.
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Our algorithm sorts the lines on an edge in O(|£||E|) time. We can build the tree structure
and find the orders and groups by following all lines until we find a terminal or an edge that
has been processed before in O(|L||E|) time. Merging lines and finding the largest group needs
O(|L£]) time; sorting by insertion into this group and undoing the merging can be done in
O(|£|*) time. Note that |£| < |E| due to the path terminal property.

For analyzing the total number of block crossings, we maintain an information table T with
|L|* entries. Initially, all the entries are empty. After processing an edge e in our algorithm, we
fill the entry T[¢, £'] = e for each pair (£, £) of lines that we see together for the first time. The
main idea is that with b, block crossings on edge e, we fill at least b new entries of T. This
ultimately yields the desired upper bound of |£|\/E for the total number of block crossings.

More precisely, let the information gain I( e) be the number of pairs of (not necessarily distinct)
lines ¢, ¢’ that we see together on a common edge e for the first time. Clearly, 3", I(e) < |L£]*.
Suppose that b% < I(e) for each edge e. Then,

Sb2< Y I(e) <L)

ecE ecE

Using the Cauchy-Schwarz inequality |(x, y)| < \/(x,x) - (¥, y) with x = (b.) g as the vector
of block crossing numbers and y = (1),z/, we see that the total number of block crossings is

S b =[x ) <V {xx) - (y,y (Z b2) B < VICPIE] = 1EVE.

ecE’ ecE’

It remains to show that b? < I(e) for an edge e. We analyze the lines after the merging step.
Consider the groups on both sides of e; we number the groups on the left side £, ..., £, and
the groups on the right side Ry, ..., R,y For1 < i <nmletl; = |€;[and for1< j< mletr; = |R].
Without loss of generality, we can assume that £, is the largest of the n + m groups and we will
insert all remaining lines into £,.

Then, b, < |L.| - I;. Let s;; be the number of lines that are in group £; on the left side and in
group R; on the right side of e. Note that s;; € {0,1}, otherwise we could still merge lines. Then
l; = Z;”Zl SijTj= 2ie Sijp S = [Le| = X1y Z;"Zl sij»and b, = s — I;. In terms of this notation, the
information gain is

M§

I(e):sz—zn: ir +Zn:

i=1 j=1 i=1j

S],
1

-
Il

which can be seen as follows. From the total number s? of pairs of lines on the edge, we have to
subtract all pairs of lines that are in the same group on the left or on the right side of the edge;
we must be careful not to subtract pairs that are in the same group on the left and on the right
side twice. By applying the following Lemma 5.8 to the values s;; (for 1< i < nand 1< j < m),
we get b2 < I(e).

To complete the proof, note that the unmerging step neither decreases I(e) nor does it
change b,. O

Lemma 5.8. For1<i<nandl<j<m,lets;e{0,1}. Letl; = Z;":lsijforl <i<nand
letrj = Y sijfor1 < j< msuchthath > 1 for1 <i<mnandl >rjforl < j<m. Let
s=YimXisipb=s—handl=5"-Y 7 -3, rf + XL Xk s?j. Then, b* < L.
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Proof. It is easy to see that, for any 1 < i < n,1 < j < m, it holds that s;;(s;; — s1;) > 0 as
sij € {0,1}. Using this property in the last line of the following sequence of (in-)equalities, we
see that

I—bzz(sz—ilf—i7§+iisfj) (s —2511+l)

i=1 j=1 i=1 j=1

n m m n
:ZZ ]+2115—ll) Zl,2 ZTJZS,]
i=1 j=1 =1 =
n m n m n m n m
SDIDIHETIDISICTED WD ITTED P IETY
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Next we show that the upper bound on the number of block crossings that our algorithm
achieves is asymptotically tight. To this end, we use the existence of Steiner systems for building
(nonplanar) worst-case examples of arbitrary size in which many block crossings are necessary.

Theorem 5.8. For any prime power g, there exists a graph G4 = (Vy, E;) of ©(q*) vertices with a
set of lines L so that Q(|L ]y /|E[I|) block crossings are necessary in any solution, where E; C E,
is the set of edges with at least two lines.

Proof. Let g be a prime power. From the area of projective planes it is known that an S(g* + g +
1, g +1,2)-Steiner system exists [VB06], that is, there is a set S of g? + q +1 elements with subsets
81582, ..+, Sq21q41 Of size g + 1 each such that any pair of elements s, t € S appears together in
exactly one set S;.

We build the graph G, = (Vg, E,) by first adding vertices s~, s* and an edge (s~,s") for any
s € S. These edges will be the only ones with multiple lines on them, that is, they form E;.
Additionally, we add an edge (s*, t7) for each pairs, ¢ € S. Next, we build a line ¢; for each set S;
as follows. We choose an arbitrary order s, 51, 53, . . . , 54 of the elements of S;; then, we introduce
extra terminals s(¢;) and ¢(¢;) in which the new line ¢; = (s(€i), S0550>S1>81 5+ >85> 54> t(¢:))
starts and ends, respectively; see Figure 5.14a.

As any pair of lines shares exactly one edge, the path intersection property holds. For each
s € S, we order the edges around vertices s~ and s* in the embedding so that all g +1lines on the
edge representing s have to cross by making sure that the order of the lines is exactly reversed
between s~ and s*; see Figure 5.14b. Then, at least g/3 block crossings are necessary on each
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. N - + 7 N - + ’ N N + ’ N - + ’ :
R I N Sa siy 1)
o —r—=_gi - - - = : :
P N ST ; :
(a) Line ¢; is routed through the edges representing so, s1, 52, . . ., S4.

(b) The order of the lines is reverted between s~ and s*.

Figure 5.14: Construction of the worst-case example.

edge (compare the case of a single edge in Section 5.2), and, hence, (q* + g + 1)g/3 = ©(q*)
block crossings in total. On the other hand, |[£|\/|E| = (¢* + g+ )\/q* + q +1=0(g*). O

Note that the graphs for the worst-case instances in the previous proof are not planar. It is an
interesting question to decide whether the upper bound is also asymptotically tight for planar
instances.

5.6 Instances with Bounded Maximum Degree and Edge
Multiplicity

Similar to general metro-line crossing minimization, also block crossing minimization is inter-
esting with bounded maximum degree and bounded edge multiplicity; compare Section 4.5.
Recall that, in this setting, all stations have constant maximum degree A, and the maximum
edge multiplicity is a constant c, that is, |L,| < ¢ for each edge e.

We first show that the restricted problem variants of both BCM and MBCM can be solved
in polynomial time if the underlying network is a tree. On the other hand, we prove that the
restricted variants are NP-hard on planar graphs.

5.6.1 Restricted (M)BCM on Trees

We want to modify the dynamic program presented in Section 4.5 for MLCM. For BCM this
is quite easy: We just need to count block crossings instead of single crossings when solving
the problem on a single edge with at most ¢ lines. The rest does not need to be changed. For
MBCM, we additionally need to guarantee that two lines cross at most once. Similar to the
modification for MLCM-P, we can do this by disregarding combinations of permutations that
lead to forbidden crossings when combining solutions for subtrees. Hence, we get the following
result.
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Theorem 5.9. BCM and MBCM can be solved optimally in O(n) time on tree instances of max-
imum degree A and maximum edge multiplicity ¢ if both A and c are constants.

Now, we want to analyze the runtime. The only relevant modification with respect to the
runtime is the modified computation of the number of block crossings—instead of single
crossings—needed for sorting an edge with at most ¢ lines if the order on both ports is already
fixed. We can do this by using breadth-first search in the graph of permutations of at most ¢

elements; compare Section 5.2. We have O(c!) vertices—the permutations—and O(c!(g)) =

O(c!c*) edges—resulting from the up to (;) block moves that are possible in one step. Note

that for MBCM we additionally have to disallow nonmonotone block moves. Summing up,
we have to replace O(c?) by O(c!c?) in the runtime analysis, resulting in a total runtime of
O(n(c!)** Ac*). Again, this runtime yields that we have a fixed-parameter tractable algorithm.

Corollary 5.2. BCM and MBCM are fixed-parameter tractable on tree instances with respect to
the parameter ¢ + A, where A is the maximum degree and c is the maximum edge multiplicity,
with a runtime of O(n - (c!)**Ac®).

5.6.2 NP-Hardness of Restricted BCM and MBCM

The hardness of sorting by transpositions implies that BCM is NP-hard even on a single edge;
compare Theorem 5.1. For the restricted version, however, this does not hold because the edge
can contain only a constant number of lines. In fact, due to the FPT algorithm presented in the
previous section, neither BCM nor MBCM can be NP-hard on trees for any constant maximum
degree and edge multiplicity. However, we will see that for general planar graphs even the
restricted problems are NP-hard. We start with MBCM.

We will now show that restricted MBCM is NP-hard on general planar graphs. More specifi-
cally, MBCM is NP-hard even if the maximum degree is 3 and there is no edge with more than
11 lines.

Theorem 5.10. MBCM is NP-hard on planar graphs even if the maximum degree is 3 and the
maximum edge multiplicity is 11.

Proof. We show hardness by reduction from PLANAR 3SAT, which is known to be NP-hard
even if any variable occurs in exactly three different clauses [DJP*94]; compare Section 2.3.
Let (X, C) be an instance of PLANAR 3SAT where X is the set of variables and C is the set of
clauses. Recall that any clause contains only two or three literals. The graph Gxc = (XU C, Exc)
with the edge set Exc = {{x,y} | variable x occurs in clause y} describing the occurrence of
variables in clauses is planar.

We now construct an instance (G = (V, E), £) of MBCM modeling the 3SAT instance. To
this end, we take a fixed planar embedding of Gx¢. We replace each variable x € X in Gx¢ by
a variable gadget V. and each clause y € C by a clause gadget C,. If x € y, then the edge {x, y}
becomes an edge {v., v, } where v, and v, are vertices of the variable gadget and the clause
gadget, respectively. If ~x € y, we replace the edge {x, y} by a path (v, u,u’, v, ) where u and v’
are vertices of a negator gadget N,. In both cases, we call the edges of the connection between
the gadgets the variable path. By placing the gadgets in the positions of the respective vertices
of Gxc¢ and routing the variable paths along the edges, we get a planar embedding of G.
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X X C(xvﬂy\/z)

v, v, v,

Figure 5.15: Connections of variable paths for a clause y = (x v =y v z) where x is false and
yand z are true.

On any edge outside of a gadget, exactly two lines represent a literal. Looking in the direction
of the clause gadget, we say that the literal state is true if the lines crossed in the previous gadget,
and that it is false otherwise. We will build the gadgets in such a way that crossings occur only
within gadgets in crossing minimal solutions. Furthermore, we will connect the lines so that
any pair of lines representing a literal has to cross, that is, it can be either in true or in false
state. Figure 5.15 shows the connections for the variables of a clause.

We first define the properties that we need for our gadgets. In the descriptions, we use global
constants Kyar, Knegs kcis» and k., for numbers of crossings.

Variable Gadget: The variable gadget has three port edges e;, e;, and e; that are part of
variable paths, and each of these edges has exactly two lines on it. These edges and lines
are the only ones that leave the gadget. In a crossing-minimal solution in which the three
pairs of lines either do or do not cross inside the gadget, there are exactly ky,, crossings in
the gadget. Any solution in which some, but not all, of these pairs cross inside the gadget
has at least ky,y + 1 crossings.

Negator Gadget: The negator gadget is basically a version of the variable gadget with only two
ports. There are two port edges e; and e;, each with a pair of lines. In crossing-minimal
solutions in which both pairs either do or do not cross inside the gadget, there are exactly
kpeg crossings. In the configurations in which exactly one of the pairs crosses inside the
gadget, there are at least kpg + 1 crossings.

Clause Gadget: The clause gadget has three (or two) port edges, each with a pair of lines. If at
least one of the pairs does not cross inside the gadget, there are exactly ks crossings; if
all pairs cross inside the gadget, at least k. + 1 crossings are necessary.

We also need a version of the clause gadget with only two port edges, both with a pair
of lines. In this version, there are exactly k/,_ crossings if at least one of the pairs of lines

cls
does not cross inside the gadget; otherwise, there are at least k., + 1 crossings.

98



5.6 Instances with Bounded Maximum Degree and Edge Multiplicity

Given such gadgets, we build the network that models the 3SAT instance. We are interested
only in canonical solutions, that is, solutions in which (i) all crossings are inside gadgets and (ii)
any variable gadget has exactly k., crossings, any negator gadget has exactly kg crossings, and
any clause gadget has exactly k. crossings (or k.,  crossings if the clause has just two literals),
resulting in a total number K of allowed crossings. It is easy to see that canonical solutions are
exactly the solutions with at most K crossings. We claim that, if there is a canonical solution,
the instance of 3SAT is satisfiable.

To see this, we analyze the variable gadget. As there are only ky,, crossings in a canonical
solution, the pairs of lines modeling the variable values either all cross, or all stay crossing-free.
Hence, after leaving the gadget, the three pairs all have the same state, true if they crossed, and
false otherwise. As there are no crossings outside of gadgets, this state can only change on the
variable path if it contains a negator.

Suppose a variable path contains a negator gadget. In this case two lines ¢; and ¢,, coming
from a variable gadget, are connected by port edge e;, and two lines ¢5 and €4, leaving towards
a clause gadget, are connected by port edge e,. As we consider a canonical solution, there are
only two possibilities. If both pairs do not cross inside the negator, the pair {#;, £, } has to cross
in the variable gadget and, therefore, is in true state. Then, the pair {¢;, £, } is in false state,
as the lines do not cross in the negator gadget. On the other hand, if both pairs cross inside the
negator, the pair {£, £, } represents false, and {¢;, £, } represents true. Hence, the negator
gadget works as desired.

Finally, we consider the clause gadgets. As there are only k. crossings (or k., crossings in
the version with only two literals), at least one of the variable pairs does not cross inside the
gadget, which means that it is in true state. Hence, the clause is satisfied.

Now, suppose we are given a truth assignment that satisfies all clauses. We want to build a
canonical solution for the block crossing problem. To this end, we fix, for each variable gadget,
the order of the pairs of lines (crossing or non-crossing) corresponding to the truth value of
the variable, which is the same for all port edges. Then, we take the appropriate solution with
kyar block crossings for this gadget. Next, for each negator gadget, there is exactly one possible
realization with kg block crossings given the state of the pair of lines on the ingoing port edge.
Finally, for each clause gadget, there is at least one variable pair that did already cross, as the
given truth assignment satisfies all variables. Hence, we can realize the clause gadget with only
ks block crossings (or k., block crossings in the version with two literals). Therefore, we can
find a canonical solution.

We have now seen that, assuming that there are appropriate gadgets, the satisfiability of a
given instance of PLANAR 3SAT is equivalent to deciding whether the corresponding instance
of MBCM has a canonical solution. For completing the proof, it remains to show how to build
the gadgets with the desired properties.

Negator gadget. The negator gadget is illustrated in Figure 5.16a. It consists of an edge e
with 10 lines, two port edges e; and e, with two lines each, and 16 edges, connected to leaves,
with one line per edge. Assuming that the lines on e form the identity permutation on the
lower end of the edge, we can read different permutations on the upper end, depending on the
solution. However, the upper permutation always follows the permutation template

7Tneg = [4> 8) 1, ap, dz, bl: b2) 10: 3) 7])
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4 8 1 16942510 3 7 5 9 3 {710}{L6} 11 {28 4
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(a) Negator gadget.

Figure 5.16: Gadgets for the NP-hardness proof. Lines starting/ending in leaves of the graph
and passing through port edges (dashed)) are indicated by numbers (or sets of two numbers for
port edges).

where {a;,a,} = {6,9} and {b;, b, } = {2,5}. The pairs {a;, a,} and {b;, b,} are on the port
edges e; and ey, respectively, and can be connected to a variable or negator gadget.

The important property of the permutations of type 7y, is that there are only two ways to
arrange the lines in any solution of MBCM with the minimum number of block crossings. It is
not hard to check that
o mbe(m) =5if7=[4,8,1,6,9,2,5,10,3,7] or 7 = [4,8,1,9,6,5,2,10,3,7] and
o mbc(m) = 6 in the remaining cases, that is, if 7 = [4,8,1,6,9,5,2,10,3,7]

orm=[48,19,6,2,5,10,3,7].2
Given a canonical solution, we can assume that the pairs of lines a;, a, and by, b, do not cross
on the edges e; and e, since crossings on these edges can be moved to e without increasing the
total number of block crossings in the solution. Hence, in a canonical solution, both pairs of
lines {ay, a,} and {by, b, } either cross on e or do not cross there.

Variable gadget. The basic part of the variable gadget is illustrated in Figure 5.16b. Its
structure is similar to the negator gadget: The gadget consists of an edge e with 11 lines, three
port edges ey, e;, and e; with two lines each, and 16 edges with one line per edge. Again, we
can assume that all the crossings are located on e in a canonical solution. The lines on e form a
permutation of the template

Tlyar = [5) 9) 3) ay, d, bl) bZ) 11: €1, C2s 4]:

where {ay,a,} = {7,10}, {b1, b} = {1,6},and {c}, ¢, } = {2, 8}.
One can check that
« mbe(n) =6if 7 = [5,9,3,7,10,1,6,11,8,2,4] or 7 = [5,9,3,10,7,6,1,11,2,8,4] and
o mbc(n) = 7 in the remaining six cases that follow the template 7y,
In other words, in a canonical solution the pairs of lines {a;, a, }, {b1, b, }, and {¢y, c;} form
either the state (true, true, false) or (false, false, true) in the gadget. Therefore, we use

20ne can use the exhaustive search method presented in Section 5.2 for solving MBCM exactly for these instances.
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5.6 Instances with Bounded Maximum Degree and Edge Multiplicity
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Figure 5.17: The clause gadget for the NP-hardness proof. Lines starting/ending in leaves of
the graph and passing through port edges (dashed)) are indicated by numbers (or sets of two
numbers for port edges).

an additional negator connected to the pair {c;, ¢, } by the port edge es, so that, in a canonical
solution, the variable gadget encodes either true or false for all variable pairs at the same
time.

Clause gadget. The clause gadgets is illustrated in Figure 5.17a. It consists of an edge e with
6 lines, three port edges ey, e, and e; with two lines each, and 6 edges with one line per edge.
The lines form a permutation of the template

Tlels = [ala az, bl’ bZ’ C1, CZ]a

where {a;,a,} = {1,3}, {b1, b2} ={2,5},and {c1, 2} = {4,6}.

One can check that
o mbe(n) =3if 7 =[3,1,5,2,6,4] and
» mbc(7r) = 2 in the remaining five cases of permutations following template 7.

Hence, in a crossing optimal solution, at least one of the pairs of lines, {a;,a,}, {b1, b, }, and
{c1, 2}, must not cross inside the gadget, that is, the corresponding literal must be true; see
Figure 5.17b for an example of such a configuration.

By dropping the edge e; and the corresponding two lines 4 and 6 and renaming line 5 to 4,
we get a variant for clause gadgets with two literals. Then, we have a permutation of the template
! = [a1, a2, by, by where {ay,a,} = {1,3} and {by, b} = {2,4}. One can check that
o mbe(m) =2ifm=[3,1,4,2] and
« mbc() = 1in the remaining three cases following the template 7/, .

Again, in a canonical solution, at least one of the literals corresponding to the pairs {a;, a,} and
{b1, by} must be true.

We have now seen that the desired gadgets exist. Additionally, we have seen that no edge
contains more than 11 lines. So far, the maximum degree of the underlying graph is 12. We can,
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12345 6 7 8 9 10

Figure 5.18: Lower part of a negator gadget modified for maximum degree 3.

however, easily modify the gadgets so that the maximum degree is 3. We do this as follows. On
both sides of the central edge e of each gadget, we replace the node where the lines split by a
tree-like structure in which the lines split into only two groups per step; see Figure 5.18. Note
that this modification does neither allow to save block crossings, nor does it make additional
crossings necessary. This completes the proof. O

The general variant of (nonmonotone) BCM is NP-hard even for a single edge; see Theorem 5.1.
For constant maximum degree and edge multiplicity, however, the problem is tractable on trees;
see Theorem 5.9. Next we show that on general planar graphs BCM is NP-hard even for constant
maximum degree and edge multiplicity. To this end, we modify the negator and variable gadgets;
the clause gadget does not need to be changed because the properties of the permutations we
used there still hold if we allow nonmonotone block moves.

Negator gadget. The structure for the variable gadget stays the same. We just replace the
used permutation template by

ﬂneg = [3) a, dz, 4) 7: bl) bz])

where the lines {a;, a,} = {1, 6} leave the gadget on port edge e; and the lines {b;, b, } = {2,5}
leave the gadget on e;.
One can check that
e be(m) =3ifr=[3,1,6,4,7,2,5] orm=[3,6,1,4,7,5,2] and
« bc(m) = 4 in the remaining two cases for template 77,,., (note that we now use nonmonotone
block crossings).
Hence, both pairs of lines {a;, a, } and {by, b, } either cross in the gadget or do not cross there
in a canonical solution.

Variable gadget. Also the structure of the variable gadget stays the same. We just replace
the used permutation template by

Tlyar = [6) ap, az, bl) b2) C1» C2])

where the lines a; and a, leave the gadget on port edge e;, by and b, leave the gadget on e;, and
c1 and ¢, leave it on e3; furthermore, {ay, a,} = {1,4}, {b1, by} = {3,7}, and {c1, c2} = {2,5}.
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One can check that
e be(n) =3ifnr=1[6,1,4,3,7,5,2] or m = [6,4,1,7,3,2,5] and
o bc(m) = 4 in the remaining six cases for template 7zy,,.
Hence, in a canonical solution the pairs of lines a;, a,, by, by, and ¢y, ¢, form either the state
(true,true,false) or (false,false,true) in the gadget. Again, we use an additional
negator connected to the pair c;, c; by the port edge e; for ensuring that the variable gadget
encodes either true or false for all variable pairs at the same time.

Using the new gadgets, we immediately get the reduction for BCM. We note that we can ensure
maximum degree 3 by the same construction that we used for MBCM. Note that both negator
and variable gadget for BCM use fewer lines compared to MBCM; the maximum number of
lines on an edge is 7.

Theorem 5.11. BCM is NP-hard on planar graphs even if the maximum degree is 3 and the max-
imum edge multiplicity is 7.

We point out that the hardness results for bounded degree and edge multiplicity imply that, in
contrast to the case of trees, BCM and MBCM are not fixed-parameter tractable with respect to
these parameters on general graphs. The problems could, however, be fixed-parameter tractable
with respect to different parameters such as the number of crossings.

5.7 Concluding Remarks

We have introduced the new variants BCM and MBCM of the metro-line crossing minimization
problem in which one wants to order the lines taking more advanced crossings into account. We
have presented approximation algorithms for single edges, paths, and upward trees. Then we
have developed an algorithm that bounds the number of block crossings on general graphs and
have showed that our bound is asymptotically tight. Finally, we have investigated the problems
under bounded maximum degree and edge multiplicity, both of which are valid assumptions
for practical purposes. Under these restrictions, we have solved BCM and MBCM optimally on
trees by giving a fixed-parameter tractable algorithm. Additionally, we have proven that BCM
and MBCM are NP-hard on general graphs even if maximum degree and edge multiplicity are
small.

Open Problems. As our results are the first for block crossing minimization, there are still
many interesting open problems. First, the complexity status of MBCM on a single edge would
be interesting to know, mainly from a theoretical point of view. The hardness proof for BCM
is quite complicated and does not easily extend to MBCM. Second, a challenging task is to
develop an approximation algorithm for BCM on general graphs. The third important question
is whether there exists a fixed-parameter tractable algorithm for BCM and MBCM on paths,
trees, and general graphs with respect to the allowed number of block crossings. For the problem
MLCM-P, we presented such an algorithm in Section 4.3; however, for block crossings this
seems to be much more difficult since BCM is already NP-hard on a single edge.

Recently, Bereg et al. [BHNP13] investigated the problem of drawing permutations with few
bends; they represented each element of the permutation as a line, similar to a metro line. Also
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for the visual complexity of a metro line an important criterion is the number of its bends or
inflection points, that is, the points where the direction of the line changes. Hence, an interesting
question is how to visualize metro lines using the minimum total number of inflection points.
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Chapter 6

Point-Set Embeddability and Large
Crossing Angles

In many applications one wants to visualize a graph in such a way that the vertices are placed
at desired positions. This means that either the exact position for each vertex is prescribed, or
there is a set of input points and we have to draw the graph such that each vertex is placed on
one of the input points. This setting is known as point-set embeddability (PSE).

So far, point-set embeddability has almost exclusively been considered for planar drawing
styles. However, drawings with crossings can be almost as well-readable as planar drawings
if the crossing angles are large enough. In this chapter, we consider point-set embeddability
with large crossing angles. We either require that we just have right-angle crossings, or that all
crossing angles are close to 90°.

We first show that point-set embeddability is NP-hard for any choice of « if the edges must
be drawn as straight-line segments. Next, we show how to create embeddings with minimum
crossing angle « > 0 for any graph and any point set such that each edge may have one or two
bends. In both cases, we use only bounded area for our embeddings. Finally, we show that three
bends per edge suffice for being able to find a RAC embedding of any graph on any set of points.

6.1 Introduction

In point-set embeddability (PSE) problems we are given not only a graph that is to be drawn,
but also a set of points in the plane that specify where the vertices of the graph can be placed.
The problem class was introduced by Gritzmann et al. [GMPP91] more than twenty years ago.
They showed that any n-vertex outerplanar graph can be embedded on any set of # points in the
plane (in general position) such that edges are represented by straight-line segments connecting
the respective points and no two edge representations cross. Later on, the PSE question was also
raised for other drawing styles, for example, by Pach and Wenger [PW01] and by Kaufmann
and Wiese [KW02] for drawings with polygonal edges, so-called polyline drawings. In these and
most other works, however, planarity of the output drawing was an essential requirement.
Experiments on the readability of drawings [HHE08] showed that polyline drawings with
angles at edge crossings close to 90° and a small number of bends per edge are almost as readable
as planar drawings. Motivated by these findings, Didimo et al. [DELI1] defined right-angle-
crossing (RAC) drawings where pairs of crossing edges must form a right angle and, more
generally, « AC drawings (for « € (0,90°]) where the crossing angle must be at least a.
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In this chapter, we investigate the intersection of the two areas, point-set embeddability and
the RAC or « AC drawing style. The resulting problem a AC point-set embeddability is defined
as follows.

Definition 6.1 (0AC PSE). Given an n-vertex graph G = (V, E) and a set S of n points in the
plane, determine whether there exists a bijection y: V' — §, and a polyline drawing of G so that
each vertex v is mapped to p(v) and the drawing is « AC, that is, all crossing angles are at least a.
If such a drawing exists and the largest number of bends per edge in the drawing is b, we say
that G admits an « AC;, embedding on S.

The point-set embeddability problem with right-angle crossings—or RAC PSE—is the special
version of ® AC PSE with a = 90°. Analogously to « AC PSE, we say that the graph G admits a
RAC, embedding on S if there is a feasible RAC embedding with at most b bends per edge.

If we insist on straight-line edges, the drawing is completely determined once we have fixed a
bijection between vertex set and point set. If we allow bends, however, PSE is also interesting
with mapping, that is, if we are given a bijection y between vertex and point set. We call an
embedding using y as the mapping u-respecting. The maximum number of bends per edge in a
polyline drawing is the curve complexity of the drawing.

Motivation. There are three previous results that motivated us to study RAC and «AC point-
set embeddings—even for planar graphs.

o Rendl and Woeginger [RW93] have already considered a special case of the question that
we investigate in this chapter, that is, the interplay between planarity and RAC in PSE.
They showed that, given a set S of # points in the plane, one can test in O(nlogn) time
whether a perfect matching admits a RAC, embedding on S. They required that edges
are drawn as axis-aligned line segments, that is, they allowed only horizontal and vertical
segments. They also showed that if one additionally insists on planarity, the problem
becomes NP-hard.

o Pach and Wenger [PWO01] showed for the polyline drawing scenario with mapping that, if
one insists on planarity, (n) bends per edge are sometimes necessary even for the class
of paths and for points in convex position.

o Cabello [Cab06] proved that deciding whether a graph admits a planar straight-line
embedding on a given point set is NP-hard even for 2-outerplanar graphs.

Our Contribution. In order to measure the size of our drawings, we assume that the given
point set S lies on a grid T of size n x n where n = |§|. We further assume that the points in S are
in general position, that is, no two points lie on the same horizontal or vertical line. We call S
a I-spaced n x n grid point set, following previous work of di Giacomo et al. [GFF*13]; a point
set is 1-spaced if the horizontal and the vertical distance of each pair of points is at least 1. We
require that, in our output drawings, bends lie on grid points of a (potentially larger or finer)
grid containing I'.

We show the following results on RAC and on « AC PSE, which all hold even if the mapping
is prescribed—except for the hardness result.
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o We modify Cabello’s result [Cab06] to show that RAC, (and «AC,) PSE is NP-hard
(Theorem 6.1). Hence, we focus on the case with bends in the remaining part of the
chapter.

« Forany ¢ > 0, we can find a (71/2 - £) AC,; embedding on any 1-spaced n x n grid point
set within area O(n?) on a grid refined by a factor of O(1/¢?) (Theorem 6.2); this area
requirement is optimal [GDLMI11]. In the planar case, it is NP-hard to decide whether a 1-
bend point-set embedding exists—both with [GKO*09] and without [KW02] prescribed

mapping.
Without refining the grid, we get a (/2 — ¢) AC, drawing within area O(nm) (Theo-
rem 6.3).

« Every graph with n vertices and m edges admits a RAC; embedding on any 1-spaced
n x n grid point set within area O((n + m)z) (Theorem 6.4). For being able to find a
RAC drawing of arbitrary graphs, curve complexity 3 is needed—even if the point set
is not prescribed: Arikushi et al. [AFK*12] showed that in the RAC; and RAC, style no
graphs with more than 6.5n and 74.2n edges can be drawn, respectively. In the planar
case (with mapping), the curve complexity for PSE is Q(n) [PWO01].

Related Work. Besides the work of Rendl and Woeginger [RW93] that we mentioned above,
the study of point-set embeddability has primarily focused on the planar case, in connection
with straight-line and polyline edges. As we already mentioned, Pach and Wenger [PWO01]
showed that there are examples where embedding a path on a set of points in convex positions
with a prescribed mapping makes a linear number of bends per edge necessary if the drawing
has to be planar. For the setting without prescribed mapping, Kaufmann and Wiese [KW02]
showed that it is possible to find a planar embedding of any planar graph on any point set with
just two bends per edge. Furthermore, they showed that deciding whether such an embedding
with just one bend per edge exists is NP-hard for general planar graphs, while there is always an
embedding with one bend per edge for four-connected planar graphs. If the number of bends
is not bounded, then any planar graph can be embedded on any point set with any prescribed
mapping as Halton showed [Hal91].

In the straight-line drawing style, Bose [Bos02] presented algorithms that embed outerplanar
graphs on point sets with improved runtime and space requirement compared to the work of
Gritzmann et al. [GMPP91]. Bose et al. [BMS97] developed algorithms for embedding problems
of rooted trees.

Efrat et al. [EEK07] showed that point-set embeddability with circular-arc edges and pre-
scribed mapping is NP-hard.

There are also some works on point-set embeddability in the orthogonal drawing style which
we will cover in the following chapter, that is, in Chapter 7.

A topic closely related to point-set embeddability are universal point sets. A universal point set
for planar graphs of n vertices is a point set on which any planar graph of n vertices can be embed-
ded with straight-line edges. For larger n, more than n points are necessary; Kurowski [Kur04]
proved a lower bound of 1.235n for the size of a universal point set. In a recent work, Bannister
et al. [BCDEI13] showed how to construct universal point sets of size n*/4 — ®(n) for any .
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Although RAC and « AC drawings have been introduced very recently, there is already a large
body of literature on the problem. Regarding the area of RAC drawings, Didimo et al. [DELI1]
proved that a RAC; drawing of an n-vertex graph uses area Q(n?) n O(m?). Di Giacomo et
al. [GDLMI1] showed that, for RAC, drawings, area O(n?>) suffices and that, for any & > 0, every
n-vertex graph admits a (/2 — €) AC; drawing within area @(n?). Our results for RAC; and
AC, drawings (in Theorems 6.4 and 6.2) match the ones cited here, in spite of the fact that vertex
positions are prescribed in our case. Van Kreveld [vK10] recently defined and investigated a
number of quality ratios between RAC and planar drawings of planar graphs.

6.2 Straight-Line RAC and «AC Point-Set Embeddability

We first focus on the straight-line versions of the embeddability problems, that is, on RAC,
PSE and on « AC, PSE. In the straight-line version, an embedding is completely fixed by the
vertex—point mapping. Hence, the versions with prescribed mapping are trivial: We just have
to check whether the embedding given by the prescribed mapping is a feasible RAC or ¢ AC
drawing by checking all pairs of edges.

In contrast, we can show that RAC, PSE and « AC, PSE without prescribed mapping are
NP-hard. For planar straight-line point-set embeddability NP-hardness was proven by Ca-
bello [Cab06]. We can modify the construction used in his hardness proof so that we see
hardness also for PSE with large crossing angles.

Theorem 6.1. «aACy PSE is NP-hard for any constant 0 < a < 7/2 even for 2-outerplanar graphs
and I-spaced sets of grid points.

Proof. Cabello [Cab06] proved NP-hardness of planar straight-line PSE of 2-outerplanar graphs
by reducing from 3-PARTITION, which is strongly NP-hard (compare Section 2.3). We modify
the point set S used in his reduction for an instance of 3-PARTITION such that any pair of possible
straight-line segments—both defined by a pair of points—crosses at an angle less than «. This
will ensure that any « AC, embedding is actually planar. The special properties of the point set
needed for the reduction must be preserved by our modifications. Additionally, our modified
point set must not contain two points on the same grid row or column.

The properties of Cabello’s point set S (see Figure 6.1) that are used in his hardness proof are
the following.

(1) There are three subsets L, M, and T of points. For each of these sets, all the points lie on
one straight line. The three straight lines for L, M, and T are parallel.

(2) There are four special points pg, p1, p2, p3 with p;, p3 € M and pg, p» ¢ Lu M U T. Note
that S=LUuMU T U {po, pa}-

(3) The relative position (that is, the horizontal order) of the point sets L, {po }, M, T, and
{p2} is as shown in Figure 6.1.

(4) The boundary of the convex hull of S contains exactly p1, p2, p3, and all the pointsin L,
that is,

8CH(S) NS = {plap2>p3} UlL.
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Figure 6.1: Point set and graph of Cabello’s hardness proof.
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Figure 6.2: K4 drawn using points a, b(a), c(a), and p,.

(5) The graph K can be drawn using p, and three points {a, b, ¢} ¢ MUT as vertex positions
such that no other point is overlapped if and only if a € T, b € M is left of a on the same
height, and ¢ € M is the upper vertical neighbor of b.

We now transform the point set S such that any two straight lines defined by pairs of points
of § cross at an angle less than a.

Let h be the height of the bounding box of S. We treat the three lines containing the points
in L, M, and T individually. First, we rotate each line counterclockwise such that the points
lie on a diagonal of the grid. Then, we horizontally stretch the grid by an integer factor w >
h - cot(a/2). Finally, we horizontally arrange L, po, M, T, and p, such that between two sets
there is a horizontal gap of width at least w. Now, for any pair of points, the horizontal distance
is at least w. Hence, the angle formed by the straight line defined by this pair and a horizontal
line is at most arccot(w/h) < a/2, which implies that the crossing angle of two different straight
lines is less than «. Hence, any feasible xAC, embedding must be planar.

Now, we have to find a position for p, that guarantees property (5). For a point a € T, let
b(a) € M be the point directly left of T, and let c(a) € M be the point directly above b(a) in M;
see Figure 6.2. The graph K4 can be drawn using these points and p, if and only if the straight
line between p, and b(a) and the straight line between p, and c(a) do not intersect the triangle
a,b(a),c(a). Let apo; and a,op be the bottommost and the topmost point of T, respectively.
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Figure 6.4: Point set with rotated lines and huge horizontal gaps.

Considering the triangles of ay,o; and ay,, one can check that p; can be placed one row below
and more than 2h*w columns right of ay; see Figure 6.3. Furthermore, if p; is in that position,
K4 cannot be drawn on p, a € T, and b, c € M unless {b, ¢} = {b(a), c(a)} which means that
property (5) holds. Figure 6.4 shows the horizontal arrangement of the new point set.

It is clear that properties (1)-(4) also hold. The only problem is that we have grid rows with
multiple points, which means that the point set is not 1-spaced. To avoid this, we first refine the
grid by factor 5, that is, we add 4 rows or columns between each consecutive pair of original
grid rows or columns, respectively. Then, we move all points in the sets {po}, M, T and {p,}
upwards by 1, 2, 3, and 4 units of the new grid, respectively.

Finally, we geta point set S’ with properties (1)-(5), that is, we can substitute S by §” in Cabello’s
hardness proof. All points of S’ lie on a grid of size O(h) x O(h*-w) = O(h) x O(h* cot(a/2)),
where the height h of Cabello’s construction is polynomial in the size of the 3-PARTITION instance.
Furthermore, there is at most one point in any row or column of the grid, that is, S’ is 1-spaced.
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9

Figure 6.5: Drawing of K, on a grid refined by factor A = 8.

As any crossing angle for a graph drawn on points of S’ is less than «, there is an «AC,
embedding of the graph on §’ if and only if there is a planar straight-line embedding of the
graph on §’. Hence, together with properties (1)-(5), an « ACy embedding of the graph in
Cabellos construction on S’ exists if and only if there is a feasible solution for the input instance
of 3-PARTITION. O

6.3 aAC; Point-Set Embeddings

As aACy PSE is hard, we now turn to versions in which bends are allowed. We first consider
aAC,; PSE. Recall that we require the bends of edges to lie on grid points.

For drawing arbitrary graphs with right-angle crossings, the RAC; style is necessary [AFK*12],
that is, we can not draw all graphs in the RAC style with just one or two bends per edge; hence,
we first focus on «AC; PSE with « < /2. The following result shows that with just one bend
per edge we can embed any graph on any 1-spaced grid point set if we allow the bends to lie on
points of a refined grid.

Theorem 6.2. Let G = (V, E) be a graph with n vertices and m edges, let S be a I-spaced n x n
grid point set, and let 0 < ¢ < 5. Then G admits a (5 — £)AC, embedding on S (with or without
prescribed vertex-point mapping) on a grid that is finer than the original grid by a factor of A €
O(cote) = O(1/€%).

Proof. If the mapping y: V — S is not given, let 4 be an arbitrary mapping. The idea of our
construction is as follows. For each edge e € E, we first choose one of the two possible drawings
of e with one bend so that both segments lie on grid lines (of the original grid). This yields a
drawing of the graph with many overlaps of edges. Then, we slightly twist each edge so that
its horizontal segment becomes almost horizontal, meaning that it has a negative slope close
to 0. At the same time, we make the vertical segment almost vertical, meaning it has a very large
positive slope; see Figure 6.5.
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Figure 6.6: Angles in the 2-bend-drawing.

As we want all bends to be on grid points, we first refine the grid by an integral factor of
A =1+ [cote]. We do this by inserting, at equal distances, A — 1 new rows or columns between
two consecutive grid rows or columns, respectively. Now, a point s = (a, b) € S lies at position
(Aa, Ab) with respect to the new An x An grid.

Let e be an edge and let (e, e,) be the original position of the bend of e with respect to
the new grid. We choose the new position of the bend to be the unique grid point diagonally
next to (ey, ey) such that the horizontal and vertical segments of e become almost horizontal
and almost vertical, respectively. If we apply this construction to all edges, we get a drawing in
which none of the almost horizontal and almost vertical segments incident to some vertex v can
overlap. Moreover, two almost horizontal or two almost vertical segments incident to different
vertices neither overlap nor intersect because S is I-spaced. Thus, any crossing involves an almost
horizontal and an almost vertical segment.

Let e; and e, be two crossing edges such that the almost horizontal segment involved in the
crossing belongs to e;. We can assume that the smaller angle of the crossing occurs to the top
left of the crossing; the other case is symmetric by a rotation of the plane. Let §~ be the angle
formed by the almost horizontal segment of e; and a horizontal line, and let §* be the angle
formed by the almost vertical segment of e; and a vertical line; see Figure 6.6. Then the crossing
angle of e; and ey isa = /2 -8 + 8" > /2 - 8. For §~ to be maximal, the horizontal length [
of the almost horizontal segment has to be minimal. As this length cannot be less than A — 1, we
get 8% <arccot(A - 1) < arccot(cote) = e. Hence, the crossing angle « is at least 77/2 — ¢. Note
that cote € O(1/&?). O

Note that we use at most one row or column of the refined grid adjacent to the bounding box
of the input points in each of the four directions. Hence, the area requirement is O ((n - cot 8)2)
in terms of the finer grid. Di Giacomo et al. [GDLM11] showed that there are graphs for which
any (7/2 — €)AC, drawing needs Q(n*) drawing area even without the restriction to an input
point set.

114



6.4 aAC, Point-Set Embeddings

(i+1,y)n n(j+1,y)

Figure 6.7: Constructing a 2-bend drawing  Figure 6.8: Angles in the 2-bend drawing.
with large crossing angles.

6.4 aAC, Point-Set Embeddings

We now allow two bends per edge, that is, we move to « AC, PSE. Here, we do not need to
refine the grid. Similar to « AC; PSE, our result holds for both scenarios, with and without given
vertex—point mapping. Again, it is not possible to embed any graph with right-angle crossings
and just two bends per edge. Hence, we consider the case that « < 7.

Theorem 6.3. Let G = (V, E) be a graph with n vertices and m edges, let S be a I-spaced n x n
grid point set, and let 0 < & < 7. Then G admits a (5 — €)AC, embedding on S (with or without
prescribed vertex—point mapping) within area O(n(m + cote)) = O(n(m +1/&*)).

Proof. If the vertex—point mapping p: V — S is not prescribed, let y be an arbitrary mapping.
Letvy,...,v, be an ordering of V so that p; := u(v;) has x-coordinate i. Each edge e = uv
has exactly two bends, a u-bend and a v-bend, where the u-bend is the bend closer to u when
following e from u to v. For i = 1,...,n, we place all v;-bends in column i + 1. All middle
segments of edges will be horizontal. Thus, the bends for an edge e = v;v; are at positions
(i+1,y)and (j+1, y) in some row y < 0 below the original grid; see Figure 6.7. By using a
dedicated row for each edge, we achieve that no two middle segments intersect. By construction,
no two first or last edge segments intersect. Hence, crossings occur only between the horizontal
middle segments and first or last segments of edges. By making the y-coordinates of the middle
segments small enough, we will achieve that all crossing angles are at least 77/2 — «.

Let E = {ey,..., en} be an ordering of the set of edges of G, and let uv = ej be one of these
edges. We set the y-coordinates of the middle segment of e; to —k — [cot ]. Let e;s be an edge
whose horizontal segment intersects the first segment of e;. The crossing angle is /2 — §, where
d is the angle between the vertical line through the u-bend and the first segment of uv; see
Figure 6.8. We have § < arccot(k + [cote]) < e. Thus, the crossing angle is at least 7/2 —e.  [J
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Chapter 6: Point-Set Embeddability and Large Crossing Angles

Observe that our area bounds for « AC; and for « AC, are quite reasonable: for a minimum
crossing angle of 70°, the drawings provided by Theorems 6.2 and 6.3 use grids of sizes at most
(3n) x (3n) and n x (m + 3), respectively.

6.5 RAC; Point-Set Embeddings

We now allow three bends per edge. Didimo et al. [DEL11] have shown that any graph with n
vertices and m edges admits a RAC; drawing within area O(m?)—without prescribed point
set for the vertices. Their proof uses an algorithm of Papakostas and Tollis [PT00] for drawing
graphs such that each vertex is represented by an axis-aligned rectangle and each edge by an
L-shape, that is, an axis-aligned 1-bend polyline. Didimo et al. turn such a drawing into a RAC;-
drawing by replacing each rectangle by a point. In order to make the edges terminate at these
points, they add at most two bends per edge. We now show how to compute a RAC;-drawing of
the same size (assuming n € O(m))—although we are restricted to the given point set.

Recall that curve complexity 3 is actually necessary for finding a RAC drawing for arbitrary
graphs—even without a prescribed point set [AFK*12].

Theorem 6.4. Let G = (V,E) be a graph with n vertices and m edges and let S be a I-spaced
nxn grid point. Then G admits a RAC; embedding on S (with or without prescribed vertex—point
mapping) within area O ((n + m)?).

Proof. If the vertex—point mapping y: V — S is not given, let y be an arbitrary mapping. Let
V1,...,V, be an ordering of V so that p; := p(v;) has x-coordinate i. We construct a RAC;
drawing as follows. Each edge has exactly three bends and four straight-line segments. We
ensure that intersections involve only the two middle segments of edges, and that these middle
segments have only slope +1 or —1.

For an edge uv, we call the bend directly connected to u by a segment the u-bend, the bend
directly connected to v by a segment the v-bend, and the remaining bend the middle bend. We
start constructing the drawing by placing the v-bends for each vertex v, starting with v,,. We set
the y-coordinate y, of the first v,-bend to 0. Then, for i = n,n —1,...,1, observe that there are
exactly deg v; many v;-bends, which we place in column i+1 starting at y-coordinate y; below the
nxn grid using positions { (i+1, y;), (i+1, y;=2), (i+1, y;-4), ..., (i+1, y;—2-(degv;-1)}; see
Figure 6.9. We connect each vertex with its associated bends without introducing any intersection
since we stay inside the area between columns i and i + 1. We set y;_; = y; —2- (degv; —-1) - 3.
If v; has degree 0, we do not place bends but set y;_; = y; — 3 to avoid overlaps and crossings.
Then we continue with v;_;.

Since we place the bends from right to left and from top to bottom by moving our “pointer”
by L;- (or Manhattan) distances 2 or 4, each pair of these bends has even Manhattan distance.
To draw an edge uv, we first select a “free” u-bend position and a free v-bend position. The two
middle segments go to the right at slopes +1 and —1. Since u- and v-bend have even Manhattan
distance, the middle bend has integer coordinates, that is, it lies on a grid point.

Let u and v be two vertices with u-bend b,, of some edge uu’ and v-bend b, of some edge vv’,

respectively. The segments ub, and vb, cannot intersect; we want to see that the middle segment

starting at b, also cannot intersect vb,. Such an intersection can only occur if u lies to the left
of v and the middle segment lies above b,. In this case, b, lies above b, with a y-distance that is
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Figure 6.9: Construction of a RAC;  Figure 6.10: RAC; embedding of K as in the proof of
embedding. Theorem 6.4; some straight-line segments have been
replaced by circular arcs for the sake of clarity.

greater than their x-distance. As all middle segments have a slope of at most +1, b, lies above
the relevant middle segment, which, hence, cannot intersect vb,.

Therefore, an intersection can only occur between two middle segments, one with slope +1
and one with slope —1. Such segments always intersect at an angle of 90°.

It remains to prove the space limitation. Clearly, the drawing of any edge requires not more
horizontal than vertical space. On the other hand, for any vertex v, we need at most 2 - degv + 3
rows below the grid, resulting in a total vertical space requirement of O (7 + m). This completes
the proof. O

Figure 6.10 shows an embedding of K4 on a given point set created using our construction.

6.6 Concluding Remarks

In this chapter, we have opened an interesting new area: the intersection of point-set embed-
dability and drawings with crossings at large angles. We have done first steps in investigating
the problems RAC PSE and « AC PSE.

First, we have shown that the straight-line version ®AC, point-set embeddability is NP-hard
for any minimum crossing angle «. For the versions with bends, we have seen that any graph
allows an ¢ AC, embedding on any point set—even if the vertex—point mapping is prescribed.
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Chapter 6: Point-Set Embeddability and Large Crossing Angles

This is also true for « AC, PSE; in this case, however, we had to use a refined grid in order to be
able to place all bends on grid points.

In the RAC drawing style, we could show that any graph can be embedded on any point set
even with prescribed embedding using three bends per edge. Furthermore, the drawing area
requirement of the drawings of our algorithm is asymptotically worst-case optimal—even for
drawings without the restricted input point set.

Open Problems. While we did first steps in investigating RAC and a« AC PSE, there are also
several open problems.

First, for being able to find « AC, embeddings for all graphs and place the bends on grid
points, we refined the input grid. Is it also possible to find such embeddings without refining
the grid? This seems relatively unlikely, at least if we do not want to leave the bounding box of
the input points.

In the RAC setting, Di Giacomo et al. [GDLMI1] have shown that any n-vertex graph admits
a RAC,-drawing that uses area O(n*). Can we achieve the same bound in the PSE setting?

It is known that less than three bends per edge do not suffice for being able to draw all graphs
with right-angle crossings. Hence, it would be interesting to know the complexity of RAC,
PSE and RAC, PSE. In other words: Can we efficiently test whether a given graph has a RAC2
embedding (or RAC, embedding) on a given 1-spaced n x n grid point set? If this is the case,
can we minimize the drawing area?
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Chapter 7

Orthogonal Point-Set Embeddability on
the Grid

In this chapter, we investigate planar and nonplanar point-set embeddability in the orthogonal
drawing style on an input grid. In the orthogonal drawing style, edges must be drawn as polylines
consisting of horizontal and vertical straight-line segments. Hence, if we allow crossings, any
crossing angle will naturally be a right angle. Orthogonal drawings are often realized on a
grid where not only the vertices have to be placed on grid points, but also the bends of edges.
Therefore, all edge segments lie on grid lines. We also demand this for feasible orthogonal
point-set embeddings.

As our main-result, we show that orthogonal point set embeddability without prescribed
vertex—point mapping is NP-hard, no matter whether or not we enforce planarity and no matter
how many crossings we allow per edge. We also consider problem variants with prescribed map-
ping. While some cases are tractable, others are still NP-hard; in particular, planar orthogonal
point-set embeddability without any restriction on the number of bends is NP-hard. We also
consider the problems on 1-spaced point sets, where some variants become tractable.

7.1 Introduction

Orthogonal drawings are very popular. In the orthogonal drawing style, edges are drawn as
polylines, with the additional requirement that any segment of an edge is horizontal or vertical.
Hence, at any bend, there is a 90°-turn. Due to the schematized appearance, the orthogonal
drawing style is often used for technical visualizations such as UML diagrams or drawings of
electric circuits.

Also for orthogonal drawings, one may often want to place the vertices at specific positions.
Hence, point-set embeddability—as introduced in the previous chapter—is worth to be investi-
gated for the orthogonal drawing style. We will do this in this chapter. We will consider both
planar and nonplanar orthogonal point-set embeddability. Note that, if we do not insist on
planarity, we automatically get only right-angle crossings. Hence, nonplanar orthogonal PSE is
a restricted version of RAC PSE, which was presented in the previous chapter.

As before, we insist that all bends are placed at integer coordinates, that is, on grid points.
This implies that any edge segment lies on a grid line. Hence, we speak of orthogonal PSE on the
grid.
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Chapter 7: Orthogonal Point-Set Embeddability on the Grid

Problem Definition. The input of all problem variants are a graph G = (V, E) of maximum
degree four and a set S of n = |V| points on the integer grid. Note that we normally do not
require the point set to be 1-spaced. If we want to specify the precise position of each vertex, the
input also contains a mapping p; recall that the mapping is a bijection y: V' — P. We first define
nonplanar orthogonal point-set embeddability (NPO PSE).

Definition 7.1 (NPO,, PSE). Given an n-vertex graph G = (V, E) and a set S of n grid points,
determine whether there exists a bijection y: V' — S, and an orthogonal drawing of G so that
each vertex v is mapped to u(v) and each bend lies on integer coordinates. If such a drawing
exists and the largest number of bends per edge in the drawing is b, we say that G admits an
NPO,, embedding on S.

The variant planar orthogonal point-set embeddability (PO PSE) is defined analogously; the
only difference is that crossings are forbidden.

Definition 7.2 (PO, PSE). Given an n-vertex graph G = (V,E) and a set S of n grid points,
determine whether there exists a bijection y: V' — S, and a planar orthogonal drawing of G so
that each vertex v is mapped to y(v) and each bend of an edge lies on integer coordinates. If
such a drawing exists and the largest number of bends per edge in the drawing is b, we say that
G admits a PO, embedding on S.

We also use the variants POo, and NPO, PSE in which there is no restriction for the number
of bends. As for RAC PSE and ¢ AC PSE, we also speak of u-respecting embeddings if the
vertex—point mapping y is prescribed.

Some problem variants become easier for 1-spaced point sets. In this chapter, we normally do
not assume that the point set is 1-spaced.

Previous Work. In Section 6.1 we did already discuss previous work on point-set embed-
dability. The work of Rendl and Woeginger [RW93] is worth to mention again. Recall that they
considered straight-line orthogonal point-set embeddability, without prescribed mapping, for
matchings. They showed that, given a set S of # points in the plane, one can decide in O(nlogn)
time whether a perfect matching admits a NPO, embedding on S. For the planar version, they
showed that PO, PSE is NP-hard for matchings.

O’Rourke [O’R88] showed that a set of orthogonal polygons can uniquely be reconstructed
from its vertex set in O(nlogn) time. If the point set may also contain interior points of edges,
the problem does, however, become NP-hard as Rappaport showed [Rap86]; this also implies
hardness of PO, PSE without prescribed mapping.

Rahavan et al. [RCS86] considered a problem that is equivalent to PO; PSE with prescribed
mapping for perfect matchings; they were able to solve the problem in quadratic time. We will
later generalize their result to all graphs and also nonplanar embeddings.

A special case of orthogonal drawings are Manhattan-geodesic drawings which require that the
edges are shortest orthogonal connections, that is, monotone chains of axis-parallel line segments.
This convention was recently introduced by Katz et al. [KKRW10]. As one of their main results,
they proved that planar Manhattan-geodesic point-set embeddability with prescribed mapping
on the grid—that is, a restricted variant of PO, PSE—is NP-hard even for matchings. In the
setting without prescribed mapping, they proved that Manhattan-geodesic PSE is NP-hard even
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for subdivisions of cubic graphs. On the other hand, they provided an O(nlogn) decision
algorithm for the n-vertex cycle. Without the grid restriction, that is, if bends may be placed
anywhere, the problem can be solved efficiently for perfect matchings as the showed.

Di Giacomo et al. [GFF*13] investigated Manhattan-geodesic point-set embeddability of trees.
They showed that all caterpillars of maximum degree 3 are PO; embeddable on any 1-spaced
point set; moreover, they showed that all binary trees are NPO; embeddable on any such point
set, which was independently proven by us. The planar version PO, PSE of trees with one bend
per edge was also considered by Kano and Suzuki [KS12] who showed that such an embedding
can always be found for some special binary trees if the point set is 1-spaced. Kano and Suzuki
further showed that any cycle and any spider of maximum degree 4 admits a PO; embedding
on any l-spaced point set.

Chowdhury and Rahman [CR11] considered planar orthogonal PSE without the restriction
of bends and points to grid points; in this setting, edges can come arbitrarily close to each other.
They also did not restrict the number of bends per edge, that is, they worked with PO, drawings.
Both for 3-connected cubic planar graphs with Hamiltonian cycle and for 4-connected planar
graphs they gave algorithms for embedding graphs on any point set. In both cases, they could
show that the total number of bends is linear.

We also want to mention some work on planar orthogonal drawings without the restriction
to a given point set. As a well-known result, Tamassia [Tam87] showed how to efficiently find
an orthogonal drawing of a graph with a planar embedding that minimizes the total number
of bends with respect to the prescribed embedding. Note that this task is NP-hard if the
embedding is not prescribed as Garg and Tamassia showed [GTO01]. Tamassia’s approach is
based on first computing an extended embedding, called orthogonal representation in which
additional information on the turns in bends is stored. He then transforms the orthogonal
representation into an orthogonal drawing on the grid, that is, with our restriction that bends
lie on grid points, using a heuristic. Later, Patrignani [Pat01] showed that finding an orthogonal
embedding on the grid using minimum area is NP-hard for a planar graph with fixed orthogonal
representation; this problem is known as orthogonal compaction.

Bekos et al. [BKK*13] recently suggested improving the readability of nonplanar orthogonal
drawings by forcing segments with crossings to run diagonally. They argued that this helps the
viewer of such drawings to distinguish more easily between vertices and crossings. They called
the resulting drawing style the slanted orthogonal drawing style.

Our Contribution. We first focus on the problem versions with prescribed mapping. In this
setting, the straight-line versions PO, and NPO, PSE are trivial. For the versions with one bend
per edge, that is, PO; PSE and NPO; PSE, we develop an algorithm that decides embeddability
in quadratic time (Section 7.2). This generalizes a result of Raghavan et al. [RCS86] for matching
graphs.

We then move to problem versions with more bends (Section 7.3). We are able to show that
NPO; PSE and NPO; PSE with prescribed mapping are NP-hard even if the graph is a path. In
contrast, for 1-spaced point-sets we can always find an NPO, embedding for graphs of maximum
degree 3. For NPO; PSE this is even true for any graph of maximum degree 4. Moreover, We
show that finding an embedding of minimum area is NP-hard for paths even if all points lie on
the x-axis.
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In the planar setting, we show hardness of PO, PSE with prescribed mapping by modifying
a hardness proof for Manhattan-geodesic PSE by Katz et al. [KKRW10] (Section 7.4).

As our main result, we show that all problem variants are NP-hard if the mapping is not part
of the input, independent of the maximum number of bends and of whether or not crossing
are allowed (Section 7.5). For the problem versions with up to one bend per edge, that is, for
POy, POy, NPOy, and NPO, PSE, we can even strengthen this result and show hardness for
outerplanar graphs of maximum degree 3.

Finally, we show that, in the version without prescribed mapping, every n-vertex binary tree
admits a NPO, embedding on any 1-spaced point set (Section 7.6). We slightly extend this result
to graphs of maximum degree 3 that arise when replacing the vertices of a binary tree by cycles.

7.2 Orthogonal Point-Set Embeddability with at most One
Bend per Edge

We first consider the variant of orthogonal PSE with prescribed mapping, that is, we know the
exact position of each vertex. If we do not allow bends in edges, then the drawing is completely
determined by the positions of the vertices. Hence, the only possible drawing either is a feasible
PO, or NPO, drawing, or there is no such drawing. For deciding whether the drawing is a
feasible NPO, drawing, we just have to check that each edge is horizontal or vertical and does
not contain a vertex except for its two endvertices. For PO, we additionally have to check that
no pair of edges crosses. Hence, we can observe that the versions without bends are trivial.

Observation 7.1. PO, and NPO, PSE with prescribed mapping are trivial.

We now move to the versions in which at most one bend per edge is allowed. Suppose that we
have an edge e = (u,v). If u and v have either the same x-coordinate or the same y-coordinate,
then the only possibility for drawing e is to connect the vertices by a straight-line segment with
no bends. If, however, u and v have no common coordinate, we must draw the edge with one
bend; there are always two possibilities for connecting two vertices with one bend. Hence, the
problem is not trivial. However, we can still decide whether a feasible embedding exists. We
first show how to do this for the planar version PO, PSE.

Theorem 7.1. Let G be an n-vertex graph of maximum degree 4, let S be a set of n points on the
grid, and let y be a vertex—point mapping. We can decide in O(n*) time whether G admits a
y-respecting PO, embedding on S and, if it does, construct such an embedding within the same
time bound.

Proof. We use a 2SAT encoding to solve the problem. A similar approach was used by Raghavan
et al. [RCS86] to deal with the special version in which G is a matching. We first assume that
the point set is 1-spaced, that is, we never can draw an edge without a bend.

We associate a boolean variable x,,, with each edge uv of G. The two possible drawings of the
edge uv correspond to the two literals x,,, and —x,,. If § is 1-spaced, only drawings of edges
incident to the same vertex can possibly overlap.
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!
0W Uu

(a) Edges overlap in the current configuration. (b) Edges cross in the current configuration.

Figure 7.1: Overlapping and crossing pairs of orthogonal edges with one bend.

Now, we construct a 2SAT formula ¢ as follows. Consider a pair of drawings of edges uv
and uw that overlap; see Figure 71a. There are two literals, for instance, x,, and -x,,,, that
correspond to the two edge drawings. We add the clause

_‘(xuv A _‘xuw) = (_‘xuv \% xuw)

to ¢. This clause ensures that no satisfying truth assignment for ¢ can result in the forbidden
combination of drawings for uv and vw. We add such clauses for each pair of overlapping edge
drawings. Then, ¢ contains at most 7 - (;) -4 = O(n) clauses because G has maximum degree 4.

Next, suppose that the edges e = uv and e’ = u’v’ do not share a vertex. Clearly, the edges
cannot overlap, but they can cross in some of their four possible combinations of drawings; see
Figure 71b. Suppose that there is a pair of drawings of e and e’ that cross. Let, for example,
I, = —x, and I,» = x,/ be the literals corresponding to the edge drawings. Then, we add the
clause

“(leAle) = (=l v =le) = (X0 V =Xer).

The clause ensures that no satisfying truth assignment can lead to the forbidden combination of
drawings of e and e’. We add clauses of this type for each pair of edge drawings that result in a
crossing.

Now, we can drop the assumption that the point set is I-spaced. Assume that there is an edge
that must be drawn as a straight-line segment and contains another vertex in its interior. Then,
we immediately now that there is no feasible solution. The same holds if there is a pair of edges
e and ¢’ that must be drawn as straight-line segments and whose straight-line segments cross.
Therefore, we assume that both cases do not occur.

We do not add variables for straight-line edges because their drawing is fixed. However,
such edges may still cross or overlap with an edge e with one bend. Furthermore, a drawing of
some edge e with a bend may have another vertex in its interior. In both cases, we add a clause
(=l.) with a single literal, where [, is the literal corresponding to the drawing of e with the
infeasible configuration, in order to forbid the configuration. Finally, note that when checking
whether two edge drawings cross, we must now also check for overlaps instead of just proper
intersections.

As we added clauses forbidding each combination of edge drawings if and only if the combi-
nation causes an overlap or a crossing, it is easy to see that ¢ is satisfiable if and only if G has a
y-respecting PO, embedding on S.
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Recall that the maximum degree of G is 4. Hence, there are only O(#) edges. When adding
clauses, we checked any pair of edge drawings, and any pair of an edge drawing and a point. This
takes O(n?) time and results in O(n?) clauses. Since the satisfiability of a 2SAT formula can
be decided in time linear in the number of clauses [EIS76], we need O(n?) time for deciding
whether a PO, point-set embedding exists. If we find a satisfying truth assignment, we can
create a feasible drawing by choosing the drawing described by the truth value of the variable
corresponding to the edge, for each edge with a bend. O

Now, we can consider NPO; PSE. Here, we can basically reuse the 2SAT model developed for
the planar case. The only necessary modification is that we have to drop all clauses that model
crossings; we just keep clauses modeling overlaps. Hence, we get the following result.

Theorem 7.2. Let G be an n-vertex graph of maximum degree 4, let S be a set of n point on the
grid, and let y be a vertex—point mapping. We can decide in O(n*) time whether G admits a
y-respecting NPO, embedding on S and, if it does, construct such an embedding within the same
time bound.

Note that for 1-spaced point sets we just have to add clauses that model overlaps of edges
incident to the same vertex. Because there is just a linear number of such clauses, NPO, PSE
can be solved in linear time on 1-spaced point sets.

7.3 Orthogonal Point-Set Embeddability with Two or
Three Bends per Edge

In the previous section, we have seen that both PO; PSE and NPO, PSE with prescribed mapping
are easy. In contrast, we will show that NPO, PSE and NPO; PSE with prescribed mapping are
hard on general point sets. Then, we will see that any graph of maximum degree 4 allows an
NPO; embedding with prescribed mapping on any 1-spaced point set. For NPO, PSE, this is at
least true for graphs of maximum degree three.

7.3.1 General Point Sets

We will now show that NPO, PSE with prescribed mapping is NP-hard. Furthermore, this holds
even if we restrict the problem to graphs that are simple paths.

Theorem 7.3. NPO, PSE with prescribed mapping is NP-hard even for a single path.

Proof. We first show the result for a collection of paths. Our proof is by reduction from 3SAT
(compare Section 2.3). We model each variable of a given 3SAT instance by a horizontal path,
called variable path, along the x-axis where all edges are drawn with exactly two bends and one
horizontal segment above or below the x-axis. We can enforce this drawing style by placing
dummy nodes to the left and to the right of each point of the path, see Figure 7.2.

Note that there are exactly two drawing styles for the path depending on whether the leftmost
edge is drawn above or below the x-axis. We associate edges below the x-axis with true and
edges above the x-axis with false. For each variable path we number the edges from left to
right. Odd edges represent positive literals and even edges represent negated literals. We call
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I I

Figure 7.2: Representing a variable as an alternating path.

12 12

(@) =3 = falseand |, = true (b) Making the graph connected.

Figure 7.3: Drawing of the clause gadget for clause C = (I v I, v I3).

the five points used to start a new edge of the path a turn block. We place the necessary turn
blocks for the variable paths of all variables on the x-axis.

We now want to model a clause C = (I; v I, v I3) with literals I}, I, and I3 by inserting a
gadget around the x-axis. Depending on whether variable v; of literal I; is negated or unnegated,
we place either one or two turn blocks for v; before the path of v; enters the gadget for C. Note
that the edge of v; lying completely inside the gadget is the one modeling the literal, that is, if
we need an odd edge (for a positive literal) in the gadget, we have to enter C with an even edge
and vice versa. Figure 7.3a shows a clause gadget where two of the three literals are false.

Clearly, the gadget cannot be drawn if all three internal edges are above the x-axis, that is, if
all three literals are false. On the other hand, it can easily be checked that drawing the clause is
always possible if at least one internal edge is below the axis, that is, if the corresponding literal
is true.

Hence, there is a feasible NPO, embedding if and only if there is a satisfying truth assignment
for the 3SAT instance. Furthermore, the instance has linear size because we just need a constant
number of points and vertices for any clause.

So far, the NPO, PSE instance that we constructed consists of a collection of paths. We now
show how to modify graph and point set so that we can see that the problem is NP-hard even for
a single path. First, we connect the isolated edges used for gadgets and turn blocks as indicated
in Figure 7.3b. Second, we extend each variable path by an additional point directly next to the
left and right endpoint, respectively. Now, we have a collection of n + 1 paths, which we can
easily connect to a single path. It is easy to see that all new edges can be drawn above or on the
axis if the 3SAT instance is satisfiable. O
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Chapter 7: Orthogonal Point-Set Embeddability on the Grid

Now, consider again the variable paths that we used in the reduction. Recall that we blocked
any vertex of a variable path by placing vertices on the next grid points to the left and to the
right, so that any edge of the variable path can leave its vertices only vertically. Hence, it is not
possible to draw an edge of a variable path with three bends because this would involve leaving
one of the vertices to the left or to the right. Therefore, there is no feasible NPO3; embedding if
there is no feasible NPO, embedding.

Theorem 7.4. NPO; PSE with prescribed mapping is NP-hard even for a single path.

7.3.2 Area Minimization

Suppose that we already know that an embedding exists. Using a similar idea as in the previous
proof, we can show that finding an area-minimum embedding is NP-hard. Again, this holds
even for paths.

Theorem 7.5. Area-minimization for NPO, PSE with prescribed mapping is NP-hard even for a
single path and all points lying on the x-axis.

Proof. Our reduction is from NOT-ALL-EQUAL 3SAT; compare Section 2.3. Recall that an
instance of this version of 3SAT is satisfiable if and only if there exists a truth assignment to the
n variables so that each clause contains a literal that evaluates to true and a literal that evaluates
to false. As in the proof of Theorem 7.3, variables are modeled by variable paths, that is, by
alternating paths along the x-axis. Note that in our setting, minimizing the area is equivalent to
minimizing the height of the drawing.

Again, we can enforce the right combination of odd and even edges of the variable paths—
corresponding to unnegated or negated variables—by inserting turn blocks before entering a
clause gadget, if necessary. Our clause gadgets consist of two turn blocks for each of the three
literals of the clause, positioned symmetrically so that each path can leave the gadget on the
same row on which it entered the gadget.

As Figure 7.4 shows, a clause gadget can be drawn using at most five grid rows if and only
if not all literals have the same truth value; otherwise, six rows are needed. In the x-interval
spanned by the clause gadget there exist also n — 3 additional edges for the remaining variables.
To create a bottleneck for the height of the drawing, we add a matching of n — 2 edges that all
start immediately to the left of the clause gadget and end immediately right of it. Now, the clause
gadget always occupies a height of at least (n —3) + 6 + (n — 2) = 2n + L if all literals have the
same truth value.

To complete the proof, we have to show that a drawing of the graph with height at most 2n
exists if the given instance of NoT-ALL-EQuUAL 3SAT is satisfiable. Suppose that we have an
assignment of truth values to the variables such that there is no clause in which all literals have
the same value. The truth value of a variable decides whether the first edge of its variable path
is drawn above or below the x-axis. Then, the side is fixed for all other edges, too. For each
variable, we reserve one row above the axis, and one row below the axis, using the n rows directly
below and the n rows directly above the x-axis. We draw all edges of variable paths that lie not
completely inside a clause gadget in the reserved row on the respective side. This can be done
without any overlapping.

For an edge representing a literal of a clause, we may reuse the row of another literal to save a
row, as shown in Figure 74. By doing so there are at most #n —3 + 5 = n + 2 rows occupied inside
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@ — — (b)

Figure 7.4: Drawings of a clause gadget where (a) all literals have the same truth value or (b-d)
one literal has a different truth value than the others. In the given examples, in (a) all literals are
true and in (b-d) only one is false. The cases where two literals are false are symmetric to
(b-d) and the case where all literals are false is symmetric to (a).

each clause gadget. We can add the additional n — 2 matching edges using only the unoccupied
n — 2 rows. By this construction, we create a drawing where exactly the n rows directly above
and the n rows directly below the x-axis are occupied. This completes the reduction.

Again, it is easy to modify the construction so that the graph is a single path, in a similar
way as we did in the proof of Theorem 7.3. We just have to be careful when connecting the
two blocking dummy vertices inside a gadget to the left and to the right: The two edges for
connecting them need one additional row. Hence, they have to replace one of the matching
edges. O

Also for this proof, we can observe that allowing an additional bend per edge does not help
us when trying to find feasible NPO; embeddings. Hence, the problem remains NP-hard.

Theorem 7.6. Area-minimization for NPO; PSE with prescribed mapping is NP-hard even for a
single path and all points lying on the x-axis.

A Tractable Case. We now consider graphs of maximum degree one, that is, perfect match-
ings, in the same setting; that is, all vertices lie on the x-axis. The big difference to the case with
vertices of degree 2 is that we do not have to care about overlapping edge segments incident
to a vertex. Suppose that we have a feasible drawing that uses space below the x-axis. Take all
edges whose middle segment is in the bottommost row; we can redraw these edges such that the
middle segments are drawn one row above the topmost row used, that is, above the x-axis. By
repeating this, we get a drawing of the same area with no space used below the x-axis. Especially,
we can see that there always is an area-minimum embedding that does not use space below the
x-axis. We now show how we can minimize the area of such drawings.

Theorem 7.7. Let S be a set of n points on the x-axis, let G = (V, E) be a matching consisting of
n/2 edges, and let y be a vertex—point mapping. An area-minimum p-respecting NPO, embedding
of G on S can be computed in O(n*) time.
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Proof. If S contains pairs of neighboring points that correspond to edges of the given matching,
we connect each of these pairs by a (horizontal) straight-line segment. Furthermore, we can
restrict ourselves to drawings in which all middle segments of the remaining edges are placed
above the x-axis. Hence, for drawing any of the remaining edges of the matching, we must
connect its endpoints by two vertical segments leaving the x-axis to the top and a horizontal
middle segment that connects the vertical segments. As G is a matching, only horizontal
segments can overlap. In order to minimize the drawing area, we, thus, have to minimize the
number of rows, the layers, needed for drawing the middle segments of all edges without overlap.

Let G’ = (V',E") with V' = E; E’ contains an edge for each pair of edges of G that cannot
use the same layer. Assigning the edges of G to the minimum number of layers is equivalent to
coloring the vertices of G’ with the minimum number y’ of colors.

Let e, e, be two edges. The horizontal segment of e; cannot be drawn in the same layer as the
horizontal segment of e, if and only if the x-intervals of e; and e, intersect. Hence, the graph G’
is an interval graph: for an edge uv of G—a vertex of G'—the interval is [x(u(u)), x(u(v))].
Two edges must be placed in different layers if their intervals intersect. Thus, a coloring of G’
using y’ colors can be computed in O(|V'| +|E’|) = O(n?) time using the coloring algorithm
of Olariu for interval graphs [Ola91]. This coloring yields an assignment of the edges to the
minimum number of layers, which in turn corresponds to a minimum-area NPO, drawing: we
simply use the first y" horizontal grid lines immediately above the x-axis for the layers of the
horizontal edge segments. O

An Approximation. We can use the algorithm for matchings for deriving a 2-approximation
for graphs with vertices of degree 2; recall that finding an optimum solution is NP-hard even
for a single path. Let G = (V, E) be a connected graph of maximum degree 2, let S be a set of
n = |V| integer points on the x-axis, and let y be a vertex—point mapping. The graph G can
either be a cycle or a path. Recall that, in order to avoid overlaps we need to place two edges
incident to the same vertex on different sides of x-axis. Thus, if G is a cycle of odd length, then G
does not have an NPO, drawing. On the other hand, if G is a cycle of even length or a path,
then G can be drawn by alternately drawing the edges above and below the x-axis just as we did
for variable paths in the hardness proof. We can, therefore, decompose G into two matchings,
one of which we will draw above and one of which we will draw below the x-axis. Then we apply
the interval-graph technique from the proof of Theorem 7.7, draw each matching on its side of
the x-axis, and get a minimum-area NPO, embedding of G.

However, this does not work for unconnected graphs as the choice of placing edges above or
below the x-axis can be made independently for the connected components, although edges of
different connected components might interfere with each other regarding the layer assignment.
Instead, we suggest using the following 2-approximation algorithm.

Theorem 7.8. Let G = (V, E) be a graph of n vertices of maximum degree 2 and no cycles of odd
length, let S be a set of n grid points on the x-axis, and let u: V. — S be a mapping. Algorithm 71
computes a 2-approximation for a u-respecting NPO, embedding of minimum area.

Proof. 1t is easy to see that the algorithm places the edges such that no two edges incident to
the same vertex are placed on the same side of the x-axis. As the layering of a solution for the
1-sided problem in the split graph is used, there is also no overlapping of two middle segments.
Hence, the algorithm creates a y-respecting NPO, embedding.
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foreach node v with degv = 2 do
L Split v into two nodes vy, v, of degree 1.

Solve the 1-sided problem optimally on the split instance.
foreach connected component C (cycle or path) do
Choose some arbitrary edge e of C.
Draw e above the x-axis; for the rest of the edges of C the side is automatically fixed.
foreach edge e’ of C do
| Draw e’ in the layer defined by the optimum I-sided solution on its respective side.

Algorithm 7.1: 2-approximation for 2-sided area minimization.

Let OPT be the height of an optimum solution. We can construct a feasible solution for the
1-sided problem on the split graph by fixing one side of the x-axis, say the part above the axis,
and moving all middle segments below the axis to the fixed side above, occupying the same
number of new layers above the axis that were used below the axis. By this construction we get
a solution of height OPT for the I-sided problem. The height of this solution cannot be less than
the height of the optimum solution we used in the algorithm. As we doubled this solution, we
get an approximation factor of 2 for the 2-sided problem. O

7.3.3 1-Spaced Point Sets

We now move to 1-spaced point sets. Consider, for a moment, a specialized NPO, drawing
convention that requires the first and the last (of the three) segments of an edge to go in the
same direction—a bracket drawing. If we do not restrict the drawing area, then the problem
of finding a bracket embedding of a graph G on a 1-spaced set of # grid points is equivalent
to finding a 4-edge coloring of G. The idea is that the four colors encode the direction of the
first and last edge segment—going up, down, left, or right—and that the middle segment is
drawn sufficiently far away from the input point set. The edge coloring ensures that no two
edges incident to the same vertex overlap. By Vizing’s theorem [Viz64], we know any graph of
maximum degree 3 is 4-edge colorable. Using the algorithm of Skulrattanakulchai [Sku02], a
4-edge coloring can be found in linear time. Hence, we can always find a bracket drawing for
graphs of maximum degree 3. Let us summarize.

Theorem 7.9. Let G = (V, E) be a graph of n vertices with maximum degree 3, let S be a I-spaced
set of n grid points, and let y: V. — S be a mapping. We can find a y-respecting NPO, embedding
of G on S in O(n) time.

Note that there are graphs of maximum degree 4 that admit neither a 4-edge coloring nor a
bracket embedding, but still do admit an NPO, embedding, at least for some 1-spaced point
sets; see Figure 7.5 for such an embedding of K5. By checking many instances with the help of a
SAT solver, we did not find any example of a graph of maximum degree 4 and a 1-spaced point
set such that there is no NPO, embedding.

Note that the NPO, embeddings on 1-spaced point sets that our algorithm finds will always
use space outside of the bounding box of the input points. Furthermore, there are examples of a
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Figure 7.5: NPO, drawing of K5 on a diagonal Figure 7.6: Graph and mapping with no NPO,
point set. embedding on the point set within the bound-
ing box.

graph G, a 1-spaced set S of grid points, and a mapping y such that G does not admit an NPO,
point-set embedding on S with mapping u if we insist that the drawing lies within the bounding
box of S; see Figure 7.6. Hence, also here, area minimization is an interesting open problem.
Since our hardness proof for area minimization of NPO, embeddings used only points of the
x-axis, we do not know whether area minimization is still NP-hard for 1-spaced point sets.

Three Bends per Edge. If we allow four bends per edge, then it is clear that, for any graph
G = (V, E) of maximum degree 4, any 1-spaced set S of n grid points, and any mapping y, we
can find a y-respecting NPO, embedding of G on S: Any two points can be connected using at
most four bends even if we prescribe in which directions the edge leaves the points. If we want
to draw an edge with more than one bend, we can use the two segments incident to the vertices
to leave the bounding box of the input points since the point set is 1-spaced. The remaining
segments can be placed sufficiently far away from the input points to avoid overlaps.

We will now see that just three bends already suffice. To this end, we first partition the edges of
the graph into two sets A and B = E \ A so that we get two graphs G; = (V, A) and G, = (V, B)
of maximum degree 2; this is always possible as we will see.

First, we can assume that all vertices of G have even degree, that is, degree 2 or degree 4: If
this is not already the case, we add edges to G connecting vertices of odd degree until all vertices
have even degree; note that there is always an even number of vertices of odd degree. Once
there are only vertices of even degree, we can find a Eulerian cycle C in G. We now follow C
and alternately assign the edges to A and B. When we traverse a vertex v when following C,
one edge incident to v will be assigned to A and another one will be assigned to B. As v can be
traversed by C at most twice, its degree in G, and in G, can be at most two.

Now, we associate two adjacent directions with each subgraph, G; and G,; for example, we
can associate “up” and “right” with G; and “down” and “left” with G,. Using these directions
for leaving the vertices, we can draw the subgraphs individually; see Figure 7.7. Any connected
component of a subgraph is a path or a cycle. For drawing a path, or a cycle of even length, we
can, hence, alternately use the two directions assigned to the subgraph for drawing an edge with
two bends in the bracket style. If we want to draw a cycle of odd length, we also start the drawing
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Figure 7.7: The graph K5 drawn in the NPO; style; edges of G; and G, are drawn in black and
in (bold) red, respectively.

like this up to the last edge; the final edge has to use two adjacent directions, for instance up and
right. This is always possible with three bends. It is easy to see that, using the above steps, such
an embedding can be constructed in linear time. We just have to keep track of the remaining
vertices of odd degree when adding edges.

Proposition 7.1. Let G = (V,E) be a graph of n vertices with maximum degree 4, let S be a
I-spaced set of n grid points, and let u: V. — S be a mapping. G admits a y-respecting NPO;
embedding on S and we can find such an embedding in O(n) time.

Note that this result is in contrast to general point sets that are not 1-spaced, where the problem
is NP-hard; see Theorem 7.4.

7.4 Planar Orthogonal Point-Set Embeddability with
Unbounded Bend Numbers

We now turn to the planar case with no bound on the number of bends, that is, to PO, PSE
with prescribed mapping; this version allows the most freedom for routing the edges. Katz
et al. [KKRW10] have shown that Manhattan-geodesic PO, PSE with prescribed mapping is
NP-hard; in this setting, edges must be drawn as shortest orthogonal connections. We show
that general PO, PSE with prescribed mapping is also NP-hard by modifying the hardness
proof of Katz et al.

Theorem 7.10. PO., PSE with prescribed mapping is NP-hard even for matchings.

Proof. We sketch the proof of Katz et al. and show that, with our modifications, we get a feasible
reduction for general PO, . The reduction is from 3ParTITION Which is known to be strongly
NP-hard; compare Section 2.3. Let A = {4y, ..., a3, } be an instance of 3PARTITION which
consists of 3n positive integers. The goal is to decide whether there exists a partition of A into
nsets Ay, ..., A, of 3 numbers such that all A; have the same sum s =1/ - Z?Zl a;. Figure 7.8
shows an example for the reduction; our modifications are marked by dashed lines.
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Figure 7.8: Example showing an instance of our reduction from 3PARTITION to PO, PSE
with prescribed mapping with sets A; = {ay, as, a7}, A, = {ay, a3, as}, and A; = {a4, as, as }.
Differences to the construction of Katz et al. [KKRW10] are dashed.
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7.5 Orthogonal Point-Set Embeddability without Prescribed Mapping

There are two modifications. First, we replaced two single edges between —N and 0 and
between L and L + N by consecutive matching edges whose vertices fill all the grid points
that previously were spanned by the two edges. Second, we added a frame around the whole
construction; the frame is built the same way as the previous modification. It is easy to see that the
modified instance still works as desired by Katz et al. The edges between —N and 0 and between L
and L + N can only be drawn horizontally in the Manhattan-geodesic style. Furthermore, the
geodesic style prevents that any other edge could interfere with the frame around the instance.
Hence, if there is a feasible solution to 3PARTITION, we can find a (Manhattan-geodesic) PO
embedding as shown by Katz et al.

Now, suppose that we have a (not necessarily Manhattan-geodesic) PO, embedding. Even
without the Manhattan-geodesic style the dashed frame cannot be crossed because there are
no gaps between consecutive vertices. For any number a; there are two groups S; and T; of a;
points placed consecutively in the upper and lower half of the instance, which are connected by
a; matching edges; see Figure 7.8.

The upper and lower half are connected by exactly n gaps of width s each, that is, at most
sn = Y3", a; edges can leave the upper half. As all edges representing numbers are drawn, the
gaps are completely used by them. Therefore, the n — 1 black separator edges must completely
lie in the upper half and separate it into #n regions. Furthermore, any set S; of points must lie
completely in one region; the points of S; cannot be separated by an edge as they are diagonally

contiguous. Hence, the regions define a partition of A into sets A;, ..., A,. As the edges leaving
the region of A; completely fill a gap of width s, it follows that 37, .4, a; = s, which completes
the proof. O

Note that the ability to use arbitrarily many bends for edges is crucial for the reduction:
For creating a Manhattan-geodesic embedding—in the case that a feasible solution for the
3PARTITION instance exists—a large number of bends (linear in 7) is used for routing from the
upper to the lower half so that crossings and overlaps with other edges are avoided. Therefore,
we cannot conclude anything about the complexity of POy PSE for a constant k.

7.5 Orthogonal Point-Set Embeddability without
Prescribed Mapping

We now move to the problem variant in which the mapping from vertices to points is not part
of the input; that is, we can choose the mapping freely. Recall that there is always an NPO;
embedding (even with prescribed mapping) if the point set is 1-spaced. For general point sets,
however, we will show that all problem variants are NP-hard. We first focus on the versions
with up to one bend per edge, for which we can show hardness even for outerplanar graphs of
maximum degree 3.

Theorem 7.11. NPO, PSE, NPO, PSE, PO, PSE, and PO, PSE are NP-hard even for outerplanar
graphs of maximum degree 3.

Proof. We proof hardness by reduction from 3PARTITION and start with NPO, PSE. Let A =
{ay,...,as,} bean instance of 3PARTITION and let s = 1/n- 32", a;. We model this instance as
an instance of NPO; PSE.
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Figure 7.9: Graph G; representing the Figure 7.10: Point set S for the reduction from 3ParTI-
number a; consists of 4a; vertices in TION.
2a; — 1 connected 4-cycles.

Each number a; is modeled by a graph G; = (V;, E;) consisting of 4a; vertices in 2a; — 1
linked 4-cycles; see Figure 7.9. Note that the unary encoding of the numbers is possible due to
the strong NP-hardness of 3PARTITION. Let G = (V, E) be the graph consisting of the union of
all G;s and a set V' of n — 1 isolated vertices, thatis, V = V' uU3", V; and E = U}", E;.

Let S be the set of grid points shown in Figure 710, that is, S consists of n — 1 + 4ns points on
two consecutive horizontal grid lines; the points are arranged in n blocks Sy, ..., S, of 4s points
where within a block there is no gap, that is, no empty grid point; the blocks are split by isolated
points.

Suppose that A is a positive instance, that is, there is a feasible partition into A;, ..., A,. We
want to create an NPO; embedding of G on S. To this end, we iterate over the numbers a; with
increasing index i. Suppose that a; € A for some 1 < j < n. We want to place the drawing of G;
inside block S; occupying columns from left to right. We embed G; as indicated in Figure 7.9,
using the 2a; leftmost unoccupied columns of S;. As 37, 4, @i = s this is possible for all a;
without any overlap within a block. Hence, we get a feasible NPO, embedding of G on S (in
fact, even a POy embedding).

We now want to see that, if there is no feasible solution of the 3PARTITION instance A, then
no feasible embedding of G on § exists. To this end, we show that G; can only be embedded
in such a way that it lies completely inside a single block S;. Suppose that an embedding of G;
would place a vertex v on an isolated point p. Then it is easy to see that a 4-cycle in which v is
contained cannot be completed. On the other hand, it is also not possible to embed a 4-cycle
using points of two different blocks. Hence, each G; has to lie within a unique block S; and a
feasible embedding would yield a solution to the modeled instance of 3SAT. This completes the
proof for NPO,; PSE.

For creating a feasible drawing of a positive instance, we used only straight-line edges without
crossings. The reduction, therefore, also works if we restrict the drawing style to straight-line
edges and/or planar embeddings. O

Recall that PO, PSE is actually NP-hard even for matchings as Rendl and Woeginger [RW93]
have shown.

Next, we move to the versions in which more bends are allowed. The basic structure of our
reduction remains the same; some additional effort is necessary for making the idea work for
larger numbers of bends. Furthermore, we now need general graphs of maximum degree 4.

Theorem 7.12. NPO., PSE and PO, PSE, as well as NPOy PSE and POy PSE for any con-
stant k > 0, are NP-hard.
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Figure 711: Graph G; Figure 7.12: Point set for the reduction.
representing the num-
ber a; is a grid graph of

2a; x w vertices.
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Proof. Again, we prove hardness by reduction from 3ParTITION. We start with NPO,, PSE.
The remaining cases will follow as we use neither bends nor crossings in drawings for positive
instances of 3PARTITION. Let A = {ay,...,as,} be an instance of 3PARTITION and let s =
1/n-Y a;.

Each number a; is modeled by a grid graph G; = (V;, E;) consisting of 2a; x w vertices; see
Figure 711. Here, w > 2s is an odd number that is as small as possible but at least 23. Again, the
unary encoding of the numbers is possible due to the strong NP-completeness of 3PARTITION.
Let G = (V, E) be the graph consisting of the union of all G;s and a set V' of 5(n + 1) isolated
vertices, thatis, V.= V' uU}", Vi and E = U}, E;.

Let S be the set of grid points shown in Figure 7.12, that is, S consists of 2wsn +5(n + 1) points;
the points are arranged in # blocks Sy, ..., S, of 2ws points each. The blocks are split by groups
of 5 isolated points; similarly, 5 isolated points are placed to the left of S; and to the right of S,,,
respectively.

Suppose that A is a positive instance, that is, there is a feasible partition into A;,...,A,. We
want to create a feasible NPO., embedding of G on S. To this end, we iterate over the numbers
a; with increasing index i. Suppose that a; € A; for some set A ;. We want to place the drawing
of G; inside block S; occupying columns from left to right. We embed G; by drawing it as
indicated in Figure 711, using the 2a; leftmost unoccupied columns of §;. As 3., cs, @i = s this
is possible for all a; without any overlap. Hence, we get a feasible NPO., embedding of G on S
(in fact, even a planar orthogonal drawing without bends).
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We now want to see that, if there is an NPO., embedding of G on S, then there is a feasible
solution Ay, ..., A, of the 3PARTITION instance A. Suppose that an embedding of G; would
place a vertex v € V; on an isolated point p. Then it is easy to see that a 4-cycle in which v is
contained cannot be completed.

With two bends per edge it is possible to embed a single 4-cycle using points of two different
blocks. Due to the grid structure of both the graphs and the blocks, this is, however, still no
problem: Almost all 4-cycles will be embedded in the interior of blocks; there, the only possibility
for embedding the 4-cycles is following the grid structure. Hence, for example on the middle
horizontal line, a graph G; can be embedded either horizontally (as indicated in Figure 7.11) or
vertically.

We show that G; (or, more precisely, any part of G;) cannot be embedded vertically on the
middle horizontal line. Suppose that a part of G; is embedded in such a way. Then, we follow
the horizontal line to the left and to the right. This means, that we follow G; to the top and
to the bottom, as G; is embedded vertically. In both directions, G; cannot leave the block due
to the isolated point placed there. However, the block has only width 2s, while G; has height
w > 2s, a contradiction. Hence, the embedding of G; at the middle horizontal line has to be
horizontal. If we follow the embedding of G; upward and downward, we will reach the upper or
lower part of the block of points. Hence, more than half of the height of G; is contained in the
block, which can be the case for only one block. Hence, on the middle line, G; occurs only in
one block S;. On the other hand, due to the horizontal embedding of G;, there also has to be at
least one block S; that contains at least half of the height of G;. In this block S;, G; has to occur
on the middle horizontal line.

Therefore, the occurrences of the graphs G; on the middle horizontal line in blocks Sy, . .., S,
give rise to a partition of A into sets Aj, ..., A,. As the width of each block is 2s, this partition
is a feasible solution for the instance A of 3PARTITION. This completes the proof.

Recall that, as promised in the beginning, we did not use bends or crossings for creating
embeddings of positive instances. Hence, the reduction works also for the planar version and
for any limited number of bends. O

7.6 NPO, Embeddings on 1-Spaced Point Sets without
Prescribed Mapping

In Theorem 7.2, we have seen that NPO; PSE with prescribed mapping can be solved in quadratic
time. In contrast, the problem is NP-hard if the mapping is not part of the input (see Theorem 7.11).
If we restrict ourselves to 1-spaced point sets, this does not have to hold; recall that we used
many points with identical x- or y-coordinate in the hardness proof. Still, although we do not
have a hardness proof, even the restriction to 1-spaced point sets seem quite hard. In this section,
we will see that at least for some small classes of graphs there is an embedding for any 1-spaced
point set.

First, we can find an NPO; embedding for every n-vertex path or cycle on any 1-spaced set
of n grid points, even with prescribed mapping: we simply leave each point horizontally and
enter the next one vertically in the order prescribed by the mapping.

Without a given mapping, we can see that every binary tree has an NPO; embedding on every
1-spaced set of # grid points. The idea is to map the root of the tree to the point that has as many
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Figure 7.13: Illustrations for embedding binary trees.

points to its left as the number of nodes in the left subtree of the root; see Figure 7.13b. When
applying this idea recursively and drawing the first segment of the outgoing edges horizontally
(one to the left, one to the right) and the second segment vertically, no two edges overlap; see
Figure 7.13c. This was independently observed by Di Giacomo et al. [GFF*13]. We will extend
the result to a slightly larger class of graphs; first, we will, however, show the result for binary
trees in detail.

Theorem 7.13. Every binary tree T = (V, E) has an NPO, embedding on every 1-spaced set S
of n grid points.

Proof. Assume that T is rooted at an arbitrary vertex r of degree 1 or 2, and letv;,...,v, bea
numbering of the vertices of T given by a breadth-first-search traversal starting from r, that is,
vi=r.Fori=1,...,n,let T; be the subtree of T rooted at vertex v;; see Figure 7.13a.

Let p; be the point in S such that the vertical line ¢; through p; splits S; = S according
to Ty = T, that is, we split S into a set S, of | T»| points on its left and a set S; of |T3| points on
its right; see Figure 713b. Then, we recursively pick points p, and p; and lines ¢, and ¢; that
partition S, and S; according to T, and T5. We continue until we arrive at the leaves of T. This

process determines points py, ..., p, andlines ¢y,..., ¢, such that for i = 1,..., n point p; lies
on ¢;. We simply map vertex v; to point p; fori =1,...,n.
Consider an index i € {1, ..., n}. Our mapping makes sure that one subtree of T; is drawn

to the left of £; and the other is drawn to the right of £;. Let v; and v;,, be the children of v;.
We draw the edges (v;,v;) and (v;, vj1) such that their horizontal segments are both incident
to v;; see Figure 713c.

Since § is 1-spaced, no two edges can overlap except if they are incident to the same vertex. If
we direct the edges of T away from the root, then, by our drawing rule, in any vertex v; of T
the incoming edge arrives in p; with a vertical segment and the outgoing edges leave p; with
horizontal segments in opposite directions. Hence, the drawing is a feasible NPO; embedding.

O

An interesting question is whether crossings are actually necessary for binary trees. More
specifically, is it possible to find a PO, embedding for any binary tree on any I-spaced point set?
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Figure 7.14: Two embeddings of a binary tree on the same 1-spaced point set.
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Figure 7.15: Binary tree with no NPO, embedding.

Kano and Suzuki proved this for the special class of binary trees in which a simple path containing
all degree-3 vertices exists [KS12]; the general question is open. There is no counterexample, but
there are examples for which the output drawing of our algorithm cannot be made planar by
just modifying the edges without changing the mapping; see Figure 7.14.

In the proof of the previous theorem we exploited the fact that we could choose the vertex—
point mapping as needed. Figure 7.15 shows a 6-vertex binary tree that does not have an NPO,
embedding on the given point set if the vertex—point mapping is prescribed as indicated in the
drawing.

We will now generalize the result on binary trees to a slightly larger class of graphs. We
allow also binary trees whose vertices may be replaced by cycles. We still allow only maximum
degree 3. Hence, when replacing a vertex v by a cycle, we have to make sure that the edges
connecting v to its parent vertex and to its children are all incident to different vertices of the
cycle. The basic idea of the algorithm for finding an embedding stays the same. There will,
however, be several cases for embedding a cycle, depending on the configuration of the points.

Theorem 7.14. Let G = (V,E) be an n-vertex graph of maximum degree 3 that arises when
replacing some of the vertices of a binary tree by cycles and let S be a I-spaced set of n grid points.
Then, G admits an NPO, embedding on S.

Proof. The basic idea for extending the construction for binary trees to the new class of graphs is
to treat each cycle similar to a single vertex of a binary tree. We do this by reserving the adequate
number of consecutive columns for the vertices of the cycle in the middle of the drawing area
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for the current subtree when splitting into the drawing areas for the subtrees. The subtrees are
connected to the cycle by leaving one point to the right and one point to the left, respectively.
The most difficult part is to connect the reserved points to a cycle; we must be able to connect the
point representing the vertex that is the connector to the parent vertex (or cycle, respectively),
which was embedded before. To this end, we have to make sure that we can enter this point
using a vertical segment such that the connections to the left and to the right are still possible.

Let C with k := |C| > 3 be the cycle representing the root of the current subtree. Let u and v
be the vertices of C that connect C to its left and right child, respectively, and let z be the vertex
of C that connects C to its parent r. Let S’ = {py, ..., px } be the set of points reserved for C in
consecutive columns ordered from left to right. The edges connecting C to the left and right
subtrees leave the points representing u and v to the left and right, respectively, while the edge
connecting z to r enters z from above or below, depending on the y-coordinate of the point
chosen to represent z. Let y, be the y-coordinate of r. We analyze the different cases.

1. Vertex z has a neighbor w # u,vin Cand k > 5:

Set u(u) = p; and p(v) = py. Either above or below the horizontal line y = y, we
find two points p, p’ € S’ ~ {p1, px }- Let p be the one closer to the line y = y,. We set
u(z) = p, u(w) = p’ and draw the edge wz such that p is entered vertically. Then we can
complete the cycle such that each point is incident to a horizontal and a vertical segment;
see Figure 716a. It is easy to see that the connections to 7 and to the children can now be
drawn without overlap.

2. Vertex z has a neighbor w # u,vin C and k = 4:

Let C = (u,w,z,v); the other case is symmetric. If p, and p; both lie either below or
above y = y,, we can proceed as shown in case 1. If p, lies above r and p; below we have
two subcases depending on the position of p4:

a) p4 lies above ps: We can draw C as shown in Figure 7.16b.

b) pa lies below ps: Similarly to case 1, we can draw C such that each point is incident
to both a vertical and a horizontal segment as shown in Figure 7.16¢.

If p5 is above r and p; below, the cases are symmetric.

3. The two neighbors of z are u and v.

a) If there is a point p € S’ \ {py, px} that is vertically between p; and py, then we
set u(u) = p1, u(v) = px and p(z) = p and draw C as in Figure 716d, where the
second path connecting u and v can be drawn by having a vertical and a horizontal
segment incident to each point.

In the remaining cases, there is no such point vertically between p; and py.

b) If k > 5, we find, similar to case 1, two points p, p’ € S’ \ {pj, px} both below or
above r such that p is the one closer to the line y = y,. Again we set u(z) = p;
if p’ is left of p we set u(u) = p’ and u(v) = py; see Figure 716e. Otherwise, we
symmetrically set u(v) = p’ and u(u) = p;. Now we can draw the cycle without
overlap such that each point is incident to a vertical and a horizontal segment.
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Figure 7.16: Embedding of cycle C in the different cases.
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c) If k = 4, we have C = (u,z,v,w). If p, and p5 lie both above or below r we can
proceed as in the previous case. Otherwise, we know that both points are on different
sides of y = y,, and that p; and p, are both vertically between, below, or above p,
and p; (otherwise, we would be in case 3a).

i) In the first case, we set p(u) = p1, u(v) = pa, pu(z) = p, and y(w) = p; and
create the drawing of C as shown in Figure 7.16f.

ii) As above and below are symmetric, the other two cases can be handled as
shown in Figure 7.16g.

d) Finally, if k = 3, we set u(u) = py, u(v) = p3 and u(z) = p,, and simply draw C as
shown in Figure 7.16h. This completes the case analysis and, hence, the proof. [J

It would, of course, be nice to generalize these embeddability results for binary trees and
cycles (without given mapping) to larger classes of graphs, for example, outerplanar graphs of
maximum degree 3. This seems, however, quite difficult.

7.7 Concluding Remarks

We have investigated both planar and nonplanar orthogonal point-set embeddability on the
grid. For the version without prescribed mapping we have proven NP-hardness of all problem
variants.

In the setting with prescribed mapping we have given efficient algorithms for deciding PO,
PSE and NPO; PSE. We have further shown hardness for NPO, PSE and NPO; PSE with
prescribed mapping, and for their area-minimization variants. In contrast, we have seen that
any graph of maximum degree 4 can be embedded on any 1-spaced point set in the NPOj style.
For NPO,, this is the case at least for any graph of maximum degree 3. We have also shown
that PO, PSE, that is, planar orthogonal point-set embeddability, with prescribed mapping is
NP-hard even for matchings.

Open Problems. There are still several open problems; here, we give a list of the most
interesting ones.

o We know the complexity of NPO, PSE with prescribed mapping for k < 3: For k = 0 and
k =1 we have given eflicient solutions; for k = 2 and k = 3 we have shown hardness. What
happens if we allow more than three bends per edge? That is, what is the complexity of
NPOy, PSE and NPO,, PSE with prescribed mapping for k > 4?

o We have seen that PO, PSE with prescribed mapping is NP-hard. Is planar orthogonal
PSE hard even if we bound the number of bends, that is, is there some constant k such
that POy PSE with prescribed mapping is NP-hard?

o In the hardness proof for the problem versions without prescribed mapping we made
heavy use of vertices of degree 4. Do the problem variants stay NP-hard even for graphs
with smaller maximum degree? Recall that Rendl and Woeginger [RW93] showed that
PO, PSE is NP-hard even for matchings, that is, graphs of maximum degree 1. Are there
similar properties for other variants?
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Does every n-node binary tree have a PO, embedding, that is, a planar embedding with
one bend per edge, on any 1-spaced set of grid points? This was also posed as an open
question by Kano and Suzuki [KS12]. We have seen that it is true for the nonplanar
version.

Does every n-node ternary tree have an NPO; embedding on any 1-spaced set of grid
points? What about outerplanar graphs?

Can we efficiently decide whether a given graph has an NPO; embedding on a given
1-spaced set of grid points (without mapping)?

Does any graph of maximum degree 4 allow an NPO, embedding on any I-spaced set of
grid points? If this is the case, does it even hold for any prescribed mapping? If we cannot
always find an NPO, embedding, is NPO, PSE NP-hard even for 1-spaced point sets?
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Chapter 8

Algorithms for Labeling Focus Regions

When exploring maps or diagrams, there often is a focus region in which the user is currently
interested. Especially, there can be point sites within the focus region that must be labeled. This
problem occurs, for example, when the user of a mapping service wants to see the names of
restaurants or other POIs in a crowded downtown area but keep the overview over a larger area.

Our approach for this problem is to place the labels at the boundary of the focus region and
connect each site with its label by an edge, which is also called a leader. In this way, we move
labels from the focus region to the less valuable context region surrounding it. In order to make
the leader layout well readable, we present algorithms that rule out crossings between leaders
and optimize other characteristics such as total leader length and distance between labels. This
yields a new variant of the boundary labeling problem. Other than in traditional boundary
labeling, where leaders are usually schematized orthogonal or octilinear polylines, we focus on
leaders that are either straight-line segments or Bézier curves.

We also present algorithms that, given the sites, find a position of the focus region that
optimizes the above characteristics. Moreover, we consider a variant of the problem where we
have more sites than space for labels. In this situation, we assume that the sites are prioritized by
the user. Alternatively, we take a new facility-location perspective which yields a clustering of
the sites. We label one representative of each cluster. If the user wishes, we apply our approach
to the sites within a cluster, giving details on demand.

8.1 Introduction

Users of maps normally expect answers to specific queries, for example, where to find a good
restaurant or how to reach a certain destination. General-purpose topographic maps do not
answer such queries satisfactorily, and, thus, have become almost obsolete. Instead, Internet
mapping services such as Google Maps or Bing Maps offer interfaces that allow for user in-
teractions and sophisticated map visualization. Still, the existing systems do not fully support
focus-and-context visualization, which generally aims at emphasizing regions and themes of
interest while showing overview information for orientation.

In order to emphasize a focus region (for example, the user’s vicinity), many researchers have
proposed to (locally) increase the map scale in that region, which allows more details to be
presented. Different methods have been proposed to define a seamless transition between a
large-scale focus region and a small-scale context region, including fish-eye projections [YOT09]
and, for network maps, optimization-based graph drawing methods [HS11]. Another common
approach is to use portals [OWO00], that is, windows with detailed information superimposed
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on an overview map. Additionally, emphasis can be put on map objects by appropriately setting
their colors [ZR02].

Considering that the focus and the context region of a map serve different purposes, we
argue that special labeling techniques are needed for focus-and-context maps. Map space can
be regarded as a resource that is more expensive in the focus region; thus, text annotations and
iconic labels for points of interest (POIs) or sifes in the focus region should preferably be moved
to the context region. The difficulty herein is that correspondences between labels and sites
have to remain clear. One possibility to achieve this is to display such correspondences as linear
connections called visual links [SWS*11] or leaders [BKSWO07]. We use the latter term, which is
more common in the literature on map labeling.

In this chapter, we apply boundary labeling to focus-and-context maps. Boundary labeling
commonly means to place labels at the boundary of a map and, for each label, to draw a leader
that connects a point—called port—on the label boundary with the corresponding site in the
map. In a focus-and-context map, we suggest placing labels at the boundary of the focus region,
which may be given explicitly as part of a user’s query. This is the case in the scenario shown
in Figure 8.1, where a user specifies a circular region in order to query the restaurants in that
region. If the user does not specify a focus region, however, a visualization system should still
be able to produce a good focus-and-context map. As a general rule, focus should be put on
regions with many interesting sites. Taking this rule into account, we develop also algorithms
that determine a circular focus region of given radius such that the maximum number of sites is
labeled given our boundary-labeling model.

The general problem with boundary labeling is that the leaders produce additional clutter
and that the correspondence between labels and sites may become unclear, especially if leaders
are zig-zagging, crossing each other, long, or close to each other. Therefore, we designed our
boundary-labeling algorithms to avoid such unfavorable leader properties. For example, we
consider a variant of the labeling problem where the leaders are straight-line segments, crossings
are forbidden, and the total length of all leaders is minimized. We also present algorithms that
visually improve solutions to this problem variant by transforming the straight-line segments
into Bézier curves that have at most one inflection point. This allows us to control the slope of a
leader in its site and port, for example, to ensure that a leader connects horizontally or vertically
to its port and thus has the same slope as the boundary of its adjoining label. According to
the Gestalt criterion of good continuation [Wer38] this is favorable, as it allows map users to
understand the label-site correspondences more easily.

Maps often contain too many points of interest to label them all. Therefore, in addition to
choosing label positions and drawing leaders, we have to select a subset of the sites that will
become labeled. An approach that is common in the literature on map labeling is to search for a
maximum-cardinality set of sites that allows for a feasible labeling. If we have space for k labels
at the boundary of the focus region, however, we can select any subset of k sites to become
labeled. Among these solutions we may search for a labeling with short leaders, but this means
that mainly sites at the boundary of the focus region will become selected. This is unfavorable,
since normally users are particularly interested in the center of the focus region. Moreover, we
argue that the selected subset should reflect the spatial distribution of all sites. If the input set
contains a dense cluster (for example, a city center with many restaurants), the selected subset
should also contain a cluster (which may be less dense) in the same area. In order to take this
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8.1 Introduction

(a) A map of Seattle with 86 restau-
rants (black dots).

(b) A user selects a focus region. At
the boundary of that region (green
circle), labels are placed for a selec-
tion of the restaurants; curved lines
connect the labels with the actual
sites of the restaurants. Every la-
beled restaurant represents a cluster
of restaurants, which we indicate by
drawing a stack of rectangles with
the label on top.

(c) When clicking a label, a detailed
labeling for the corresponding clus-
ter pops up.

Figure 8.1: Interactive use case of labeling focus regions for exploring restaurants in Seattle.
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additional criterion into account, we suggest a novel approach by modeling map labeling as a
facility location problem.

Our Contribution. Our contribution is as follows.

o We discuss two leader models; the radial-leader model (see Figure 8.2a) and the free-
leader model (see Figure 8.2b) ! and formally state the corresponding layout problems
(Section 8.2). While the problems concerning the free-leader model can be reduced
to specific matching problems on graphs for which efficient algorithms are known, we
present new, efficient algorithmic solutions to our problems in the radial-leader model
(Section 8.3). Other than Plaisant and Fekete [FP99] who have used radial leaders before
(see Figure 8.3 and the discussion of previous work), our leaders do not bend since we
place the labels directly at the boundary of the focus region. In order to strengthen the
visual connection between labels and objects, we deliberately decided not to place our
labels as blocks of left-aligned text, but rather in the immediate vicinity of the focus region.
While the approach of Plaisant and Fekete is meant for interactive exploration, ours also
makes sense in a static environment where the aesthetic quality of the leader and label
placement is crucial. For example, we optimize the layout in case there are more sites
than space for labels. We are particularly interested in the algorithmic challenges behind
these optimization problems.

« Among the algorithms for the radial-leader model, we also address a new optimization
goal for circular focus regions: given the region’s radius, we find a position of the region
that maximizes the number of sites whose labels can be placed—without overlap—at the
region’s boundary; see Section 8.3.3.

o We present two extensions (Section 8.4) that can be applied to our models, namely a
facility-location model that allows us to simultaneously cluster and label a set of sites
and a postprocessing for (non-crossing) straight-line leaders that transforms them into
(non-crossing) Bézier curves; see Figure 8.2 (bottom). To the best of our knowledge,
neither clustering nor Bézier curves have been used for (boundary) labeling, so far.

o We use the clustering from extension (i) to partition the focus region into subregions,
one for each cluster. If the user clicks on the label that corresponds to the cluster (or into
the subregion), we display the subregion enlarged and apply our labeling method to the
sites in the subregion; see Figure 8.1c and Section 8.4.1.

We present results of some experiments that we performed with implementations of our algo-
rithms; the experiments and results are described in various sections of this chapter.

Previous Work. Labeling geographic maps is a central problem in cartography. Labeling
maps manually is a tedious task that, in the 1980’s, was estimated to consume 50% of a map’s
production time [Mor80]. Typically, a label should not occlude features of the image and it
should not overlap with other labels. In map labeling, due to the small size of labels (usually a

1A video demo showing both models is available under http: //wwwi . informatik.uni-wuerzburg.de/pub/
videos/infovis2012.mp4 and http://vimeo.com/user12598215/circlelab.
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(c) Radial-leader model, Bézier leaders.

8.1 Introduction
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(b) Free-leader model, straight-line leaders.
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(d) Free-leader model, Bézier leaders.

Figure 8.2: Example labelings with our two leader models, top: drawn as straight-line segments,

bottom: with Bézier postprocessing applied to the above straight-line solutions.
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Figure 8.3: Examples of excentric labeling. Clipped figures from [FP98].

single word/name) and our ability to control the feature density, we usually manage to place
the labels on the map so they are in the immediate vicinity of the feature they describe. Map
labeling has been studied in computer science for more than two decades [FW91]. A survey on
algorithmic map labeling and an extensive bibliography are given by Neyer [Ney01] and Wolft
and Strijk [WS], respectively. However, internal labeling is not feasible when large labels are
employed, a typical situation in technical drawings and medical atlases; this also happens when
trying to label sites in a dense focus region.

Traditionally, labels are placed directly on the map; leaders are used very rarely. A sim-
ple model to establish a relationship between internal labels and sites is the four-position
model [CMS95, WWKSO01]. Here a label is represented by a rectangular box and the label is
placed such that one of the four rectangle corners coincides with the associated site.

The idea to label data along a circular boundary has been applied before. The excentric
labeling approach by Fekete and Plaisant [FP99] extends the infotip paradigm to label dense
maps interactively. They draw a circular focus region of fixed radius around the current cursor
position, and label the sites that fall into the circle. Labels are left-aligned in one or two stacks to
the left and/or right of the circle, depending on where space is available. The labels are connected
to the sites by leaders. For drawing the leaders, Fekete and Plaisant present two main approaches.
In the first approach, they insist on ordering the labels within each stack according to the vertical
order of the corresponding sites. As a result, leaders may cross; see Figure 8.3a. In the second
approach, a leader goes from a site via its projection on the focus circle and then, in the case of a
right stack, to the mid-point of a left label edge. In the case of a left stack, a third segment may be
needed in order to reach the right label edge of a very short label without introducing crossings
between the leader of that label and other labels [FP99]. The authors call this approach the
non-crossing or radial approach. Obviously, the higher the label stacks are the smaller the angles
between the leaders get. If more sites lie in the focus region than can be labeled, an arbitrary
subset of representatives is chosen and labeled; additionally, the number of sites in the disk is
displayed (see Figure 8.3a).
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Figure 8.4: Different leader styles for boundary labeling.

Fekete and Plaisant recommend the first approach as a default; the focus of their work was on
interactive speed and on a comparison to statically labeled maps where users had to zoom and
pan in order to find specific sites. They conducted a user study (with eight subjects) that showed
that users completed the task using interactive labeling nearly twice as fast as when using static
labeling. Fekete and Plaisant did not specify the asymptotic running times of their approaches,
but it is easy to see that they run in O(nlogn) time, where # is the number of points inside the
focus region.

Bertini et al. [BRL09] presented extensions for excentric labeling. They added scrolling
through lists of labels if the stacks were to large. Furthermore, they developed an automatic
adjustment of the size of the focus region based on the density of sites; they also implemented
filtering, sorting of labels, and inheritance of visual features. Bertini et al. also conducted a user
study whose main result was that users could intuitively use most of the implemented functions;
only scrolling through lists of labels caused problems for some participants of the study.

Bekos et al. [BKSW07, BKSW05] introduced boundary labeling for labeling static maps. In
this model, the sites are contained in a rectangular focus region and labels are placed outside
the rectangle. The model supports three types of leaders: straight-line segments and orthogonal
polylines with one or two bends per line, called the po- and the opo-style, respectively; see
Figure 8.4. Labels are either placed along one, two or all four sides of the boundary rectangle.
The authors show how to construct a non-crossing labeling with minimum total leader length
or minimum number of bends for some variants of their model.

Later, other variants of boundary labeling have been investigated. Bekos et al. [BKNSI10]
introduced octilinear leaders, including, for instance, the do-style; see Figure 8.4d. In this style,
any leader is drawn as an octilinear edge, consisting of a horizontal segment incident to the
label and a diagonal segment incident to the site.

Benkert et al. [BHKNO09] presented a polynomial-time algorithm for finding boundary label-
ings in the po- or do-style (see Figure 8.4b and Figure 8.4d, respectively) that allows to optimize
quality measures for the leaders, for example, the total leader length or the number of bends.
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Their approach is flexible enough to work with general quality measures for a single leader, but
cannot take the interaction between different leaders into account.

Bekos et al. [BKPSI1] studied techniques for combining boundary labels with interior labels
placed on the map. In this setting, one has to make sure that labels do not intersect interior
labels. As, in their model, sites could be labeled with either an interior or a boundary label,
intersections could be avoided by moving intersected interior labels to the boundary.

Most of the previous work has been focused on placing the labels either on just one side
of a rectangular focus regions, or on two opposite sides. In a recent work, Kindermann et
al. [KNR*13] gave algorithms for po-leaders with labels placed on two adjacent sides of the
focus region.

Gemsa et al. [GHNI1] presented an algorithm targeted to label panorama images using vertical
straight-line leaders. They place labels in several layers and present algorithms that minimize
the number of layers needed for labeling all sites or that maximize the number of sites that can
be labeled using a fixed number of layers.

A survey article by Kaufmann [Kau09] presents the different boundary labeling models that
have been studied in the literature.

Hartmann et al. [HGASO05] introduced a more general model for boundary labeling. In
particular, they suggested a classification scheme that takes also more complex boundary shapes
of the map into account, that is, the boundary can be a circle or more generally an arbitrary
silhouette. A first algorithm for the silhouette scenario (based on the force-directed approach)
is due to Ali et al. [AHSO05].

Recently, Speckmann and Verbeek [SV10] introduced necklace maps to visualize statistical
data on geographic domains. The size of the label is used to encode the value of the statistical
variable and the labels are placed on circles or silhouettes. Necklace maps do not use leaders,
but establish relations between geographic objects and labels by matching colors and proximity.
This idea is effective if the geographic objects to be labeled have some spacial extent; here, in
contrast, we assume that we are given point data.

8.2 Problem Statements and Motivations

We study several incarnations of the problem of labeling focus regions. We distinguish two
general models. In the first model, the focus region is a disk and each leader is a section of
a ray that emanates from the center of the disk and connects a site to the boundary of the
focus region; see Figure 8.2a. We refer to this model as the radial-leader model and discuss it in
Section 8.2.1. Note that, if no two sites lie on the same ray, leaders are disjoint by construction.
In the second model, the free-leader model (see Figure 8.2b and Section 8.2.2), every port is
placed on a prescribed position on the boundary of the focus region. We do not insist on any
specific direction of the leaders; instead, we explicitly require leaders to not cross each other.
Note that, in the free-leader model, there is no need to restrict oneself to circular focus regions.
In fact, all results in this model hold for convex focus regions.

The choice of the model does not necessarily determine the orientation of the text labels.
We think, however, that the radial-leader model suits radially oriented labels particularly well.
In contrast, we suggest using the free-leader model in conjunction with horizontally oriented
labels. For examples, see Figure 8.2 (top).
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Figure 8.5: In a disk D = (¢, r), point s, is connected by a leader to the port p, of its label € on
the boundary 0D. The points s and s are in conflict since < scs’ < a.

8.2.1 Radial Leaders

For the radial-leader model, we assume that the focus region is a disk D = (¢, r) with center ¢
and radius r. Given a label ¢, we define the port p, of € by radially projecting the site s, labeled
by € onto the boundary 0D of D, that is, p, is the intersection of dD with the ray that emanates
from ¢ and goes through s,; see Figure 8.5.

Clearly, this model makes it difficult to accommodate labels if the projections of several sites
lie in a very small part of 0D. We model this by saying that two sites s and s’ are in conflict if
the angle < scs’ is smaller than a predefined value « > 0; see Figure 8.5. Our aim is to find (and
label) a maximum-cardinality subset of the sites that is conflict-free, in the sense that no two
sites in the subset are in conflict.

This model makes sense, for example, if (as in Figure 8.2a) each label contains one line of
text and has the same orientation as its leader. In this case each label ¢ is a unit-height rectangle
(which may contain some text), the lower and upper edges of € have the same slope as the leader
of ¢, and the port of ¢ is the midpoint of either the left or right edge of £. Correspondences
between labels and sites are particularly easy to comprehend in this case, since the leaders can
be perceived as continuations of their labels. On the downside, the user has to read rotated text.
According to a user study of Wigdor and Balakrishnan [WB05], however, rotating a text by not
more than 90° leads to only a small decrease in the reading speed of users and only a small
increase in the number of reading errors if the text consists of a single word with five to six
letters. Therefore, we suggest using this model if the label texts are not much longer than this.

We now formally define the label maximization problem with given center.

Problem 8.1 (Label maximization with given center).
Input:  Disk D = (c,r), set S ¢ D of n point sites, angle a.
Output:  Maximum-cardinality conflict-free subset S’ C S, that is, the angle formed by any two

rays that emanate from ¢ and go through points in S’ is at least o« and |S'| is maximized.

In practice, the radius r of D and the fixed font size determine the angle a.
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Next, we take priorities among the sites into account, which occur, for example, if some sites
match a user query better than others. In the literature on map labeling, this is commonly
modeled by defining weights for the sites and by selecting a maximum-weight set of sites that
allows a feasible labeling. The weighted version of the problem is defined as follows.

Problem 8.2 (Weighted label maximization with given center).
Input: Disk D = (c,r), set S ¢ D of n point sites, weight function w:S — R*, angle a.
Output:  Conflict-free subset S’ C S such that the total weight w(S') = ¥ ..s» w(s) is maximized.

For the remaining two variants of the radial-leader model, we support the user by finding a
good position of the focus region. In many applications the focus is specified by a fixed set of
sites rather than by a fixed focus region. In order to make sure that as much useful information
as possible is displayed, we place the focus region such that it admits a maximum-cardinality
conflict-free subset of sites.

Problem 8.3 (Label maximization with variable center position).

Input: Set S c R? of n point sites, angle a.

Output: ~ Center c € R*\ S, maximum-cardinality subset S’ C S that is conflict-free with respect
to ¢ and a.

For this problem, we also consider the weighted version, which we define analogously to
Problem 8.2.

As the last problem of this section we ask for the disk center ¢, which maximizes the minimum
angular separation of the sites with respect to c.

Problem 8.4 (Sector maximization).

Input: Set S ¢ R? of n point sites.

Output:  Center c € R* \ S and angle a such that S is conflict-free with respect to a and « is the
largest angle with this property.

Our main motivation for studying Problem 8.4 stems from the case where all sites need to be
labeled. Note that such a labeling exists if we make the radius r of the focus disk large enough.
Therefore, we can assume that a small separating angle « suffices for having disjoint labels. In
practice, however, we cannot arbitrarily increase r since the available space is limited. Therefore,
it is reasonable to ask for the smallest disk that allows us to label all sites. If « is the smallest
angle formed by two rays emanating from ¢ and going through two sites in S, then r has to be
greater than 1/a—assuming that labels have height 1. Therefore, minimizing the radius of the
disk is equivalent to maximizing the smallest angle between any two rays.

Problem 8.4 also occurs when we have a solution to Problem 8.3, but two labels may be
unnecessarily close to each other, even though they do not intersect. In this case we could
relocate the focus disk to obtain a more balanced spacing between the labels.

Note that maximizing the smallest angle may be in conflict with minimizing the size of the
focus disk.

Experiment 8.1. For n =5,...,20, we selected a sample of # random points under normal
distribution and computed the radius of the disk maximizing the smallest angle between leaders
and covering all sites—the smallest-angle focus disk—and the radius of the smallest enclosing
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(a) Radius of the smallest-angle focus disk relative (b) Average of the minimum angle relative to 360° /n
to the smallest enclosing disk as measured in of the smallest-angle focus disk (blue, upper),
Experiment 8.1. The (upper) blue line shows the center of gravity disk (black, middle), and min-
average ratio; the (lower) green line depicts the imum enclosing disk (red, lower) in terms of n
standard deviation in terms of the point set size n. as recorded in Experiment 8.2.

Figure 8.6: Plots showing the results of Experiments 8.1 and 8.2.

disk. For each instance size, we repeated the experiment 50 times. The result was that the radius
for the smallest-angle focus disk was on average only 30% larger than the radius of the smallest
enclosing disk, with a standard deviation of about 20% (see Figure 8.6a).

Using the smallest enclosing disk as the focus disk can result in arbitrarily bad angles. To
see this, note that we can add a site near the disk center that introduces a small angle between
leaders, but will not affect the minimum enclosing disk. Another heuristic for locating the
focus disk is the center of gravity. This is motivated by distributing the sites inside the focus
disk evenly. We can, however, add two sites that preserve the center of gravity but introduce
arbitrarily small angles.

Experiment 8.2. We repeated Experiment 8.1, but this time we computed the smallest angle
between leaders of the smallest-angle focus disk, the smallest enclosing disk, and the center of
gravity disk (see Figure 8.6b). We observed that, on average, the angle of the smallest-angle disk
is twice as large as the angle of the two other disks. This ratio gets even larger for larger point
sets.

We repeated Experiments 8.1 and 8.2 with uniformly distributed point sets and skewed point
sets in which all points lie close to a straight-line segment (that is, we defined the x-coordinates
to be uniformly distributed in a small interval and the y-coordinates to be normally distributed).
The results (again 50 samples for n = 5,...,20) were very similar to what we recorded in
Experiments 8.1 and 8.2.

Due to our theoretical considerations and the outcome of our experiments we are convinced
that the computationally harder sector-maximization technique (see Section 8.3.4) is worth
being applied when selecting the focus disk. Figure 8.7 shows a point set with focus disks
obtained by the three strategies we just discussed.
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(ang) (med) (cog)

Figure 8.7: An example point set with disk that maximizes the minimum angle between leaders
(ang). For comparison: the minimum enclosing disk (med) and the disk centered at the center
of gravity (cog). All three disks are drawn with the same radius.

8.2.2 Free Leaders

In the free-leader model we do not require that the focus region is a disk, but we assume that it
is a (connected) convex region F. As in the radial-leader model, the focus region contains the
sites that we want to label and the leaders are straight-line segments, each of which connects a
site with a port on 0F. The locations of the ports on 0F may be given as a set P. Alternatively,
in case P is not given, we suggest computing the port locations as shown in Figure 8.8.

The method applied in Figure 8.8 requires a vertical distance Ay € R* between two consecutive
ports on F as input, that is, the spacing between two lines of text. Any intersection between a
line and the boundary dF of the focus region defines the location of a label port in the set P.
Usually, we define the set of lines such that no line intersects the uppermost or lowermost point
of F—due to their prominent positions, labels placed at such points would be perceived to
dominate other labels, which we normally want to avoid. In any case, setting Ay to a value
greater than twice the height of a label and using the classical four-position point-labeling
model [BKSWO07] that allows any corner of a label to coincide with the label’s port, we can
always place the labels such that they intersect neither each other nor the interior of F. As
the focus region is convex and contains all sites in its interior, every straight-line segment that
connects a port with a site lies completely in F. Hence, intersections between leaders and labels
(apart from label ports) are impossible. We have to ensure, however, that no two leaders cross.

We first consider the case that the number of sites and the number of locations for label ports
are equal, that is, |S| = |P|. In this case, the core question is which sites are assigned to which
ports. This can be formalized using graph-theoretic terms. We define the graph G = (SUP, Sx P)
that contains a vertex for each site, a vertex for each port location, and an edge for each pair of a
site and a port location. Then a labeling is defined by a perfect matching in G, that is, a subset M
of § x P containing exactly one edge incident to each vertex; each edge {s, p} € M defines a
leader between a site s and a port p.

Not all perfect matchings in G yield equally good labelings; some may actually imply crossing
leaders. To reduce visual clutter, we prefer short leaders. Let d(s, p) be the Euclidean distance
of points s and p in the plane. We minimize the sum of the distances over all matched pairs of a
site and a port location.
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Figure 8.8: Construction of port locations (black Figure 8.9: A crossing of two leaders (solid
dots) for a convex focus region F based on a set of edges) can always be resolved (dashed
horizontal lines (dashed) with vertical spacing Ay. edges) while reducing the total leader
The gray rectangles represent labels. length.

Problem 8.5 (Minimum distance port assignment).

Input: Convex region F, set S ¢ F of n sites, set P c 0F of n ports.

Output:  Perfect matching M in the graph G = (S U P,S x P) such that (s pyep d(s, p) is
minimized and no two leaders defined by edges in M cross.

To simplify our discussion, we observe that the explicit requirement for non-crossing leaders
can be dropped. Even without that requirement, every optimal solution to Problem 8.5 is
crossing-free as Bekos et al. [BKSW07] observed.

Observation 8.1 ([BKSWO07]). Every perfect matching M in G = (S U P, S x P) that minimizes
Y (s.pyem d(s, p) defines a crossing-free labeling.

To see that this is true, we consider two leaders L, = {p1,s1} and L, = {p,, s, } that cross each
other in point x; see Figure 8.9. Since d(p1,s1) = d(p1,x) + d(x,51), d(p2,s2) = d(p2, x) +
d(x,s,), and d satisfies the triangle inequality, both leaders have total length

d(pi,x)+d(x,s) +d(p2,x) +d(x,s,)
= (d(p1,x) +d(x,52)) + (d(p2, x) +d(x,51))
< d(pl,Sz) + d(pz,Sl).

Thus, replacing L; and L, by the leaders {p;, s>} and {p2, s1} reduces the total leader length.

Due to Observation 8.1, Problem 8.5 reduces to the problem of finding a minimum-weight
perfect matching in a bipartite graph whose nodes represent points in R* and whose edges have
weights representing Euclidean distances; for any ¢ > 0, this problem can be solved in O (n?**¢)
time [AES99].

As discussed in Section 8.2.1, we often cannot label all sites. Interestingly, if we are given n
sites and k < n port locations, we can find a crossing-free labeling for any subset S’ € S of k sites.
This also follows from Observation 8.1. If the sites are weighted and we aim at maximizing the
total weight of all labeled sites, we simply have to select the k sites of largest weights, which can
be done in O(n) time [BFP*73], and can then apply the algorithm for Problem 8.5 to these sites.
This requires O(n + k***) time in total. If there are multiple sites of the same weight, however,
selecting an arbitrary subset S’ of maximum weight can result in unnecessarily long leaders.

Generally, we may even want to relax our requirement for a maximum-weight set of sites to
achieve a labeling with shorter leaders, for example, to avoid that clusters of heavy-weighted
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sites result in clusters of sites labeled with long leaders. In order to define the trade-off between
our preferences for sites of high weights and leaders of short length, we introduce a weight factor
Ae[0,1].

Problem 8.6 (Best trade-off between weight and leader length).

Input: Convex region F, set S c F of n sites with weights w: S — R*, set P c 0F of k ports,
weight factor A € [0,1].

Output:  Matching M with |[M| = min{k, n} in the graph G = (SU P, S x P) that maximizes
the objective A ¢ pyem w(s) = (L= 1) Xis prem d(s, p)-

Note that we do not require anymore that the matching is perfect, thus allowing some sites or
port locations to remain unmatched. By requiring [M| = min{k, n}, however, we ensure that
the largest possible number of matches is selected—which is still true if there are fewer sites
than locations for ports.

For A < 1we are sure that, if we reduce the leader length and keep the same set of sites labeled,
the objective always increases. Hence, by Observation 8.1, every optimal solution to Problem 8.6
is free of crossings. For A = 1 we can find an optimal solution without crossings by selecting a
set S’ ¢ S of highest weight that contains min{k, n} sites and labeling S with minimum leader
length (by solving Problem 8.6 with § := §" and A := 0).

We can solve Problem 8.6 by finding a maximum-weight matching in the bipartite graph
G = (SU P, S x P) if we define the weight of an edge {s, p} in G to be

A-w(s)-(1=-21)-d(s,p) +C,

where C is a large constant ensuring that all edge weights are positive. For example, we may set
C to the diameter of the focus region. This problem can be solved in O(k® + n*) time, using the
Hungarian method [Kuh55].

8.3 Algorithms for the Radial-Leader Model

8.3.1 Label Maximization with Given Center

We now present an algorithm for Problem 8.1, that is, we maximize the number of labels in a
radial-leader labeling such that, when seen from center ¢, every two labeled sites are separated
by an angle of at least a.

We first select an arbitrary start node s; € S and sort the sites in S lexicographically according
to their angles and distances with respect to c. Let the resulting sequence be S = (s1,52,...,5,).
Then, we define the directed graph G = (S, E) that contains the edge (s;,s;) with i < j if the
angle <s;cs; between s; and s; in c is at least . We are looking for a longest closable path P
in G, that is, a path whose start and end vertex also form an angle of at least a.

Let Popr be a longest closable path in G. Assume that, for two consecutive sites s, s; in Popr,
there is a site s; with i < jand (s,s;) € E. In this case, we can replace s; with s; and obtain
another longest closable path. Therefore, we can always assume that for every site s in Popr
(except for the last site) the next site t in S with (s, t) € E is also contained in Popr. This allows
us to remove many edges from G while still having the guarantee that a longest closable path
yields an optimal solution. More precisely, we compute the longest closable path in the reduced
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graph G’ = (S, E'); see Figure 8.10. The set E’ C E contains at most one outgoing edge for each
node s € S, that is, the edge (s, s;) € E with smallest index i (if such an edge exists). Clearly, the
complexity of G’ is O(#n) and, if we have already computed the sequence S, we can compute G’
in O(n) time.

Choosing a dynamic-programming approach, we now compute for i = n down to 1 the
length «; and the end o; of a longest (not necessarily closable) path in G’ that starts in s;.
Obviously, for i = #, this is the trivial path containing only s,, which implies x,, = 1 and 0, = s,,.
Similarly, if s; with i < n does not have a successor, that is, a node s; with (s;,s;) € E’, the
longest path starting there consists only of s; and we can set k; = 1and o; = s;. If a site s; with
i < n has a successor s; in G, we compute x; and o; based on the values computed before as
ki = kj +1and 0; = 0;. Hence, computing x; and o; for 1 < i < n takes O(n) time in total.

For each of the paths computed with the dynamic program (that is, for 1 < i < n) we can test
in O(1) time whether it is closable, simply by testing whether or not < g;¢s; > a holds. If the
longest path P; starting at node s; is closable, then it is obviously longest among all closable paths
starting at s;. On the other hand, if P; is not closable we can be sure that there is no closable path
of length «; starting at s; and that we can obtain a closable path of length x; — 1 by removing the
last node from P;. In any case, we obtain a longest closable path starting at s;, which we denote
by Pjpy. Obviously, a path that is longest among Pl py, Popy» -+ Popr is a longest closable path
inG".

Summing up, it takes us O(#) time to compute a longest closable path, which is dominated
by the time (O(nlogn)) needed for sorting S.

Theorem 8.1. We can solve Problem 8.1in O(nlogn) time, that is, given a set S of n sites in a
disk D = (¢, r), and an angle a, we can find a maximum-cardinality conflict-free subset S’ € S
with respect to the angle a in O(nlogn) time.

8.3.2 Weighted Label Maximization with Given Center

‘We now consider Problem 8.2, that is, the weighted version of the previous problem. In order
to find a set S’ of maximum weight, we again use the circular order of sites around ¢, and the
graph G’ defined in Section 8.3.1 with a small modification. We now have an edge connecting
a site s; to the next conflict-free site s; in circular order even if i > j; see Figure 8.11. We
choose some starting site s’ € S, and suppose that s" € S§’. Then, we go through all sites in
counter-clockwise order, starting at s’. During this process we store for each s € S the maximum
weight T[s] of a conflict-free set in the range from s to and including s’. We compute T[s] as
follows.

For ', the range contains just s’, and, hence, T[s'] = w(s’). If a site s does not have a
successor t in G’ such that ¢ lies in the range from s to and including s, then none of the sites in
this range (excluding s”) can be labeled together with s’. Hence, a maximum-weight conflict-free
set in this range consists just of s', that is, T[s] = w(s"). Now, assume we have a site s for which
the successor ¢ in G’ lies in the range from s to and including s’. Let § be the successor of s
in clockwise order; see Figure 8.11. If we select s, then the next conflict-free site is t and an
maximum-weight conflict-free solution consists of s and an optimum solution for ¢. Otherwise,
that is, if s is not contained in an optimum solution, an optimum solution for § is also optimum
for s. Combining the two cases, we get T[s] = max{w(s) + T[t], T[§]}. Hence, we can find a
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Figure 8.10: A reduced graph G’ for sites S = Figure 8.11: A maximum-weight conflict-free
(s1,+, s7). For site s there is an edge to the next set of sites in the range from s to s’ (marked by
site t with zsct > a (if such a site exists). The boxes). Here, T[s] = T[] + w(s). In contrast,
longest path in G’ is (si, 53, 55, 57), which is not T[¢] has been computed as T[¢] = T[f].
closable since <s;cs1 < a. A longest closable

path is, for example, (s, 53, 55).
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Figure 8.12: A partial double disk U¢

$1,82°

maximum-weight set S” with s" € §" in O(n) time. By starting this algorithm at each site s, we
maximize the total weight of visible labels in O(n?) time.

Theorem 8.2. We can solve Problem 8.2 in O(n?*) time, that is, given a set S of n sites in a
disk D = (c,r), a weight function w:S — R, and an angle a, we can find a maximum-weight
conflict-free subset S’ C S with respect to the angle a in O(n*) time.

8.3.3 Label Maximization with Variable Center Position

We now present an algorithm for Problem 8.3, that is, we maximize the number of non-
conflicting sites separated by an angle «, but now, the center ¢ of the circular focus region
is not prescribed.

For each pair of sites s;,s, € S the points from which the line segment 5;s; appears at an
angle of at least a form a region U | = {c € R? | zs1cs5 > a}. According to the inscribed angle
theorem, the angle at vertex ¢ of a triangle abc does not change if ¢ moves on the circumcircle of
the triangle (while staying on the same side of the straight line supported by a and b). Therefore,
U¢ . is the union of two partial disks, one on each side of s515;. We thus call U  a partial

S1,52 $1,82

double disk; see Figure 8.12.
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Figure 8.13: Arrangement A§ containing the Figure 8.14: Arrangement AS of Figure 8.13
boundary of each partial double disk U;; , with extended by adding all straight lines formed by
u,v € S. Region [ is the intersection of all par- pairs of sites.

tial double disks. In this example, for every

point ¢ € I, (¢, S) is an optimum solution to

Problem 8.3.

We denote by A% the arrangement given by the union of the boundaries of the n? partial
double disks for all pairs of sites; see Figure 8.13. Since two partial double disks can only intersect
O(1) times, the arrangement has a combinatorial complexity of O(n*). We can traverse the
whole arrangement and visit every cell in O(n*logn) time by using a sweep line algorithm.
For doing so, we just need to maintain a linked list for the order of disk boundaries that the
vertical sweep line intersect, as well as an event queue for the event points in which disks start,
end, or intersect; maintaining the event queue causes logarithmic overhead. During the sweep
we determine for each cell C a set §' € § of maximum size such that for every point ¢ € C the
sites in S’ are separated by an angle of at least « (when seen from c). With our algorithm from
Section 8.3.1 we can do this in O(nlogn) time. Together with the time needed for traversing all
cells we get an O(n° log n)-time algorithm for finding an optimal center.

We can reduce the running time of the algorithm to O(n>) by updating the circular order from
cell to cell instead of sorting the points O(n*) times. To this end, we extend the arrangement .A$
by adding all straight lines formed by a pair of sites; see Figure 8.14. Note that the complexity
of this extended arrangement is still O(n*) and that the arrangement can be traversed by a
sweep line algorithm in O(n*logn) time. When moving a center c inside any of the O(n*)
cells of the extended arrangement, the circular order in which the sites are seen from ¢ does not
change. Furthermore, when moving the center from one cell to an adjacent cell, the order can be
updated. This is done by a single swap of two sites if the cells are separated by the straight-line
supporting the two sites (and the separation is not part of the straight-line segment between the
sites).

Hence, we can easily update the circular orders in one step of our sweep line algorithm in
O(1) time. As finding an optimum set S’ € S of sites needs only O(#n) time for each cell, the
total running time for finding an optimum center improves to O(n”).

Theorem 8.3. We can solve Problem 8.3 in O(n>) time, that is, given a set S of n sites and an
angle o, we can find a center ¢ and a maximum-cardinality conflict-free subset S’ ¢ S with respect
to the center c and the angle o in O(n®) time.
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In the weighted setting, we can combine the traversal of the disk arrangement with the
technique presented in Section 8.3.2. This yields an O(n°®)-time algorithm that finds an optimum
center position.

8.3.4 Sector Maximization

Let us first address the decision problem derived from Problem 8.4, that is, we want to decide if
we can find a center such that all sites are separated by a given angle a. This question can be
answered with the help of the arrangement A§ introduced in the previous section. We can find
such a center c, if there is a cell in A§ that is covered by all possible partial double disks. In
order to find such a cell, or to report that none exists, we use again a sweep line algorithm. We
keep track of the number of partial double disks that cover the cells we are observing during the
sweep. When traversing from one cell to another we can update this information in O(1) time.
Hence the decision problem can be solved in O(n*logn) time.

In order to maximize « such that a center ¢, with minimum angle at least « exists, we use
the following technique: Consider the arrangement Ag‘, parametrized by a’. Aslong as there
exists a cell with positive volume that is covered by all partial double disks, we can decrease the
angle a’ and obtain a new arrangement with such a cell. It follows that for an optimal angle a,
there has to be at last one degenerated cell, formed by a single point, that is covered by all partial
disks. This means, however, that three or two of the partial double disks meet in one point.
Hence, it suffices to compute for all triplets and tuples of input point pairs the angle where their
induced three (or two, respectively) partial double disks meet in a single point. The smallest
such angle determines the value a. The running time of this strategy is O(n°).

Theorem 8.4. We can solve Problem 8.4 in O(n®) time, that is, given a set S of n sites we can
find an angle o and a center ¢ such that S is conflict-free with respect to ¢ and «, and « is the
largest angle for which we can find a feasible center position.

For Experiment 8.1 and 8.2 we have used a prototypical implementation to solve the sector
maximization problem. We did not use the proposed (exact) O(n°®)-time solution, but solved
the sector maximization problem numerically. More precisely, we formulated Problem 8.4
as a minimax problem and solved it by the computer algebra software Mathematica via the
differential evolution method. Our solutions converged for almost all computed instances within
reasonable time (see Table 8.1).

#sites ‘ 5 15 25 3 45 55 65 75 85
time(s] ‘1.83 210 2.68 3.82 526 6.80 10.07 12.59 15.38

Table 8.1: Runtime for the numerical solution of the sector maximization problem on a standard
2-core 3 GHz desktop computer.

8.4 Extensions

In this section we discuss two extensions that can be applied to our leader models. First, we show
how to simultaneously cluster sites and label a representative site from each cluster (Section 8.4.1).
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Figure 8.15: Solutions to Problem 8.6 obtained with different values for A. Since sites close to
the center ¢ of the focus region are assumed to be important, the weight w(s) of a site s was set
to the Euclidean distance between s and c¢. Gray dots show sites that did not become labeled.

Second, we transform, in a post-processing step, our straight-line leaders into well-shaped Bézier
curves. For the radial-leader model, this gives us more flexibility in the placement of the ports
as compared to straight-line leaders. Hence, we can either place more or larger labels. For the
free-leader model, Bézier curves help to lead the user’s eye in a natural, bend-free way from the
site to the label (or vice versa).

8.4.1 Simultaneous Clustering and Labeling

When discussing the free-leader model (Section 8.2.2) we dealt with the problem that the input
map may contain significantly more sites than we have leader ports available. In this case, we
had to select a subset of sites that are actually labeled and to assign these sites to the ports.

In Problem 8.6, we addressed both issues (selection and assignment) by an extension of
bipartite matching. Our experiments indicate, however, that the sites selected by optimum
solutions to Problem 8.6 do not sufficiently reflect the spatial distribution of the sites. Consider
Figure 8.15 that shows various solutions for the same input but different values of the weight
factor A. We used a non-uniform weight function w where the weight of a site equals its distance
to the center of the circle. This can be justified by the assumption that sites closer to the center
of the focus region could be considered more important for the user. Simultaneously, this avoids
that only sites close to the boundary are labeled, which happens if we use a uniform weight
function or if we set A = 0 (see solution (a)). Interestingly, this preference of sites close to
the boundary persists even if we increase A to values slightly below 0.5 (see solution (b)). As
soon as we increase A to values greater than or equal to 0.5 (see solutions (c)-(e)) the optimum
solution exhibits a preference for sites closer to the center. What we actually want is, however,
that the labeled sites are evenly distributed thereby reflecting their spatial distribution. This is
not sufficiently accomplished by the solutions for Problem 8.6 shown in Figure 8.15.

For example, if the set of sites contains a dense cluster, the selected subset of labeled sites
should also contain a (possibly less dense) cluster in the same area. Simultaneously we want to
construct a suitable assignment of the labeled sites to the ports, which is represented by the sum
of leader lengths.

We now present a novel free-leader model that is based on facility location. Our model
simultaneously addresses the problem of selecting a suitable subset of sites that are labeled and
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of obtaining a good assignment of the selected sites to the leader ports. The main benefit of
this model in comparison to Problem 8.6 is that the subset of labeled sites reflects the spatial
distribution of the complete set of sites.

The problem of selecting a subset of given cardinality k from a set of input points so that the
selected points “represent” the entire set in a spatial sense is a common problem that arises, for
example, in clustering and location theory. Popular formulations as an optimization problem
are the k-means and the (Euclidean) k-median problem. For the k-median problem the input
is a set S of points (sites) and a number k < |S|. The goal is to find a k-element set of facilities
and to connect each site to a facility so that the total connection cost, that is, the sum of the
Euclidean distances from the sites to their respective facilities is minimized. In clustering theory,
the facilities opened by an optimum solution are considered as cluster centers that reflect the
spatial distribution of the set S and the clusters are the subsets of sites that are connected to the
same cluster center (facility).

A natural idea is to select, in a first stage, the sites that we want to label by computing a
solution to the corresponding k-means or k-median problem and choosing the cluster centers
as the selected sites. Then, in a second stage, one can compute a good assignment of these
cluster centers to ports. This can, for example, be accomplished by computing a minimum
weight bipartite perfect matching between the cluster centers and the ports. The drawback of
this approach is that it divides the problem into two separate optimization stages (selection and
assignment) and exclusively prefers the selection goal to the assignment goal.

In what follows we present a capacitated extension of the Euclidean k-median problem and
the closely related facility location problem that incorporates selection and assignment into one
neatly formulated optimization problem. We aim at selecting k sites for labeling (considered as
facilities) and connecting the remaining sites in S (considered as customers) to a facility. The
k-median problem can then be considered as the problem of opening k facilities and connecting
each site to a facility such that the total connection cost (sum of distances of sites to their facilities)
is minimized. Moreover, we need to ensure that each facility (labeled site) is connected to a port.
This fits nicely into our location model as we can simply consider the ports as additional, special
customers that need to be connected to the facilities. The previously conflicting goals of finding
a good selection of sites and finding a good assignment of these sites to ports are then subsumed
by the single goal of minimizing the total connection cost. We have to require, however, that
each facility serves exactly one port in order to ensure a one-to-one correspondence between
labeled sites and ports. Problem 8.7 gives a formal description of our model.

Problem 8.7 (Facility-location-based labeling).

Input:  Convex region F, set S c F of n sites with opening costs ¢:S — R, set P c 0F of k< n
ports, factor A € [0,1].

Output: A feasible solution consists of a k-element set S' € S of facilities and an assignment
0:SUP — §' specifying for each site or port to which facility it is connected. Each facility
must be connected to exactly one port and to at most [ |S|/k] sites. A feasible solution has
a total opening cost of 3. rcs/ ¢(f) and a total connection cost of A 3= ,cp d(p, o (p)) +
(1-1) Xses d(s,a(s)). The output is a feasible solution that minimizes the sum of total
opening and connection cost.

We assign to each site s a cost c(s) that is incurred if a facility is opened at s. This cost reflects
the importance of labeling the site s where a smaller opening cost means higher importance.
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The overall goal is to minimize the sum of opening costs and total connection cost. We impose
an additional capacity constraint on each facility that ensures that each facility is connected to
roughly the same number of sites. The reason is that in the uncapacitated variant optimum solu-
tions tend to place a comparatively small number of facilities into a spatially dense accumulation
of points since all the sites in such an accumulation can efficiently be served by few facilities. By
adding the capacity constraint we ensure that dense accumulations lead also to accumulations
in the set of facilities.

Another nice property of our model is that in optimum solutions there are no intersections
between port-facility connections and no intersections between site-facility connections. This
can be shown analogously to Observation 8.1. See also Figure 8.16.

Integer Linear Program

We now present a formulation of Problem 8.7 as an integer linear program (ILP). To this end, we
introduce for each site i € S a binary variable y; € {0,1} specifying whether a facility is opened
at i. For each pair (i, j) € S x (S U P) we introduce a binary variable x;; € {0,1} indicating
whether j is connected to facility i. We can formulate our objective function as a linear function
as follows:

Minimize Y c(i)y; +A Y, d(i,j)xij+(1-A) > d(i,j)xij.

i€S i,jeS (i,j)eSxP

It remains to formulate linear constraints ensuring that the variables y; and x;; describe a
feasible solution to the input instance. First, we ensure that each j € S U P can only be connected
to a site i where a facility is actually opened by means of the constraint

xij<y; foreachieS,jeSuUP.
To make sure that each j € S U P is connected to exactly one facility, we require that

Y xij=1 foreachjeSuUP.
N

The requirement that each port is connected to exactly one facility can be described by

Y xij=1 foreachjeP.
N

We further require that each facility is connected to only one port, which we can model by

injﬁl foreachieS.
jep

The combination of the last two constraints ensures a one-to-one correspondence between ports
and opened facilities.
To make sure that the maximum number of sites per facility is not exceeded we require

> xij <[|S|/k] foreachiecs§.
jes
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/

(a) Selected sites and leaders connecting them to (b) Site-facility connections.
the assigned ports.

Figure 8.16: Optimum solution to Problem 8.7 for the Seattle instance (n = 95).

Finally, we ensure that exactly k facilities are opened by means of the constraint

Zy,‘:k.

ieS

Experiment 8.3. We implemented the integer linear program in C++ using the optimizer
Gurobi (version 4.6.1). We computed an optimum solution for the same data set that we used in
Figure 8.15 for discussing Problem 8.6. It consists of n = 95 sites (restaurants on a map excerpt of
Seattle) and k = 20 ports. The result is shown in Figure 8.16. Observe that the selection of labeled
sites much better represents the spatial distribution of all sites than the solutions to Problem 8.6.
The computation of the optimum solution took 124s on a PC with an Intel Core2Duo E8400 CPU
with 2 cores at 3 GHz each and 4 GB RAM. In comparison, the computation of the optimum
solutions to Problem 8.6 with 50 different values of & took less than 1Is in total on the same PC.

As the integer programming solution is not suitable for interactive usage, we also tested a
heuristic approach for finding good solutions quickly in two steps. First, we use a randomized
algorithm for finding k cluster centers. The algorithm chooses new centers one after the other,
where, in each step, the probability of choosing a point is proportional to its distance to the closest
center chosen so far. This algorithm is known to find a solution to the k-median problem with
an expected approximation ratio of O(logk) [AV07]. Next, we compute crossing-free leaders
connecting the chosen centers to the ports by using our matching approach. The algorithm for
finding the cluster centers is even faster than the matching algorithms, and yields solutions in
which labeled points tend to be in dense regions, but not too close to each other. If a complete
clustering is needed, the unlabeled points may be assigned to their closest center; see also the
section on the uncapacitated relaxation on page 168.
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Figure 8.17: Example where the convex hulls of two optimum clusters intersect and where the
Voronoi cells of the sites of one cluster are not connected.

Disk-in-Disk Visualization for Labeling Large Point Sets

When dealing with large and dense point sets, we face the problem that only a small fraction of
the sites can actually be labeled since labels must be large enough and may not overlap in order
to be readable. We present a natural method based on our facility location model that clusters
the sites into connected, non-overlapping subregions, one for each label. The user can select
a subregion—for example, by clicking the corresponding label—which is then scaled up and
labeled in more detail; see Figure 8.1. In the new labeling, we keep the selected label fixed, even
if this causes crossings with leaders of other labels. We think that this is less distracting than if
the selected label jumped to its new position.

We associate each facility f with the set C; of all sites that are connected to that facility. This
set Cy forms a cluster, and the label for Cy is the unique label L that is connected to facility f.
Note that no cluster contains more than [|S|/k] sites due to the capacity constraints. Our goal is
to embed each cluster C into a connected subregion Ry € F so that no two subregions overlap.
A possible use case is to visually highlight the region R whenever the cursor hovers over the
label L ;. We want to identify subregions that can be easily recognized by the user. Unfortunately,
it is not always possible to find convex subregions that meet the above requirements.

Figure 8.17 shows an instance with optimum solution for k = 4 labels where the convex hulls
of the two clusters overlap. The instance contains sites f, fi, f2, and f; where fi, f,, and f; are
each surrounded by a large number Q) of sites at small distance ¢. Similarly, f is surrounded by
Q - 2 many sites at distance e. Moreover, there are two more distant sites s; and s. If Q) is large
enough the optimum solution must choose f, fi, f2, and f; as the locations for the facilities.
If ¢ is small enough the sites are connected to the facilities as shown in the picture since all
facilities must serve the same number of sites due to the capacity constraints. The convex hull of
cluster Cy, is contained in the convex hull of Cy.

The same example also shows that the Voronoi cells of the sites s; and s, can be disconnected
from the Voronoi cells of the remaining sites in cluster C. Hence, also using the Voronoi cells
does not yield a nice partition of the region F.

Triangulation-Based Partitioning. We now propose a simple approach that partitions F
into a collection of subregions containing one cluster each. Our approach is similar to the
computation of skeletons based on constrained Delaunay triangulations [CBB91, BW97] and
on the work of Reinbacher et al. [RBvK*08] who deal with the problem of computing polygons
that separate two given point sets in the plane.
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Let 8’ ¢ S be the set of cluster centers that are to be labeled. We define the star Sy for facility

f € 8" as the set of line segments fs with s € C . Note that no two stars intersect since site-
facility connections do not cross. We assume that the boundary 0F of F is given as a polygon.
(Otherwise, we can choose a set F' of sufficiently many points from 0 and replace F with the
convex hull of 7'.) We compute the union of 0.F with all stars Sy for f € §" and complete the
resulting set of non-intersecting line segments to a complete triangulation T. For example, we
can compute a constrained Delaunay triangulation in O(nlogn) time [Che89].

We then partition the region F into connected subregions R for each f € " such that Cy
is contained in Ry. This is accomplished by partitioning each triangle separately as shown in
Figure 8.18a.

Consider a triangle spanned by three sites. (We treat the vertices on dF as sites of a special
cluster.) If all three sites belong to the same cluster, we do not partition the triangle. If the sites
belong to two different clusters, we partition the triangle into two pieces by cutting along the line
segment that connects the midpoints of the two edges whose end points lie in different clusters.
In case the three sites belong to three different clusters, we partition the triangle into three pieces
by cutting along the three line segments that connect the midpoints of the edges with the center
of gravity of the triangle; compare Figure 8.18a for occurrences of the three cases. Note that we
partitioned the triangle according to the clustering, that is, sites of the same cluster lie in the
same piece and sites of different clusters lie in different pieces. Therefore, we can assign each
piece of the triangle to a unique cluster. We perform the above partitioning for every triangle.
For each cluster Cy, the region Ry is the union of all pieces that are assigned to the cluster Cy.

The above algorithm ensures that each site of a cluster Cy is contained in Ry and that two
distinct regions Ry and R are interior-disjoint. Every region R is connected as it contains the
star Sy. Finally, it is easy to verify that, for each facility f, the boundary dR of Ry is a simple
polygon that consists only of line segments along which we cut triangles.

Uncapacitated Relaxation and Voronoi-Based Partitioning

An interesting relaxation of Problem 8.7 is to drop the capacity constraints for sites, that is, to
allow that an arbitrary number of sites is connected to the same facility. Of course, we still insist
on exactly one port per facility. This relaxation, gives less incentive to place multiple facilities
into spatially dense accumulations of sites since all sites in such an accumulation can efficiently
be served by one facility.

A nice property of this relaxed version is that we now can determine a natural decomposition
of F into convex and pairwise disjoint regions that cover the clusters of an optimum solution.
To this end, consider an optimum solution to the relaxed problem with a set S’ of facilities. Now
consider the Voronoi diagram for the point set S’. Then each facility f lies in a unique Voronoi
cell Vy; see Figure 8.18b. These cells form a natural decomposition of F into interior-disjoint
convex regions. It is easy to see that for each f the cluster C is contained in the Voronoi cell V7.
Assume to the contrary that a site s € Cy lies in the interior of a cell V- with f* # f. Then s
would be strictly closer to f’ than to f. Therefore, we could obtain a strictly cheaper solution
by re-connecting s to f’, which would not affect the feasibility since we impose no capacity
constraints on f’. This contradicts the optimality of the solution.
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(a) Triangulation-based (b) Voronoi-based

Figure 8.18: Partitioning the focus region.

8.4.2 Bézier Post-Processing

In all our previous methods, we used crossing-free straight-line leaders for connecting sites
and labels. Now we want to improve these drawings by using more flexible leaders. In previous
works on boundary labeling, the only drawing styles for leaders have been straight-line segments
and polylines. We, however, use Bézier curves, which are easier to follow than polylines since
they do not have sharp bends. More precisely, we use cubic Bézier curves, which are defined by
their endpoints and two intermediate control points; see Section 2.2.

For computing the new leader layout, we use the force-directed approach similar to the algo-
rithm for drawing metro maps using Bézier curves presented in Chapter 3. Our algorithms start
with a straight-line drawing and let forces, defined by physical analogies, iteratively transform
the drawing. In contrast to Chapter 3, we have several vertices (the sites) that must not be moved.
Again, we define several forces that are applied to the Bézier curves; each force optimizes a
certain aspect of the drawing. In each iteration, the desired movement vectors for all curves are
computed by summing up the single forces. Before applying these movements to the current
drawing, we limit some movements, if necessary, to ensure that the new drawing is crossing-free.
Our algorithms terminate when a prespecified number of iterations is reached or the maximum
movement per iteration is very small compared to the distances between the input sites.

Horizontal Labels with Given Ports

For the free leader model (Section 8.2.2) our main requirement is that the new leaders enter
the labels horizontally from within the focus region. Additionally, the drawing should stay
crossing-free. Subject to these constraints, we would like the curves to be as smooth as possible;
see Figure 8.1b at the beginning of the chapter (page 147).
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Figure 8.19: Placing the control points of a Bézier leader for a horizontal label.

Problem 8.8 (Bézier leaders for horizontal labels and given ports).

Input: Disk D = (c,r), sites s, s, € D, ports p1,---p, € 0D such that the segments
S1P1> -« - > SnPn are crossing-free.

Output:  Bézier curves By, -+, B, such that, for i = 1,---, n, curve B; connects s; to p; and enters
port p; horizontally, and no two Bézier curves intersect. Curves should not be too close
to each other and should not have high curvature.

During our force-directed algorithm, sites and ports will, of course, stay fixed. For i = 1,---, n,
we initialize curve B; by making s; and p; its endpoints and by placing the two intermediate
control points a; and b; on their closer endpoint, that is, on s; and p;, respectively. Hence,
initially B; = s;p; and, according to our assumption, this initial drawing is crossing-free. In
order to improve the shapes of our curves, we must move the control points.

It is clear that, if we want the leader to enter port p; horizontally, b; must move, but stay on
the horizontal line through p; and inside the focus region. We must also move a; away from s;
to get a good curve. For a nice-looking curve, it makes sense to place the control points so
that the three segments of the polyline s;a;b; p; have roughly equal length r;. As Figure 8.19a
indicates, there are—under this restriction—two possible positions for a; if 7; is large enough.

On the other hand, we strive to keep the leader short in order to make it easier to follow. Hence,
we try to keep r; = d(b;, p;) as small as possible. In this situation, the only possible position

for a; is the center of s;b;; see Figure 8.19b. To keep visual and computational complexity small,
we fix a; to this position. Our algorithm modifies, therefore, only the parameter r; = d(b;, p;),
while a; will automatically always be in the middle between s; and b;. Let " be the optimal
value of r; for B;, that is, the value resulting in d(b;, s;) = 2rPFT. Then the attracting force on b;
is

fattr(Bi) = riOPT —Ti

that is, the “vector” from the current to the desired position.

An additional criterion for a pleasant-looking leader layout is that two leaders do not come
too close. To this end, we add a repelling force between two leaders. Suppose that we have a
pair of leaders B; and B}, as shown in Figure 8.20. We first compute the minimum distance
d(B;, Bj) between the two curves. Note that this can easily be approximated by a polygonization
of the curves. Given the relative position of the curves in Figure 8.20, the control point b; of B;
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Figure 8.20: Curve B; repels curve B;.

should be repelled towards its port p;. It is reasonable to make this repelling force larger when
the distance between the curves gets smaller. Hence, we set

—r;
B,B)= ——1 _
JealB0B) = 38, B
for the force repelling B; from B;. If the relative position of the curves is different, the force is
defined analogously but the direction may change.

Finally, the total force on the control point b; of a curve B; is

f(Bz) = Cattrfattr(Bi) + Crep Z frep(Bi, B]),

Bj#B;

where the weights ¢, and cp are still flexible. In our tests, cayir = crep = 0.5 turned out to be a
reasonable choice.

Once all forces are computed they should be applied onto the current drawing, that is, the
new value of r; should be r{ = r; + f(B;). Simply applying the forces could, however, lead to
crossings, despite the repelling forces between leaders. Therefore we introduce limitations to the
forces, that is, a maximum allowed change of the absolute value of r;. We set this limitation to

fmax(Bi) = 0.45 151]1#1{31 d(Bi, Bj).

It is easy to see that, with a maximum movement of d on b;, all points on the new curve B lie
within a distance of at most d from the old curve B;. Hence, by moving b; and b; by at most
0.45d(B;, Bj) we cannot create an intersection of the two leaders. It follows that limiting the
absolute value of f(B;) to fmax(B;)—where necessary—before applying the forces guarantees
that the drawing stays crossing-free.

The algorithm terminates when an equilibrium of forces is reached. In practice, it suffices
that the maximum change in an iteration is very small, that is, much smaller than the distance
between any two sites. Note that it suffices to compute forces just for pairs of leaders that can
actually come close. Disregarding all unnecessary pairs gave a huge speedup in our experiments.

Experiment 8.4. We tested a Java prototype implementation of our algorithm on the same
machine used for Experiment 8.3. We fixed the port positions at equal distances as described
in Section 8.2.2 (see Figure 8.8 in this section). We were mainly interested in the increase of
total leader length caused by improving the shape of the leaders. For the test, we used growing
subsets of the Seattle instance (see Figure 8.1) where all sites had to be labeled (that is, k = n).
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Figure 8.21: Rectangular boundary labeling with leaders drawn as Bézier curves.

In each new subset, we added sites farther from the city center and increased the radius of the
focus region accordingly. For each instance, the algorithm did 200 iterations. Table 8.2 shows
the results.

#sites(n)‘ 10 20 30 40 50 60 70 80 90

time[ms] 25 169 123 141 121 170 168 253 354
incr. [%] | 4.07 3.09 2.69 214 257 151 137 190 183

Table 8.2: Runtime for Bézier postprocessing; increase of leader length.

As we can see, the postprocessing increases the total leader length only by a small percentage
while producing nice-looking leaders. For comparison, we refer to the Bézier leader layout
in Figure 8.1b: There, the increase of leader length compared to the straight-line version was
only 3.1%; the running time was 0.3s. Note that the running time heavily depends on the
distribution of sites. If there are very dense regions such as the cluster in the center, the algorithm
is slower due to strong repelling forces which increase the number of necessary iterations. If,
however, the sites are better distributed, for example, after selecting a subset with the method
presented in Section 8.4.1, the postprocessing is faster and produces better-looking leaders.

Traditional Boundary Labeling

Traditional, two-sided boundary labeling for rectangular maps has, so far, only been approached
with straight-line or polyline leaders. It is, however, easy to create such a labeling using Bézier
curves as leaders by using our techniques. Note that we did not use the shape of the focus region
in the force-directed algorithm. Suppose that we are given a rectangular focus region with sites
inside and ports on the boundary. Then we can compute a port-label assignment such that
straight-line leaders do not cross by the matching technique that solves Problem 8.5. Using
this assignment, we can apply the Bézier postprocessing presented above to get a crossing-free
layout of Bézier leaders; see Figure 8.21.

Our approach can also be applied to further types of focus regions if we can ensure that the
Bézier leaders stay inside the region.
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Figure 8.22: Bézier curve B; between neighbors B;_; and B;.;.

Radial Labels without Given Ports

In the radial-leader scenario we cannot improve much by simply rerouting the leaders using
Bézier curves: The leaders already leave sites as well as ports radially and have—as straight-line
segments—minimum length. There could, however, be pairs of ports forming a small angle at
the center compared to the necessary average angle 360° /n, even after optimizing the smallest
angle by using the algorithm presented in Section 8.3.4. We can optimize these angles by moving
the ports on the boundary and rerouting the leaders using Bézier curves. We still want the
leaders to leave sites and ports radially and insist on crossing-free leaders.

Problem 8.9 (Bézier leaders for radial labels without given ports).

Input: Disk D = (¢, r), sites s1,++, s, € D.

Output:  Ports py,-+p, € 0D and Bézier curves By, -+, B, such that the circular order of the
ports is the same as the order of their respective sites, for i = 1,...,n, curve B; leaves
site s; radially and enters port p; radially, and no two Bézier curves intersect. The gaps
between the ports should be of approximately equal length and the ports should be close
to their sites.

This problem can again be tackled using a force-directed algorithm: We start by setting, for
i=1,...,n,port p; to the projection of s; onto 9D, and by using the straight-line leader s; p;,
which is a special Bézier curve. In each iteration of the algorithm, we try to improve the
distribution of the ports on dD under the additional requirements of Problem 8.9. We assume
that the indices are chosen in such a way that the ports ps,..., p, occur in clockwise order
on dD. We will keep this property during the iterations of the algorithm.

As we want to enter/leave sites and ports radially, the intermediate control points a; and b; of
the curve B; connecting site s; and port p; must lie on the straight lines c¢s; and cp;, respectively;
see Figure 8.22. Thus, our algorithm keeps track of three parameters for each Bézier leader B;:
the position of port p; and the distances d(s;, a;) and d(b;, p;). We introduce the following
forces:

o A force attracting port p; to the midpoint of p;_; and p;,; on dD, which is in the middle
of the circular arc with center ¢ connecting p;_; and p;;; in clockwise order. In an
equilibrium, that is, if all ports have equal distance to both of their neighbors, all gaps are
of equal length.

o A force attracting each port p; towards its initial position, that is, the radial projection of
s;, for straightening the Bézier curve.
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(a) Straight-line leaders. (b) Bézier leaders after postprocessing.

Figure 8.23: Improvement of radial leaders by postprocessing with Bézier curves.

« Repelling forces on the control points if two neighboring curves are too close. This should
avoid small distances between the leaders. We try to move both control points of B; to
the same direction such that a; stays closer to the center of the disk than b;.

o A force that tries to move a; and b; such that both distances d(s;, a;) and d(b;, p;) are
1/3 of the distance of s; to the original position of p;, which is r — d(c, s;).

For any force, it is enough to consider the two neighboring sites s;_; and s, in circular order.
To avoid crossings between labels we limit forces if necessary. This can, again, be done based on
the minimum distances to the two neighboring curves.

Experiment 8.5. The algorithm was implemented in Java and tested on the same machine and
the same instances as in Experiment 8.4. We did 200 iterations per instance. As the positions of
ports are flexible, we also measured the optimization criterion, that is, the smallest angle, and
compared it to the upper bound 360° /1. Table 8.3 shows the results.

#sites (n) ‘ 10 20 30 40 50 60 70 80 90
time [ms] 218 281 324 292 353 400 445 506 574
angle [%] | 64.8 267 433 399 485 293 313 373 292
incr. [%] | 119 64 09 1.2 10 06 06 04 03

Table 8.3: Runtime, minimum angle (% of 360°/n), increase of length.

For n > 20, the initial straight-line solution had—due to the dense region of sites in the
center—an initial minimum angle of less than (0.001°). Our post-processing always improved
this to a reasonable percentage of the upper bound 360°/n. As in Experiment 8.4, the relative
increase of the total leader length was very small. For a visual inspection of the improvement,
see Figure 8.23: when using Bézier curves, the minimum angle increased from 11° to 35° (upper
bound 45°), whereas the total leader length increased by a mere 6.3%.
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Figure 8.24: Leaders consisting of a straight-line and a circular arc.

8.5 Concluding Remarks

We have investigated the problem of labeling sites in a focus region by placing labels at the
boundary of the focus region and connecting sites and their labels by leaders. We have considered
the free-leader model and a new radial-leader model. Usually, users will insist on horizontal
labels, which we recommend to combine with the free-leader model. If, however, it is crucial
to label a lot of sites— especially with short labels—, it is better to place leaders and labels
radially. We strongly recommend to take advantage of the Bézier postprocessing, especially
for the radial-leader model which otherwise suffers from small port distances. In a dynamic
environment, we suggest using straight leaders during user interaction. As soon as an interaction
ends, one could turn the straight leaders into Bézier leaders by animating the execution of our
force-directed algorithm.

Open Problems. Also for labeling focus regions, there are some open problems. We have
presented an algorithm that creates a boundary labeling with curvy leaders. While the results in
our tests looked nice and their computation was fast, we stress that the Bézier curves were only
computed as a post-processing from an initial straight-line labeling. Potentially, better results
could be obtained by directly computing curvy leaders using a new, specialized algorithm. As
Bézier curves are not very easy to handle, also other leader styles with curves could be tried,
for example, a horizontal line segment combined with a circular arc in smooth transition; see
Figure 8.24. Another problem is the evaluation of curvy leaders in a user study. The main
questions are whether users prefer the look of curvy leaders over other leader styles and whether
curvy leaders make it easier for users to solve tasks like finding a certain site or finding the label
for a highlighted site.

Both for the radial and the free-leader model, we presented fast algorithms for finding a
labeling that maximizes the weight of labeled sites, if not all sites in the focus region can be
labeled at the same time. The algorithms are fast enough for interactive use, that is, if the focus
region is moved by the user. In such a move, some new sites can enter the focus region, some old
sites leave the focus region, and other sites will remain in the focus region. So far, our solution
would be to compute a new labeling independent of the old solution if the focus region is moved.
In practice, however, one would like some stability of the labeling; that is, if a site is labeled in
the first solution, it should preferably stay labeled even if the focus region is moved a bit—at least
for a certain time span, so that the user can read the label. We suggest approaching this problem
by modifying the weights of sites over time. For instance, if a site is labeled for the first time, its
weight should be increased so that it preferably stays labeled in the next solution—unless the
site leaves the focus region. After some time, some new sites should also get the opportunity to
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be labeled; hence, we can decrease the weight again. The most difficult task is to evaluate the
right weight function—over time—and to test the method in an interactive application.
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Chapter 9

Many-to-One Boundary Labeling with
Backbones

In the previous chapter, we have studied problems in the context of boundary labeling, where
one wants to label sites in a focus region so that each point has its individual label that is to
be placed at the boundary of the focus region. There are, however, also applications in which
several sites must get the same label. For example, one may want to label sites by their class,
for example, if different types of restaurants must be labeled. Instead of labeling each site of
a class by an individual label and having several labels with the same text, we can also allow
that multiple sites of the same class are connected to the same label. This problem setting is
known as many-to-one boundary labeling, meaning that several sites can be connected to the
same label via leaders.

More specifically, we study many-to-one boundary labeling with backbone leaders. In this new
many-to-one model, a horizontal backbone reaches out of each label into the (rectangular)
focus region. Sites that need to be connected to this label are linked via vertical line segments
to the backbone; see Figure 9.1. We present dynamic programming algorithms for minimizing
the total number of label occurrences and for minimizing the total leader length of crossing-
free backbone labelings. When crossings are allowed, we aim at obtaining solutions with the
minimum number of crossings. This can be achieved efficiently in the case of fixed label order;
however, in the case of flexible label order we show that minimizing the number of leader
crossings is NP-hard.

||l

Figure 9.1: A crossing-free many-to-one boundary labeling with backbone leaders.
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Figure 9.2: Different types of many-to-one labelings.

9.1 Introduction

So far, most work on boundary labeling has been devoted to the case where each label is
associated with a single site; see the description in Section 8.1. However, the case where each label
is associated with more than one site (the topic of this chapter) is also common in applications.
We can think of groups of sites sharing common properties (for example, identical components
of technical devices or locations of plants/animals of the same species in a map), which we
express as having the same color. Then, we need to connect these identically colored sites via
leaders to a label of the same color.

PreviousWork. Many-to-one boundary labeling was formally introduced by Lin et al. [LKY08].
In their initial definition of many-to-one labeling each label had one port for each connecting
site, that is, each point uses an individual leader (see Figure 9.2a). This inevitably lead to (i)
tall labels, (ii) a wide track-routing area between the labels and the enclosing rectangle (since
leaders are not allowed to overlap), and (iii) leader crossings in the track routing area. Lin
et al. [LKYO08] examined one and two-sided boundary labeling using so-called opo-leaders;
see Fig. 9.2a. They showed that several crossing minimization problems are NP-complete and,
subsequently, developed approximation and heuristic algorithms. In a variant of this model,
referred to as boundary labeling with hyperleaders, Lin [Lin10] resolved the multiple port issue
by joining together all leaders attached to a common label with a vertical line segment in the
track-routing area; see Figure 9.2b. At the cost of label duplications, leader crossings could be
eliminated.

Our Contribution. We study many-to-one boundary labeling with backbone leaders (for short,
backbone labeling). In this new model, a horizontal backbone reaches out of each label into
the site-enclosing rectangle. Sites connected to a label are linked via vertical line segments
to the label’s backbone (see Figure 9.3a). The backbone model does not need a track routing
area and thus overcomes several disadvantages of previous many-to-one labeling models, in
particular the issues (ii) and (iii) mentioned above. As Figure 9.3 shows, backbone labelings also
require much less “ink” in the image than the previous methods and thus are expected to be
less disturbing for the viewer. We note that backbone labeling can be seen as a variation of Lin’s
opo-hyperleaders. Lin [Linl0] posed it as an open problem to study po-hyperleaders (which is

178



9.1 Introduction

0 [ 0 [
e R e
: N ) I
= ! N A I
| — | —
© 1 —0 1
(a) Finite Backbones. (b) Infinite Backbones.

Figure 9.3: Different types of many-to-one labelings with backbone leaders.

his terminology for backbones), in particular to minimize the number of duplicate labels in a
crossing-free labeling.

We study three aspects of backbone labeling, label number minimization (Section 9.2), total
leader length minimization (Section 9.3), and crossing minimization (Section 9.4). The first two
aspects require crossing-free leaders. We consider both finite backbones (see Figure 9.3a) and
infinite backbones (see Figure 9.3b). Finite backbones extend horizontally from the label to the
furthest point connected to the backbone, whereas infinite backbones span the whole width of
the rectangle (thus one could use duplicate labels on both sides). Furthermore, our algorithms
vary depending on whether the order of the labels is fixed or flexible and whether more than
one label per color class can be used.

For crossing-free backbone labeling we derive efficient algorithms based on dynamic pro-
gramming to minimize label number and total leader length (Sections 9.2 and 9.3), which solves
the open problem of Lin [Lin10]. The main idea is that backbones can be used to split an instance
into two independent subinstances. For infinite leaders faster algorithms are possible since each
backbone generates two independent instances; for finite backbones the algorithms require
more effort since a backbone does not split the whole point set and thus the outermost point
connected to each backbone must be considered. For the case where crossings are allowed,
we present an efficient algorithm for crossing minimization with fixed label order and show
NP-completeness for flexible label order (Section 9.4).

Problem Definition. Before we start investigating the problem variants, we properly define
the notation used in this chapter.

In backbone labeling, we are given a set P of n points in an axis-aligned rectangle R, where
each point p € P is assigned a color c(p) from a color set C. Our goal is to place colored labels
on the boundary of R and to assign each point p € P to a label I(p) of color ¢(p).

All points assigned to the same label will be connected to the label through a single backbone
leader. A backbone leader consists of a horizontal backbone attached to the left or right side of
the enclosing rectangle R and vertical line segments that connect the points to the backbone.

Only a single backbone leader can be attached to a label. Hence, we can use the terms label
and backbone interchangeably. Since the backbones are horizontal, we consider labels to be
fully described by the y-coordinate of their backbone. Note that, at first sight, this may imply
that labels are of infinitely small height. However, by imposing a minimum separation distance
between backbones, we can also accommodate labels of finite height.
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Let £ be a set of colored labels and consider label I € L. By ¢(I), y(1), and P(1) we denote
the color of label /, the y-coordinate of the backbone of label I on the boundary of R and the set
of points that are connected/associated to label /, respectively.

A backbone (boundary) labeling for a set of colored points P in a rectangle R is a set £ of
colored labels together with a mapping of each point p € P to some c(p)-colored label in £. The
drawing can be easily produced since the backbone leader for label [ is fully specified by y(1)
and P(1). A backbone labeling is called legal if and only if (i) each point is connected to a label
of the same color, and (ii) there are no backbone leader overlaps (though crossings are allowed
in some cases).

Several restrictions on the number of labels of a specific color may be imposed: The number
of labels may be unlimited, effectively allowing us to assign each point to a distinct label.
Alternatively, the number of labels may be bounded by K > |C|. If K = |C]|, all points of the
same color have to be assigned to a single label. We may also restrict the maximum number
of allowed labels for each color in C separately by specifying a color vector k = (ki, ..., kicp)-
A legal backbone labeling that satisfies all of the imposed restrictions on the number of labels
is called feasible. Our goal in this chapter is to find feasible backbone labelings that optimize
different quality criteria.

A backbone labeling without leader crossings is called crossing-free. An interesting variation
of backbone labeling concerns the size of the backbone. A finite backbone attached to a label
at, say, the right side of R extends up to the leftmost point that is assigned to it. An infinite
backbone spans the whole width of R; see Figure 9.3 for examples of both types of backbones.
Note that, in the case of crossing-free labelings, infinite backbones may result in labelings with
a larger number of labels and increased total leader length.

In the remaining part of the chapter, we denote the points of P as {pi, p2, ..., p,} and we
assume that no two points share the same x- or y-coordinate. For simplicity, we consider the
points to be sorted in decreasing order of y-coordinates, with p; being the topmost point in all
of our relevant drawings.

9.2 Minimizing the Total Number of Labels

In this section we study the problem of finding a many-to-one boundary labeling that minimizes
the total number of labels. If we allow crossings, we can, of course, always find a labeling with
just one label per color. In this case, the problem of minimizing the number of crossings arises,
which will be covered in Section 9.4.

In this section, we will insist on solutions without crossings. Hence, we try to minimize the
total number of labels in a crossing-free solution. We can, therefore, set K = n so that there is
effectively no upper bound on the number of labels.

9.2.1 Infinite Backbones

We first investigate the case of infinite backbones. As, in this setting, a backbone cuts the whole
instance into two parts, it is clear that the points enclosed by two consecutive backbones can
only have the colors of these backbones. Similarly, we can make an important observation on the
structure of crossing-free labelings between two consecutive points; see the following lemma.
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Figure 9.4: Point p; cannot be labeled. Figure 9.5: Labeling a 2-colored instance with
one backbone per color.

Lemma 9.1. Let p; and p;,, be two points that are vertically consecutive. Let p; (with j < i) be
the first point above p; with c(p;) # c(pi), and let py» (with j' > i + 1) be the first point below
piv1 with c(pj) # c(pis1) if such points exist.

In any crossing-free backbone labeling p; and p;., are vertically separated by at most two back-
bones. Furthermore, any separating backbone has color c(p;),c(pis1), c(p;j), or c(pjr).

Proof. Suppose that there are three separating backbones. Then the middle one could not
be connected to any point. Now, suppose a separating backbone is connected to a point py
above p; and has color c(px) ¢ {c(p;j),c(pi)}. Then k < j < i. The backbone for p; has to be
above py. Hence, point p; is lying between two backbones of other colors; see Figure 9.4. Its
own backbone cannot be placed there without crossing a vertical segment connecting py or p;
to their corresponding backbone. Symmetrically, we see that a backbone separating p; and p; .,
that is connected to a point below p;,; can only have color ¢(p;1) or c(pj).

Clearly, if all points have the same color, one label always suffices. Even in an instance with
two colors, one label per color is enough: We place the backbone of one color above all points,
and the backbone of the second color below all points; see Figure 9.5. However, if a third color
is involved, then many labels may be required.

We denote the number of labels of an optimal crossing-free solution of P by NL(P). In the
general case of the problem, P may contain several consecutive points of the same color. We
proceed by constructing a simplified instance C(P) based on the instance P; in C(P), there
are no two consecutive points of the same color. To do so, we identify each maximal set of
identically-colored consecutive points of P and we replace all points of such a set by a single
point of the same color that lies in the position of the topmost point of the set. Note that in
order to achieve this, a simple top-to-bottom sweep is enough. Let C(P) = {p{, p5,..., p}}
be the clustered point set, that we just constructed. For the sake of simplicity, we assume that
f:P — C(P) is a function that computes the representative for a point of P in the simplified
instance C(P).

Lemma 9.2. The number of labels needed in an optimal crossing-free labeling of P with infinite
backbones is equal to the number of labels needed in an optimal crossing-free solution of C(P),
that is, NL(P) = NL(C(P)).

Proof. Since C(P) ¢ P, it trivially follows that NL(C(P)) < NL(P). So, in order to complete
the proof it remains to show that NL(P) < NL(C(P)). Let S(C(P)) be an optimal solution
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of C(P) with NL(C(P)) labels. If we manage to construct a solution of P that has exactly the
same number of labels as the optimal solution of C(P), then obviously NL(P) < NL(C(P)).

Let p} with 1 < i < k, be an arbitrary point of C(P) and let {p;, pjs1>..., pjsm} be the
maximal set of consecutive, identically-colored points of P that has p/ as its representative
in C(P). Let S(p;) be the horizontal strip that is defined by the two horizontal lines through p;
and through pj,, respectively. Clearly, in a legal solution for P, S(p}) can accommodate
at most one backbone, namely the one of {pj, pjs1,..., pjsim}> as we look for crossing-free
solutions. Now, observe that S(p;), S(p3)....,S(p}) do not overlap with each other, since we
have assumed that our point set P is in general position, and, subsequently, all maximal sets
of consecutive, identically-colored points of P are well separated. We proceed to derive a first
solution S(P) of P from S(C(P)) as follows: We connect each point p; to the backbone of
its representative f(p;) in S(C(P)). Clearly, S(P) is not necessarily crossing-free. However,
all potential crossings should appear in horizontal strips S(p;), S(p3),...,S(p}); otherwise
S(C(P)) is not crossing-free as well.

Let S(p’) with1 < i < k, be a horizontal strip that contains crossings. As already stated, S(p?})
can accommodate at most one backbone, namely the one of {p;, pjs1,.. ., pjsm ;. We proceed to
move all backbones in S(p}) that are above (below, respectively) the one of {pj, pjs1, ... Pjem}
to the top of (below, respectively) S(p'), without changing their relative order and without
influencing the strips above and below S(p}); recall that S(p7), S(p3). . .., S(p}) do not overlap
with each other, which implies that this is always possible. From the above it follows that the
constructed solution is crossing-free and has the same number of labels as the one of C(P),
which completes the proof. O

With the help of the previous lemmas, we are now ready to present a linear-time algorithm
for minimizing the number of infinite backbones.

Theorem 9.1. Let P = {p1, pa, ..., pn} be an input point set consisting of n points sorted from
top to bottom. Then, a crossing-free labeling of P with the minimum number of infinite backbones
can be computed in O(n) time.

Proof. In order to simplify the proof, we assume that no two consecutive points have the
same color, with the help of Lemma 9.2. If this is not already the case, we can first replace P
by the simplified instance C(P). After finding a solution for the simplified instance, we can
transform this solution into a solution for P as we did in the proof of Lemma 9.2. Note that both
transformations can be done in O(n) time.

We will use dynamic programming on simplified instances. For i = 1,2,...,n, colors
{cbak> Ctree } € C, and cur € {true,false}, let nl[i, cur, cpax, Cfree | be the optimal number
of backbones above or at p; in the case where:

« The lowest backbone has color c.

o If cur = true, the lowest backbone coincides with p;; hence, it is ¢(p;)-colored, that is,
Cbak = ¢(pi). Otherwise the lowest backbone is above p;. Note that in the latter case p;
might be unlabeled (for instance if the color of the lowest backbone is not c(p;), that is,
Chak # c(Pi))

o The point that, by Lemma 9.1, may exist between p; and the lowest backbone has color cyee.
Obviously, in the case where cur = true (that is, the lowest backbone coincides with p;)
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Figure 9.6: Different configurations that arise in case 1.1 of the proof of Theorem 9.1.

this point does not exist. So, in general, if this point does not exists, we assume that
Cfree = &.

Obviously, nl[1, true, c(p;), @] = land nl[1, false, @, c(p1)] = 0. Now assume that we have
computed all entries of table nl that correspond to different labelings induced by the point p;.
In order to compute the corresponding table entries for the next point p;.;, we distinguish two
cases:

1. The lowest backbone coincides with p;,;: In this case, the lowest backbone should be
c(pis1)-colored, cur = true, and obviously there is no unlabeled point between the
backbone through p;,; and the point p;,;, that is, cfree = &. Hence, we need to compute
entry nl[i +1,true, c(pir1), D]. To do so, we distinguish the following subcases with
respect to the color of the lowest backbone b above or at point p;.

11 b is above or at point p; and c(p;)-colored. If b is at point p; (see Figure 9.6a),
then trivially there is no unlabeled point below it. Hence, a feasible solution can
be derived from nl[i, true, c(p;), @] by adding a new backbone, namely the one
incident to p;,;.

If b is above point p;, then we distinguish two subcases.

(a) If there is no unlabeled point below b (see Figure 9.6b), then a feasible solution
can, again, be derived from nl[i, false, c(p;), @] by adding a new backbone,
namely the one incident to p;.;.

(b) On the other hand, if there is an unlabeled point below b, then we need to
distinguish two subcases based on the color of this point.

(b.1) If the unlabeled point is colored c(p;+1) (see Figure 9.6¢), then a single
additional backbone incident to p;,; suffices. The corresponding solution
is derived from nl[i, false, c(p;), c(pi+1)]-

(b.2) However, in the case where the unlabeled point is c-colored and ¢ ¢
{c(pi),c(pis1)} (see Figure 9.6d), two backbones are required and the
corresponding feasible solution is derived from nl[i, false, c(p;), c] with
c ¢ {c(pi),c(pi+1)}- Note that the case where the unlabeled point below b
is of color ¢(p;) cannot occur, since we have assumed that consecutive
points are not of the same color.

1.2 bisabove p; and c(p;41)-colored. Again, we distinguish two subcases.
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Figure 9.7: Different configurations that arise in cases 1.2 and 1.3 of the proof of Theorem 9.1.

1.3

(a) If there is no unlabeled point below b (see Figure 9.7a), then a feasible solution
can be derived from nl[i, false, c(p;+1), @] by adding two new backbones,
that is, the one incident to p; and the one incident to p;,;.

(b) If there is an unlabeled point below b (see Figure 9.7b), then its color should be
c(pi+1)- If this is not the case, it is easy to see that the backbone above p; is not
c(pi+1)-colored. Again two backbones are required, that is, the one incident to
pi and the one incident to p;,;. The corresponding solution is derived from

nl[i, false, c(pis1)>c(pi+1)]-

b is above p; and c-colored, where ¢ # c(p;) and ¢ # c¢(pi+1). In this case, either
there is no unlabeled point below b (see Figure 9.7¢) or there is one which is ¢-
colored (see Figure 9.7d). In both cases, two backbones have to be placed: one
incident to p; and one incident to p;,;. In the former case, the corresponding
feasible solution is derived from nl[i, false, ¢, @] with ¢ ¢ {c(p;), c(pi+1)}, while
in the latter it is derived from nl[i, false, ¢, c] with, ¢ ¢ {c(p;), c(pi+1)}-

From the above cases, it follows:

nl[i +1,true, c(pis1), @] = min

nl[i, true,c(p;), @] +1

nl[i, false,c(p;), @] +1

nl[i, false, c(p;), c(pir1)] +1

nl[i,false, c(pi),c]+2, c ¢ {c(pi), c(pis1)}
nl[i, false, c(pin], @) +2

nl[i, false, c(pin1], c(pis1)) +2
nl[i,false,c, @] +2, c ¢ {c(pi).c(pis1)}
nl[i,false,c,c]+2, c ¢ {c(p;),c(pir1)}

2. The lowest backbone is above p;.: Again, we distinguish subcases with respect to the color
of the lowest backbone b above or at point p;:

21
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Figure 9.8: Different configurations that arise in case 2.1 of the proof of Theorem 9.1.

2.2

2.3

the unlabeled point below it is ¢(p;+1)-colored (see Figure 9.8¢), then no additional
backbone is required. Then, the corresponding feasible solutions are as follows:

nl[i + 1, false, c(p;), @] = min{ nl[i, true, c(p;), ],
nl[i, false, c(p;), o]}

nl[i+1,false, c(p;),c(pi+1)] = nli, false, c(p;), c(pis1)]
However, in the case where the unlabeled point below b is c-colored, where ¢ #

c(pi) and ¢ # ¢(pis1), a new backbone is required (see Figure 9.8d). Hence, the
corresponding feasible solution can be derived as

nl[i +1,false,¢,g] = nl[i,false, c(p;),c] +1 for c ¢ {c(p;), c(pi+s1)}-

b is above p; and c(pi+1)-colored. In this case, either there is no unlabeled point
below b (see Figure 9.9a) or there is one which is ¢(p;.1)-colored (see Figure 9.9b).
In both cases no backbone is required. Hence, the corresponding feasible solutions
can be derived as follows:

nl[i +1,false, c(piv1), @] = nl[i, false, c(pi+1), D]

nl[z +1,false, C(pi+1), C(pi+1)] = nl[i, false, C(pi+1), C(pi+1)]

b is above p; and c-colored, where ¢ + c(p;) and ¢ # c(p;+1). In this case, if there
is no unlabeled point below b (see Figure 9.9¢) or there is one which is c-colored
(see Figure 9.9d), then one backbone is required for p;. The corresponding feasible
solution can be derived as follows:

nl[i + Lfalse, c(p;), D]
=min{nl[i, false,c,@] +1,nl[i,false,c,c]} +1

with ¢ ¢ {c(pi),c(pin)}

The most interesting case of our case analysis arises when a forth color is involved, say
¢" ¢ {c(pi),c(pis1),c}. In this case, either the ¢’-colored point remains unlabeled
and p; is labeled (see Figure 9.9¢), or, the ¢’-colored point is labeled and p; remains
unlabeled (see Figure 9.9f). The corresponding feasible solutions can be described
as follows.
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Figure 9.9: Different configurations that arise in cases 2.2 and 2.3 of the proof of Theorem 9.1.

nl[i +1,false,c(p;),c’]
=nl[i,false,c,c'] +1, c ¢ {c(pi)c(pis1)}> ¢ ¢ {c(pi), c(pis1)>c}

nl[i +1,false,c’,c(p;)]
=nl[i,false,c,c'] +1, c ¢ {c(pi), c(pir1)}> ¢ ¢ {c(pi), c(piv1);c}

Having computed table nl, the number of labels of the optimal solution of P equals the
minimum entry of the form nl[#, false, -, @]. Since the algorithm maintains an 7 x 2 x |C| x|C]|
table and each entry is computed in constant time, the time complexity of our algorithm is
O(n|C|*). However, with the help of Lemma 9.2, it can be reduced to O(n) (since there is a
constant number of possible colors that surround each point). A solution with the minimum
number of labels can be found by backtracking in the dynamic program. O

9.2.2 Finite Backbones

We now consider the problem of minimizing the total number of labels for finite backbones.
First, note that we can always slightly shift the backbones in a given solution so that backbones
are placed only in gaps between points. We number the gaps from 0 to n where gap 0 is above
point p;, gap n is below point p,, and gap i is between point p; and point p;,; for1<i < n.

Suppose that a point py lies between a backbone of color ¢ in gap g and a backbone of color ¢’
in gap g’ with 0 < g < € < g’ < n such that both backbones horizontally extend to at least the
x-coordinate of py; see Figure 9.10. Suppose that all points except the ones in the rectangle
R(g,g’,¢), spanned by the gaps g and g’ and limited by p, to the left and by the boundary to
the right, are already labeled. An optimum solution for connecting the points in R(g, g, ¢)
cannot reuse any backbone except for the two backbones in gaps g and g'; hence, such a partial
solution is independent of the rest of the solution.

We use this observation for minimizing the number of backbones by a dynamic program.
For0<g<g' <nte{g+1,...,9'} u{a}, and two colors c and ¢’ let T[g, ¢, g, ¢/, €] be the
minimum number of additional labels that are needed for labeling all points in the rectangle
R(g,g’, ) under the assumption that there is a backbone of color ¢ in gap g, a backbone of
color ¢’ in gap g’, between these two backbones there is no backbone placed yet, and both
backbones extend to the left of p, as in Figure 9.10. Note that for £ = & the rectangle is empty
and T[g, ¢, g, ¢, @] = 0. Furthermore, also the case g’ = g can occur; in this case, as there is
no point inside a gap, the relevant entry of table T is T[g, ¢, g, ¢’, @] = 0.
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I g
R(g.9’.¢)

e

OT 1)

Figure 9.10: A partial instance in the rectangle R(g, g’, £) bounded by the two backbones in
gaps g and g’ and the leftmost point p,.

R

Figure 9.11: The partial instance in the rectangle R(g, g', £) is split by a new backbone for p,
into two partial instances in rectangles R(g, g, left(g, g, £)) and R(g, g, left(g, g’,£)).

~

We distinguish cases based on the connection of point p,. First, if c(p,) = c or c(pe) = ¢/, it
is always optimal to connect p, to the top or bottom backbone, respectively, as all remaining
points will be to the right of the new vertical segment. Hence, in this case,

Tlg.c.g'.c',€]=T[g,c.g',c",left(g, 4", £)],

whereleft(g, g', £) is the index of the leftmost point in the interior of R(g, g’, £) orleft(g, g’, ) =
@ if no such point exists.

Otherwise, suppose that c(p¢) ¢ {c, ¢’}. For connecting p, we need to place a new backbone
of color ¢(p,); this is possible in any gap § with g < § < g’. Note that reusing gap g or g’ is
allowed. The backbone splits the instance into two parts, one between gaps g and g and one
between gaps g and g'; see Figure 9.11. Hence, we obtain the recursion
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T[g.c, g’ ¢, €] = gr%ig;’ (T[g, ¢, g c(pe),left(g, g,0)]

+T[g,c(pe). g', ¢ left(g, g, f)]) +1.

Finally, let ¢ ¢ C be a dummy color, and let p; € P be the leftmost point. Then the value
T[0,¢, n, ¢, €] obtained by using dummy backbones above and below all points yields the
minimum number of labels needed for labeling all points. We can compute each of the (n+1) x
|C| x (n+1) x|C| x (n +1) entries of table T in O(#n) time. Note that all left(:, -, -)-values can
easily be precomputed in O(#?) total time by first sorting the points from left to right and then,
for each pair of gaps g and g’ with g < g’, sweeping once over the points { Pgtls---> pg} in this
direction. Summing up, we get the following result.

Theorem 9.2. Given a set P of n colored points and a color set C, we can compute a feasible
labeling of P with the minimum number of finite backbones in O(n*|C|?) time.

Minimum Distances. Our algorithm might place many labels inside a gap, which can result
in a solution with very small distances between backbones. In practice, we may want to ensure a
minimum distance of A between backbones, and between a backbone and a point not connected
to this backbone. To this end, in any gap, we insert as many candidate positions for backbones
as possible (up to n). Now, instead of using gaps in table T, we use these candidate positions; a
position must never be used twice. As there are O(n?) instead of n + 1 candidate positions, the
number of entries of the table increases by a factor of O(n?), and we now need O(n?) time for
computing an entry. Hence, the total running time is now O(n’|C|?).

9.3 Length Minimization

In the previous section, we have presented algorithms for finding backbone labelings with the
minimum number of labels. However, even two labelings with the same number of labels can
look quite differently. For making the leaders easy to follow, it is important that they have small
length. Hence, the objective is that the total length of leader segments is minimum. In order to
avoid that the number of labels is very large in solutions with this new objective, we allow to
specify an upper bound for the number of labels as part of the input.

In this section we minimize the total length of all leaders in a crossing-free solution, either
including or excluding the horizontal lengths of the backbones. We distinguish between a global
bound K on the number of labels or a vector k of individual bounds per color.

9.3.1 Infinite Backbones

First, we care about labelings with infinite backbones. We use a parameter A to distinguish
between the two minimization goals, that is, we set A = 0 if we want to minimize only the sum
of the lengths of all vertical segments, and we set A to be the width of the rectangle R if we also
take the length of the backbones into account.
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Figure 9.12: Candidates for five points. Red points are circles, blue points are crosses, and the
green point is a square. Candidates through a point have the same color as the point. Candidate
p7 has the same color as the first point with a different color as p; that is met when walking
from p7 over p;. Candidates py, p3, and p5 will not be used and have no color.

Single Color. As a first simple case, we assume that all points have the same color. In this
case, we have to choose a set S of at most K y-coordinates where we draw the backbones and
connect each point to its nearest backbone; this does, of course, not lead to crossings. Hence,
we must solve the following problem: Given n points with y-coordinates y(p1) > --- > y(p.),
find a set S of at most K y-coordinates that minimizes

A~\S|+Zmin|y—pi|. (9.1)
) yes

We can optimize the value in Equation 9.1 by choosing S € {y(p1),...,y(pn)}, that is, by
selecting only backbones that pass through input points: For a backbone position y € S \
{y(p1)s--»y(pn)} let {pi,..., pj} be the set of points that we would connect to the backbone
through y. Let y(p;) >---> y(pir) > y > y(pirs1) > - > y(pj). fi' —i +1> j—i’, that is, if
the majority of sites connected to the backbone at position y lies above the backbone, replace y
by y(pir). Otherwise replace y by y(pir11). Then the objective value in Equation 9.1 can at most
improve. Hence, the problem can be solved in O(Kn) time if the points are sorted according to
their y-coordinates using the algorithm of Hassin and Tamir [HT91]. Note that the problem
corresponds to the 1-dimensional K-median problem if A = 0.

Multiple Colors. If the n points have different colors, we can no longer assume that all
backbones go through one of the given n points since we have to avoid crossings. However, by
Lemma 9.1, it suffices to add between any pair of vertically consecutive points two additional
candidates for backbone positions, plus one additional candidate above all points and one below
all points. Hence, we have a set of 3n candidate lines at y-coordinates

pr > y(p1) > pi > py > y(p2) > py > > py > y(pa) > P (9.2)

where for each i the values p; and p7 are as close to y(p;) as the label heights allow. Clearly, a
backbone through p; can only be connected to points with color ¢(p;). If we use a backbone
through p7 (or p7, respectively), it will have the same color as the first point below p; (or
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above p;, respectively) that has a different color than p;; compare Lemma 9.1. For example, in
Fig 9.12, py is colored blue, since ps is the first point below p; that has a different color than red,
namely blue. Hence, the colors of all candidates are fixed or the candidate will never be used as
a backbone. For an easier notation, we denote the y-coordinate of the ith point in Equation 9.2
by y; and its color by ¢(y;).

We minimize the total leader length by using dynamic programming. For each i =1,...,3n,
and for each vector k’ = (kI,... » k[c)) with ki < ki, ... ki) < kig), let L[, k] denote the
minimum length of a feasible backbone labeling of py, ..., p i1} using k! infinite backbones
of color ¢ for ¢ = 1,...,|C| such that the bottommost backbone is at position y;, if such a
labeling exists. Otherwise L[i,k’] = co. In the following, we describe, how to compute the
values L[i, k'].

Assume that we want to place a new backbone at position y; and that the previous backbone
was at position y; with j < i. Then, we have to connect each point p, with (j+2)/3 < x <i/3to
one of the backbones through y; or y; as these points are enclosed between the two backbones.
Let link(j, i) denote the minimum total length of the vertical segments linking these points
to their respective backbone. We set link(j, i) = oo if there is a point p, between y; and y;
with ¢(px) ¢ {c(yi),c(yj)} because p, cannot be connected to the surrounding backbones.
Otherwise, we have

422 mln(y]—}’(Px),}/(Px)—)/z) lfc(yl):C(yJ)
link(j, 1) = z iyt X Op) -y i) 2y O

E 3 E 3
c(px)=c(y;) c(px)=c(yi)

The base cases are

L[i,0,...,0,k{(,y =1,0,...,0] = > (yi—px)

0<x<i/3

if all points above y; have the color ¢(y;) and L[{,0,...,0,k y=L0,..., 0] = oo otherwise,

- 2(yl
as well as L[,0] = oo.

For computing an entry L[, k{,..., k{c|] we test all candidate positions y; > y; for the
previous backbone; to the length of the corresponding solution we have to add the connection
cost link(j, i) as well as A for the new backbone at position y;. Hence, we get the following

recursion:
L K Ky = A+ min (LD KoKy =LKl +link(jo 1)) (94)

Note that we need to interpret any entry of table L for which a color bound is negative as cc.

In order to see that each entry of table L can be computed in O(#n) time, we have to show,
that, for a fixed index i, all values link(j, i) with j < i can be computed in O(#n) time. Let ¢’
be the first color of a point above y; that is different from c(y;). For a fixed i, starting from
j =i -1, we scan the candidates twice in decreasing order of their indices until we find the first
point that is neither colored ¢’ nor ¢(y;).
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For color ¢ € {c(;), '}, we traverse the points above y; from bottom to top. For any point p,
that we see, we store two values: the number n.(x") of points of color ¢ that we have seen so far
and the sum of distances of these c-colored points to y;, that is,

le(x") = Y (pe)-yi).

x'<x<te(py)=c

Note that we can easily compute I (x’ — 1) in constant time from I.(x"): If p,_; is not c-colored,
then I.(x"-1) = I.(x); if c(px-1) = ¢, then we have to connect the point p,/_; to ¥; and, hence,
L ~1) = L(x") + (¥(para) - 31):

With these values we can compute any value link(j, i) as follows. First, suppose that c(y;) #
c(y;) as in the second case of Equation 9.4. Let p, be the point immediately below y;. Then

> (pe) = y1) = Ly ().

ﬁs;:sé

c(px)=c(yi)

Furthermore, we can also compute the length needed for connecting the points of color c(y;)
to the backbone at position y; since we know their number n.(, y(px) and y; -y = (y; - yi) -

(y-yi)foryj2y2y:
0= X (0520 - ) - 9)

ﬁgs% x/<x<t
c(px)=c(y)) c(px)=c(¥})

=1y (X)) (9= yi) = Loy (%))

Hence, we can compute all values link(, i) with c(y;) # c(y;) in O(n) total time for fixed i.

Now, assume that c(y;) = c(y;) and let again be p,- the point immediately below y;. If
ne(x") > 0 there is a point of color ¢’ # ¢(y;) between the two backbones; as this point cannot
be connected, link(j, i) = co. If no such point exists, every point connects to the closer backbone,
either y; or y;. Hence, the points are split into two subsets, where p,~ is the topmost point
that connects down to y; and all points p,,..., p,»_; connect to y;. Similar to the previous
computation, we get that

link(j, i) = ) min (y; - y(ps) y(ps) = i)

= Z ()’j_)’(Px))+ Z‘()’(Px)_)’i)

= (e (x7) = 11y (X)) - (1) = 7i) = (Lery (6 = Ly (7)) + Loy (x7).

This can be computed in constant time. Note that by simply sweeping once over the backbone
positions y; and the points from y; to the top in parallel, we can easily find the right x” for
each y; in O(n) total time.

We have now seen that we can compute all values link(+, i) in O(#n) total time. As a conse-
quence, we know that we can compute any entry of table L in O(n) time. For computing all

entries of the table, we need, hence, O(n2 ngl ki) time.

191



Chapter 9: Many-to-One Boundary Labeling with Backbones

Let S be the set of candidates y; such that all points below y; have the same color as y;. Any
solution with y; as the lowest backbone is a candidate for the optimum solution; we do, however,
have to consider the cost of connecting the points below y; to the backbone through y;. Note
that y3,-1 = y(p,) and ys, are always included in the set S. Summing up, we can compute
the minimum total length of a backbone labeling of p;, ..., p, with at most k. labels per color
1<c<|Clas

SkC(L[i,k{,...,k’Cl]+ > (y,-—px)).

%SxSn

min
yieS ki< k.

Hence, we get the following theorem.

Theorem 9.3. A minimum length backbone labeling with infinite backbones for n points with |C|
cl

colors can be computed in O(n2 : H‘i:l k,-) time if at most k; labels are allowed for color i € C.

If we globally bound the total number of labels by K, we can use a similar dynamic program;
in the table L, we replace the individual bounds k. for color ¢ € C with the global bound K, that
is, we compute values L[, k] with 1 < i < 3n and k < K. The only difference in the dynamic
program is, hence, that we always use the global bound instead of the specific bounds for colors.
We get the following result.

Theorem 9.4. A minimum length backbone labeling with infinite backbones for n points with |C|
colors can be computed in O(n*K) time if up to K labels in total are allowed.

Note that our dynamic program can also be used for deciding whether a feasible crossing-free
solution subject to the bounds on the numbers of labels exists. If no feasible solution exists, the
reported minimum length will be co.

9.3.2 Finite Backbones

We now turn to leader length minimization for labeling with finite backbones. Here, the length
of a backbone segment may differ heavily; hence, we do not use a parameter A as we did for
infinite backbones in Section 9.3.1, but we always count both horizontal and vertical lengths.
Recall that we solved the minimization of the number of backbones with the help of a dynamic
program based on rectangular subinstances bounded by two backbones and a leftmost point;
see Section 9.2.2. We modify this dynamic program for minimizing the total leader length.

As a first obvious change, we now denote by the T-values the additional length of segments
and backbones needed for labeling the points of the subinstance. However, we have to adjust
more details. By the case of a single point connected to a backbone, we see that we have to allow
backbones passing through input points of the same color for length minimization. Additionally,
for computing the vertical length needed for connecting to a backbone placed in a gap, we need
to know its actual y-coordinate.

Suppose that there is a set B of backbones that all lie in the same gap between points p;
and pj.1. Let b* be the longest of these backbones; see Figure 9.13. The backbone b* vertically
splits the set B; any backbone b’ € B above b* can only connect to points above itself and any
backbone b” € B below b* can only connect to points below itself. By moving b to the top and
b" to the bottom as far as possible the total leader length decreases. Hence, in any optimum
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Figure 9.13: The longest backbone b™ splits the backbones between p; and p;.;.

solution, the backbones above b* will be very close to y(p;) and the backbones below b* will
be very close to y(pi.1). Furthermore, depending on the numbers of connected points above
and below, by either moving b* to the top or to the bottom we will find a solution that is not
worse, and in which any backbone of B is close to p; or p;.i.

If we allow backbones to be infinitely close to points or other backbones, we can use backbone
positions p; and p? that lie infinitely close above and below p;, respectively, and share its
y-coordinate. Each of these positions may be used for an arbitrary number of backbones.

Now, in the case distinction, we have to be a bit more careful. When the leftmost point p,
in the subinstance bounded by backbones of color ¢ to the top and of color ¢’ to the bottom,
respectively, has color ¢ or ¢’, we can no longer alway connect p, to the existing backbones.
Although such a connection is always possible, opening a new backbone may save leader length
in this step or in later steps. Hence, we have to additionally test all positions for placing a new
backbone in the same way as we do if p, has a different color. Note that this does not increase
the runtime.

With the new positions as well as the input points as possible label positions and the updated
case analysis, we can then find a solution with minimum total leader length in O(n*|C|?) time,
if the number of labels is not bounded, by adding the length of the newly placed segments in
any calculation.

Bounded Numbers of Labels. If we want to integrate an upper bound K on the total number
of labels, or, for each color ¢ € C, an upper bound k. on the number of labels of color ¢, into
the dynamic program—as we did for infinite backbones—, we need an additional dimension
for the remaining number of backbones that we can use in the subinstance (or a dimension
for each color ¢ € C for the remaining number of backbones of that color); that is, we now use
table entries of the form T[i, c,i’,¢’, ¢, K'] (or T[i,c,i’, ¢, €, k']) where y; and y;s with i < i
are the positions of the upper and lower backbone, respectively, c and ¢’ are their respective
colors, p, with (i +2)/3 < £ < i’/3 (or £ = @) is the leftmost point of the subinstance (if such a
point exists), and K’ (or IQ') is the number of labels (per color) that we allow for the subinstance.
Additionally, when splitting the instance into two parts, we have to consider not only the position
of the splitting backbone of color ¢(p,), but also the different combinations of distributing
the allowed numbers of backbones among the subinstances. For a global bound K, we need,
hence, O(nK) time for computing an entry of the table. If we have individual bounds k. for

193



Chapter 9: Many-to-One Boundary Labeling with Backbones

3 Pi pi
7777777 *"Af AT
b*
A .
} n times

A
A

o0 Pi+1 pz+1

(a) Backbones placed with the minimum leader (b) Candidate positions for backbones inside the
length. gap-

Figure 9.14: Situation between two consecutive points for finite backbones.

¢ € C, we need O(n I.ec kc) time. Together with the additional dimension(s) of the table, we
can minimize the total leader length in O(n*|C |2K2) time if we have a global bound K, and

in O(n4|C|2( [.ec kc)z) time if we have an individual bound k. for each color ¢ € C. Note

that we can easily detect cases where we have to add a backbone of color ¢(p,) but the current
bound k,(,,) = 0 (or K = 0) in the subinstance. In such a case, we report +oo as the total leader
length, indicating that no feasible solution with the given bounds exists.

Minimum Distances. So far, we allowed backbones to be infinitely close to unconnected
points and other backbones, which will, in practice, lead to overlaps, for instance between
consecutive labels. One would rather enforce a small distance between two backbones or a
backbone and a point, even if this increases the total leader length a bit. Let A > 0 be the
minimum allowed distance, which depends, for example, on the font size used for the labels. In
an optimum solution, there will be two sequences of backbones on the top and on the bottom of
a gap between p; and p;.1, such that inside a sequence consecutive backbones have distance A;
see Figure 9.14a. We get all possible backbone positions inside the gap by taking all y-coordinates
inside whose y-distance to either p; or p;,; is an integer multiple of A; see Figure 9.14b. Note
that » positions of each type suffice in a gap; if the gap is too small, there might even be fewer
positions. The two sequences can overlap. In this case, we have to check that we do not combine
two positions with a distance smaller than A in the dynamic program.

Together with the input points, we get a set of O(n?) candidate positions for backbones, each
of which can be used at most once. This increases the number of entries of table T by a factor of
O(n?*), and the running time of computing a single entry by a factor of O(n). The resulting
running time of our dynamic program is O(n7 |C |2) if we do not bound the number of labels,

O(n’|C[*K?) if we have a global bound K on the number of labels, and O(n7|C|2( [T.ec kc)z)

if we have an individual bound k. for each color c € C.

Theorem 9.5. Given a set P of n colored points, a color set C, and a label bound K (or vector k
of bounds per color), we can compute a feasible labeling of P with finite backbones that minimizes
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the total leader length in O(n7|C|2K2) time (or in O(n7\C|2( [I.ec kc)z) time).

Note that, as in the case of infinite backbones, also for finite backbones we can use the dynamic
program for deciding whether a feasible solution for the given bounds on the numbers of labels
exists: If no such solution exists, the reported total leader length will be co.

9.4 Crossing Minimization

In this section we allow crossings between backbone leaders, which generally allows us to use
fewer labels. More precisely, if crossings are allowed, it is trivially possible to label all points
using just one label per color. Such a solution may, however, lead to many crossings between
backbones and vertical leader segments. Therefore, we are interested in minimizing the number
of such crossings. We concentrate on he case that K = |C| labels, that is, one per color, are
allowed. We will first consider the case that the relative order of labels for the colors from
top to bottom is prescribed. For this case we will present efficient algorithms for minimizing
the number of crossings. Then, we will see that without this restriction the problem becomes
NP-hard, at least for finite backbones.

9.4.1 Fixed y-Order of Labels

We first assume that the color set C is ordered and we require that for each pair of colors i < j
the label of color i is above the label of color j. We will develop a fast algorithm for crossing
minimization with infinite backbones. Then, we will show how this algorithm can be modified
for the case of finite backbones.

Infinite Backbones

Since the order of the labels is fixed, the order in which the backbones appear from top-to-
bottom should also be fixed. This implies that the i-th backbone in the given y-ordering from
top to bottom is connected to the points of color i.

Observe that it is always possible to slightly shift the backbones of a solution without increasing
the number of crossings such that no backbone contains a point. Thus, the backbones can be
assumed to be positioned in the gaps between vertically adjacent points; we number the gaps
from 0 to n as in Section 9.2.2.

Suppose that we fix the position of the i-th backbone to gap g. For1 < i < [C|and 0 < g < n, let
cross(i, g) be the number of crossings of the vertical segments of the non-i-colored points when
the color-i backbone is placed at gap g. Note that this number depends only on the y-ordering
of the backbones, which is fixed, and not on their actual positions. So, we can precompute table
cross, using dynamic programming, as follows.

All table entries of the form cross(, 0) can clearly be computed in O(n|C]|) total time because,
for color i, cross(i, 0) is equal to number of points having some color < i. Then, cross(i, g) =
cross(i, g — 1) + 1, if the point p, between gaps g — 1 and g has color j with j > i. In the
case where p, has color j with j < i, cross(i, g) = cross(i, g —1) — 1. If p, has color i, then
cross(i, g) = cross(i, g —1). From the above, it follows that the computation of the table cross
takes O(n|C|) time.

195



Chapter 9: Many-to-One Boundary Labeling with Backbones

Now, we use another dynamic program for computing the minimum number of crossings.
Let T[4, g] denote the minimum number of crossings on the backbones 1,.. ., i in any solution
subject to the condition that the backbones are placed in the given ordering and backbone i is
positioned in gap g. Clearly T[0, g] = 0 for g = 0,.. ., n. For computing an entry T[i, g] with
i > 0, we test all positions for the previous backbone i —1in a gap g’ above (and including)
gap g. In addition to the number of crossings from the entry T[i — 1, g'], we also have to take
the number cross(i, g) of crossings of the new backbone into account. Hence, we have

T[i, g] = cross(i, g) + min T[i — 1, g'].
9'<g

Having precomputed table cross and assuming that for each entry T[4, g], we also store the small-
est entry T[i, g'] with g’ < g, each entry of table T can be computed in constant time. Hence,
table T can be filled in time O(#|C|). Then, the minimum crossing number is ming<4<, T[|C|, g].
A corresponding solution can be found by backtracking in the dynamic program. Let us sum-
marize.

Theorem 9.6. Given a set P of n colored points and an ordered color set C, a backbone labeling
with one label per color, labels in the given color order, infinite backbones, and minimum number
of crossings can be computed in O(n|C|) time.

Finite Backbones

We can easily modify the approach used for infinite backbones for minimizing the number of
crossings for finite backbones, if the y-order of labels is fixed, as the following theorem shows.

Theorem 9.7. Given a set P of n colored points and an ordered color set C, a backbone labeling
with one label per color, labels in the given order, finite backbones, and minimum number of
crossings can be computed in O(n|C|) time.

Proof. We develop a dynamic program very similar to the one presented for infinite backbones.
The only part that we have to change is that the computation of the number of crossings when
fixing a backbone at a certain position should take into consideration that the backbones are
not of infinite length. Recall that the dynamic program could precompute these crossings, by
maintaining an # x |C| table cross, in which each entry cross(i, g) corresponds to the number
of crossings of the non-i-colored points when the color-i-backbone is placed at gap g, for
1<i<|C|and 0 < g < n. For finite backbones, cross(i, g) = cross(i, g —1) + 1, if the point
between gaps g —1and g is right of the leftmost i-colored point and has color j with j > i. In the
case, where the point p,; between gaps g —1and g is right of the leftmost i-colored point and
has color j with j < i, cross(i, g) = cross(i, g — 1) — 1. Otherwise, cross(i, g) = cross(i, g —1).
Again, all table entries of the form cross(-, 0) can clearly be computed in O(#n) time. O

9.4.2 Flexible y-Order of Labels

We now no longer assume that the order of labels is prescribed, that is, we need to minimize the
number of crossings over all label orders. While there is an efficient algorithm for a restricted
variant of the problem with infinite backbones, the problem is NP-complete for finite backbones.
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Infinite Backbones

We give an efficient algorithm for the case where there are K = |C| fixed label positions y;, . .., yx
on the right boundary of R, for instance, uniformly distributed.

Theorem 9.8. Given a set P of n colored points, a color set C, and a set of |C| fixed label positions,
we can compute a feasible backbone labeling with infinite backbones that minimizes the number
of crossings in O(n + |C[’) time.

Proof. First observe that if the backbone of color k with 1 < k < |C| is placed at position y;
with 1< i < |C|, then the number of crossings created by the vertical segments leading to this
backbone is fixed, since all label positions will be occupied by an infinite backbone. Let n be
the number of points of color k. The crossing number cr(k, i) can be determined in O(ny +|C|)
time. In fact, by a sweep from top to bottom, we can even determine all crossing numbers
cr(k,-) for backbone k with 1 < k < |C| in O(ny +|C]|) time. Now, we construct an instance of
a weighted bipartite matching problem, where for each position y; with 1 < k < |C| and each
backbone k with 1 < k < |C|, we establish an edge {k, i} of weight cr(k, i). In total, this takes
O(n+|C |2) time. The minimum-cost weighted bipartite matching problem can be computed
in O(|C|’) time using the Hungarian method [Kuh55] and yields a backbone labeling with the
minimal number of crossings. O

Note that the previous approach does not work for finite backbones. In contrast to infinite
backbones a crossing of a vertical segment for some color with a backbone depends on the
horizontal extend and, hence, on the color of this backbone. Therefore, it is not possible to
calculate a simple number cr(k, i) of crossings for the placement of backbone k on position y;.

Finite Backbones

Next, we consider the variant with finite backbones and prove that it is NP-hard to minimize the
number of crossings. Here, we do not restrict ourselves to candidate positions for backbones.
For simplicity, we allow points that share the same x- or y-coordinates. This can be remedied by
a slight perturbation. Our arguments do not make use of this special situation and, hence, carry
over to the perturbed constructions. We first introduce a number of gadgets that are required
for our proof and explain their properties, before describing the hardness reduction.

The first gadget is the range restrictor gadget. Its construction consists of a middle backbone,
whose position will be restricted to a given vertical range R, and an upper and a lower guard
gadget that ensure that positioning the middle backbone outside range R creates many crossings;
see Figure 9.15. We assume that the middle backbone is connected to at least one point further
to the left such that it extends beyond all points of the guard gadgets. Additionally, the middle
backbone is connected to two range points whose y-coordinates are the upper and lower bound-
ary of the range R. Their x-coordinates are such that they are on the right of the points of the
guard gadgets. A guard consists of a backbone that connects to a set of M points, where M > 1
is an arbitrary number. The M points of a guard lie left of the range points. The upper guard
points are horizontally aligned and lie slightly below the upper bound of range R. The lower
guard points are horizontally aligned and are placed such that they are slightly above the lower
bound of range R. We place M upper and M lower guards such that the guards form pairs for
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Figure 9.15: The range restrictor gadget.

which the guard points overlap horizontally. The upper (respectively lower) guard gadget is
formed by the set of upper (respectively lower) guards. We call M the size of the guard gadgets.
The next lemma shows the important properties of the range restrictor gadget.

Lemma 9.3. The backbones of the range restrictor gadget can be positioned such that there are
no crossings. If the middle backbone is positioned outside the range R, there are at least M — 1
crossings.

Proof. The first statement is illustrated by the drawing in Figure 9.15. Suppose for a contradiction
to the second statement that the middle backbone is positioned outside range R and that there
are fewer than M — 1 crossings. Assume, without loss of generality, that the middle backbone is
embedded below range R; the other case is symmetric.

First, observe that all backbones of guards must be positioned above the middle backbone, as
a guard backbone below the middle backbone would create M crossings, namely between the
middle backbone and the segments connecting the points of the guard to its backbone. Hence
the middle backbone is the lowest. Now observe that any guard that is positioned below the
upper range point crosses the segment that connects this range point to the middle backbone.
To avoid having M — 1 crossings, it follows that at least M + 1 guards (both upper and lower)
must be positioned above range R. Hence, there is at least one pair consisting of an upper and a
lower guard that are both positioned above the range R. This, however, independent of their
ordering, creates at least M — 1 crossings; see Figure 9.16, where the two alternatives for the lower
guard are drawn in black and bold gray, respectively. This contradicts our assumption. O

Let B be an axis-aligned rectangular box and let R be a small interval that is contained in
the range of y-coordinates spanned by B. A blocker gadget of width m consists of a backbone
that connects to 2m points, half of which are positioned on the top and on the bottom side of B,
respectively. Moreover, a range restrictor gadget is used to restrict the backbone of the blocker
to the range R. Figure 9.17 shows an example. Note that, due to the range restrictor, this drawing
is essentially fixed. We say that a backbone crosses the blocker gadget if its backbone crosses
the box B. It is easy to see that any backbone that crosses a blocker gadget creates m crossings,
where m is the width of the blocker.

We are now ready to show that the crossing minimization problem with flexible y-order of
the labels is NP-complete.
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Figure 9.16: Crossings caused by a pair of an up- Figure 9.17: The blocker gadget.
per and a lower guard that are positioned on the
same side outside range R.

Theorem 9.9. Given a set P of input points in k = |C| different colors and an integer Y it is
NP-complete to decide whether a backbone labeling with one label per color and at most Y leader
crossings exists.

Proof. The proof of NP-hardness is by reduction from the NP-complete FIXED LINEAR CROSSING
NuMBER problem [MNKF90], which is defined as follows. Given a graph G = (V, E), a bijective
function f: V - {1,...,|V|}, and an integer Z, one has to decide whether there is a drawing
of G with the vertices placed on a horizontal line (the spine) in the order specified by f and the
edges drawn as semi-circles above or below the spine so that there are at most Z edge crossings.
Masuda et al. [MNKF90] showed that the problem is NP-complete even if G is a matching.

Let G be a matching. Then the number of vertices is even and we can assume that the vertices
V = {vy,...,v2,} are indexed in the order specified by f, thatis, f(v;) = ifor1 < i < 2n.
Furthermore, we direct every edge {v;,v;} with i < j from v; to v;. Let {u,...,u,} be the
ordered source vertices and let {wy, ..., w, } be the ordered sink vertices. Figure 9.18 shows an
example graph G drawn on a spine in the specified order.

In our reduction we will create an edge gadget for every edge of G. The gadget consists of five
blocker gadgets and one side selector gadget. Each of the six sub-gadgets uses its own color and
thus defines one middle backbone. The edge gadgets are ordered from left to right according
to the sequence of source vertices (u, ..., u, ). Figure 9.19 shows a sketch of the instance I
created for the matching G with four edges shown in Figure 9.18.

The edge gadgets are placed symmetrically with respect to the x-axis. We create 2n + 1 special
rows below the x-axis and 2n+1 special rows above, indexed by —(2n+1), -2#,...,0,...,2n,2n+
1. The gadget for an edge (v;,v;) uses five blocker gadgets (denoted as central, upper, lower,
upper gap, and lower gap blockers) in two different columns to create two small gaps in rows j
and —j, see the hatched blocks in the same color in Figure 9.19. The upper and lower blockers
extend vertically to rows 2n + 1 and —2n — 1, respectively. The gaps are intended to create two
alternatives for routing the backbone of the side selector. Every backbone that starts left of
the two gap blockers is forced to cross at least one of these five blocker gadgets as long as it is
vertically placed between rows 2xn + 1and —2n - 1.

The blockers have width m = 8n?. Their backbones are fixed to lie between rows 0 and -1 for
the central blocker, between rows 2n and 2n + 1 (—2n and —2n — 1) for the upper (respectively
lower) blocker, and between rows j and j + 1 (-j and —j — 1) for the upper (respectively lower)
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Figure 9.19: Sketch of the reduction of the graph of Figure 9.18 to a backbone labeling instance.
Hatched rectangles represent blockers, thick segments represent side selectors, and filled shapes
represent guard gadgets or range restrictor gadgets.
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gap blocker; recall that this can easily be done by placing the range restrictor gadget of the
blocker at the respective position.

The side selector consists of two horizontally spaced selector points sl(i) and sgi) in rows i and
—ilocated between the left and right blocker columns. They have the same color and thus define
one joint backbone, the selector backbone, which is supposed to pass through one of the two
gaps in an optimal solution. The n edge gadgets are placed from left to right in the order of their
source vertices; see Figure 9.19.

The backbone of every selector gadget is vertically restricted to the range between rows 2n +1
and —2n — 1 in any optimal solution by augmenting each selector gadget with a range restrictor
gadget. This means that we add two more points for each selector to the right of all edge gadgets,
one in row 27 + 1 and the other in row —2n — 1. They are connected to the selector backbone. In
combination with a corresponding upper and lower guard gadget of size M = Q(n*) between
the two selector points sl(i) and sgi) this achieves the range restriction according to Lemma 9.3.

This completes the backbone labeling instance. We will now show two important properties
of optimal solutions for the constructed instance. We first show that the selector backbones do
indeed pass through one of their two gaps.

Property 1. In a crossing-minimal labeling the backbone of the selector gadget for every edge
(vi»v;j) passes through one of its two gaps in rows j or —j.

Proof. There are basically three different options for placing a selector backbone: (a) outside
its range restriction, that is, above row 21 + 1 or below row —2n — 1, (b) between rows 2n +1
and —2# — 1, but not in one of the two gaps, and (c) in rows j or —j, that is, inside one of the
gaps. In case (a) we get at least M = Q(n*) crossings by Lemma 9.3. So we may assume that
case (a) never occurs for any selector gadget; we will see that in this case there are only O(n*)
crossing in total for the selector gadgets. In cases (b) and (c) we note that the backbone will
cross one blocker for each edge whose source vertex is right of v; in the order (uy,...,u,). Letk
be the number of these edges. Additionally, in case (b), the backbone crosses one of its own
blockers. In cases (b) and (c) the two vertical segments of the range restrictor of edge (v;,v;)
cross every selector and blocker backbone regardless of the position of its own backbone, which
yields 61 — 1 crossings. Thus, case (b) causes at least (k +1) - m + 6n — 1 crossings.

For giving an upper bound on the number of crossings in case (c) we note that the backbone
can cross at most three vertical segments of any other selector gadget: the two segments con-
nected to its selector points and one segment connected to a point in either row 2n + 1 or row
—2n — 1, which is part of the range restrictor gadget. The two vertical segments connected to
points sl(i) and sgi) together will cross the backbone of each central blocker at most once, the
backbones of each pair of upper/lower gap blockers at most twice, and each selector backbone at
most twice. Backbones of upper and lower blockers are never crossed in case (c). So in case (c)
the segments of the selector gadget cross at most km + 8n — 1 segments, which is less than the
lower bound of (k +1)m + 6n — 1 in case (b). We conclude that each backbone indeed passes
through one of the gaps in an optimal solution. Any violation of this rule would create at least m
additional crossings, which is more than what an arbitrary assignment of selector backbones to
gaps yields. O

Next, we show how the number of crossings in the backbone labeling instance relates to the
number of crossings in the instance of the FIXED LINEAR CROSSING NUMBER problem. There is
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a large number of unavoidable crossings regardless of the backbone positions of the selector
gadgets. By Property 1 and the fact that violating any range restriction immediately causes
M = Q(n?) crossings, we can assume that every backbone adheres to the rules, that is, stays
within its range as defined by the range restriction gadgets or passes through one of its two gaps,
in the case of selector backbones.

Property 2. An optimal solution of the backbone labeling instance I created for a matching G
with n edges has X +2Z crossings, where X is a constant depending on G and Z is the minimum
number of crossings of G in the FIXEp LINEAR CROSSING NUMBER instance.

Proof. Aside from guard backbones, which never have crossings, there are two types of back-
bones in our construction, blocker and selector backbones. We argue separately for all four
possible types of crossings and distinguish fixed crossings that must occur and variable crossings
that depend on the placement of the selector backbones. The types of crossings are

(i) crossings between blocker backbones and vertical blocker segments,
(ii) crossings between blocker backbones and vertical selector segments,
(iii) crossings between selector backbones and vertical blocker segments, and

(iv) crossings between selector backbones and vertical selector segments.
We will analyze the numbers of crossings for these types individually.

Case (i): By construction each blocker backbone must intersect exactly one blocker gadget of
width m for each edge gadget to its right. Thus we obtain

n-1 nZ
Xi1=5m Z i=5m-
i=1

2

fixed crossings in total from Case (i).

Case (ii): Each blocker backbone crosses, for each edge, exactly one vertical selector segment
that is part of the range restrictor gadget on the right-hand side of our construction.
Each central blocker backbone additionally crosses for each edge gadget to its right one
vertical segment incident to one of the selector points, regardless of the selector position.
The two gap blocker backbones for gaps in rows j and —j together cause two additional
crossings for each edge gadget to its right whose target vertex vy satisfies k > j. To see
this we need to distinguish two cases. Let e = (v;, v ) be the edge of an edge gadget with
k > j. If i < j, then both vertical selector segments either cross the lower gap blocker
backbone or they both cross the upper gap blocker backbone (see edges (v;,v4) and
(v2,vs) in Figure 9.19). If i > j, then one of the two vertical selector segments crosses both
gap blocker backbones, and the other one crosses none (see edges (v1,v4) and (vg, v7)
in Figure 9.19). The backbones of the upper and lower blockers do not cross any other
vertical selector segment.
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Let & = [{{(vi»v;), (vi»v1)} € E* | i < kand j < I}| = O(n®) be the number of pairs of
edges causing crossings with gap blocker backbones. Then we obtain

l’lz—

X2=5n2+ n+2x

fixed crossings from Case (ii).

Case (iii): Each selector backbone that passes through one of its gaps crosses exactly one blocker
gadget for each edge gadget to its right. Thus, we obtain

n>-n

2

n—1
X3:m2i:m~
i=1

fixed crossings in Case (iii).

Case (iv): Lete = (v;,v;) and f = (v, v;) be two edges in G, and let i < k. Then there are
three sub-cases: (a) e and f are sequential, thatis, i < j < k < I, (b) e and f are nested,
thatis, i < k <[ < j,or (c) e and f are interlaced, that is, i < k < j < I. For every pair of
sequential edges there is exactly one crossing, regardless of the gap assignments (see edges
(v1,v4) and (vg, v7) in Figure 9.19). For every pair of nested edges there is no crossing,
regardless of the gap assignments (see edges (v3,vs) and (vs,v7) in Figure 9.19). Finally,
for every pair of interlaced edges there are no crossings if the respective side selector
backbones are assigned to opposite sides of the x-axis or two crossings if they are assigned
to the same side. Therefore, pairs of interlaced edges do not contribute to the number
of fixed crossings. Let 7 = {{(v,-,vj),(vk,vl)} €eE’|i<j<k< l}| = O(n?) be the
number of pairs of sequential edges. Then we obtain

X4 =T
fixed crossings from Case (iv).

From the discussion of the four cases we can immediately see that all crossings are fixed,
except for those related to pairs of interlaced edges (see, for example, edges (v1,v4) and (vs, vg)
or (v2,vs) in Figure 9.19). These are exactly the edge pairs that create crossings in the FIXED
LINEAR CROSSING NUMBER problem if assigned to the same side of the spine. As discussed
in Case (iv) the selector gadgets of two interlaced edges create two extra crossings if and only
if they are assigned to gaps on the same side of the x-axis. If we create a bijection that maps
a selector backbone placed in the upper gap to an edge drawn above the spine, and a selector
backbone in the lower gap to an edge drawn below the spine, we see that an edge crossing on the
same side of the spine in a drawing of G corresponds to two extra crossings in a labeling of I
and vice versa. So, if Z is the minimum number of crossings in a spine drawing of G, then 2Z is
the minimum number of variable crossings in a labeling of I. By setting X = X; + X, + X5 + X4
this proves Property 2. O

From Property 2 it follows immediately that crossing minimization with finite backbones
is NP-hard since the size of the instance I is polynomial in n (more precisely, we need only
O(n®) points for I).
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Furthermore, we can guess an order of the backbones and then, by using the algorithm of
Theorem 9.7, compute the minimum crossing number for this order. This shows that crossing
minimization is contained in NP. Hence, the problem is NP-complete. O

9.5 Concluding Remarks

We have introduced the new model of many-to-one labeling with backbones; this model gener-
alizes the po-leader model of classic boundary labeling to many-to-one boundary labeling. For
both settings, finite and infinite backbones, we have seen that minimizing the total number of
labels as well as minimizing the total length of leaders can be achieved in polynomial time by
using dynamic programming. On the other hand, only very restricted versions of crossing mini-
mization can be solved efficiently. In general, crossing minimization with a bounded number of
labels per color is NP-hard for finite backbones.

Open Problems. In the setting of crossing minimization, we have just seen hardness for finite
backbones. In our hardness proof it was essential that backbones do not extend infinitely to the
right; hence, the hardness proof we gave cannot simply be modified for showing hardness for
infinite backbones. It is, therefore, an open problem whether the simpler structure of many-to-
one labelings with infinite backbones allows for efficiently minimizing the number of crossings
or the problem is also NP-hard.

The other optimization criteria, that is, minimizing the total number of labels or the total
leader length can be solved optimally. We did, however, only consider the case where just one
side of the focus region is used for placing the labels. For infinite backbones, using both the left
and the right boundary does not make a difference. However, we get much more flexibility in
the case of finite backbones. An open question is, hence, whether the 2-sided problem variant is
still solvable in polynomial time.

For labeling circular focus regions (see Chapter 8), we developed algorithms that maximize
the number (or the weight) of sites that can be labeled subject to constraints such as a fixed
number of labels or a minimum gap between two labels. Similar problems can be considered
for the backbone labelings discussed in this chapter. For example, subject to upper bounds on
the number of labels for the different colors, we want to maximize the number of sites (or the
total weight of sites, respectively) that are connected to a label of their color. Both for finite
and infinite backbones this problem should be solvable in polynomial time by modifying the
respective dynamic programs presented for leader length minimization in Section 9.3. To this
end, entries of the tables must represent the maximum weight of sites that can be labeled in
subinstances and minimization must be changed to maximization. Some further modifications
will be necessary, but should not be too hard to realize.

In the previous chapter, we presented a post-processing step for classic straight-line boundary
labeling that replaced the straight-line leaders by Bézier curves. A similar approach could
be tried for many-to-one backbone boundary labeling. Any site would be connected to its
horizontal backbone via a Bézier curve with a horizontal tangent at the backbone, that is, with a
smooth transition. Since many sites may be connected to the same backbone, this can create a
nice confluent appearance; see Figure 9.20.
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Figure 9.20:

9.5 Concluding Remarks

Sketch of a backbone labeling with Bézier curves.
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Chapter 10

Conclusion

In this thesis, we have investigated three areas of graph drawing: metro maps, point-set embed-
dability, and boundary labeling. In all three areas, we have presented algorithms for tractable
cases, but we have also seen that there are NP-hard subproblems by providing hardness proofs.
In the case of metro lines and boundary labeling, minimizing the number of crossings is NP-
hard, while for many point-set embeddability problems deciding whether a feasible solution
exists—without restricting the number of crossings—is itself NP-hard.

In these results, the problems considered are quite representative for the area of graph drawing.
The same holds for the type of results we presented. We have seen very practical algorithms that
have been implemented and tested in Chapters 3 and 8, as well as provably optimal algorithms,
but also many theoretical results.

Perspectives for Future Work. In the concluding remarks of the individual chapters, we
have seen some specific open problems in the context of the respective chapter. In what follows,
we will see a few perspectives for possible future work that generalize or extend the considered
problems in a broader way.

For metro maps, we have seen methods for creating curvy drawings of the network and
for minimizing crossings between metro lines. An interesting direction for future research is
the transfer of drawing conventions and algorithms for metro maps to other areas in which
some relevant lines—that is, mainly paths—in networks should be visualized. Nesbitt [Nes04]
discussed the use of this metro map metaphor for different purposes such as navigating through
web pages or visualizing business plans. For tours through the internet, the automatic creation
of metro-map like drawings has been studied by Svandad et al. [SGSKO01]. Stott et al. [SRB*05]
presented a method for visualizing project plans in the style of metro maps. However, no
general purpose algorithm—independent of specific applications—for creating metro-map like
drawings is available. The input of such an algorithm would be just a graph and paths on that
graph, that will play the role of metro maps. The most important difference to real-world metro
networks is that no geographic positions of vertices are given. On the one hand, this allows
more flexibility for creating nice drawings. On the other hand, it makes it also more complicated
to find a first feasible drawing, for example, when trying to adapt our method presented in
Chapter 3.

There has been previous work pointing out relations between metro-line crossing minimiza-
tion and edge bundling. More specifically, the edges of the original graph become lines in the
graph after bundling. In this setting, there can be edges with a large number of lines—much
larger than in real-world metro maps. We think that block crossings as considered in Chapter 5
can help a lot in improving the readability of bundled graph drawings.
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For point-set embeddability, there have already been some results, and we have added some
more. However, in a practical application, a small deviation between the desired positions (that
is, the input points) and the actual vertex positions could often be tolerated because a user will
hardly realize such a deviation. This relaxation gives rise to two new variants of embeddability
problem. We can either define the largest deviation that is allowed for a vertex, or we can
measure all deviations and try to find a feasible embedding that minimizes the deviations. In
both cases, relaxing the position constraint a bit can allow us to find a feasible embedding if
there has not been one for the stricter version, or it can allow us to find a nicer embedding.
Loffler [Lo6f11] considered the version with maximum deviation for planar straight-line drawings
and showed hardness even for cycles. For general graphs and nonplanar drawings, Abellanas et
al. [AAPSO05] developed a force-directed heuristic by adding a force that tries to keep the vertex
in its desired region; this is similar to what we did in Chapter 3 for modeling that metro stations
should be drawn close to their geographic position.

In boundary labeling, there are algorithms that find feasible solutions for various styles of
leaders. In few cases, even the interaction with the underlying map can already be taken into
account. However, the interaction between different leaders—except for intersections—is rarely
considered as an optimization criterion. In some drawing styles, algorithms often even use a
track routing area which can contain many parallel segments placed close together. In practice,
we want to have large gaps between leaders such that it is easy to distinguish between different
leaders. Furthermore, we would also like that leaders do not come close to sites—with the
exception of their own site.

The open problems we have mentioned here are examples for a general tendency in graph
drawing: several problems are solved in theory, while the resulting drawings are, in practices,
not very nice.
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The visualization of data is an important topic in computer science;
with an increasing amount of data available, making data sets
well-readable for users is a frequent task. A lot of data that contains
connections between persons or objects can be represented as a
graph. Hence, graph drawing, that is, the visualization of graphs, is
a specialized research area.
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