Funktionsaufklärung von CYR61 und CTGF in mesenchymalen Stammzellen und Lungenendothelzellen

DISSERTATION

zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg

vorgelegt von

Roderich Laug

aus Halle/S.

Würzburg, 2014

Eingereicht bei der Fakultät für Chemie und Pharmazie am

Gutachter der schriftlichen Arbeit

1. Gutachter:

2. Gutachter: _____

Prüfer des öffentlichen Promotionskolloquiums

1. Prüfer: _____

2. Prüfer: _____

3. Prüfer: _____

Datum des öffentlichen Promotionskolloquiums

Doktorurkunde ausgehändigt am

1. Zusammenfassung	1
1.1. Summary	2
2. Einleitung	4
2.1. CCN-Familie	4
2.1.1. Entdeckung	4
2.1.2. Struktureller Aufbau	5
2.1.3. Funktionen der Proteine	6
2.2. CYR61 und CTGF: Mitglieder der CCN-Familie im Fokus	8
2.2.1. CYR61-cysteine rich protein 61	8
2.2.1.1. CYR61 und die Angiogenese	9
2.2.1.2. CYR61 und die Lunge	10
2.2.1.3. CYR61 und das muskuloskelettale System	10
2.2.2. CTGF-connective tissue growth factor	11
2.2.2.1. CTGF und die Lunge	11
2.2.2.2. CTGF und das muskuloskelettale System	12
2.3. Zellsysteme	13
2.3.1. hMSC und das muskuloskelettale System	13
2.3.2. HPMEC-ST1.6R Lungenendothelzellen	14
2.4. Ziele dieser Arbeit	15
3. Material und Methoden	18
3.1. Material	18
3.1.1. Verbrauchsmaterial	18
3.1.2. Geräte	19
3.1.3. Chemikalien und Reagenzien	20
3.1.4. Zellkultur	22
3.1.5. Bakterienzellen	22
3.1.6. Antikörper	23
3.1.7. cDNA Klon	23
3.1.8. rekombinante Proteine	23
3.1.9. Lentivirales System	24
3.1.10. Kits	25
3.1.11. Enzyme	25
3.1.12. Primer	27
3.1.13. Puffer und sonstige Lösungen	
3.1.14. Software und <i>online</i> Quellen	35
3.2. Methoden	

3.2.1. Zellkultur	36
3.2.1.1. Kultivierung von HPMEC-ST1.6R-Zellen	36
3.2.1.2. Isolierung und Kultivierung von hMSC	36
3.2.1.3. Kultivierung von HEK293T-Zellen	
3.2.1.4. Kultivierung von EAhy926-Zellen	
3.2.1.5. Kultivierung von SF21-Insektenzellen	
3.2.2. Zellbiologische Methoden	
3.2.2.1. Herunterregulation der Expression von ctgf und cyr61	
3.2.2.2. Behandlung mit rekombinanten Proteinen	
3.2.2.3. Kryokonservierung eukaryontischer Zellen	
3.2.2.4. Zellzahlbestimmung	40
3.2.3. Molekularbiologische Methoden	41
3.2.3.1. Reverse Transkriptase Polymerase Kettenreaktion (RT-PCR)	41
3.2.3.2. RNA-Isolierung aus Zellen	41
3.2.3.3. Restriktionsverdau	42
3.2.3.4. Präparationen von Plasmid-DNA	42
3.2.3.5. Agarose-Gelelektrophorese	43
3.2.3.6. DNA-Sequenzierung	43
3.2.3.7. Transformation in prokaryontische Zellen	44
3.2.3.8. Microarray-Analyse	45
3.2.4. Proteinanalytik	46
3.2.4.1. Proteinisolierung aus Zellen	46
3.2.4.2. Proteinbestimmung nach Bradford	46
3.2.4.3. SDS-PAGE	47
3.2.4.4. Westernblot	
3.2.4.5. Silbergelfärbung	49
3.2.5. Klonierung des offenen Leserahmens von CTGF	49
3.2.5.1. Gewinnung von CTGF-Plasmid-DNA	49
3.2.5.2. TOPO-Klonierung	
3.2.5.3. Ligation mit pBacPAK8-Vektor	51
3.2.5.4. Ligation mit IgG-Fc-Domäne	
3.2.6. Gewinnung von rekombinantem CTGF	
3.2.6.1. Baculovirus-Expressionssystem	
3.2.6.2. Affinitätschromatographie: Aufreinigung von rCTGF	54
3.2.7. Proliferationsassay	54
3.2.7.1. Proliferation nach Herunterregulation von ctgf	54

3.2.7.2. Funktionstest von rCTGF	55
4. Ergebnisse	
4.1. Klonierung des offenen Leserahmens von CTGF	
4.1.1. Amplifizierung von <i>ctgf</i>	56
4.1.2. TOPO-Klonierung	56
4.1.3. Ligation mit dem Transfervektor pBacPAK8	57
4.1.4. Ligation mit dem Fc-Tag	
4.2. Produktion und Aufreinigung von rekombinantem CTGF	59
4.2.1. Produktion von rekombinantem CTGF	
4.2.2. Aufreinigung von rekombinantem CTGF	60
4.2.3. Rekombinante Proteine: Funktionstest	63
4.3. Herunterregulation von ctgf/CTGF in HPMEC-ST1.6R-Zellen und hMSC	65
4.3.1. Herunterregulation von <i>ctgf</i> /CTGF in HPMEC-ST1.6R-Zellen	66
4.3.2. Herunterregulation von <i>ctgf</i> /CTGF in hMSC	69
4.3.3. Verändertes Proliferationsverhalten nach Herunterregulation von ctgf/CTGF	70
4.3.4. Zeitlicher Verlauf der Herunterregulation	72
4.4. Herunterregulation von cyr61/CYR61 in HPMEC-ST1.6R-Zellen und hMSC	75
4.4.1. Herunterregulation von cyr61/CYR61 in HPMEC-ST1.6R-Zellen	75
4.4.2. Herunterregulation von cyr61/CYR61 in hMSC	77
4.5. Affymetrix <i>Microarray</i> -Analyse	79
4.5.1. HPMEC-ST1.6R-Zellen	79
4.5.1.1. Überprüfung der HPMEC-ST1.6R-Zell-Versuchsansätze	79
4.5.1.2. Affymetrix GeneChip HG-U 133 Plus 2.0	
4.5.1.3. Validierung der HPMEC-ST1.6R Microarray-Daten durch RT-PCR	
4.5.1.4. Zuordnung von Genregulationen nach Gene Ontology (GO) und KEGG	
4.5.2. hMSC	
4.5.2.1. Überprüfung der hMSC-Versuchsansätze	
4.5.2.2. Affymetrix GeneChip HG-U 133 Plus 2.0	
4.5.2.3. Validierung der hMSC Microarray-Daten durch RT-PCR	
4.5.2.4. Zuordnung von Genregulationen nach Gene Ontology (GO) und KEGG	
4.6. Behandlung mit rekombinanten Proteinen: TGF ß2, rCTGF	
5. Diskussion	
5.1. Rekombinantes CTGF (rCTGF)	
5.1.1. Von der Klonierung bis zur Aufreinigung	
5.1.2. Proteingewinnung-eine kritische Betrachtung	
5.1.3. Stabilität und Funktion	

5.2. Herunterregulation der endogenen cyr61/CYR61- oder ctgf/CTGF-Expression	115
5.2.1. Lungenendothelzellen: Herunterregulation der <i>ctgf</i> /CTGF-Expression führt zu Proliferationsverhalten	verringertem 115
5.2.2. Humane mesenchymale Stammzellen: Herunterregulation der <i>ctgf</i> /CTGF-Expression verringertem Proliferationsverhalten	ression führt zu 116
5.2.3. Kein regulatorischer Effekt von shRNAs auf die endogene Expression von <i>cyr</i> hMSC und HPMEC-ST1.6R-Zellen	·61/CYR61 in 117
5.3. <i>Microarray</i> -Analyse: Zahlreiche Genregulationen nach Herunterregulation der <i>ctgj</i> in hMSC und HPMEC-ST1.6R-Zellen	f/CTGF-Expression 118
5.3.1. Der TGF ^B -Signalweg	118
5.3.2. CTGF und der Einfluss von transforming growth factor beta	
5.3.3. CTGF und TGF ^{B2} : ein möglicher Zusammenhang in der Lungenentwicklung.	
5.3.4. CTGF und TGFB2 und das muskuloskelettale System	
5.3.5. Schlusswort	
6. Literaturverzeichnis	
7. Anhang	
7.1. HPMEC-ST1.6R <i>Microarray</i> -Tabellen	
7.1.1. Regulierte probe sets in der HPMEC-ST1.6R Microarray-Analyse	
7.1.2. Genregulationen nach Einteilung in GO-Kategorien	
7.1.3. Zuordnung regulierter Gene zu Signalwegen nach KEGG	
7.2. hMSC <i>Microarray</i> -Tabellen	164
7.2.1. Regulierte probe sets in der hMSC Microarray-Analyse	164
7.2.2. Genregulationen nach Einteilung in GO-Kategorien	
7.2.3. Zuordnung regulierter Gene zu Signalwegen nach KEGG	
7.3. Abkürzungsverzeichnis	191
7.4. Publikationen und Kongressbeiträge	
7.5. Danksagung	

1. Zusammenfassung

Cystein rich protein 61 (CYR61/CCN1) und *Connective tissue growth factor* (CTGF/CCN2) stellen aufgrund ihrer Multifunktionalität zwei sehr interessante Vertreter aus der derzeit sechs Mitglieder umfassenden Familie der CCN-Proteine (CCN- <u>C</u>YR61/CCN1, <u>C</u>TGF/CCN2, <u>N</u>OV/CCN3, WISP1-3/CCN4-6) dar. Seit der Entdeckung von CYR61 und CTGF konnten die überlappenden, aber meist nicht redundanten zellspezifischen Effekte in verschiedenen Zellsystemen nachgewiesen werden. Die Einflüsse auf zahlreiche Prozesse wie Proliferation und Migration, aber auch Angiogenese und das Überleben von Zellen lassen eine weitreichende Bedeutung im Zusammenhang mit vielen Entwicklungsprozessen vermuten, so auch der des muskuloskelettalen Systems und der Entwicklung der Lunge.

In der vorliegenden Arbeit wurden für die nähere Charakterisierung von CYR61 und CTGF humane mesenchymale Stammzellen (hMSC) und die humane primäre Lungenendothelzelllinie HPMEC-ST1.6R (human pulmonary microvascular endothelial cells) gewählt. Beide Zellsysteme sind für die Untersuchung der Funktionsfähigkeit in den verschiedenen Kompartimenten bestens geeignet. So ist die Zelllinie HPMEC-ST1.6R den primären Endothelzellen, im Vergleich mit anderen in der Forschung eingesetzten Zelllinien, in Bezug auf spezifische Oberflächenmarker am nächsten. Mesenchymale Stammzellen bilden als multipotente Zellen das Rückrat des muskuloskelettalen Systems und sind an der Homöostase des menschlichen Stütz- und Bewegungsapparates maßgeblich beteiligt.

Um experimentell nutzbare Konzentrationen an rekombinanten Proteinen zu erhalten, wurde ein Baculovirus-Expressionsystems gewählt. Nach der erfolgreichen Klonierung der CTGF/Fc-*Tag* Sequenz in einen Expressionsvektor konnte dies auch durch Produktion in SF21-Insektenzellen erreicht und erstmalig rekombinantes CTGF/Fc von hoher Reinheit gewonnen werden. Allerdings konnte eine beständige Funktionsfähigkeit der aufgereinigten Proteine mittels eines Proliferationstestes nachfolgend nur bedingt bestätigt werden.

Für die weitere Versuchsplanung, einer Untersuchung der Auswirkung von rekombinantem CTGF (rCTGF) bzw. CYR61 (rCYR61) auf die Zielzellen, musste zunächst die zelleigene *ctgf* bzw. *cyr61* Expression herunterreguliert werden, um einen endogenen Störeffekt auszuschließen. Durch den Einsatz spezifischer shRNAs konnte *ctgf*/CTGF sowohl in den hMSC-, wie auch den HPMEC-ST1.6R-Zielzellen deutlich herunterreguliert und nachfolgend eine markant reduzierte Proliferation beobachtet werden. Ein Effekt für die Regulation von *cyr61* blieb aus.

In dieser Arbeit wurden anschließend erstmals mittels *Microarray*-Analysen Veränderungen im Genexpressionsmuster der *ctgf* herunterregulierten hMSC- bzw. Lungenendothelzellen gegenüber Kontrollzellen untersucht. Des Weiteren war die Auswirkung einer Behandlung von *ctgf* herunterregulierten Zielzellen mit rCTGF gegenüber unbehandelten Kontrollzellen von Interesse. Für beide Zellsysteme konnten signifikante Genregulationen nach der Behandlung mit CTGF spezifischen shRNAs gegenüber den Kontrollzellen detektiert werden, mit interessanten Genclustern im Bereich der TGF-beta (*transforming growth factor* β) Signalgebung, sowie der fokalen Adhäsion (z.B. VEGF). Eine Behandlung mit rCTGF hingegen zeigte gegenüber den unbehandelten Kontrollzellen in der Auswertung der *Microarray*-Analyse keine signifikante Veränderung im Genexpressionsmuster.

In dieser Arbeit wurden, neben einer effektiven Gewinnung von rekombinantem CTGF und der Herunterregulation der endogenen *ctgf* Expression, wichtige Erkenntnisse zur Biologie von CTGF (und CYR61) in mesenchymalen Stammzellen hMSC und der Lungenendothelzelllinie HPMEC-ST1.6R erlangt. Die erhaltenen *Microarray*-Daten bieten eine fundierte Grundlage für zahlreiche fortführende Untersuchungen.

1.1. Summary

Cystein rich protein 61 (CYR61/CCN1) and connective tissue growth factor (CTGF/CCN2) are two very interesting members of the CNN family (CCN- <u>C</u>YR61/CCN1, <u>C</u>TGF/CCN2, <u>NOV/CCN3</u>, WISP1-3/CCN4-6) consisting of six members so far. Since its discovery the overlapping, but mostly non-redundant effects of CYR61 and CTGF were shown in different cell systems. Both proteins are linked to many different processes like proliferation and migration, but also angiogenesis and survival. They seem to be involved in very fundamental biological processes, amongst other the development of the musculoskeletal system and the lung and were analyzed in this study.

To distinguish the two proteins CYR61 and CTGF, primary human mesenchymal stem cells (hMSC) and a human pulmonary endothelial cell line (HPMEC-ST1.6R) were chosen. Both cell systems are suited very well for getting more information about the function in these different compartments. So the cell line HPMEC-ST1.6R is more related to primary endothelial cells in reference to the cell surface markers, compared to other cell lines used for experimental research. Mesenchymal stem cells form the backbone of the musculoskeletal system and are involved in the homeostasis of this complex system.

Getting adequate concentrations of recombinant proteins for the upcoming experiments a baculovirus expression system was chosen. After successful cloning of the CTGF/Fc-*Tag* sequence into an expression vector, recombinant CTGF/Fc of high purity was obtained for the first time, produced in SF21 insect cells. However the stable functioning of the proteins was partly confirmed by proliferation tests.

To study the effect of recombinant CTGF or CYR61 in further experiments, the endogenous ctgf or cyr61expression had to be downregulated to avoid negative effects. By using specific shRNAs ctgf/CTGF has been downregulated in hMSC as well as HPMEC-ST1.6R cells and subsequently a reduced proliferation was observed. No effect was detected for the regulation of cyr61.

In this study for the first time changes in regulation of gene expression after downregulation of ctgf in hMSC and HPMEC-ST1.6R cells were studied by microarray analyses. Furthermore to discover the effect of treating ctgf downregulated cells with recombinant CTGF compared to control cells was another aim of this experimental series. For both cell systems, significant gene regulations were detected after treatment with CTGF specific shRNAs with interesting gene cluster for TGFB-signaling as well as focal adhesion (e.g. VEGF). In contrast, no significant change in gene regulation was detected by microarray analysis after treating the target cells with rCTGF compared to non-treated cells.

In summary, besides the effective preparation of rCTGF and the marked downregulation of ctgf gene expression, this study provides fundamental information about CTGF and its biology in hMSC and HPMEC-ST1.6R cells, as well. Based on the numerous detected gene regulations in the microarray analyses the study provides a basis for further experiments.

2. Einleitung

2.1. CCN-Familie

2.1.1. Entdeckung

Die Familie der CCN-Proteine (<u>CYR61, CTGF, NOV</u>) ist eine Gruppe von Strukturproteinen, welcher derzeit sechs Mitglieder zugerechnet werden können. Das Synonym "CCN Familie" wurde 1993 von Bork geprägt und orientiert sich an den zuerst entdeckten Vertretern dieser Gruppe <u>CYR61/CCN1</u> (*cysteine-rich protein 61*), <u>CTGF/CCN2</u> (*connective tissue growth factor*) und <u>NOV/CCN3</u> (*nephroblastoma overexpressed*). Desweiteren wurden die später entdeckten Wnt-1-induzierten und sezernierten Proteine WISP1/CCN4 (*Wnt-1-induced secreted protein 1*), WISP2/CCN5 (*Wnt-1-induced secreted protein 2*) und WISP3/CCN6 (*Wnt-1-induced secreted protein 3*) der Familie der CCN-Proteine zugeordnet. Einer einheitlichen Nomenklatur folgend wurden alle Proteine, entsprechend der Rangfolge ihrer Entdeckung, mit den Kürzeln CCN1-CCN6 versehen (Brigstock et al., 2003).

CYR61 wurde erstmals 1985, unter der damaligen Bezeichnung 3CH61 erwähnt (Lau und Nathan 1985). Nach einer Behandlung von BALB/c3T3 Maus Fibroblasten mit den Wachstumsfaktoren FGF und PDGF konnte in der Arbeitsgruppe von Lau und Nathan (1985) ein sofortiger Anstieg der Expression bisher unentdeckter Gene detektiert werden. Zu diesen als immediate early genes bezeichneten Genen gehörte CYR61. O'Brien et al. prägten 1990 den Namen CYR61 nachdem sie herausfanden, dass das von Lau und Nathan entdeckte Gen 3CH61 für ein an Cystein reiches Protein codiert. CTGF, der zweite Vertreter der CCN-Proteine, konnte erstmals in konditioniertem Medium von humanen, venösen Nabelschnurzellen (HUVEC) aufgrund einer Kreuzreaktivität eines anti-PDGF IgG-Antikörpers nachgewiesen werden (Bradham et al., 1991). Ein Jahr später wurde, ein bis dato unbekanntes Gen, nach Induktion eines Nierentumors (Nephroblastom) durch MAV-1 Viren in Hühnerembryos entdeckt und in Bezug auf die vorliegende Überexpression als NOV (nephroblastoma overexpressed) bezeichnet (Joliot et al., 1992). In den darauffolgenden Jahren kamen drei weitere Mitglieder der CCN-Familie hinzu: WISP1-3. Im Jahr 1996 wurde elm 1, ein in wenig metastasierten Maus-Melanomzellen exprimiertes Gen entdeckt (Hashimoto et al., 1996) und das von elm 1 exprimierte Protein zwei Jahre später der bereits etablierten Familie der CCN-Proteine zugeordnet (Hashimoto et al., 1998; Brigstock 1999). Die heutige Namensgebung erfolgte durch Pennica et al. (1998) welcher WISP1, das humane Ortholog von elm1, sowie WISP2 und WISP3 identifizierte und eine Induktion der WISP-Proteine in Abhängigkeit von der Wnt-1 Expression nachweisen konnte (WNT induciblesignaling pathway proteins).

2.1.2. Struktureller Aufbau

Die Zuordnung der einzelnen Proteine zur Familie der CCN-Proteine erfolgte aufgrund ihres einheitlichen, mosaikartigen Aufbaus bestehend aus einem N-terminalen Signalpeptid und einer modulären Struktur von vier konservierten, funktionellen Domänen (Modulen) mit Sequenzhomologien zu anderen extrazellulären Proteinen. Die Domänen insulin-like growth factor binding protein-like (IGFBP), von Willebrand factor type C repeat (VWC), thrombospondin type-1 repeat (TSP-1) und zuletzt die cysteine knot containing carboxyl terminal (CT) Domäne sind am N- und C-terminalen Abschnitt zwischen Modul II und III über eine in Aufbau und Länge variable Verbindungsregion miteinander verknüpft. Eine Ausnahme hinsichtlich des modulären Aufbaus bildet hierbei CCN5 mit einer fehlenden CT-Domäne (Abbildung 1). Die Verbindungsstellen zwischen den einzelnen Domänen gelten als anfällig für eine proteolytische Spaltung und werden für die Bildung trunkierter Formen der CCN-Proteine verantwortlich gemacht (de Winter et al., 2008; Brigstock et al., 1997). So konnte eine proteolytische Spaltung der Verbindungsregion zwischen Modul II und III bereits durch verschiedene Matrix Metalloproteinasen (MMPs) nachgewiesen werden (Hashimoto et al., 2002). Alle sechs Vertreter der CCN-Familie weisen bezüglich ihrer Primärstruktur eine Übereinstimmung von 30-50% auf. Die primär translatierten Proteine setzen sich aus 343-381 Aminosäuren zusammen, die Größe der sezernierten Proteine liegt zwischen 35-42kd. Eine Anzahl von 38 konservierten Cysteinresten, welche gleichmäßig auf die vier Module verteilt sind, stellen fast 10% der gesamten Molekülmasse dar, mit Ausnahme von vier fehlenden Cysteinresten in der VWC Domäne von CCN6 und 10 fehlenden Cysteinresten in CCN5 (Bork 1993; Brigstock 1999; Lau und Lam 1999; Holbourn et al., 2009).

Abb.1: Schematische Darstellung des strukturellen Aufbaus der CCN-Proteine

Die sechs Mitglieder der CCN-Familie CYR61/CCN1, CTGF/CCN2, NOV/CCN3 und WISP1-3/CCN4-6 weisen eine strukturelle Homologie auf, welche in der obigen Grafik farblich abgesetzt dargestellt ist. Beginnend mit der N-terminalen Signalpeptid Sequenz (SP) folgen die modulären Domänen mit Sequenzhomologien zu *insulin-like growth factor binding* (IGF-binding, Modul I, rot), *von Willebrand factor type C repeat* (VWC, Modul II, orange), *thrombospondin type-1 repeat* (TSP-1, Modul III, grün) und zuletzt der *cysteine-knot-containing carboxyl terminal* (CT, Modul IV, blau) Domäne. Eine Ausnahme bildet WISP2/CCN5 in welchem die CT-Domäne nicht vorhanden ist. Eine gegenüber Proteasen empfindliche, innerhalb der CCN-Proteinen stark variable Verbindungsregion (HR-*hinge region*), befindet sich zwischen den Modulen II und III. (Grafik in Anlehnung Leask und Abraham 2006).

2.1.3. Funktionen der Proteine

Die Familie der CCN-Proteine stellt eine Gruppe von multifunktionellen Proteinen dar, welche in zahlreiche bedeutende Signalwege involviert sind. So konnten den einzelnen Vertretern dieser Proteinfamilie unter anderem wichtige regulatorische Aufgaben im Bereich von zellulären Prozessen aber auch essentiellen biologischen Prozessen wie Angiogenese und Wundheilung zugeordnet werden. CCN-Proteine sind sekretorische Proteine und an zahlreichen Auf- und Umbauprozessen der extrazellulären Membran (EZM) beteiligt (Lau und Lam 1999; Brigstock 1999; Schütze et al., 2005 a). Die EZM stellt ein im Interzellularraum befindliches Gewebe dar, welches, vorwiegend aus einer Grundsubstanz und darin eingebetteten Kollagenfasern zusammengesetzt, neben einer formgebenden Funktion auch wichtige Funktionen in der Signalgebung der Zelle erfüllt (Kim et al., 2011). Aufgrund ihrer Eigenschaft keine direkten strukturgebenden Prozesse zu vermitteln, sondern vielmehr als Regulator zwischen den Zellen und der ECM zu fungieren, werden die CCN-Proteine, neben Thrombospondin, SPARC, Osteopontin, Hevin, Tenascin-X und -C, auch zur Gruppe der matrizellulären Proteine gezählt (Bornschein 1995; Bornschein und Sage 2002; Yeger und Perbal 2007; Chen und Lau 2009).

Trotz des modulären, strukturell ähnlichen Aufbaus mit einer hohen Sequenzhomologie, können die Funktionen der einzelnen Proteine innerhalb der CCN-Familie sehr unterschiedlich und teilweise gegensätzlich sein. Während jedes einzelne Modul der CCN-Proteine einen biologischen Effekt haben kann, werden die meisten funktionellen Effekte einem Zusammenspiel der einzelnen Module zugeschrieben (Holbourn et al., 2008). Das Fehlen eines oder mehrerer Module, verglichen mit den intakten Proteinen, kann somit ähnliche biologische Effekte hervorrufen, aber auch zu völlig unterschiedlichen und teilweise pathologischen Auswirkungen führen. So konnte ein antiproliferativer Effekt von NOV, produziert in virusinduzierten Tumorzellen (Nephroblastom), auf Fibroblastenzellen nachgewiesen werden. Eine in den gleichen Zellen produzierte, trunkierte Form von NOV hingegen wies keinerlei antiproliferativen Effekt auf und legt die Theorie einer onkogenen Aktivität nahe (Perbal 2001; Holbourn et al., 2009). Auch konnte beispielsweise gezeigt werden, dass die N- und C-terminalen Domänen von CTGF unabhängig voneinander fungieren können und zum Einen die Differenzierung von Myofibroblasten und zum Anderen die Proliferation von Fibroblasten beeinflussen können (Grotendorst und Duncan 2005). CYR61 und CTGF, aber auch die weiteren Vertreter der Familie zeigen häufig überlappende, aber meist nicht redundante zellspezifische Effekte in verschiedenen Zellsystemen.

CCN-Proteine sind multifunktional und können über verschiedene Wege ihre Wirkung entfalten. In zahlreichen Studien konnten mehrere Rezeptoren ausfindig gemacht werden über welche die Signalgebung der CCN-Proteine abläuft (Abbildung 2). Zu diesen werden in erster Linie Zelladhäsionsrezeptoren wie Integrine und Heparansulfat-Proteoglykane (HSPG) gerechnet (Lau und Lam 1999; Chen et al., 2009). Auch wurden zahlreiche Regulationen der CCN-Proteine über eine Interaktion mit den Wachstumsfaktoren TGF-beta und BMP4 nachgewiesen (Lau und Lam 1999; Holbourn et al., 2009).

Die Abbildung zeigt den schematischen Aufbau der CCN-Proteine bestehend aus einem N-terminalen Signalpeptid (SP) und den vier modulären Domänen IGF-*binding*, VWC, TSP-1 und CT. Des Weiteren sind einige bisher bekannte Bindungspartner gelistet, welche mit der jeweiligen Domäne interagieren. Hierzu gehören IGFs (*insulin like growth factors*), BMP4 (*bone morphogenic protein 4*), TGF-ß (*transforming growth factor beta*), Integrine, Kollagen V, Fibronectin, LRP1 (LDL *receptor protein*), Notch, Fibulin C1 und HSPGs (*heparin sulphated proteoglycans*). (Grafik in Anlehnung an Holbourn et al. 2008).

2.2. CYR61 und CTGF: Mitglieder der CCN-Familie im Fokus

CYR61 und CTGF waren neben NOV die ersten Vertreter, welche der CCN-Familie zugeordnet wurden. Sowohl *cyr61* als auch *ctgf* besitzen eine Größe von ca. 3000 Basenpaaren (3000bp, 3kb) und setzen sich, wie die anderen CCN-Mitglieder (Ausnahme WISP2) aus fünf Exons zusammen. Die Exons beider Gene zu welchen die Signalpeptid Sequenz sowie die IGF-*binding*-, VWC-, TSP-1-und die CT-Domänen gehören, werden durch je vier Introns unterbrochen (Brigstock 1999). Im Vergleich der beiden Proteine stimmen diese in ca. 90% der Aminosäuresequenz überein und zeigen die stärksten strukturellen Unterschiede hinsichtlich des Aufbaus der Signalpeptidsequenz und der Verbindungsregion zwischen Modul II und III (siehe Abbildung 3).

CYR61 und CTGF setzen sich aus einer Anzahl von 381 bzw. 349 Aminosäuren zusammen. Nach Abspaltung der Signalpeptidsequenz (SP) werden das CYR61-Protein mit einer Größe von 40kd (kilo Dalton) und das CTGF-Protein mit einer Größe von 35kd sezerniert. Beide Proteine besitzen jeweils 38 konservierte Cysteinreste, welche gleichmäßig über die vier Module verteilt sind (Brigstock 2002). Die Größe der Proteine in der nicht sezernierten Form beträgt, inklusive der Signalpeptidsequenz, 42kd (CYR61) bzw. 38kd (CTGF).

Abb.3 Vergleich der Aminosäuresequenzen von CYR61 und CTGF

Aminosäuresequenzen sind im *one-letter-code* dargestellt. Die einzelnen Module von CYR61 und CTGF sind, entsprechend der Abbildungen 1 und 2, farblich unterlegt: IGF-*binding* rot, VWC orange, TSP-1 grün und die CT-Domäne blau. Konservierte Cysteinreste sind hervorgehoben. CYR61 setzt sich aus 381, CTGF aus 349 Aminosäuren zusammen. Ein direkter Vergleich der Aminosäuresequenzen erfolgte über http://blast.ncbi.nlm.nih.gov/Blast.cgi.

2.2.1. CYR61-cysteine rich protein 61

CYR61/CCN1 ist ein sezerniertes, cysteinreiches, Heparin-bindendes Protein und wurde erstmals als Produkt eines *immediate early gene* nach der Behandlung von Maus-Fibroblasten mit den Wachstumsfaktoren FGF und PDGF beschrieben (Lau und Nathan 1985). Die Expression von CYR61 wird durch eine Vielzahl an extrazellulären Stimuli aktiviert zu denen, neben den Wachstumsfaktoren FGF-2, PDGF (Lau und Lam 1999) und TGFß1 (Brunner et al., 1991), auch Wachstumshormone wie Estrogen, Angiotensin II und die Zytokine Interleukin-1 (IL-1) und Tumor Nekrose Faktor α (TNF α) gehören. Aber auch eine Sauerstoff Mangelversorgung, die Exposition von UV-Licht und eine mechanische Dehnung von Zellen können die Expression anregen (Lau 2011). Des Weiteren konnte in der Arbeitsgruppe von Schütze et al. (1998) eine vermehrte Expression von CYR61 nach der Stimulation von humanen Osteoblasten durch Vitamin D3 nachgewiesen werden.

Seit der Entdeckung von CYR61 konnte das multifunktionale Potential von CYR61 in verschiedenen veröffentlichten Studien belegt werden. Neben einem Effekt von rekombinantem CYR61 auf die Proliferation, Migration, Adhäsion und Differenzierung konnten auch gegensätzliche Auswirkungen wie beispielsweise auf das Überleben (*Survival*) von Zellen sowie den programmierten Zelltod (Apoptose) in Abhängigkeit von dem jeweils verwendeten Zellsystem festgestellt werden (Kireeva et al., 1996; Lau und Lam 1999; Chen und Lau 2009). Diese teils konträren Wirkungen von CYR61 können, zumindest teilweise, mit der Bindung an verschiedene Integrin-Rezeptoren und Heparansulfat-Proteoglykane (HSPG) in den unterschiedlichen Zellsystemen erklärt werden (Kireeva et al., 1998; Lau und Lam 1999). So begünstigt beispielsweise CYR61 durch die Bindung an Integrin $\alpha_v\beta_3$ unter anderem das Überleben von Endothelzellen (HUVECs), wohingegen es durch die Bindung an Integrin $\alpha_c\beta_1$ und HSPG Syndecan4 zu einer CYR61 induzierten Apoptose in Fibroblasten kommt (Leu et al., 2002; Todorovic et al., 2005; Lau 2011).

2.2.1.1. CYR61 und die Angiogenese

CYR61 besitzt angiogene Eigenschaften und ist somit ein wichtiger Regulator in der Entwicklung des menschlichen Gefäßsystems, aber auch maßgeblich an der Entstehung von Tumoren beteiligt (Lau und Lam 1999). Eine hohe Expression von CYR61 in Endothelzellen während der Embryonalphase von Mäusen deutet auf einen angiogenen Effekt von CYR61 hin (O'Brien und Lau 1992), welcher durch die direkte Auswirkung von CYR61 auf die Neovaskularisierung in der Hornhaut von Ratten (Babic et al., 1998), sowie auch auf die Gefäßbildung in einem Chorionallantoin Membran *Assay* (CAM) an Hühnerembryos bestätigt werden konnte (Schütze et al., 2005 a). Auch belegen die aufgetretenen, schwerwiegenden kardiovaskulären Defekte in CYR61 *knock out* Mäusen die angiogene Wirksamkeit von CYR61 (Mo und Lau 2006). Neben dem direkten Einfluss auf Endothelzellen konnte für CYR61 auch ein indirekt angiogener Effekt über die erhöhte Expression von VEGF C (*vascular endothelial growth factor C*) in embryonalen Maus-Fibroblasten bestätigt werden (Mo et al., 2002).

2.2.1.2. CYR61 und die Lunge

In Lungenepithelzellen wurde nach erhöhter Sauerstoffzufuhr eine vermehrte Expression von CYR61 detektiert (Jin et al., 2005). Auch konnte unter künstlicher Beatmung mit erhöhtem Druck, sowie einer durch Lipopolysaccharide hervorgerufenen Entzündung eine vermehrte Expression von CYR61 in der Lunge von Mäusen gemessen werden (Dolinay et al., 2006). Dies sind Faktoren, die auch als Auslöser der bronchopulmonalen Dysplasie (BPD), einer häufig auftretenden Lungenerkrankung bei Frühgeborenen, bekannt sind (Kunzmann et al., 2007). In einer Auswertung von *Microarray*-Daten zur Untersuchung von Patienten mit COPD (chronisch obstruktiver Lungenerkrankung) konnte eine signifikante Erhöhung von CYR61 festgestellt werden (Ning et al., 2004). Neben einem nachgewiesenen positiven Effekt von CYR61 auf die Neovaskularisierung in verschiedenen Modellen (siehe 2.2.1.1), konnte nach Überexpression von CYR61 ein erhöhtes Tumorwachstum (Babic et al., 1998), sowie nach Herunterregulation eine verringerte Invasion von Tumorzellen gemessen werden (Fromigue et al., 2011). Hingegen wurde im Gewebe von Lungentumoren eine verminderte Expression von CYR61 gegenüber gesunden Lungengewebe festgestellt (Chen et al., 2007; Mori et al., 2007).

2.2.1.3. CYR61 und das muskuloskelettale System

CYR61 kommen entscheidende Aufgaben in der Bildung von Knochen, Sehnen, Bändern und Muskeln zu, zusammengefasst unter dem Begriff des muskuloskelettalen Systems. So konnte die Expression von CYR61 in der Osteoblasten-Zelllinie hFOB und in hMSC, sowie eine teils verringerte Expression nach der Differenzierung in Osteoblasten, Chondrozyten und Adipozyten detektiert werden (Schütze et al., 1998, 2005 a; Schütze et al., 2005 b). Während der Knochenheilung wurden erhöhte Konzentrationen von CYR61 in fibrösem Gewebe, Chondrozyten, Osteoblasten und Osteozyten gemessen (Hadjiargyrou et al., 2000). Auch konnte eine Hemmung der Osteoklastenformation an verschiedenen Modellen *in vitro* gezeigt werden (Crockett et al., 2007), was auf eine verminderte Knochenresorption in Anwesenheit von CYR61 hinweist.

CYR61 stellt ein multifunktionales Protein dar und ist, unter anderem aufgrund seiner angiogenen Eigenschaften, in die Ausbildung des Gefäßsystems und damit in die Ausbildung der Lunge aber auch des muskuloskelettalen Systems involviert und soll diesbezüglich im Rahmen dieser Arbeit näher untersucht werden.

2.2.2. CTGF-connective tissue growth factor

CTGF wurde erstmals 1991 beschrieben, entdeckt im konditionierten Medium von Nabelschnurzellen (HUVEC; Bradham et al., 1991) und zählt mittlerweile zu dem am besten charakterisierten Mitglied der CCN-Familie (Kubota und Takigawa 2007).

Vergleichend mit CYR61 handelt es sich auch bei CTGF um ein sezerniertes, cysteinreiches, Heparin bindendes und mit der EZM verknüpftes Protein, welches vielfach als *downstream* Mediator von Aktivitäten einzelner Faktoren wie *transforming growth factor* β (TGF β), *vascular endothelial growth factor* (VEGF), *plateled-derived growth factor* (PDGF), *fibroblast growth factor* (FGF) und *bone morphogenic proteins* (BMPs) bezeichnet wird (Moussad und Brigstock 2000; Brigstock 2003; Perbal 2004; Leask und Abraham 2006; Chaqour und Goppelt-Struebe 2006; Cicha und Goppelt-Struebe 2009). Auch wird CTGF durch weitere Faktoren wie erhöhte Glucosespiegel, verminderte Sauerstoffzufuhr und auch mechanische Belastungen, wie z.B. erhöhten Zelldruck, vermehrt exprimiert (Burgess 2005; de Winter et al., 2008).

Der Einfluss von CTGF auf Proliferation und Differenzierung konnte in verschiedenen Zellsystemen wie Chondrozyten, Fibroblasten, Osteoblasten, und Gefäßendothelzellen gezeigt werden (Nakanishi et al., 2000; Babic et al., 1999; Nishida et al., 2000; Shimo et al., 1998). Des Weiteren ist CTGF an Prozessen der Migration, Adhäsion und Angiogenese aber auch der Apoptose und dem Überleben von Zellen beteiligt (Babic et al., 1999; Shimo et al., 1999; de Winter et al., 2008). CTGF kann aufgrund seiner Beteiligung an der Produktion von Bestandteilen der EZM, wie Fibronektin und Kollagen I, als profibrotischer Faktor bezeichnet werden und ist nachweislich in die Entwicklung von fibrotischen Erkrankungen der Haut involviert (Burgess 2005; Mori et al., 1999; Grotendorst et al., 1997). In Bezug auf die vielfältigen Funktionen konnte CTGF, neben der Förderung fibrotischer Erkrankungen, auch in Verbindung mit Wundheilungsprozessen, der Tumorbildung, sowie dem skelettalen Aufbau und der Ausbildung des Gefäßsystems gebracht werden (Moussad und Brigstock 2000; Chen und Lau 2009; de Winter 2008). Ein angiogener Effekt von CTGF konnte erstmals mit Hilfe eines CAM-Assays an Hühnerembryos gezeigt und auch in vitro nach subkutaner Injektion von CTGF haltigen Kollagenpellets im Mausmodell bestätigt werden (Shimo et al., 1999).

2.2.2.1. CTGF und die Lunge

CTGF wird von vielen Zellen der Luftwege, wie Endothel-, Epithel-, Fibroblasten- und glatten Muskelzellen exprimiert und es wird diesem Protein somit ein wichtiger Einfluss im Auf- und Umbau der Lungen- und Blutgefäße (*airway/vascular remodeling*) zugeschrieben

(Burgess 2005). So zeigten CTGF knock out Mäuse eine verringerte Expressionsrate an VEGF, sowie eine reduzierte angiogene Aktivität in der Wachstumsfuge. Nachfolgend kam es zu schwerwiegenden Atmungsstörungen aufgrund einer skelettalen Fehlbildung, bedingt durch eine verminderte Proliferation von Chondrozyten, sowie einer verminderten Produktion an EZM-Bestandteilen (Ivkovic et al., 2003). CTGF knock out Mäuse wiesen eine reduzierte Zellproliferation, aber auch eine erhöhte Apoptoserate auf und starben kurz nach der Geburt aufgrund schwerwiegender Atmungsprobleme, einhergehend mit massiven skelettalen Fehlentwicklungen (Baguma-Nibasheka und Kablar 2008). In verschiedenen Publikationen konnte ein Zusammenhang von CTGF und diversen Erkrankungen der Lunge wie Asthma (Johnson und Burgess 2004: Burgess 2005), COPD (Chronisch obstruktive Lungenerkrankung; Ning et al., 2004) und BPD (bronchopulmonale Dysplasie, Kunzmann et al 2007) hergestellt werden. Zu den Risikofaktoren, welche die Entstehung einer BPD bei Frühgeborenen begünstigen, gehören eine unvollständig ausgebildete Lunge, zu hohe Sauerstoffzufuhr, zu lange andauernde künstliche Beatmung unter zu hohem Druck, sowie pränatale Infektionen wie z.B. Eihautentzündung (Chorioamnionitis; Speer 2006; Kunzmann et al., 2007). So konnte in den Lungen von frühgeborenen Lämmern, deren Geburt eine einer Chorioamnionitis ähnliche Entzündungsreaktion vorausgegangen war, um bis zu 30% CTGF Konzentrationen bestimmt werden. was eine unvollständige reduzierte Lungenentwicklung erklären könnte (Kunzmann et al., 2007). Auch konnte, nach künstlicher Beatmung, sowie einer erhöhten Sauerstoffzufuhr, eine verstärkte Expression von CTGF in der Lunge gemessen werden (Wallace et al., 2009; Kompass et al., 2010; Chen et al., 2007). Hervorgerufen durch eine postnatale Überexpression von CTGF in der Lunge von Mäusen, kam es zu einem gestörten Aufbau der Lunge, vergleichbar mit Veränderungen wie sie bei frühgeborenen Säuglingen mit einer BPD beobachtet werden (Wu et al., 2010).

2.2.2.2. CTGF und das muskuloskelettale System

Die Verbindung von CTGF mit dem muskuloskelettalen System wird zum Einen durch die Expression in Chondrozyten, Osteoblasten und hMSC gestützt (Nakanishi et al., 1997, 2000; Schütze et al., 2005 b), zum Anderen konnte CTGF auch nach der chondrogenen, adipogenen und osteogenen Differenzierung von hMSC nachgewiesen werden (Schütze et al., 2005 b). Nach der Behandlung einer Osteoblastenzelllinie mit CTGF wurde eine verstärkte Proliferation, sowie ein Ansteigen von Osteocalcin, Osteopontin und Alkalischer Phosphatase detektiert - drei Marker welche auf Differenzierungs- und Mineralisierungsvorgänge hinweisen (Nishida et al., 2000). In CTGF knock out Mäusen kam es nach verringerter Proliferation Chondrozyten von und einer veränderten EZM-Komposition zu

schwerwiegenden skelettalen Verformungen (Ivkovic et al., 2003). CTGF wurde in Osteoblasten und Osteozyten, nicht aber in Osteoklasten während des normalen Knochenaufbaus und -umbaus im Oberschenkel und Schienbein von Ratten detektiert (Safadi et al., 2003). Nach erfolgter Knochenfraktur konnte eine erhöhte Expressionsrate von CTGF sowohl in hypertrophen und proliferierenden Chondrozyten in der Umgebung des regenerierenden Knorpelgewebes, als auch in aktiven Osteoblasten in der Umgebung der Fraktur nachgewiesen werden (Nakata et al., 2002).

CTGF besitzt ebenfalls ein multifunktionales Potential und ist unter Betracht zahlreicher Studien an entscheidenden Auf- und Umbauprozessen des muskuloskelettalen Systems und der Lunge beteiligt.

Im Rahmen dieser Arbeit sollen nähere Erkenntnisse zur Biologie von CYR61 und CTGF anhand der beiden Zellsysteme HPMEC-ST1.6R und hMSC erlangt werden.

2.3. Zellsysteme

2.3.1. hMSC und das muskuloskelettale System

Humane mesenchymale Stammzellen (hMSC, *human mesenchymal stem cells*), auch als humane im Knochenmark geprägte Stammzellen, skelettale Stammzellen oder multipotente mesenchymale stromale Zellen bezeichnet (Abdallah und Kassem 2008; Dominici et al., 2006), gehen in der embryonalen Entwicklung aus Zellen des Mesenchyms hervor. Embryonale Stammzellen werden als toti- oder pluripotente Zellen bezeichnet und können zu Zellen des Ektoderms, Endoderms und Mesenchyms differenzieren. Aus dem Ektoderm gehen in der weiteren Entwicklung Zellen des Nervensystems hervor, aus dem Endoderm bilden sich innere Organe wie beispielsweise Leber und Schilddrüse. Zellen des Mesenchyms entwickeln sich zu Zellen, welche das muskuloskelettale System des menschlichen Körpers aufbauen.

Dem muskuloskelettalen System des menschlichen Körpers werden alle Körperteile zugeordnet, welche Stütz- und Bewegungsfunktionen erfüllen. Hierzu werden unter anderem Muskeln, Sehnen, Bänder, Gelenke und Knochen gezählt, welche sich in einem ständigen Aufbau- und Umbauprozess befinden. Stammzellen liefern die für den Regenerations- und Umbauprozess der jeweiligen Gewebe benötigten Zellen und sind somit maßgeblich an der Aufrechterhaltung des muskuloskelettalen Systems beteiligt.

Im Gegensatz zu embryonalen Stammzellen ist die Differenzierung von adulten mesenchymalen Stammzellen in verschiedene Zelltypen eingeschränkt, weshalb diese auch als multipotente Zellen bezeichnet werden. Adulte hMSC besitzen die Fähigkeit zur Selbsterneuerung und können in unterschiedliche Zelltypen wie Osteozyten, Chondrozyten, Myoblasten, Bindegewebszellen, Adipozyten und Fibroblasten differenzieren (Caplan 1991; Bianco et al., 2001). Somit sind diese unter anderem am Aufbau von Knochen, Knorpel, Knochenmark, Sehnen, Fett- und Muskelzellen - d.h. Zellen des muskuloskelettalen Systems beteiligt (Pittenger et al., 1999; Pittenger 2008). Humane, adulte hMSC werden hauptsächlich aus dem Knochenmark isoliert, konnten aber auch erfolgreich aus peripherem Blut sowie Nabelschnurblut, Milchzähnen, der Synovialflüssigkeit und weiteren Geweben gewonnen werden. (Kuznetsov et al., 2001; Rosada et al., 2003; De Barri et al., 2001; Miura et al., 2003; De Coppi et al., 2007; Abdallah et al., 2008).

Die Isolierung, Kultivierung und letztlich die Charakterisierung von hMSC ist in Abhängigkeit von den jeweiligen Forschungslaboratorien teils sehr unterschiedlich. Eine gängige Methode ist die Beurteilung ihrer Fähigkeit in Adipozyten, Osteozyten und Chondrozyten -nach Zugabe von Dexamethason, BMP2 oder TGFß1- zu differenzieren (Nöth et al., 2002; Schütze et al., 2005 b; Schilling et al., 2007). Von der *international society for cellular therapy* werden zusätzlich, als minimale Kriterien für eine Charakterisierung von hMSC, eine Adhärenz an Plastikoberflächen unter Standardbedingungen der Zellkultur, sowie die Expression oder Abwesenheit von spezifischen Oberflächenmarkern empfohlen (Dominici et al., 2006).

hMSC stellen in Bezug auf ihre vielseitigen biologischen Eigenschaften für die Untersuchung des multifunktionalen Potentials der CCN-Proteine ein interessantes, in vielen Bereichen einsetzbares Zellsystem dar und wurden für die nachfolgenden Untersuchungen verwendet.

2.3.2. HPMEC-ST1.6R Lungenendothelzellen

Bei der in dieser Arbeit eingesetzten Lungenendothelzelllinie HPMEC-ST1.6R (*human pulmonary microvascular endothelial cells*) handelt es sich um eine Zelllinie, welche dem Phänotyp der primären mikrovaskulären Lungenendothelzellen sehr nahe kommt (Krump-Konvalinkova et al., 2001).

Endothelzellen wurden erstmals 1982 als eine physikalische Barriere beschrieben, welche Blut und Gewebe voneinander trennen (Fishman 1982) und später als Mediator zwischen Blut und Gewebe bezeichnet, welcher in wichtige physiologische und pathologische Prozesse involviert ist (Unger et al., 2002). Sie sind an der Ausbildung des Gefäßsystems (Angiogenese), der Wundheilung, der Entstehung von Arteriosklerose und der Regulation von Blutfluss und Blutdruck durch die Sekretion von Vasodilatoren (z.B. Stickstoffmonoxid, NO) und Vasokonstriktoren (z.B. Endothelin, ET) beteiligt (Cines et al., 1998). Endothelzellen können untereinander stark variieren und so zeigen aus mikrovaskulärem Gewebe extrahierte Zellen hinsichtlich Aufbau und Proteinexpression signifikante Unterschiede gegenüber Zellen aus makromolekularem Gewebe (Ades et al., 1992). Endothelzellen sind in Arealen des Gehirns lückenlos aneinandergefügt und nur von Knotenpunkten zur Überwindung der Blut-Hirn-Schranke durchbrochen, in der Leber hingegen bilden sie einen unstetigen Zellverbund (Cines et al., 1998). Mikrovaskuläre Endothelzellen stellen gegenüber makrovaskulären Endothelzellen den prozentual größeren Teil im menschlichen Körper dar. Eine Vielzahl von Reaktionen und Stoffwechselvorgängen im Zusammenhang mit pathologischen Erkrankungen spielen sich im mikrovaskulären Bereich ab (Ades et al., 1992), sodass die Auswahl der richtigen Endothelzellen in Abhängigkeit von der Fragestellung getroffen werden muss.

In einem direkten Vergleich der primären Endothelzellen (*EC*) HUVEC (*human umbilical vein EC*-makrovaskuläre Nabelschnurzellen), HDMEC (*human dermal microvascular EC*-Hautzellen) und HPMEC mit verschiedenen Endothelzelllinien konnten signifikante Unterschiede festgestellt werden (Unger et al., 2002).

In Bezug auf spezifische Endothelzellmarker zu welchen unter anderem vWF (von Willebrand Faktor), CD31, CD34 und die VEGF Rezeptoren Flt-1 und KDR gehören, zeigte die Zelllinie HPMEC-St1.6R die höchste Übereinstimmung mit primären Endothelzellen (Unger et al., 2002; Krump-Konvalinkova et al., 2001) und wurde deshalb für die zellulären Versuchsansätze in dieser Arbeit ausgewählt.

2.4. Ziele dieser Arbeit

Die Ziele dieser Arbeit sind die nähere Charakterisierung von CTGF und CYR61 in den beiden unterschiedlichen Zellsystemen hMSC und HPMEC-ST1.6R. Hierbei soll der Effekt einer Behandlung mit rekombinant exprimiertem CTGF und auch CYR61 auf die Zielzellen untersucht, sowie das gesamte Genexpressionsmuster nach Herunterregulation der für *ctgf* bzw. *cyr61* kodierenden Sequenzen in *Microarray*-Analysen erfasst werden. Die Erstellung von *Microarray*-Analysen sind für die Einschätzung zellulärer Abläufe und Erkennung wichtiger Signalkaskaden innerhalb der Zellsysteme unumgänglich und stellen somit ein wichtiges Werkzeug für die Funktionsaufklärung von CTGF und CYR61 dar. Diese Zielsetzungen sollen einen tieferen Einblick in die Wirkungsweise von CTGF und CYR61 ermöglichen. Es sollen deren wichtige Funktionen innerhalb dieser Zellsysteme neu erschlossen, aber auch in Kontext mit bereits veröffentlichten Studien gesetzt werden, um das vielfältige Potential von CTGF und CYR61 noch stärker zu untermauern.

In einem ersten Schritt sollte der für CTGF codierende, offene Leserahmen kloniert und CTGF anschließend rekombinant in SF21-Insektenzellen exprimiert werden. Das rekombinant exprimierte CTGF (rCTGF) sollte nachfolgend aus dem Überstand der SF21-Insektenzellen gewonnen und für die weitere Verwendung hinsichtlich Reinheit, Identität und

Funktionalität näher charakterisiert werden. CYR61 wurde in einer bereits veröffentlichen Studie erfolgreich rekombinant exprimiert und dessen Funktionsfähigkeit nachgewiesen (Schütze et al., 2005 a). Des Weiteren sollte das Genexpressionsmuster in den Zielzellen hMSC und HPMEC-ST1.6R nach Herunterregulation von *ctgf* oder *cyr61* näher untersucht werden. Hierfür sollten gegen *ctgf* bzw. *cyr61* zielgerichtete shRNAs (*short hairpin* RNAs) unter Anwendung eines lentiviralen Systems in die Zielzellen eingeschleust werden. Dieses Vorgehen gleicht der in der Natur bei Tieren, aber auch Pflanzen und Pilzen vorkommenden RNA-Interferenz, welche z.B. durch siRNAs (*small interfering* RNA) oder miRNAs (*micro* RNA) Fremd-RNA ausschalten oder bestimmte Gensequenzen herunterzuregulieren im Stande sind. In nachfolgenden *Microarray*-Analysen sollten zum Einen die Auswirkung der Herunterregulation und zum Anderen die Behandlung mit rekombinantem CTGF bzw. CYR61, nach Herunterregulation von *ctgf* bzw. *cyr61* auf das Genexpressionsmuster in den mesenchymalen Stammzellen sowie Lungenendothelzellen näher untersucht werden.

Zusammenfassend enthält die vorliegende Arbeit folgende Abschnitte:

- Beginnend mit der Klonierung des offenen Leserahmens von CTGF, sollten die Voraussetzungen f
 ür die Gewinnung von rekombinantem CTGF Protein geschaffen werden. Neben der Klonierung in einen Expressionsvektor ist hierf
 ür das Anf
 ügen einer f
 ür die nachfolgende Proteingewinnung und -aufreinigung wichtigen Sequenz (Fc-*Tag* Sequenz) n
 ötig.
- Die Produktion/Expression von rekombinantem CTGF sollte mit Hilfe eines viralen Expressionssystems (Baculovirus) in SF21-Insektenzellen durchgeführt werden. Hierbei handelt es sich um ein Expressionssystem für rekombinante Proteine, welches sehr hohe Ausbeuten verspricht und bereits erfolgreich innerhalb der Arbeitsgruppe etabliert worden ist.
- Ein weiteres Vorhaben war die Herunterregulation der *ctgf* bzw. *cyr61* Genexpression und damit auch der CTGF bzw. CYR61 Proteinexpression in den Zielzellen hMSC und HPMEC-ST1.6R unter Verwendung von shRNAs. ShRNAs ermöglichen die zielgerichtete Herunterregulation von Genen und liefern damit eine Basis für weiterführende Untersuchungen wie *Microarray*-Analysen oder Behandlung mit Proteinen.
- Nach der Herunterregulation von *ctgf*/CTGF bzw. *cyr61*/CYR61 in den Zielzellen sollte eine Behandlung mit den rekombinant exprimierten Proteinen CTGF und CYR61 erfolgen. Eine Behandlung mit den eigens rekombinant hergestellten Proteinen sollte die biologischen Effekte von CTGF und CYR61 auf beide Zellsysteme aufzeigen. Ein eventueller Einfluss der endogenen, zelleigenen CTGF bzw. CYR61 Produktion in den Zielzellsystemen sollte durch eine vorangehende Herunterregulation mittels shRNAs ausschlossen werden.
- Des Weiteren sollten, nach Herunterregulation der *ctgf* bzw. *cyr61* Genexpression in den Zielzellen, *Microarray*-Analysen durchgeführt werden. Mittels dieser *Microarray*-Analysen sollten Genregulationen innerhalb der Zellsysteme aufgedeckt werden, welche durch eine Herunterregulation von CTGF bzw. CYR61 hervorgerufen werden.
- Nachfolgend sollten die erhaltenen *Microarray* Daten ausgewertet und anhand ausgewählter, markanter Genregulationen auf RNA-und Proteinebene reevaluiert werden.
- In einem abschließenden Schritt sollten die erhaltenen Ergebnisse interpretiert und in einen aktuellen wissenschaftlichen Kontext gesetzt werden.

3. Material und Methoden

3.1. Material

3.1.1. Verbrauchsmaterial

6-well Platten

	Deutschland	
96-well Platten	TPP, geliefert von Biochrom AG, Berlin	
	Deutschland	
Cryo.S Einfrierröhrchen 2ml	Greiner Bio-one GmbH, Frickenhausen,	
2	Deutschland	
Eppendorfgefäß 1.5ml	Greiner Bio-one GmbH. Frickenhausen.	
Zppendongende i,em	Deutschland	
Falcon Röhrchen (15ml 50ml)	Greiner Bio-one GmbH Frickenhausen	
r deon Komenen (15mi, 50mi)	Deutschland	
Canachin LICU 122 Dive 2.0	Affrance UV	
Ultran TM Durate in C LID Similar	CE Haaldhaan Eanna Carbh Mänchan	
Hi Irap ^{1M} Protein G HP Saulen	GE Healthcare Europe GmbH, Munchen,	
A. 6. 1. 1. 1.	Deutschland	
Multitips	Eppendorf AG, geliefert von A.	
	Hartenstein, Würzburg, Deutschland	
Nitrocellulose Blotting Membran	Whatman GmbH, Dassel, Deutschland,	
	geliefert von A. Hartenstein, Würzburg,	
	Deutschland	
Nucleoseq Aufreinigungssäulen	Macherey-Nagel GmbH &. Co. KG,	
	Düren, Deutschland	
Pasteurpipetten	A. Hartenstein, Würzburg, Deutschland	
PCR Reaktionsgefäße	Greiner Bio-one GmbH. Frickenhausen.	
	Deutschland	
Pipettenspitzen Plastibrand	Brand GmbH Wertheim Deutschland	
PVDF Blotting Membran	Whatman GmbH Dassel Deutschland	
I VDI Diotting Memorali	aliafart von A Hartonstein Würzburg	
	Deutschland	
	Deutschland	
Rontgenfilme Fuji Super KX	Fuji Film Europe, generert von A.	
	Hartenstein, Wurzburg, Deutschland	
Spritzen, steril	Becton Dickinson, USA, geliefert von A.	
	Hartenstein, Würzburg, Deutschland	
Sterile Filter 0,2µm	Sartorius Stedim Biotech, Aubagne	
	Cedex, Frankreich, geliefert von A.	
	Hartenstein, Würzburg, Deutschland	
Uvette	Eppendorf AG, geliefert von A.	
	Hartenstein, Würzburg, Deutschland	
Whatman Papier	Whatman GmbH, Dassel, Deutschland,	
1	geliefert von A. Hartenstein, Würzburg,	
	Deutschland	
Zellkulturflaschen $(25 \text{ cm}^2, 75 \text{ cm}^2, 150 \text{ cm}^2)$	TPP, geliefert von Biochrom AG, Berlin	
· · · · · · · · · · · · · · · · · · ·	Deutschland	
Zellkulturflaschen (175cm ²)	Greiner Bio-one GmbH Frickenhausen	
	Deutschland	
Zellschaber	SPI Lifesciences geliefert von A	
	Hartenstein Würzburg Doutschland	
	marchsteni, wurzourg, Deutschlahu	

Greiner Bio-one GmbH, Frickenhausen,

3.1.2. Geräte

Analysenwaage Kern 770-14

Autoklav Systec VX-75 BioPhotometer CO₂-Inkubator CB 150 CO₂-Inkubator Kelvitron T

Einkanal Pipetten Gefrierschrank Economic (-20°C)

Gefriertruhe II Shin (-80°C)

Gelelektrophoresesystem Mini Protean 3cell

Geschirrspüler Glasgefäße

Glaspipetten Heizplatte

Heizschüttler TH15

Horizontal-Schüttler Kamera Canon EOS 1000D

Kühlschrank Freshcenter

Laminar Air Flow Box Hera Safe KS12

Magnetrührer/Heizplatte Microplate Reader Sunrise Basic Mikroskop Axiovert 25 PerfectBlue semi-dry electroblotter

ph-Meter inolab ph Level 1

Pipetboy Acu

Power Pac 300

Präzisionswaage SPO51

Röntgenkassette Hypercassette

Speed Vac SC 110

Sequencer ABI PRISM 310

Kern, geliefert von A. Hartenstein, Würzburg, Deutschland Systec GmbH, Wettenberg, Deutschland Eppendorf AG, Hamburg, Deutschland Binder GmbH, Tuttlingen, Deutschland Thermo Electron LED GmbH. Langenselbold, Deutschland Abimed, Langenfeld, Deutschland Bosch GmbH, Gerlingen-Schillerhöhe, Deutschland Nunc GmbH & Co. KG, Wiesbaden, Deutschland Bio-Rad Laboratories GmbH. München. Deutschland Miele & Cie. KG, Gütersloh, Deutschland Schott, geliefert von A. Hartenstein, Würzburg, Deutschland A. Hartenstein, Würzburg, Deutschland Medax, geliefert von A. Hartenstein, Würzburg, Deutschland Edmund Bühler GmbH, Hechingen, Deutschland A. Hartenstein, Würzburg, Deutschland. geliefert Hartenstein, Canon, A. Würzburg, Deutschland Bosch GmbH, Gerlingen-Schillerhöhe, Deutschland Thermo Electron LED GmbH, Langenselbold, Deutschland A. Hartenstein, Würzburg, Deutschland Tecan GmbH, Crailsheim, Deutschland Carl Zeiss Jena GmbH, Jena, Deutschland PEQLAB Biotechnologie GmbH. Erlangen, Deutschland WTW, geliefert von A. Hartenstein, Würzburg, Deutschland IBS Integra Biosciences, Fernwald, Deutschland Bio-Rad Laboratories GmbH, München, Deutschland Scaltec Instruments, geliefert von A. Hartenstein, Würzburg, Deutschland Amersham Lifesciences, geliefert von A. Hartenstein, Würzburg, Deutschland Savant, Thermo Electron LED GmbH, Langenselbold, Deutschland Applied Biosystems Applera Deutschland GmbH. Darmstadt. Deutschland

Thermal Cycler PTC-200

Thermaldrucker Seico

Trockenschrank

Sonificator Sonoplus

Vortexer Vortex-Genie 2

Wasserbad WB7

Zentrifuge Biofuge Fresco

Zentrifuge Function Line

Zentrifuge Micro FugOne

3.1.3. Chemikalien und Reagenzien

1,4-Dithiothreitol (DTT)

2-Mercaptoethanol 2-Propanol

Agar

Albumin Fraktion V (BSA)

Ammoniumperoxodisulfat (APS)

Ampicillin

Biozym LE Agarose

Borsäure Bromphenolblau, Natriumsalz

Complete Protease Inhibitor

Dimethylsulfoxid (DMSO)

DNA-Leiter 1000 bp (1 kb)

DNA-Leiter plus 100 bp

Entwickler Konzentrat

Peltier MJ Research, geliefert von Biozym Scientific GmbH, Hessisch Oldendorf, Deutschland LTF Labortechnik GmbH & Co. KG, Wasserburg, Deutschland Thermo Electron LED GmbH. Langenselbold, Deutschland Bendelin Electronic GmbH &. Co KG. Berlin, Deutschland Scientific Industries, geliefert von A. Hartenstein, Würzburg, Deutschland Memmert, geliefert von A. Hartenstein, Würzburg, Deutschland Thermo Electron LED GmbH, Langenselbold, Deutschland Thermo Electron LED GmbH, Langenselbold, Deutschland Thermo Electron LED GmbH, Langenselbold, Deutschland

Roche Diagnostics Deutschland GmbH, Mannheim, Deutschland Merck KGaA, Darmstadt, Deutschland AppliChem GmbH, geliefert von A. Hartenstein, Würzburg, Deutschland AppliChem GmbH, geliefert von A. Hartenstein, Würzburg, Deutschland PAA Laboratories GmbH, Pasching, Österreich, geliefert von A. Hartenstein, Würzburg, Deutschland PAA Laboratories GmbH, Pasching, Österreich Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland Scientific Biozym GmbH. Hessisch Oldendorf, Deutschland Merck KGaA, Darmstadt, Deutschland Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland Roche Diagnostics Deutschland GmbH, Mannheim, Deutschland Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland PEQLAB Biotechnologie GmbH, Erlangen, Deutschland PEQLAB Biotechnologie GmbH, Erlangen, Deutschland Kodak, geliefert von A. Hartenstein, Würzburg, Deutschland

Essigsäure 100%	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Ethanol, absolut	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland
Ethanol, vergällt 96%	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Ethidiumbromidlösung 1%	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland
Ethylendiamintetraessigsäure (EDTA)	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland
Fixierer Konzentrat	Kodak, geliefert von A. Hartenstein, Würzburg, Deutschland
Gelatine, gepulvert	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland
Glycerin, wasserfrei	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland
Hefeextrakt	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland
Kochsalz Maßlösung (1 M)	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland
Lysispuffer 10x	New England Biolabs (Cell signaling), Frankfurt am Main, Deutschland
Magermilchpulver	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland
Magnesiumchlorid	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland
Methanol	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Natriumacetat	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland
Natriumchlorid	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland
Natriumdodecylsulfat (SDS) N, N, N', N'Tetramethylethylendiamin (TEMED) Pferdeserum	Merck KGaA, Darmstadt, Deutschland Merck KGaA, Darmstadt, Deutschland PAA Laboratories GmbH, Pasching, Österreich
Phenylmethylsulfonylfluorid (PMSF) Phosphate Buffered Saline Dulbecco (PBS) Phosstop Phosphatase Inhibitor	Merck KGaA, Darmstadt, Deutschland Biochrom AG, Berlin, Deutschland Roche Diagnostics Deutschland GmbH,
Puromycin-dihydrochlorid Rainbow Marker RPN 800E	Sigma-Aldrich, München, Deutschland GE Healthcare Europe GmbH, München, Deutschland
Random Hexamere	Invitrogen GmbH, Darmstadt, Deutschland
Rotiphorese Gel 40	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
RotiQuant 5x Konzentrat	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Salzsäure Maßlösung (1 M)	AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland

S.O.C Medium

Tris-Hydrochlorid 99%

Tris-Hydroxymethylaminomethan

Triton X 100

Trypanblaulösung (0,4%) Trypton Biochemica

Tween 20

3.1.4. Zellkultur

Zellen HEK 293T-Zellen hMSC

HPMEC-ST1.6R-Zellen

<u>Medien und Zusätze</u> BacPAK complete Medium

BacPAK Grace's Basic Medium

DMEM Ham`s-F12 mit L-Glutamin

DMEM High Glucose mit L-Glutamin

Endothelial Cell Growth Supplement (ECGS)

Fetales Kälberserum (FCS) Hexadimethrine bromide (Polybrene)

Insect Express Sf9-S2 Medium

L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate Lipofectamine 2000

Medium 199 Earle`s Penicillin/Streptomycin 100x

3.1.5. Bakterienzellen TOP 10 Zellen (TOPO TA Cloning Kit)

XL-10 GOLD

Invitrogen GmbH, Darmstadt, Deutschland Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland Sigma-Aldrich, München, Deutschland AppliChem, geliefert von A. Hartenstein, Würzburg, Deutschland Merck, Darmstadt, Deutschland

ATCC, Manassas, USA König-Ludwig-Haus, Orthopädische Klinik, Würzburg, Deutschland PD Dr. Steffen Kunzmann, Universitätskinderklinik, Würzburg, Deutschland

Takara Bio Europe/Clontech, Saint-German-en-Laye, Frankreich Takara Bio Europe/Clontech, Saint-German-en-Laye, Frankreich PAA Laboratories GmbH, Pasching, Österreich PAA Laboratories GmbH, Pasching, Österreich BD Biosciences, geliefert von Schubert und Weiss Omnilab, München, Deutschland PAA Laboratories, Pasching, Österreich Sigma-Aldrich Chemie GmbH, Steinheim, Deutschland PAA Laboratories GmbH, Pasching, Österreich Sigma-Aldrich Chemie GmbH, Steinheim, Deutschland Invitrogen GmbH, Darmstadt, Deutschland Biochrom AG, Berlin, Deutschland PAA Laboratories, Pasching, Österreich

Invitrogen GmbH, Darmstadt, Deutschland Stratagene, Waldbronn, Deutschland

3.1.6. Antikörper

Anti-Goat IgG HRP

Anti Rabbit IgG HRP

Rabbit anti-Fc-Tag prim. antibody (216)

ß-Actin Rabbit mAb

CTGF (L-20)

Cyr61 (C-20)

TGF-B2/1.2 anti-human

3.1.7. cDNA Klon

CTGF cDNA Klon

3.1.8. rekombinante Proteine

TGF-\u00df22 (hBA-112)

CTGF human E.coli

rCYR61

IgG Fc-Tag

Sigma-Aldrich Chemie GmbH, Steinheim, Deutschland Sigma-Aldrich Chemie GmbH, Steinheim, Deutschland ImmunoGlobe GmbH, Himmelstadt, Deutschland New England Biolabs (Cell signaling), Frankfurt am Main, Deutschland Santa Cruz Biotechnology, Inc., Heidelberg, Deutschland Santa Cruz Biotechnology, Inc., Heidelberg, Deutschland R&D Systems GmbH, Wiesbaden-Nordenstadt, Deutschland

Prof. Dr. M.Goppelt-Strübe, Medizinische Klinik mit Poliklinik, Nephrologische Forschungslaboratorien, Universität Erlangen-Nürnberg, Deutschland

Santa Cruz Biotechnology, Inc., Heidelberg, Deutschland BioVendor GmbH, Heidelberg, Deutschland Prof. Dr. N. Schütze, Orthopädische Klinik König-Ludwig-Haus, Muskuloskelettales Zentrum, Würzburg, Deutschland Dr. Pascal Schneider, Universität von Lausanne, Schweiz

3.1.9. Lentivirales System

shRNA (short hairpin RNA) Oligonukleotide

Tab.1 CTGF/CYR61 shRNA Sets

CTGF bzw. CYR61 shRNA Sets bestehend aus fünf verschiedenen shRNAs der Firma openbiosystems. Aufgeführt sind neben den Identifizierungsnummern der jeweiligen Klone (Oligo ID), des Vektortyps und der Homologie zum menschlichen Organismus die Basenfolge der einzelnen Oligos unter Angabe von *sense* (Hauptstrang, blau) und *antisense* (Komplementärstrang, grün) Sequenz mit der verbindenden Haarnadelsequenz (*loop/hairpin*, rot). Die Sequenz-Identifizierungsnummer bezieht sich auf die Zuordnung der Nukleotid Referenzsequenz von NCBI (http://www.ncbi.nlm.nih.gov/nuccore).

Die Auswahl der shRNAs erfolgte in Anlehnung an Empfehlungen des TRC (<u>The RNAi Consortium</u> des Broad Institutes-www.broadinstitute.org).

CTGF shRNA Oligonukleotide					
Oligo ID	Vektortyp	Vektor	Homologie	Sequenz: sense/loop/antisense	Sequenz ID
TRCN000 0061948	Lentiviral	pLKO.1	Homo sapiens	CCGGGAGAACATTAAGAAG GGCAAACTCGAGTTTGCCCT TCTTAATGTTCTCTTTTTG	NM_001901
TRCN000 0061949	Lentiviral	pLKO.1	Homo sapiens	CCGGGCCCAGACCCAACTAT GATTACTCGAGTAATCATAG TTGGGTCTGGGCTTTTTG	NM_001901
TRCN000 0061950	Lentiviral	pLKO.1	Homo sapiens	CCGGCATCTTTGAATCGCTG TACTACTCGAGTAGTACAGC GATTCAAAGATGTTTTTG	NM_001901
TRCN000 0061951	Lentiviral	pLKO.1	Homo sapiens	CCGGGCATGAAGACATACC GAGCTACTCGAGTAGCTCGG TATGTCTTCATGCTTTTTG	NM_001901
TRCN000 0061952	Lentiviral	pLKO.1	Homo sapiens	CCGGCCCAAGGACCAAACC GTGGTTCTCGAGAACCACGG TTTGGTCCTTGGGTTTTTG	NM_001901

CYR61 shRNA Oligonukleotide

Oligo ID	Vektortyp	Vektor	Homologie	Sequenz: sense/loop/antisense	Sequenz ID
TRCN000 0118097	Lentiviral	pLKO.1	Homo sapiens	CCGGGCAAACAGAAATCAG GTGTTTCTCGAGAAACACCT GATTTCTGTTTGCTTTTTG	NM_001554
TRCN000 0118098	Lentiviral	pLKO.1	Homo sapiens	CCGGCGCATCCTATACAACC CTTTACTCGAGTAAAGGGTT GTATAGGATGCGTTTTTG	NM_001554
TRCN000 0118099	Lentiviral	pLKO.1	Homo sapiens	CCGGCCGAACCAGTCAGGTT TACTTCTCGAGAAGTAAACC TGACTGGTTCGGTTTTTG	NM_001554

TRCN000 0118100	Lentiviral	pLKO.1	Homo sapiens	CCGGCCCTTCTACAGGCTGT TCAATCTCGAGATTGAACAG CCTGTAGAAGGGTTTTTG	NM_001554
TRCN000 0118101	Lentiviral	pLKO.1	Homo sapiens	CCGGCGAACCAGTCAGGTTT ACTTACTCGAGTAAGTAAAC CTGACTGGTTCGTTTTTG	NM_001554

Virale- und Kontrollplasmide

Grün fluoreszierendes Protein (GFP)AddgeKontrollvektor pLKO.1 TRC controlAddgeKontrollvektor TurboGFPAddgeScrambled shRNAAddgeUmhüllungsplasmid pMD2.GAddgeVerpackungsplasmid psPAX2Addge

3.1.10. Kits

BacPAK[™] Baculovirus Expression System/ SF21-Insektenzellen Big Dye Terminator v1.1 Cycle Sequencing

CellTiter96 AQueous One Solution ECL-Detection Reagents

Fast-Link DNA Ligation

Gelextraktionskit

Nucleospin Extract II

NucleoSpin Plasmid Mini Prep

NucleoSpin RNA II

PlusOneTM Silver Staining Kit, Protein

Pure Yield Plasmid Midiprep System TOPO TA Cloning

3.1.11. Enzyme

BioScriptTM Reverse Transcriptase

Mango TaqTM DNA Polymerase

Pfx50TM DNA Polymerase

Taq[™] DNA Polymerase

Trypsin 10x

Addgene Inc., Cambridge, USA Addgene Inc., Cambridge, USA

Takara Bio Europe/Clontech, Saint-Germain-en-Laye, Frankreich Applied Biosystems Applera Deutschland GmbH, Darmstadt, Deutschland Promega GmbH, Mannheim, Deutschland GE Healthcare Europe GmbH, München, Deutschland Biozym Scientific GmbH, Hessisch-Oldendorf, Deutschland Macherey-Nagel GmbH & Co. KG, Düren, Deutschland GE Healthcare Europe GmbH, München, Deutschland Promega GmbH, Mannheim, Deutschland Invitrogen GmbH, Darmstadt, Deutschland

Bioline GmbH, Luckenwalde, Deutschland Bioline GmbH, Luckenwalde, Deutschland Invitrogen GmbH, Darmstadt, Deutschland Bioline GmbH, Luckenwalde, Deutschland PAA Laboratories, Pasching, Österreich

PAA Laboratories, Pasching, Österreich
New England Biolabs, Frankfurt am Main,
Deutschland
New England Biolabs, Frankfurt am Main,
Deutschland
New England Biolabs, Frankfurt am Main,
Deutschland
New England Biolabs, Frankfurt am Main,
Deutschland
New England Biolabs, Frankfurt am Main,
Deutschland

3.1.12. Primer

Tab.2 RT-RCR Primer Tabelle

Primertabelle mit Angabe des jeweils detektierten Genes, der *forward* und *reverse* Sequenz, erwarteter Produktgröße, *Annealing* Temperatur T_A und den Sequenz IDs welche, basierend auf NCBI Daten, durch die Primer erfasst werden. Alle Primer wurden unter Verwendung des online Programms Primer3Plus erstellt. Hochgestellte Buchstaben in der Spalte der Gennamen geben Zusätze an, die über die Standard PCR (siehe 3.2.3.1) hinaus angewendet wurden: $a=2\mu l$ DMSO, $b=2\mu l$ MgCl₂ (0,0001mM), $c=2\mu l$ DMSO und $2\mu l$ MgCl₂ (0,0001mM).

Genname	Primersequenzen	Produkt größe	T _A	Sequenz ID
BMP4^c bone morphogenic protein 4	forward: 5'-TTGGCTGTCAAGAATCATGG-3' reverse: 5'-AGAAGTGTCGCCTCGAAGTC-3'	241bp	50°C	NM_001202.3 NM_130850.2 NM_130851.2
BMP6^a bone morphogenic protein 6	forward: 5'-CTTACGACAAGCAGCCCTTC-3' reverse: 5'-CCCAGGTCTTGGAAACTCAC-3'	220bp	56°C	NM_001718.4
CASP1 caspase 1, apoptosis-related cysteine peptidase	forward: 5'-GGAAACAAAAGTCGGCAGAG-3' reverse: 5'-ACGCTGTACCCCAGATTTTG-3'	166bp	54°C	NM_001223.3 NM_033292.2 NM_033293.2 NM_033294.2 NM_033295.2
CCND1 cyclin D1	forward: 5'-TCCTCTCCAAAATGCCAGAG-3' reverse: 5'-TGAGGCGGTAGTAGGACAGG-3'	198bp	57°C	NM_053056.2
CTGF ^a connective tissue growth factor	forward: 5'-CCTGGTCCAGACCACAGAGT-3' reverse: 5'-ATGTCTTCATGCTGGTGCAG-3'	239bp	54°C	NM_001901.2
CYR61 cysteine-rich, angiogenic inducer, 61	forward: 5'-CAACCCTTTACAAGGCCAGA-3' reverse: 5'-TGGTCTTGCTGCATTTCTTG-3'	206bp	55°C	NM_001554.4
DUSP4 dual specificity phosphatase 4	forward: 5'-ATAACCACAAGGCCGACATC-3' reverse: 5'-CCCGTTTCTTCATCATCAGG-3'	156bp	53°C	NM_001394.5 NM_057158.2
EEF1A1 eukaryotic translation elong. factor 1 alpha 1	forward: 5'-CTGTATTGGATTGCCACACG-3' reverse: 5'- AGACCGTTCTTCCACCACTG-3'	369bp	54°C	NM_001402.5
FGF7 fibroblast growth factor 7	forward: 5'-GCTTGCAATGACATGACTCC-3' reverse: 5'-AATTCCAACTGCCACTGTCC-3'	231bp	54°C	NM_002009.3
ID1^a inhibitor of DNA binding 1	forward: 5'-GAGATTCTCCAGCACGTCATC-3' reverse: 5'-GCTTCAGCGACACAAGATGC-3'	195bp	56°C	NM_002165.2 NM_181353.1
JAK1 Janus kinase 1	forward: 5'-TAGTCCCATGGCTTTGTTCC-3' reverse: 5'-AAAGCTTGTCCGATTGGATG-3'	181bp	53°C	NM_002227.2
MAP3K3 mitogen-activated protein kinase kinase kinase 3	forward: 5'-TGTAAAGCTGGGGGGACTTTG-3' reverse: 5'-GCGGCCATAGCTTCATACTC-3'	219bp	55°C	NM_002401.3 NM_203351.1

Genname	Primersequenzen	Produkt größe	T _A	Sequenz ID
MAPK8 ^a mitogen-activated protein kinase 8	forward: 5'-TTAAAGCCAGTCAGGCAAGG-3' reverse: 5'-GTCAGGGATCTTTGGTGGTG-3'	152bp	56°C	NM_002750.2 NM_139046.1 NM_139047.1 NM_139049.1
NRAS neuroblastoma RAS viral (v-ras) oncogene homolog	forward: 5'-GAACTGGCCAAGAGTTACGG-3' reverse: 5'-AGTCAGGACCAGGGTGTCAG-3'	245bp	55°C	NM_002524.3
PAK2 p21 protein (Cdc42/Rac)- activated kinase 2	forward: 5'-AACCCCAGAACTTCAGAATCC-3' reverse: 5'-CTGCCATGATCAGTGGTGTC-3'	168bp	55°C	NM_002577.4
PDGFA ^a platelet-derived growth factor alpha polypeptide	forward: 5'-GACCAGGACGGTCATTTACG-3' reverse: 5'-CCTGACGTATTCCACCTTGG-3'	187bp	56°C	NM_002607.5 NM_033023.4
SMAD6 SMAD family member 6	forward: 5'-ACAAGCCACTGGATCTGTCC-3' reverse: 5'-TGCCCTGAGGTAGGTCGTAG-3'	228bp	52°C	NM_005585.4 NM_001142861.2
SPHK1 sphingosine kinase 1	forward: 5'-TCTGGTGGTCATGTCTGGAG-3' reverse: 5'-TGTGCAGAGACAGCAGGTTC-3'	248bp	55°C	NM_001142601.1 NM_001142602.1 NM_021972.3 NM_182965.2
STAT1 signal transducer and activator of transcription 1	forward: 5'-GGCTCAGCTTTCAGAAGTGC-3' reverse: 5'-TTCAATCCAAAGCCAGAAGG-3'	193bp	55°C	NM_007315.3 NM_139266.2
STAT2^a signal transducer and activator of transcription 2	forward: 5'-GCATGCTGAGAAACAAGCTG-3' reverse: 5'-AGGTGCCAGACATGGTCTTC-3'	240bp	55°C	NM_005419.3 NM_198332.1
TGFB2 transforming growth factor, beta 2	forward: 5'-TTGACGTCTCAGCAATGGAG-3' reverse: 5'-TGCAGCAGGGACAGTGTAAG-3'	294bp	55°C	NM_001135599 NM_003238
THBS1 thrombospondin 1	forward: 5'-CCGACCAGAAGGACTCTGAC-3' reverse: 5'-CATTTTGGGATGTCCCTTTG-3'	174bp	54°C	NM_003246.2
VAMP3 ^b vesicle-associated membrane protein 3 (cellubrevin)	forward: 5'-TGAGTTAGACGACCGTGCAG-3' reverse: 5'-GTTTTGAGTTCCGCTGGTTC-3'	193bp	53°C	NM_004781.3
VEGF vascular endothelial growth factor A	forward: 5'-CACCATCGACAGAACAGTCC-3' reverse: 5'-AAAATGGCGAATCCAATTCC-3'	156bp	52°C	NM_001025366.2 NM_001025367.2 NM_001025368.2 NM_001025369.2 NM_001025370.2 NM_001033756.2 NM_003376.5
WISP2 WNT1 inducible signaling pathway protein 2	forward: 5'-GAGTACCCCTGGTGCTGGATG-3' reverse: 5'-GTCTCCCCTTCCCGATACA-3'	211bp	55°C	NM_003881.2

Tab.3 Primer für die Amplifizierung des offenen Leserahmens von CTGF.

Angabe der *forward* Sequenz mit Schnittstelle für das Restriktionsenzyme XhoI (*kursiv*) und der *reverse* Sequenz mit Schnittstelle für das Restriktionsenzym EcoRI (*kursiv*), der erwarteten Produktgröße, *Annealing* Temperatur T_A und der Sequenz ID, basierend auf NCBI Daten. Die Primersequenzen wurden mit dem online Programm Primer3plus erstellt. Zugabe von a=2µl DMSO zur Standard PCR Rezeptur (siehe 3.2.3.1).

<i>Restriktions</i> schnittstellen größe		
CTGF- ORF-flcaforward:1049bp0RF-flca5'-ATACTCGAGGTGCCAACCA TGACCGCCGCCAGTATGGGCC-3' reverse: 5'-ATAGAATTCTGCCATGTCTC CGTACATCTTCCT-3'1049bp	55°C	NM_001901.2

Tab.4 Primer für Sequenzierungsreaktionen

Die in der Tabelle aufgeführten Primersequenzen für CTGFseq1/seq2, IgGFc und IgGFc Reverse Prot wurden mit dem online Programm Primer3plus erstellt. Primer ohne Angabe der Basenfolge waren bereits im Kit TOPO TA Cloning (M13 *forward/reverse*) und BacPAK[™] Baculovirus Expression System (Bac1/Bac2) enthalten.

Primer	Primersequenzen
CTGF seq1	5'-CGCGTCTGCGCCAAGCAGCT-3'
CTGF seq2	5'-TTCCAGAGCAGCTGCAAGTA-3'
M13 forward	Invitrogen
M13 reverse	
Bac1	Takara Clontech
Bac2	
IgGFc	forward: 5'-ATAGAATTCACCATGGGATCCGTCGACAAAACTCACAC-3' reverse: 5'-ATAGCGGCCGCGCGCACTCATTTACCCCGGAGA-3'
IgGFc Reverse Prot	reverse: 5´-GTGGGCATGTGTGAGTTTTG-3´

3.1.13. Puffer und sonstige Lösungen

Agarose-Gelelektrophorese

<u>TBE Puffer 10x</u>				
Tris-aminomethan	0,9 mol/l			
Borsäure	0,98 mol/l			
EDTA-tetranatriumsalz	0,02 mol/l			
in destilliertem Wasser				
ph=8,3; autoklaviert				
Lösung zum Gebrauch:				
TBE Puffer 10x	50 ml			
Destilliertes Wasser	ad 1000 ml			
Bakterienkultur				
LB (Luria Bertani) Medium				
Trypton	10 g			
Hefeextrakt	5 σ			
NaCl	0.17 mol/l			
Destilliertes Wasser	ad 1000 ml			
Autoklaviert				
Autokiavien				
Agar LB/Amp Platten				
Trypton	10 g			
Hefeextrakt	5 g			
NaCl	0,17 mol/l			
Agar	15 g			
Destilliertes Wasser	ad 1000 ml			
Autoklaviert, nach Abkühlung auf 55°C Ampicillin (100 mg/ml) zugegeben und in				
Petrischalen ausgegossen, Lagerung bei 2-8°C				

Proteingewinnung

PMSF Lösung	
PMSF	100 mmol/l
in DMSO	
Lagerung der Aliquots be	ei -20°C
Proteasehemmer	
Complete Protease	1 Tablette
Inhibitor (Roche)	
Destilliertes Wasser	ad 500 µl
Lagerung der Aliquots be	ei -20°C
Phosphatasehemmer	
Phosstop Phosphatase	1 Tablette
Inhibitor (Roche)	

minortor (Roene)	
Destilliertes Wasser	ad 500 µl
Lagerung der Aliquots bei	-20°C
Lysispuffer 1x Lysispuffer 10x PMSF 100mmol/1 Proteasehemmer Phosphatasehemmer Destilliertes Wasser Der Puffer wurde vor Gebra	10 μl 4 μl 5 μl 5 μl ad 100 μl uch frisch hergestellt
--	--
SDS-Gelelektrophorese APS Lösung APS in destilliertem Wasser Lagerung der Aliquots bei -2	44 mmol/l 20°C
<u>SDS Lösung</u> SDS in destilliertem Wasser	0,44 mol/l
Lower Puffer 10 x Tris-aminomethan Glycin in destilliertem Wasser	0,25 mol/l 1,9 mol/l
<i>Lösung zum Gebrauch:</i> Lower Puffer 10x Destilliertes Wasser	100 ml ad 1000 ml
<u>Upper Puffer 4x</u> Tris-aminomethan Glycin SDS in destilliertem Wasser	0,1 mol/l 0,76 mol/l 0,014 mol/l
Lösung zum Gebrauch: Upper Puffer 4x ß-Mercaptoethanol Destilliertes Wasser pH=8,4	100 ml 84 μl ad 400 ml
<u>Trenngelpuffer</u> Tris-aminomethan in destilliertem Wasser pH=8,8	3 mol/l
Sammelgelpuffer Tris-aminomethan in destilliertem Wasser ph= 6,8	0,5 mol/l

<u>Westernblot</u>	
EDTA Lösung 0,25M	
EDTA- tetranatriumsalz	0.3 mol/l
in destilliertem Wasser	-,
in destimenteni v usser	
NaCl Lösung 1M	
NaCl	5 mol/l
in destilliertem Wasser	5 1101/1
in destimenten wasser	
PBS Dulbecco`s 1x	
PBS	955 σ
Destilliertes Wesser	3,35 g ad 1000 ml
nh-7.4	au 1000 III
pii=7,4	
PBS-Tween 20 (0.1%)	
1100-110000000000000000000000000000000	1 ml
Tween 20	
PBS 1x	ad 1000 ml
Tris-HCI Losung 0,5M	0 5 1/1
Tris-aminomethan	0,5 mol/l
in destilliertem Wasser	
ph=6,8	
Tris-HCI Lösung IM	
Tris-aminomethan	1 mol/l
in destilliertem Wasser	
ph=7,4	
-	
Triton X-100 Lösung 10%	
Triton X-100	10 ml
Destilliertes Wasser	ad 100 ml
Probenpuffer Lämmli (4x)	
Tris-HCl (0,5M), ph=6,8	4,4 ml
Glycerol, wasserfrei	4,4 ml
SDS (20%)	2.2 ml
β -Mercaptoethanol (1%)	0.5 ml
Bromphenolblau	1 mg
Lagaming dar Aliquota hai 2	1 mg
Lagerung der Anquots ber -2	00
Waschpuffer I	
$Tris_HCl (1M) \text{ ph}=7.5$	10 ml
$M_{0}C1 (5M)$	10 ml
EDTA (0.25M) = h - 8	30 IIII 91
EDTA (0,25M), pn=8	8 ml
Triton X-100 (10%)	1() ml
Destilliertes Wasser	10 111
Destimentes wasser	ad 1000 ml
	ad 1000 ml
Waschpuffer II	ad 1000 ml
<u>Waschpuffer II</u> Tris-HCl (1M)	ad 1000 ml 10 ml
<u>Waschpuffer II</u> Tris-HCl (1M) NaCl (5M)	ad 1000 ml 10 ml 200 ml
<u>Waschpuffer II</u> Tris-HCl (1M) NaCl (5M) EDTA (0,25M), ph=8	10 ml 200 ml 8 ml
Waschpuffer II Tris-HCl (1M) NaCl (5M) EDTA (0,25M), ph=8 Triton X-100 (10%)	10 ml 10 ml 200 ml 8 ml 10 ml

<u>Waschlösung I</u>	
BSA	1 g
Magermilchpulver	1 g
Pferdeserum	1 ml
WaschpufferI	ad 100 ml
Waschlösung II	
BSA	1 g
Magermilchpulver	1 g
Pferdeserum	1 ml
WaschpufferII	ad 100 ml
Waschlösung III	
BSA	5 g
PBS-Tween 20 (0,1%)	ad 100 ml
Transferpuffer 10x	
Tris-aminomethan	0,25 mol/l
Glycin	1,9 mol/l
in destilliertem Wasser	
pH=10	
Lösung zum Gebrauch:	
Transferpuffer 10x	100 ml
Methanol	200 ml
Destilliertes Wasser	ad 1000 ml
<u>Blockierlösung I</u>	
BSA	2,5 g
Magermilchpulver	2,5 g
Pferdeserum	2 ml
PBS-Tween 20 (0,1%)	ad 100 ml
<u>Blockierlösung II</u>	
BSA	5 g
PBS-Tween20 (0,1%)	ad 100 ml
Antikörperlösung I	
BSA	1 g
Magermilchpulver	1 g
Pferdeserum	1 ml
PBS-Tween 20 (0,1%)	ad 100 ml
Antikörperlösung II	
BSA	5 g
PBS-Tween 20 (0,1%)	ad 100 ml

<u>Zellkultur</u>

Gelatinelösung 0,2%Gelatine2 gDestilliertes Wasserad 1000 mlAutoklaviert, Lagerung bei 2-8°C Kühlschrank

PBS 1x

PBS Dulbecco`s	9,55 g
Destilliertes Wasser	ad 1000 ml
ph=7,4; autoklaviert	

PBS/EDTA

EDTA	0,2 g
PBS	9,55 g
Destilliertes Wasser	ad 1000 ml
ph=7,4; autoklaviert	

Polybrene10 mgPolybrene10 mgDestilliertes Wasserad 10mlSterilfiltration (0,22μm Porengröße), Lagerung der Aliquots bei -20°C

Anwendung: 8µg/ml Medium

PuromycinPuromycin100 mgDestilliertes Wasserad 10 mlSterilfiltration, Lagerung der Aliquots bei -20°C

Anwendung: 5µg/ml Medium

Trypsin Lösung für hMSC	
Trypsin lösung (2,5%)	10 ml
PBS/EDTA Lösung	ad 100 ml

3.1.14. Software und online Quellen

ABI PRISM 310 collection software

Affymetrix-NetAffx[™] Analysis Center AxioVision Rel.4.8

Bio-Capt 12.5

Bio-1D 11.9

Broadinstitute EndNoteX3

GeneCards V3 GOStat Analysis KEGG PATHWAY Database Magellan V6.6

Microsoft Office 2007 NCBI Blast NCBI Pubmed NEB Primer3Plus Applied Biosystems Applera Deutschland GmbH, Darmstadt, Deutschland http//www.affymetrix.com/estore/analysis Zeiss Vision Carl GmbH. Aalen. Deutschland LTF Labortechnik GmbH & Co. KG, Wasserburg, Deutschland LTF Labortechnik GmbH & Co. KG, Wasserburg, Deutschland http://www.broadinstitute.org Thomson Reuters, zur Verfügung gestellt durch die Universität Würzburg http://www.genecards.org http://gostat.wehi.edu.au/ de/ http://www.genome.jp/kegg/pathway.html Tecan Deutschland GmbH, Crailsheim, Deutschland Microsoft Office GmbH, Deutschland http://blast.ncbi.nlm.nih.gov/Blast.cgi http://www.ncbi.nlm.nih.gov/pubmed http://www.neb-online.de http://www.bioinformatics.nl/cgibin/primer3plus/primer3plus.cgi

3.2. Methoden

3.2.1. Zellkultur

Die im folgenden aufgeführten eukaryontischen Zellen (hMSC, HEK293T, EAhy926) wurden in einem CO₂-Inkubator mit 5% CO₂ (v/v) und 95% Raumluft bei 37°C, SF21-Insektenzellen hingegen ohne zusätzliche CO₂ Zufuhr bei 27°C kultiviert. Die Arbeiten wurden unter einer LAF-Box durchgeführt und hierfür verwendete Zellkulturmedien und Zusätze vorher in einem Wasserbad auf 37°C erwärmt. Alle Zelltypen wurden bei -196°C in flüssigem Stickstoff gelagert und vor der Verwendung im Wasserbad bei 37°C aufgetaut und in einem 15 ml Falcon-Röhrchen mit 9 ml des jeweiligen Kulturmediums versetzt, um zelltoxisches DMSO zu entfernen. Nach 5 min bei 1200 rpm wurde der Überstand abgenommen, das Zellpellet in Zellkulturmedium resuspendiert und in der angegebenen Verdünnung ausgesät.

Zellkulturgefäß	96-well	6- <i>well</i>	25 cm ²	75cm²	150cm²	175cm ²
Zellkulturmedium	0,1ml	3ml	5ml	13ml	25ml	30ml

Tab.5 Volumina Zellkulturmedium je Zellkulturflasche bzw. well-Platte in ml

3.2.1.1. Kultivierung von HPMEC-ST1.6R-Zellen

HPMEC-ST1.6R (human pulmonary microvascular endothelial cells) wurden in Anlehnung an eine veröffentlichte Studie von Krump-Konvalinkova et al. (2001) im Kulturmedium Medium 199 Earle's mit Zusätzen von FCS (20%), ECGS (10µg/ml), 1% 100x Penicillin/Streptomycin und Heparin (5U/ml) kultiviert. Vor dem Aussäen der Zellen mussten alle verwendeten Zellkulturflaschen und wells mit einer 0,2% igen Gelatinelösung beschichtet werden. Hierfür wurde Gelatinelösung (1ml/5cm²) in das jeweilige Zellkulturgefäß pipettiert und für 5 min auf 70°C erwärmt. Nach dem Abkühlen auf RT konnte der nicht gebundene Überstand der Gelatinelösung absaugt und die frisch aufgetauten Zellen im entsprechenden Volumen Medium ausgesät werden. Ein Mediumwechsel erfolgte alle drei Tage. Nach Erreichen einer Konfluenz von 80% wurde das Medium abgenommen, die Zellen mit PBS gewaschen und nach Zugabe einer Trypsin 0,5% /EDTA 0,2%-Lösung und einer Inkubationszeit von 7 min bei 37°C abgelöst. Die Trypsinierung wurde durch Zugabe von Medium gestoppt und die Zellen anschließend 5 min bei 1200 rpm pelletiert. Für die weitere Kultivierung wurden die Zellen, falls nicht anders angegeben, im Verhältnis 1:10 weiter ausgesät. HPMEC-ST1.6R wurden für alle Versuchsansätze zwischen Passage 3-34 verwendet.

3.2.1.2. Isolierung und Kultivierung von hMSC

hMSC (*human mesenchymal stem cells*) wurden in der Orthopädischen Klinik König-Ludwig-Haus aus Hüftköpfen von Patienten gewonnen, welchen aufgrund altersbedingter Arthrose oder einer vorliegenden Hüftdysplasie eine Hüftgelenksprothese eingesetzt wurde. Die Isolierung der hMSC wurde, nach Unterzeichnung der Einverständniserklärung der Patienten und der Zustimmung der lokalen Ethikkommission in Würzburg, in Anlehnung an ein leicht modifiziertes Protokoll aus der Publikation von Nöth et al. (2002) durchgeführt.

Aus den Hüftköpfen wurde Spongiosa und Knochenmark mittels eines sterilen Spatels herausgelöst, in ein 50 ml Falcon-Röhrchen überführt, mit hMSC Medium aufgefüllt und für

5 min bei 1200 rpm zentrifugiert. Der Überstand wurde verworfen, das Zentrifugat mit 25 ml hMSC Medium versetzt und mehrfach geschüttelt, um die Zellen von der Knochensubstanz zu lösen. Nach Absetzen größerer Knochenstücke wurde der Überstand in ein neues 50 ml Röhrchen überführt und der Vorgang noch zweimal wiederholt. Anschließend wurden die restlichen, nicht gelösten Bestandteile 5 min bei 1200 rpm abzentrifugiert und der Überstand in 25 ml hMSC-Medium resuspendiert. Für die Kultivierung der hMSC wurden 1x10⁹ Zellen in einer 175 cm² Flasche ausgesät und für drei Tage inkubiert. Nicht angewachsene Zellen wurden mit dem Medium abgesaugt, die angewachsenen Zellen mit 1xPBS gewaschen und mit Medium versehen. Ein Mediumwechsel wurde im Abstand von drei Tagen durchgeführt und die Zellen bis zu einer Konfluenz von 70%-80% kultiviert, bevor diese für Versuche verwendet wurden.

Wie beschrieben, wurden hMSC in DMEM Ham's F12 Medium mit L-Glutamin, FCS (10%), 1% 100x Penicillin/Streptomycin und L-Ascorbinsäure-2-phosphat (50µg/ml) kultiviert (Nöth et al., 2002; Schütze et al., 2007). Nach Isolierung der hMSC aus den Hüftköpfen erfolgte eine Kultivierungszeit von ca. zwei Wochen bis zur Konfluenz, mit einem Mediumwechsel im Abstand von drei Tagen. Die Zellen wurden mit Trypsin (0,25%) in PBS/EDTA für 3 min bei 37°C abgelöst, nach Zugabe von 5 ml Medium für 5 min bei 1200 rpm pelletiert und im Verhältnis 1:3 für die weitere Verwendung ausgesät. Alle Versuchsansätze wurden mit hMSC in Passage 1 durchgeführt.

3.2.1.3. Kultivierung von HEK293T-Zellen

HEK293T-Zellen (*human embryonic kidney cells*) wurden in DMEM Ham's F12 Medium mit L-Glutamin, FCS (10%) und 1% 100x Penicillin/Streptomycin kultiviert. Bis zum Erreichen der Konfluenz erfolgte ein Mediumwechsel alle drei Tage. Die Zellen wurden, nach Zugabe von PBS, durch leichtes Klopfen auf den seitlichen Zellkulturflaschenrand abgelöst. Nach Zugabe von 5 ml Medium wurden die Zellen für 5 min bei 1200 rpm pelletiert und für die weitere Kultivierung 1:10 gesplittet. HEK293T wurden für alle Versuchsansätze zwischen Passage 0-10 verwendet.

3.2.1.4. Kultivierung von EAhy926-Zellen

EAhy926-Zellen (*human umbilical vein cell line*) wurden in DMEM High Glucose Medium mit L-Glutamin, 10% FCS und 1% 100x Penicillin/Streptomycin kultiviert. Bis zum Erreichen der Konfluenz erfolgte ein Mediumwechsel im Abstand von drei Tagen. Die Zellen wurden mit 1xPBS gewaschen, mit einer Trypsin/EDTA (0,5%/0,2%)-Lösung versetzt und nach einer Inkubationszeit von 5 min bei 37°C abgelöst. Nach Zugabe von Medium wurden die Zellen für 5 min bei 1200 rpm pelletiert und für die weitere Kultivierung 1:10 gesplittet. EAhy926-Zellen wurden für alle Versuche zwischen Passage 0-20 verwendet.

3.2.1.5. Kultivierung von SF21-Insektenzellen

SF21-Insektenzellen wurden in BacPAK complete Medium kultiviert und das Medium im Abstand von sieben Tagen gewechselt. Nach Erreichen der Konfluenz wurden die Zellen mit frischem Medium versetzt, mit einem Zellschaber abgelöst, in Kulturmedium resuspendiert und nicht zentrifugiert. SF21-Insektenzellen wurden für die weitere Kultivierung 1:10 verdünnt und für alle Versuchsansätze zwischen Passage 0-10 verwendet.

3.2.2. Zellbiologische Methoden

3.2.2.1. Herunterregulation der Expression von ctgf und cyr61

Für die Herunterregulation von *ctgf* und *cyr61* wurde ein lentivirales System mit einem Set von jeweils fünf verschiedenen shRNAs (sh1-sh5, siehe Tabelle 1) verwendet. Bei Lentiviren handelt es sich um RNA-Viren. Nach Eintritt in die Wirtszelle wird das virale RNA-Genom in DNA umgeschrieben und in das Genom der Wirtszelle eingeschleust. Auf diesem Weg können shRNAs stabil in das Genom der Zielzellen HPMEC-ST1.6R und hMSC integriert werden. Zur Überprüfung der Transfektions- und Transduktionseffizienz wurde GFP, ein nach Expression unter UV-Licht grün fluoreszierendes Protein mitgeführt. Für die Auswertungen der Versuchsansätze wurden jeweils eine *scrambled* shRNA (shRNA ohne regulierende Funktion mit zufälliger Basenfolge) und eine Leervektor Kontrolle verwendet.

Transfektion der virusproduzierenden HEK293T-Zellen

Im ersten Schritt erfolgte die Produktion von Lentiviren in HEK293T-Zellen. 6x10⁵ Zellen wurden je well einer 6-well Platte in DMEM Ham's F12 Medium mit 10% FCS und 0,1% Penicillin/Streptomycin ausgesät und inkubiert, bis diese eine Konfluenz von 60-80% erreichten. Anschließend folgte die Transfektion der HEK293T-Zellen. Den Angaben des TRC-Protokolls des RNAi-Consortiums folgend (http://www.broadinstitute.org/rnai/ public/ resources/ protocols) wurden zunächst je Probe 10 µl LipofectaminTM2000 Transfektionsreagenz und 90 µl DMEM Ham's F12 Medium gemischt und für 5 min bei RT inkubiert. Darauffolgend wurden 1,8 µg Packaging Plasmid (Verpackungsplasmid) und 0,25 μg Envelope Plasmid (Umhüllungsplamid) mit 2 μg der jeweiligen shRNA, scrambled shRNA, Vektorkontrolle oder GFP gemischt, mit DMEM Ham's F12 auf ein Volumen von 80 µl gebracht und nach Zugabe von 100 µl Lipofectamin/DMEM Ham`s F12 für 20 min bei RT inkubiert. Nach Zugabe von 170 µl des Transfektionsansatzes zu den HEK293T-Zellen erfolgte eine weitere Inkubation für 18 h bei 37°C. An Tag drei wurden die Zellen, unter Beachtung der S2-Richtlinien, mit DMEM Ham's F12 Medium mit 30% FCS und 1% Penicillin/Streptomycin versetzt, um eine verstärkte Virusproduktion zu erreichen. Eine erfolgreiche Transfektion konnte durch Leuchten der GFP-Kontrolle unter UV-Licht festgestellt werden.

Transduktion von hMSC

Für die Versuchsansätze zur Herunterregulation von *ctgf* und *cyr61* in hMSC wurden Zellen aus Hüftköpfen verschiedener Spender verwendet. Pro *well* einer 6-*well* Platte wurden $1,5x10^5$ hMSC der Passage P0 in 3 ml Medium ausgesät und für 24 h bei 37°C kultiviert. Der virale Überstand der HEK293T-Zellen wurde vier Tage nach Transfektion abgenommen und zur Entfernung von Zellresten für 5 min bei 4500 rpm abzentrifugiert. Die Zielzellen wurden mit 1 ml frischem Medium versetzt. Nach Zugabe von 4 ml viralem Überstand und 40 µl Polybrene zur Erhöhung der Transduktionseffizienz wurden die hMSC für weitere 24 h bei 37°C inkubiert und darauffolgend mit frischem Medium versetzt. Fünf Tage nach Zugabe des lentiviralen Überstandes zu den Zielzellen konnte die Transduktion der Zielzellen anhand der GFP-Kontrolle überprüft werden. Um eine Herunterregulation von *ctgf*/CTGF und *cyr61*/CYR61 festzustellen, wurde RNA und Protein aus den Versuchsansätzen isoliert.

Transduktion von HPMEC-ST1.6R

Für die Versuchsansätze zur Herunterregulation von ctgf und cyr61 in HPMEC-ST1.6R kamen verschiedene Passagen dieser Zelllinie zum Einsatz. Je well einer 6-well Platte wurden 1,0x10⁵ Zellen in 3 ml Medium ausgesät und für 24 h bei 37°C kultiviert. Der virale Überstand der HEK293T-Zellen wurde vier Tage nach der Transfektion abgenommen und zur Entfernung von Zellresten für 5 min bei 4500 rpm abzentrifugiert. Die Zielzellen wurden mit 1 ml frischem Medium versetzt. Nach Zugabe von 4 ml viralem Überstand und 40 µl Polybrene, zur Erhöhung der Transduktionseffizienz, wurden die Zellen für weitere 24 h bei 37°C inkubiert und darauffolgend mit frischem Medium versetzt. Fünf Tage nach Zugabe des lentiviralen Überstandes konnte die Transduktionseffizienz anhand der GFP-Kontrolle überprüft werden. Um eine Herunterregulation von ctgf/CTGF und cyr61/CYR61 festzustellen, wurde RNA und Protein aus den Versuchsansätzen isoliert. Die Zellen wurden nach Erreichen einer Konfluenz von 80-90% aliquotiert und kryokonserviert, alle transduzierten HPMEC-ST1.6R bis zu Passage 35 für laufende Versuche verwendet. Nach einem Kultivierungszeitraum von vier Wochen wurden die Zellen einer Behandlung mit 5 µg/ml des Selektionsantibiotikums Puromycin unterzogen, um verbliebene nicht transduzierte Zellen aus der Kultur zu entfernen. Für alle mit Puromycin behandelten Zellen erfolgte vor Verwendung für einen Versuchsansatz eine puromycinfreie Kultivierung über mindestens vier Wochen.

3.2.2.2. Behandlung mit rekombinanten Proteinen

Um den Effekt von TGFB2 und rCTGF, exprimiert in SF21-Insektenzellen oder rCTGF exprimiert in E. coli (Biovendor), auf HPMEC-ST1.6R-Zellen zu untersuchen wurden $1x10^5$ Zellen in 6-*wells* für eine nachfolgende RNA-Isolierung und $2x10^5$ Zellen in 25 cm² Zellkulturflaschen für eine nachfolgende Proteinisolierung ausgesät und für 24 h inkubiert. Nach einem anschließenden Waschschritt mit 1xPBS erfolgte eine Inkubation über weitere 24 h mit serumreduziertem Medium (Medium Earle's, 2% FCS, ECGS (10µg/ml), Penicillin/Streptomycin 100x (1%) und Heparin (5U/ml)). Nach einer Behandlungsdauer von 12 h, 24 h, oder 48 h mit 10 ng/ml TGFB2, 100 ng/ml rCTGF (Biovendor) oder 500 ng/ml rCTGF (SF21-Insektenzellen) wurde aus den Proben RNA oder Protein isoliert.

3.2.2.3. Kryokonservierung eukaryontischer Zellen

Die zu lagernden Zellen wurden, wie bereits unter 3.2.1 beschrieben, gewaschen, trypsiniert und abzentrifugiert. Das erhaltene Zellpellet schließlich in 1400 μ l des jeweiligen Kulturmediums resuspendiert. In einem auf Eis gelagerten Cryo. S Einfrierröhrchen wurden 100 μ l DMSO und 200 μ l FCS vorgelegt, 700 μ l der Zellsuspension zugegeben, kurz homogenisiert und sofort wieder auf Eis gestellt. Nach einer Zwischenlagerung der Einfrierröhrchen für ca. sieben Tage bei -80°C erfolgte dann die Langzeitkonservierung in flüssigem Stickstoff (-196°C).

3.2.2.4. Zellzahlbestimmung

Das Auszählen von Zellen erfolgte mit einer Neubauer-Zählkammer. Hierfür wurden die zu zählenden Zellen, nach Zentrifugation für 5 min bei 1200 rpm, in einem definierten Volumen des entsprechenden Mediums suspendiert. 10µl einer Mischung aus Zellsuspension und Trypanblaulösung (1:1) wurden auf die Zählkammer aufgetragen und die Zellzahl nach folgender Gleichung bestimmt.

 $Zellzahl/ml = \frac{Anzahl\ lebender\ Zellen}{Anzahl\ der\ Quadrate} * 10^4 * 2$

3.2.3. Molekularbiologische Methoden

3.2.3.1. Reverse Transkriptase Polymerase Kettenreaktion (RT-PCR)

Mit Hilfe der RT-PCR Technik lässt sich die Expression eines Genes auf RNA-Ebene nachweisen. Zunächst wird die zu untersuchende RNA mit dem Enzym Reverse Transkriptase in cDNA umgeschrieben. Genspezifische Primer binden an verschiedenen Stellen der cDNA. Mit einer DNA abhängigen *Tag* DNA-Polymerase werden die Primerstücke verlängert und man erhält ein genspezifisches PCR-Produkt.

Für die cDNA Synthese der zu untersuchenden RNA-Proben kam die Bioline BioScript Reverse Transkriptase zum Einsatz. Den Anweisungen des Herstellers folgend wurde je 1 µg RNA-Probe mit *Random Hexamere* Primern versetzt und für 5 min auf 70°C erhitzt, um eine Anlagerung der Primer zu erreichen. Nach einer Inkubationszeit von weiteren 5 min auf Eis wurden die entsprechenden Mengen an 5x Reaktionspuffer, dNTPs und Reverse Transkriptase zugegeben und der Ansatz für 10 min bei 25°C inkubiert. Zur Verlängerung der cDNA Sequenzen wurden die Proben für 60 min auf 42°C und abschließend, um die Reaktion zu stoppen, für 10 min bei 70°C erwärmt.

Die nachfolgenden PCR-Reaktionen wurden in einem Thermal Cycler PTC-200 Peltier mit den jeweiligen genspezifischen Primern durchgeführt. Den Angaben des Herstellers folgend wurden Mango TaqTM DNA Polymerase oder Pfx50TM DNA-Polymerase mit 5x PCR Puffer, MgCl₂ (1,7 mM), dNTPs (3 mM) und den genspezifischen *forward* und *reverse* Primern (je 5 pmol) in einem 30 µl Ansatz eingesetzt und nach Zugabe von 1 µl der zu untersuchenden cDNA alle PCRs nach folgendem Standardprotokoll durchgeführt:

a) Initiale Denaturierung:	94°C, 3 min
b) Denaturierung:	94°C, 45 sek
c) Anlagerung (T _A -Annealing):	52°C-57°C, (primerabhängig-siehe Tabelle 2/3.1.12)
d) Verlängerung (Elongation):	72°C, 1 min
e) Finale Verlängerung:	72°C, 5 min
f) Abkühlung:	12°C andauernd

In Abhängigkeit von der Bandenintensität wurden die Schritte b) -d) 20-43 mal wiederholt. Durch Zugabe von DMSO (steigert die Spezifität) oder/und MgCl₂ (beeinflusst u.a. die Anlagerung der Primer) in verschiedenen Konzentrationen (siehe Tabelle 3.1.12) konnte die Intensität mancher PCR-Signale noch optimiert werden. Alle genspezifischen Primer konnten mit dem Programm Primer3Plus erstellt werden und detektieren die in Tabelle 2 (siehe 3.1.12) aufgeführten Gensequenzen. Um die Genspezifität der einzelnen Primer zu überprüfen, wurden alle PCR-Produkte nach Optimierung der PCR-Bedingungen Sequenzanalysen unterzogen.

3.2.3.2. RNA-Isolierung aus Zellen

Die Isolierung von RNA aus eukaryontischen Zellen erfolgte unter Verwendung des Nucleospin RNA 2 Kit von Macherey&Nagel. Zunächst wurden die Zellen, nach Abnahme des Kulturmediums, zweimal mit PBS gewaschen und, den Anweisungen des Herstellers folgend, mit einem Lysispuffer/ß-Mercaptoethanol-Gemisch lysiert. Nach Ablösen der Zellen mit einem Zellschaber wurde eine Reduzierung der Viskosität und auch eine Aufreinigung des Zellextraktes durch Zentrifugation in Nucleospin Filter Säulen erreicht. Um die RNA-Bindung auf der Nucleospin RNA 2 Säule zu erhöhen, wurde das homogensierte RNA-Lysat

mit der gleichen Menge an 70% Ethanol gemischt und anschließend zentrifugiert. Durch direkte Zugabe von rDNase auf die Membran wurden eventuell verbliebene DNA-Reste entfernt und die RNA nach mehreren Waschschritten mit RNase freiem Wasser aus der Membran eluiert und bei -80°C bis zur weiteren Verwendung gelagert.

Konzentration und Reinheit der RNA-Proben wurden, nach Verdünnung mit destilliertem Wasser (1:25), im BIOphotometer mit UV-Licht-permeablen Quarzküvetten bestimmt. Die Messwellenlänge für RNA lag bei 260 nm, wobei eine optische Dichte (OD) von 1 einer Konzentration von 40 μ g/ml RNA entspricht. Die Reinheit der RNA-Proben wurde durch Bestimmung der Verhältnisse OD₂₆₀/OD₂₈₀ und OD₂₆₀/OD₂₃₀ überprüft. Das Absorptionsmaximum für Proteine liegt bei 280 nm wohingegen Polysaccharide (Kohlenhydrate) ihr Maximum bei 230 nm haben. Isolierte RNA gilt als sehr rein, wenn das Verhältnis OD₂₆₀/OD₂₈₀ 2 beträgt und das Verhältnis OD₂₆₀/OD₂₃₀ größer als 2 ist.

3.2.3.3. Restriktionsverdau

Zur Überprüfung der einzelnen Klonierungsschritte kamen bakterielle Restriktionsendonukleasen (REN) zum Einsatz, welche die DNA-Stränge an definierten Sequenzen der Strangfolge schneiden. Den Anweisungen des Herstellers folgend wurde je 1 μ g DNA-Probe mit einer Einheit (U) des jeweiligen Restriktionsenzyms im dafür vorgeschriebenen Puffer verdaut. Alle Ansätze wurden mit destilliertem Wasser ad 20 μ l aufgefüllt und nach einer Inkubationszeit von 2 h bei 37°C mittels Agarosegelelektrophorese überprüft. In der nachfolgenden Tabelle sind die verwendeten Restriktionsendonukleasen mit den jeweiligen Erkennungssequenzen und dem dazugehörigen Puffersystem gelistet; ergänzt durch detailierte Angaben von NEB (http://www.neb-online.de/).

Restriktionsendonuklease	Puffer	Erkennungssequenz		
EcoRI	10xPuffer2 oder 3/100xBSA	5´-GAATTC-3`		
HindIII	10xPuffer2	5´-AAGCTT-3`		
NotI	10xPuffer3/100xBSA	5´-GCGGCCGC-3`		
SalI	10xPuffer3/100xBSA	5´-GTCGAC-3`		
XhoI	10xPuffer2/100xBSA	5´-CTCGAG-3`		

Tab.6 Restriktionsendonukleasen

Gelistet sind die verwendeten Restriktionsenzyme der Firma New England Biolabs (NEB) unter Angabe der optimalen Pufferzusammensetzungen und der Erkennungssequenz auf den zu schneidenden DNA-Matrizen.

3.2.3.4. Präparationen von Plasmid-DNA

Plasmid-Präparationen werden verwendet, um reine Plasmid-DNA getrennt von genomischer DNA, RNA und sonstigen Zellbestandteilen zu erhalten. Für die Gewinnung von Plasmid-DNA wurde das Kit NucleoSpin® Plasmid (Mini-Präparationen mit bis zu 25 µg Plasmid DNA) von Macherey und Nagel und das Kit PureYield[™] Plasmid Midiprep System (Midi-Präparationen mit bis zu 200 µg Plasmid DNA) von Promega verwendet.

Mini–Präparation

Zur Durchführung einer Mini-Präparation wurde zunächst eine auf einer Agarplatte gewachsene Bakterienkolonie (Beschreibung siehe 3.2.3.7.) mit einer 1-10 μ l Pipettenspitze aufgenommen, für 15 h bei 37°C in 2 ml LB/Amp-Medium kultiviert und anschließend pelletiert. Den Vorgaben des Herstellers folgend wurde das Pellet in einem RNase und EDTA haltigen Puffer resuspendiert und mit einem Lysispuffer versetzt, um die DNA aus den Zellen

zu lösen. Nach Zugabe eines neutralisierenden Puffers konnte das Lysat durch Zentrifugation von Zellresten und genomischer DNA befreit und der erhaltene Überstand nachfolgend auf ein NucleoSpin® Plasmid Säule pipettiert werden. Durch Zentrifugation der Säule wurde die Plasmid-DNA auf der Säulenmembran gebunden. Nach einem Waschschritt mit ethanolhaltigem Puffer zur Entfernung von Salzen sowie Verunreinigungen und einer nachfolgenden Trocknung der Säule, erfolgte die Elution der Plasmid-DNA in 30-50 µl Elutionspuffer.

Midi–Präparation

Zur Durchführung einer Midi-Präparation wurde eine Bakterienkolonie mit einer 1-10 µl Pipettenspitze aufgenommen, für 3 h bei 37°C in 2 ml LB/Amp-Medium und darauffolgend für weitere 15 h bei 37°C in 50 ml LB/Amp-Medium kultiviert. Nach Zentrifugation der Bakteriensuspension wurde das Pellet, den Angaben des Herstellers folgend, in einem RNase und EDTA haltigen Puffer resuspendiert und, um die DNA aus den Zellen zu lösen, mit einem Lysispuffer versetzt. Nach Zugabe eines neutralisierenden Puffers konnte das Lysat durch anschließende Zentrifugation von Zellresten befreit werden. Der Zellüberstand wurde noch einmal über eine PureYieldTM Clearing column gereinigt und die Plasmid-DNA nach wiederholter Zentrifugation auf der Membran einer PureYieldTM Binding column gebunden. Auf zwei nachfolgende Waschschritte, um RNA-, Protein- und Endotoxin-Rückstände zu entfernen, folgte die Trocknung der Säulenmembran durch Zentrifugation. Die Plasmid-DNA wurde mit 600 µl Nuclease-freiem Wasser aus der Membran eluiert.

3.2.3.5. Agarose-Gelelektrophorese

Um PCR-Produkte näher charakterisieren zu können wurden diese auf ein mit Ethidiumbromid versetztes Agarosegel aufgetragen. Ethidiumbromid interkaliert zwischen die Doppelstränge von DNA oder RNA und fluoresziert unter dem Einfluss von UV-Licht. Zur Herstellung eines Agarosegels wurde 1-2 % Agarose mit 150 ml eines 0,5x TBE-Puffers versetzt und bis zur vollständigen Lösung erhitzt. Nach Abkühlen auf 50°C wurden 0,005 % Ethidiumbromidlösung zugegeben, das Gel in dafür vorgesehene Gelschlitten gegossen, Kämme zur Bildung der Probentaschen eingehängt und das Agarosegel bis zur vollständigen Polymerisierung bei Raumtemperatur gelagert. PCR-Proben, welche mit der Mango TaqTM DNA-Polymerase amplifiziert wurden konnten direkt aufgetragen werden, da ein entsprechender Ladepuffer bereits enthalten war. Pfx50TM DNA-Polymerase amplifizierte Proben mussten mit 1x Ladepuffer versetzt werden. Die Kontrolle der PCR-Signalgrößen erfolgte mittels eines aufgetragenen DNA-Leiter plus 100 bp Markers (Bandengrößen zwischen 100-3000 bp) oder 1000 bp Markers (Bandengrößen zwischen 250-10000 bp). Eine Auftrennung der negativ geladenen Proben erfolgte in 0,5x TBE Puffer unter Zufuhr einer konstanten Spannung von 145 V über einen Zeitraum von 30-45 min. Die Gelproben wurden einer UV-Kammer mit Hilfe der Foto Software Bio-Capt bzw. dem in Densitometrieprogramm Bio-1D ausgewertet.

3.2.3.6. DNA-Sequenzierung

Mit Hilfe der DNA-Sequenzierung kann die Abfolge der Nukleotide innerhalb eines DNA Moleküls bestimmt werden. Zur Bestimmung der Basenabfolge wurden ddNTPs (Didesoxynukleosidtriphosphate) wie ddATP, ddTTP, ddCTP und ddGTP verwendet. Aufgrund ihrer Didesoxystruktur kommt es zu einer Kettenabbruchreaktion und es entstehen DNA-Bruchstücke von zufälliger Länge. Jedes dieser ddNTPs ist mit einem, bei unterschiedlichen Wellenlängen fluoreszierenden Farbstoff markiert. Die erhaltenen DNA-Bruchstücke werden elektrophoretisch getrennt. Durch Messung der Fluoreszenz bei unterschiedlichen Wellenlängen in Abhängigkeit von dem jeweiligen ddNTP kann die Position der einzelnen Basen innerhalb des DNA Stranges detektiert werden. Für die Bestimmung der Basenfolge von PCR-Produkten wurde das Kit BigDye® Terminator v1.1 Cycle Sequencing zusammen mit den Primern, mit welchen das PCR-Produkt amplifiziert wurde, verwendet. Den Angaben des Herstellers folgend wurden 5 pmol des jeweiligen *forward* oder *reverse* Primers mit 1 μ l PCR-Probe in einem Gesamtvolumen von 20 μ l HPLC-Wasser angesetzt, die Sequenzierungs-PCR entsprechend den nachfolgenden Standardbedingungen durchgeführt:

a) Initiale Denaturierung:	94°C, 4 min
b) Denaturierung:	94°C, 30 sek
c) Anlagerung (T _A -Annealing):	50°C, 1 min
d) Verlängerung (Elongation)	60°C, 1 min
e) Finale Verlängerung:	72°C, 5 min
f) Abkühlung:	12°C andauernd
$\mathbf{D} = \mathbf{C} + $	11 14

Die Schritte b) -d) wurden 24x wiederholt.

Die erhaltenen PCR-Produkte der Sequenzierungs-PCR wurden über NucleoSEQ® Säulen aufgereinigt, um Nukleotid- und ddNTP Reste zu entfernen. Den Angaben des Herstellers folgend wurden 20 µl des PCR-Produktes auf die generierte Säule pipettiert, 5 min bei 3500 rpm zentrifugiert und die Säule anschließend verworfen. Um die DNA auszufällen wurde das Eluat nach Zugabe von 3 µl einer 3 M Natriumacetatlösung (ph 4,3) mit 80 µl Ethanol versetzt, kurz geschüttelt und für 15 min bei RT inkubiert. Nach Zentrifugation des Eluates für 20 min bei 13000 rpm konnte der Überstand abgenommen und verworfen werden. Das erhaltene Pellet wurde mit 250 µl Ethanol 70% (unvergällt) gewaschen, um verbliebene Rückstände zu entfernen. Nach Abnahme des Überstandes wurde das Pellet bei RT getrocknet, in 15 µl Template Suppression Reagent (TSR) aufgenommen, in ein Sequenzierungsgefäß pipettiert und die Proben für 4 min bei 94°C denaturiert, kurz auf Eis inkubiert, entstandenes Kondenswasser herunterzentrifugiert und die Proben in den Sequencer gestellt. Die Parameter für die Auswertung der Proben wurden mit der ABI Prism 310 Collection software eingestellt, die Sequenzanalysen selbst mit der Sequencing Analysis 3.4 Software durchgeführt. Ein Abgleich aller erhaltenen DNA Sequenzen erfolgte mit in der NCBI Datenbank hinterlegten DNA-Sequenzen.

3.2.3.7. Transformation in prokaryontische Zellen

Die für die Transformation von Plasmiden verwendeten XL 10-Gold Ultrakompetenten Zellen (Stratagene) und TOP 10 Zellen (TOPO TA Cloning Kit, Invitrogen) wurden bei -80°C gelagert und vor der Verwendung 10 min auf Eis aufgetaut. Zu den XL 10-Gold Zellen wurde 4 μ l β -Mercaptoethanol pro 100 μ l Zellen pipettiert und der Ansatz während einer Inkubationszeit von weiteren 10 min auf Eis mehrmals geschüttelt. 0,1-50 ng oder 2 μ l Plasmid DNA wurden zu den XL 10-Gold, 2 μ l des Ligationsansatzes (siehe 3.2.5.2) zu den TOP 10 Zellen gegeben, kurz gemischt und für weitere 30 min auf Eis inkubiert. Nach Erhitzen des Transformationsansatzes auf 42°C für 45 sek erfolgte eine weitere Inkubation für

3 min auf Eis. Nach Zugabe von 250 ml vorgewärmten SOC-Medium (37°C) wurde der Ansatz für 1 h bei 250 rpm und 37°C geschüttelt, anschließend 20-50 μ l des XL 10-Gold Transformationsansatzes auf mit Ampicillin (100mg/ml) versetzte LB-Agarplatten pipettiert, mit einem Trigalskyspatel verteilt und für weitere 24 h bei 37°C im Bakterienschrank inkubiert. Mit den gewachsenen Klonen wurde wie unter 3.2.3.4. beschrieben, mit dem Transformationsansatz der TOP 10 Zellen wie unter 3.2.5.2. beschreiben, weiter verfahren.

3.2.3.8. Microarray-Analyse

Mit Hilfe einer cDNA *Microarray*-Analyse ist es möglich das Genexpressionslevel in Zellen anhand gewonnener RNA- oder mRNA-Proben zu bestimmen. Auf einem hierfür verwendeten Genechip® Human Genome U133 Plus 2.0 der Firma Affymetrix sind bis zu 1,3 Millionen Oligonnucleotidsequenzen an bestimmten Stellen, den *probe cells*, fixiert (gespottet). Die Oligonukleotide sind in 54675 *probe sets* zusammengestellt, wobei mehrere *probe sets* für ein Gen stehen können. Insgesamt repräsentieren die gespotteten Sequenzen eine Anzahl von über 38000 Genen. Durch einen Vergleich von zwei Genchips, welche mit cDNA-Proben aus Kontroll- und Versuchsansätzen versetzt werden, kann eine Aussage über die Unterschiede im Genexpressionsmuster getroffen werden.

Die Hybridisierung der gewonnenen RNA-Proben mit dem Affymetrix Genechip® Human Genome U133 Plus 2.0, die Markierung der Proben und das Einscannen des Genchips wurde von PD Dr. L. Klein-Hitpass (Institut für Zellbiologie, BioChip-Labor, Universitätsklinikum Essen), die Auswertung der erhaltenen Rohdaten wurde mit freundlicher Unterstützung von Dr. K. Schlegelmilch (Orthopädische Klinik König Ludwig Haus, Zentrum für muskuloskelettale Forschung, Würzburg), sowie Dr. A. Keller (Institut für Bioinformatik, Core facility of DNA analytics, Universität Würzburg) durchgeführt.

Aus den zu untersuchenden Zellproben wurde die gesamte RNA isoliert und zur Überprüfung des Degradationsgrades 700 ng der RNA-Probe in der Agarosegelelektrophorese aufgetrennt. Dem Standard GeneChip® Protokoll von Affymetrix folgend wurden im Labor von Dr. Klein-Hitpass die RNA-Proben in doppelsträngige cDNA transkribiert. Nach in vitro Transkription der cDNA in Biotin markierte einzelsträngige cRNA wurde diese fragmentiert und zusammen mit Hybridisierungskontrollen, welche ein spätere Normalisierung verschiedener Genchips untereinander ermöglichen, mit dem Genchip hybridisiert. In einem automatisierten Verfahren (Fluidik-Station) erfolgte, nach Waschen des hybridisierten Genchips, eine Markierung der gebundenen Proben durch Zugabe einer Streptavidin-Phycoerythrin Lösung. Das von den Streptavidin-Phycoerythrin markierten Proben bei 570 nm emitierte Licht verhält sich proportional zu der Menge an gebundener cRNA und wurde mit einem GC 3000 Scanner erfasst.

Die RNA-Proben zur Durchführung einer *Microarray*-Analyse wurden aus Untersuchungsund Kontrollansätzen der hMSC und HPMEC-ST1.6R-Zellen gewonnen. Für die Versuchsansätze der hMSC wurden je 1×10^5 Zellen von drei verschiedenen Spendern (Spender 692, 698, 696) in 6-*wells* ausgesät und wie unter 3.2.2.1 beschrieben transduziert. HPMEC-ST1.6R-Zellen wurden nach erfolgter lentiviraler Transduktion und anschließender Kryokonservierung (siehe 3.2.2.1) aufgetaut und zur Durchführung der Versuche über drei verschiedene Passagen kultiviert. Nach 24 h unter serumreduzierten Bedingungen erfolgte zum Einen eine Behandlung der *ctgf* herunterregulierten Zellen mit 500ng/ml rCTGF (SF21-Insektenzellen) bzw. 500ng/ml Fc-*Tag*-Protein und zum Anderen wurden die Zellen ohne jegliche Proteinzugabe für weitere 24 h inkubiert. Als Kontrollen wurden unter gleichen Bedingungen kultivierte und mit einer scrambled shRNA transduzierte Zellen mitgeführt. Wie unter 3.2.3.2 beschrieben wurde aus den Proben RNA isoliert und nach Überprüfung im RNA-Gel 600 ng Gesamt-RNA je Probe zur Durchführung einer Microarray-Analyse an Dr. L. Klein-Hitpass geschickt. Für die Analyse der differentiellen Genexpression in hMSC und HPMEC-ST1.6R-Zellen nach Behandlung von ctgf herunterregulierten und mit rCTGF behandelten im Vergleich zu unbehandelten bzw. scrambled Kontrollzellen war eine Anzahl von sechs GeneChips HG-U 133 Plus 2.0 nötig. Die Auswertung der erhaltenen Rohdaten (.cell files) erfolgte mit freundlicher Unterstützung von Dr. K. Schlegelmilch und Dr. A. Keller mit der Statistik Software R und dem Zusatzprogramm Bioconductor und Affy, für die Analyse von Microarrays. Die erhaltenen Rohdaten wurden in einem ersten Schritt auf ihre Qualität hin beurteilt, der Chip selbst auf defekte, evtl. nicht richtig gespottete Regionen untersucht und die Qualität der Proben durch einen MA- oder RNA degradations Plot näher charakterisiert. Alle erhaltenen Rohdaten wurden mit der Funktion expresso normalisiert und die Normalisierung vergleichend mit Q (Quantilsnormalisierung, ohne Hintergrundkorrektur) und RMA (robust multi-array average expression measure, mit Hintergrundkorrektur) durchgeführt. Durch den Vergleich von Dichteplots wurde die effektivste Methode ermittelt und für die nachfolgenden statistischen Auswertungen verwendet.

3.2.4. Proteinanalytik

3.2.4.1. Proteinisolierung aus Zellen

Für die Isolierung von Proteinen aus eukaryontischen Zellen wurde ein 1x Lysispuffer (Zusammensetzung siehe 3.1.13) verwendet. Um Mediumrückstände vollständig zu entfernen wurden die Zellen 2x mit kaltem (2-8°C) PBS gewaschen, nach Zugabe von 2 μ l/cm² 1x Lysispuffer auf Eis gestellt, der Zellrasen mittels eines Zellschabers abgelöst und unverzüglich in ein bereits auf Eis stehendes Eppendorfgefäß pipettiert. Während einer Inkubationszeit von 10 min auf Eis erfolgte ein Schütteln der Zellsuspension im Abstand von 2 min. Im Anschluss daran wurden die Proben mit 15 Impulsen bei 80% Auslastung im Ultraschall sonifiziert und zur Entfernung von Zellresten bei 4°C für 10 min und 13000 rpm zentrifugiert. Der erhaltene Überstand wurde aliquotiert und bis zur weiteren Verwendung bei -20°C gelagert.

3.2.4.2. Proteinbestimmung nach Bradford

Die Bestimmung von Proteinkonzentrationen erfolgte mit der Methode nach Bradford. Der in 5x Roti®-Quant enthaltene Coomassie-Brilliant Blau G-250 Farbstoff hat in ungebundener Form eine rote Färbung bei einem Absorptionsmaximum von 470 nm. In saurer Lösung bilden sich blaue Protein-Farbstoffkomplexe und das Absorptionsmaximum verschiebt sich von 470 nm auf 595 nm. Die Änderung der Absorptionseigenschaften kann als Maß für die Proteinkonzentration herangezogen werden. Zunächst wurden Stammlösungen für eine Standardreihe im Messbereich 25 μ g/ml, 50 μ g/ml, 75 μ g/ml, 100 μ g/ml, 150 μ g/ml und 250 μ g/ml BSA in einer 100 mM Glycinlösung hergestellt. Für die Erstellung einer Kalibriergeraden wurden 10 μ l 100 mM Glycin als Leerwert und je 10 μ l der Standardproben mit 500 μ l 1x Roti®-Quant (verdünnt mit destilliertem Wasser) versetzt und kurz gemischt. Die Messung der Ansätze erfolgte in 1/2 Mikroküvetten im Biophotometer bei 595 nm unter Zweifachbestimmung. Mit 1x Lysispuffer aus Zellextrakten gewonnene Proben mussten,

aufgrund der Eigenabsorption des Puffers, vor der Messung im Verhältnis 1:10 mit destilliertem Wasser verdünnt werden. Als Leerwert dienten 10 µl eines 1:10 verdünnten 1x Lysispuffers.

3.2.4.3. SDS-PAGE

In der SDS-PAGE (Sodiumdodecylsulfat-Polyacrylamidgelelektrophorese) werden Proteingemische aufgrund ihrer Größe in einer Gelmatrix aufgetrennt. Alle Proben werden mit einem Probenpuffer versetzt, welcher im wesentlichen SDS und β-Mercaptoethanol enthält. SDS überdeckt die Eigenladung der Proteine, sodass diese eine negative Ladung erhalten und nach Anlegen eines elektrischen Feldes in der Gelmatrix aufgetrennt werden können. Durch die Zugabe des reduzierenden Agens β-Mercaptoethanol werden vorhandene Disulfidbrücken gespalten, ein Erwärmen der Proteinproben löst Sekundär- und Tertiärstrukturen.

Die zur Trennung der Proteinproben verwendeten Gele bestehen aus zwei Gelabschnitten, welche sich in der Acrylamidkonzentration und dem ph-Wert unterscheiden. Im oberen Abschnitt (Sammelgel) werden die Proben aufkonzentriert, um dann im unteren Abschnitt (Trenngel) entsprechend ihrer Größe aufgetrennt zu werden. Die Zusammensetzung der verwendeten Polyacrylamidgele ist in der folgenden Tabelle 7 aufgeführt.

Zusätze	Sammelgel 5%	Trenngel 10%	Trenngel 12%
Destilliertes Wasser	2,4ml	6,05ml	5,55ml
Rotiphorese®Gel40	500µl	2,5ml	3ml
(Acrylamid-Mix 40%)			
Trenngelpuffer (ph=8,8)	-	1,25ml	1,25ml
Sammelgelpuffer (ph=6,8)	1ml	-	-
SDS (10%)	40µl	100µl	100µl
APS (10%)	40µ1	100µl	100µl
TEMED	4µ1	4µ1	4µ1

Tab.7	Zusammensetzung	verwendeter	Polvacr	vlamidgele
1 av./	LusammensetLung		I UIyaci	ylannugul

Angabe der Volumina an Reagenzien für die Herstellung von 5%, 10% und 12% igen Polyacrylamidgelen. Für die Durchführung einer SDS-Gelelektrophorese wurden immer zwei Gele benötigt, sodass sich die hier aufgeführten Angaben auf die Herstellung von zwei Gelen beziehen.

Destilliertes Wasser, Rotiphorese®Gel 40, Trenn- bzw. Sammelgelpuffer und SDS wurden in den in Tabelle 7 aufgeführten Mengen gemischt. Die Zugabe von APS und TEMED erfolgte erst unmittelbar vor Ausgießen des Gels, da diese die Polymerisation durch Radikalbildung und Quervernetzung starten. Nach Reinigung der Deck- und *Spacer*-Glasplatten mit Ethanol 70% wurden diese in eine dafür vorgesehen Halterung eingespannt, welche die Gieskammer nach unten verschließt. Im ersten Schritt wurde die Kammer zu 2/3 mit der Lösung des Trenngels gefüllt und bis zur vollständigen Polymerisation mit Isopropanol beschichtet. Der Isopropanol konnte nach Aushärten des Gels wieder entfernt und die Kammer vollständig mit Sammelgel gefüllt werden. Zur Ausbildung von Taschen für die Probenaufnahme wurden noch Kämme eingeführt. Nach vollständiger Polymerisation wurden jeweils zwei Polyacrylamidgele mit den Glasträgern in eine Gelelektrophoresekammer eingespannt.

Zwischen den Platten wurde bis zum oberen Rand mit *Upper*-Puffer und die Gelelektrophoresekammer bis zum Erreichen des unteren Gelrandes mit *Lower*-Puffer befüllt und die Probenkämme entfernt.

Alle Proben wurden in gleichen Konzentrationen mit destilliertem Wasser auf ein Volumen von 15 μ l gebracht und mit 5 μ l 4x Lämmli-Puffer versetzt. Die Proteinproben wurden für 5 min auf 95°C erhitzt, anschließend 3 min auf Eis inkubiert, kurz abzentrifugiert und je 20 μ l in die Probentaschen pipettiert. Zur Kontrolle der Proteingrößen wurden 5 μ l Rainbowmarker (GE Healthcare) mitgeführt. Nach Verschließen der Elektrophoresekammer erfolgte die Auftrennung der Proteinproben bei einer konstanten Spannung von 150 V für 45-60 min (abhängig von der Konzentration des Trenngels) und es konnte mit der Detektion der Proteine mittels Westernblot fortgefahren werden.

3.2.4.4. Westernblot

Mit Hilfe der Westernblottechnik kann die Größe von Proteinen bestimmt werden. Nach der Auftrennung in der SDS-PAGE werden die Proteinproben auf eine *Blotting*-Membran überführt und nach Kopplung mit spezifischen primären und Peroxidase-konjugierten sekundären Antikörpern im Röntgenfilm sichtbar gemacht.

Die in der SDS-PAGE aufgetrennten Proben wurden auf eine Nitrocellulose- oder PVDF-Membran übertragen. Vor Verwendung der Nitrocellulosemembran wurde diese mit 1x Transferpuffer getränkt und die PVDF-Membran für 5 min in Methanol 100%, 5 min destilliertem Wasser und 10 min in 1x Transferpuffer geschwenkt. Auf die Anode der Blottkammer wurden zwei in 1x Transferpuffer getränkte *Whatman*-Papiere platziert. Das Polyacrylamidgel mit den aufgetrennten Proben wurde vorsichtig von den Glasplatten getrennt und zusammen mit der jeweiligen Membran auf die beiden Whatmanpapiere gelegt. Nach Bedecken mit zwei weiteren getränkten Whatmanpapieren konnte die Blottapparatur mit der zweiten Elektrode (Kathode) verschlossen und der Blottvorgang mit 150 mA (pro Gel) für 2 h gestartet werden.

Die Membran wurde nach Beendigung des Blottvorganges entnommen und für 2 h in einer Blocklösung I oder II (BLI oder BLII) geschwenkt, um unspezifische Bindungen des primären Antikörpers auf der Membran zu verhindern. Nach Inkubation der Membran mit dem primären Antikörper (siehe Tabelle 9) in Antikörperlösung I oder II (AKI oder II) über Nacht bei 4°C wurde die Membran 4x 15 min mit der Waschlösung I, II oder III gewaschen (WLI, II oder WLIII), um überschüssige Antikörperreste zu entfernen. Nachfolgend wurde die Membran für 1 h bei RT mit einem Meerrettichperoxidase (HRP) gekoppeltem, sekundären Antikörper in AKI oder II inkubiert (siehe Tabelle 9), erneut 4x 15 min mit WLI, II oder WLIII gewaschen und die Membran mit der ECL (Elektrochemilumineszenz)-Detektionslösung benetzt (Detaillierte Angaben zu den für das jeweilige Protein verwendeten Westernblottlösungen liefert Tabelle 8 in Bezug auf 3.1.13). Ein in der ECL-Lösung enthaltener Lumigen Acridan PS-3 Farbstoff wird durch die Meerrettichperoxidase oxidiert. Die so entstandenen Zwischenprodukte reagieren mit ebenfalls in der Lösung enthaltenen Peroxiden unter Aussenden von Licht einer Wellenlänge von 430 nm. Den Angaben des Herstellers folgend wurde die Blottmembran 2 min mit dem ECL Plus Westernblot detection reagent benetzt, nach Einwickeln der Membran in eine Folie in eine Röntgenkassette gegeben und nach Auflegen eines Röntgenfilmes in der Dunkelkammer entwickelt.

Tab.8 Westernblotlösungen

Für die Detektion der verschiedenen Proteine im Westernblot wurden unterschiedliche Lösungen für das Blocken und Waschen der Membran, sowie die Inkubation des primären bzw. sekundären Antikörpers verwendet. Eine detaillierte Aufschlüsselung der einzelnen Lösungskomponenten findet sich unter 3.1.13.

Protein	Blocklösung I und II (BLI, II)	Waschlösung I, II und III (WLI, II, III)	Antikörperlösung I und II (AKI, II)
CYR61	BLI	WLI und WLII	AKI
CTGF	BLII	WLIII	AKII
TGF ^β 2	BLII	WLIII	AKII
ß-Actin	BLI	WLI und WLII	AKI
Fc-Tag	BLI	WLI und WLII	AKI

Tab.9 Primäre und sekundäre Antikörper

Die obige Tabelle führt die für das jeweilige Protein eingesetzten primären und sekundären Antikörper in den dazugehörigen Verdünnungen auf. Alle Antikörper wurden mit den unter Tabelle 8 gelisteten Antikörperlösungen verdünnt.

Protein	Primärer Antikörper/Verdünnung	Sekundärer Antikörper/Verdünnung
CYR61	CYR61 (C-20)/1:200	Anti goat IgG HRP/1:2000
CTGF	CTGF (L-20)/1:200	Anti goat IgG HRP/1:2000
TGFß2	Anti-TGF-B2(1.2)/1:100	Anti rabbit IgG HRP/1:4000
ß-Actin	ß-Actin Rabbit mAb/1:1000	Anti rabbit IgG HRP/1:2000
Fc-Tag	Rabbit anti-Fc-Tag (216)/1:1000	Anti rabbit IgG HRP/1:2000

3.2.4.5. Silbergelfärbung

Die Technik der Silberfärbung ermöglicht die unspezifische Anfärbung von in der SDS-PAGE getrennten Proteinen. Aufgrund einer hohen Sensitivität mit einer Nachweisgrenze von 0,2-0,6 ng Protein kann diese Methode als Maß für die Reinheit von Proteinproben herangezogen werden.

Für die Bestimmung der Reinheit von rekombinant hergestelltem CTGF und CYR61 (rCTGF, rCYR61) wurde das Kit PlusOne[™] Silver Staining angewendet. Zunächst wurden 200 ng des aufgereinigten Protein-Eluats in der SDS-PAGE getrennt und das Polyacrylamidgel anschließend für 30 min in einer essigsauren Fixierungslösung geschwenkt, um ein weiteres diffundieren der Proteine in der Membran zu verhindern. Nach weiteren 30 min in einer Sensitivierungslösung und 3x 5 min Waschen mit destilliertem Wasser wurde die Membran für 20 min in einer Silbernitratlösung geschwenkt. Zum Entfernen der nicht gebundenen Silberionen wurde nochmal 2x 1 min gewaschen Durch Zugabe einer formaldehydhaltigen Lösung konnte eine Reduktion der angelagerten Silberionen erreicht und damit die Proteine als dunkle Färbung im Gel sichtbar gemacht werden. Die Reaktion wurde mittels einer EDTA haltigen Lösung gestoppt, die entwickelten Gele zur Konservierung zwischen in 1x Transferpuffer getränkte Gelatinemembranen gelegt und im Vakuumtrockner getrocknet und versiegelt.

3.2.5. Klonierung des offenen Leserahmens von CTGF

3.2.5.1. Gewinnung von CTGF-Plasmid-DNA

Eine mit 5 µg CTGF-Plasmid (freundlicherweise von Frau Prof. M. Goppelt-Strübe, Medizinische Klinik mit Poliklinik, Erlangen zur Verfügung gestellt) getränkte *Whatman*-

Membran wurde mit 150 µl destilliertem und autoklaviertem Wasser versetzt, 10 min bei 50°C erwärmt und anschließend auf Eis gelagert. Die eluierte CTGF-Plasmid-DNA wurde in XL-10 Gold Zellen transformiert, auf LB/Amp-Agarplatten ausplattiert und eine mini- bzw. midi- Präparation durchgeführt. Die Amplifizierung der CTGF-Plasmid-DNA mittels PCR wurde mit einer Pfx50TM DNA-Polymerase durchgeführt welche, im Vergleich zur sonst verwendeten Mango Taq DNA-Polymerase, Klone mit weniger Basenfehlern synthetisiert. Die hierfür verwendeten CTGF-ORF flc (ORF=open reading frame, offener Leserahmen) Primer enthalten im forward eine XhoI und im reverse Primer eine EcoRI-Restriktionsenzym (REN)-Schnittstelle. Diese Schnittstellen werden in der PCR-Amplifizierung an das N- bzw. C-terminale Ende des offenen Leserahmens von CTGF angefügt und werden für die nachfolgenden Klonierungsschritte benötigt. Das erhaltene PCR-Produkt wurde in der Agarosegelelektrophorese überprüft. Für den weiteren Verlauf der Klonierung musste die erhaltene CTGF-Bande aus dem Gel extrahiert und aufgereinigt werden. Hierfür wurde das Kit Nucleospin Extract II verwendet. Auf dem UV-Tisch wurde die CTGF-Bande mit einem Skalpell aus dem Agarosegel ausgeschnitten und in ein Eppendorfgefäß überführt. 100 µg Gel wurden mit 200 µl eines im Kit Nucleospin Extract II enthaltenen Bindungspuffers versetzt, auf 50°C erwärmt und bis zur vollständigen Lösung im Abstand von 2 min geschüttelt. Eine im Kit enthaltene Nucleospin Extract II Säule wurde mit der Lösung beladen und zentrifugiert. Durch ein im Bindungspuffer enthaltenes chaotropes Salz wurde die zu extrahierende DNA auf der Silikatmembran der Säule gebunden, Verunreinigungen wie Salze und lösliche makromolekulare Substanzen durch Waschen mit einem ethanolhaltigen Puffer entfernt, die Membran getrocknet und die DNA anschließend mit einem schwach alkalischen Tris-Puffer aus der Membran eluiert.

3.2.5.2. TOPO-Klonierung

Die TOPO-Klonierung wird für eine effiziente Klonierung von PCR-Produkten eingesetzt. Nach Durchführung einer PCR mit einer Taq-DNA Polymerase wird an das 3`-Ende des PCR-Produktes ein Desoxyadenosinüberhang (3'-A-Überhang) angefügt. Ein im TOPO TA Cloning Kit enthaltener pCR®2.1-TOPO® Vektor besitz einen Überhang an Desoxythymidin mit einer kovalent gebundenen Topoisomerase I. Hierdurch ist eine effiziente Ligation des PCR-Produktes mit dem linearisiert vorliegenden Vektor ohne den Einsatz von Restriktionsenzymen möglich.

Aufgrund der Verwendung einer Pfx50TM DNA-Polymerase und der Elution der PCR-Bande aus dem Agarosegel ist der 3'-A-Überhang nicht mehr gewährleistet. Um die optimalen Bedingungen für die Ligation mit dem TOPO-Vektor zu schaffen wurde an das eluierte PCR-Produkt noch ein 3'-A-Überhang angefügt. Hierfür wurden 1 µl des PCR-Eluats mit 1 U TaqTM DNA-Polymerase, 5x PCR Puffer, MgCl₂ (1,7 mM), dNTPs (3 mM) in einem 30 µl Ansatz für 30 min auf 72°C erwärmt und bis zur weiteren Verwendung auf Eis gelagert. Um eine Ligation mit dem TOPO-Vektor zu erreichen wurden 2 µl des CTGF PCR-Produktes mit einer im TOPO TA Cloning Kit enthaltenen Salzlösung und dem Topoisomerase I aktivierten und linearisierten TOPO-Vektor in einem 5 µl Ansatz gemischt. Nach einer Inkubationszeit von 5 min bei RT erfolgte die Transformation von 2 µl dieses Ligationsansatzes in TOP 10 Zellen (siehe 3.2.3.7.). Vor dem Ausplattieren der transformierten Zellen auf LB/Amp-Agarplatten wurden 40 µl einer X-GAL Lösung gleichmäßig darauf verteilt. Im Vektor der TOP 10 Zellen befindet sich ein lacZ Reportergen, kodierend für das Enzym β -Galactosidase, welches aus dem zuvor aufgetragenen X-GAL den Farbstoff Indigoblau abspaltet. Bestehend aus einem N-terminalen α -Fragment und einem C-terminalen ω -Fragment ist die Expression des Enzyms nur in Anwesenheit beider Fragmente möglich. Das lacZ Gen wird, zur Aufnahme von Fremd-DNA, durch den Abschnitt der *multiple cloning site* (MCS) unterbrochen. Wird nun ein zu klonierender DNA-Abschnitt in die MCS einkloniert, werden diese beiden Fragmente getrennt, eine Expression der β -Galaktosidase ist nicht mehr möglich und der Farbstoff kann nicht mehr abgespalten werden. Auf diese Weise können auf der Agarplatte gewachsene Klone mit Insert (weiß) von Klonen, welche kein DNA-Fragment enthalten (blau) unterschieden werden.

Je Transformationsansatz wurden 20-50 μ l auf einer LB/Amp_Agarplatte mit einem Trigalskyspatel gleichmäßig verteilt und nach Inkubation der Platte bei 37°C über Nacht die weißen Kolonien abgenommen und eine Mini-Präparation durchgeführt.

Nach Abschluss der TOPO-Klonierung wurde das Klonierungsprodukt durch Sequenzierungsreaktionen mit den im Kit enthaltenen M13 *forward* und M13 *reverse* Primern sowie den bereits etablierten CTGF seq1 und CTGF seq2 Primern überprüft. Des Weiteren erfolgte ein Restriktionsverdau mit den Enzymen XhoI und EcoRI um die in Schritt 3.2.5.1. angefügten Schnittstellen zu überprüfen.

3.2.5.3. Ligation mit pBacPAK8-Vektor

Im Falle des pBacPAK8-Vektors handelt es sich um einen Transfervektor, welcher für die spätere Expression von rekombinantem Protein im BacPAKTM Baculovirus-Expressionssystem benötigt wird.

In den bereits vorangegangenen Schritten wurden an den offenen Leserahmen von CTGF Restriktionsschnittstellen für die REN (Restriktionsendonukleasen) XhoI und EcoRI angefügt und CTGF nach Ligation mit dem TOPO-Vektor in TOP 10 Zellen transformiert. Der Transfervektor pBacPAK8 und das TOPO-Vektor/CTGF-Plasmid besitzen identische Schnittstellen, sodass nach Verdau der beiden Vektoren mit den Restriktionsenzymen XhoI und EcoRI eine Ligation von CTGF mit dem Transfervektor möglich ist.

Für den Verdau des pBacPAK8- und des TOPO-Vektors mit darin enthaltener CTGF-DNA wurden je μ g Gesamt-DNA 1 U des jeweiligen Restriktionsenzyms eingesetzt. Nach Zugabe eines 10x Puffer 2 und 100x Puffer BSA zu einem Gesamtansatz von 20 μ l in destilliertem Wasser wurden die beiden Ansätze über Nacht bei 37°C inkubiert. Um eine Ligation des pBacPAK8-Vektors mit sich selbst zu verhindern und die Ausbeute an Klonen zu erhöhen, wurde nach erfolgtem Restriktionsverdau noch eine Dephosphorylierung durchgeführt. Hierfür wurden, den Angaben des Herstellers folgend, zu dem 20 μ l Restriktionsansatz 1 μ l einer alkalischen Phosphatase (CIAP-*calf intestine alkalische phosphatase*), 5 μ l 10x Dephosphorylierungspuffer und 4 μ l destilliertes Wasser pipettiert und für 1 h bei 37°C inkubiert. Durch die CIAP werden die nach Verdau an den 5'-Enden des pBacPAK8-Vektors verbliebenen Phosphatreste abgespalten und eine Ligation der beiden Ende mit sich selbst ist nicht mehr möglich. An den 5'-Enden des CTGF-Fragments befinden sich noch Phosphatgruppen und eine Ligation mit dem dephosphorylierten Transfervektor kann durchgeführt werden.

Beide Restriktionsverdauproben wurden auf separaten Gelen in der Agarosegelelektrophorese aufgetrennt, die Banden des dephosphorylierten pBacPAK8-Vektors und der CTGF-DNA aus dem Gel ausgeschnitten und eluiert. Eine Ligation der beiden DNA-Fragmente erfolgte mit dem Fast-Link DNA Ligations-Kit wonach, den Angaben des Herstellers folgend, 1 μ l einer Fast Link DNA-Ligase, 1,5 μ l Fast Link Ligationspuffer und 1,5 μ l des Cofaktors ATP gemischt wurden. Vektor-DNA und CTGF-Insert wurden im Verhältnis 2:1 eingesetzt, der Ansatz mit destilliertem Wasser auf ein Volumen von 15 μ l gebracht und für 5 min bei RT inkubiert. Nach weiteren 15 min bei 70°C konnten 2 μ l des Ligationsansatzes in XL10-Gold Zellen transformiert, die Zellen ausplattiert und eine Mini-Präparation durchgeführt werden.

Nach Abschluss der Ligation des pBacPAK8-Transfervektors mit dem CTGF-Fragment wurde das Klonierungsprodukt durch Sequenzierungsreaktionen mit den im Kit enthaltenen Bac1 und Bac2 Primern und den bereits etablierten CTGF seq1 und CTGF seq2 Primern überprüft. Mit den eingesetzten Bac1 und Bac2 Primern wurde die Basenfolge an der Schnittstelle des pBacPAK8-Vektors mit dem Übergang in das CTGF-Insert analysiert. Auch wurden die Schnittstellen durch einen Verdau mit den Restriktionsenzymen EcoRI und XhoI erneut überprüft.

3.2.5.4. Ligation mit IgG-Fc-Domäne

Nach Ligation des CTGF-Fragments mit dem pBacPAK8 Transfervektor wurde im letzten Schritt der Klonierung eine Fc-Domäne (Fc-*Tag*) eines humanen IgG-Antikörpers angefügt, welche für die nachfolgende Aufreinigung von rekombinant hergestelltem CTGF nötig ist. Die Fc-Domäne wurde mittels PCR aus einem PC3-Expressionsvektor amplifiziert (freundlicherweise von Dr. Pascal Schneider, Universität von Lausanne, Schweiz zur Verfügung gestellt).

Durch Verwendung der Restriktionsenzyme EcoRI und NotI wurde der pBacPAK8-Transfervektor einem Doppelverdau unterzogen und die Fc-Domäne in den Transfervektor an das C-terminale Ende der CTGF-DNA eingefügt. Beide Vektoren wurden mit 1 U/µg DNA der Restriktionsenzyme EcoRI und NotI und den Puffern 10x Puffer 3 und 100x BSA in einem 20 µl Ansatz über Nacht bei 37°C verdaut. Der pBacPAK8-Vektor wurde dephosphoryliert, beide Ansätze in der Gelelektrophorese getrennt und die aus dem Gel eluierte Fc-Domäne mit dem ebenfalls eluierten pBacPAK8-Vektor ligiert.

Nach Ligation der Fc-Domäne mit dem C-terminalen Ende der bereits in den Transfervektor klonierten CTGF-DNA erfolgte eine Überprüfung des Klonierungsproduktes durch Sequenzierungsreaktionen mit den Primern Bac1 und Bac2, CTGF seq1 und CTGF seq2 und IgGFc *forward* und IgGFc *reverse*. Mit Hilfe des Bac1 Primers wurde der Übergang von Transfervektor in das CTGF-Insert (*forward*), mit Hilfe des Bac2 Primers der Übergang des pBacPAK8-Vektors in das Fc-*Tag* (*reverse*) erfasst. Durch Sequenzierung mit den CTGF seq1, CTGFseq2, IgGFc *forward* und IgGFc *reverse* Primern wurde die Basenfolge von CTGF und dem eingefügten Fc-*Tag* analysiert. Auch wurden die Schnittstellen erneut durch einen Restriktionsverdau mit den Enzymen EcoRI und NotI bzw. EcoRI und XhoI überprüft.

3.2.6. Gewinnung von rekombinantem CTGF

3.2.6.1. Baculovirus-Expressionssystem

Für die Gewinnung von rekombinantem CTGF (rCTGF) wurde das Kit BacPAKTM Baculovirus Expression System der Firma Takara Bio Europe/Clontech verwendet. Die Expression von rekombinanten Proteinen erfolgt durch den Baculovirus *Autographa californica nuclear polyhedrosis* (AcMNPV-Information aus *clontech manual*) in SF21 (*Spodoptera frugiperda*)-Insektenzellen. Aufgrund der Größe des AcMNPV Genoms (134kb, pBacPAK6 Viral DNA) ist eine direkte Klonierung einer codierenden Sequenz in den pBacPAK6-Expressionvektor nicht möglich. In einem ersten Schritt erfolgte deshalb, wie unter 3.2.5 beschrieben, die Klonierung in die MCS eines wesentlich kleineren Transfervektors von 5,5 kb (pBacPAK8). Nach Transfektion in SF21-Insektenzellen kommt es zu einer Doppelrekombination zwischen dem pBacPAK8-Vektor und dem pBacPAK6-Expressionvektor und die codierende Sequenz des Zielproteins wird auf das virale Genom übertragen. Aufgrund eines vorgeschalteten Polyhedrin-Promoters können große Mengen an rekombinantem Protein exprimiert werden.

Für die Vorbereitung der Transfektion von SF21-Insektenzellen wurden zunächst 10,5x10⁵ Zellen pro well einer 6- well -Platte in BacPAK Complete Medium ausgesät und für 1.5 h bei 27°C inkubiert. Nach einem Waschschritt mit 2 ml serumfreien BacPAK Grace's Basic Medium wurden die Zellen erneut mit 2 ml Grace's basic Medium versetzt, 20 min bei RT inkubiert und während dieser Inkubationsphase der Transfektionsansatz pipettiert. Für den experimentellen Ansatz wurden 500 ng der unter 3.2.5. klonierten pBacPAK/CTGF/Fc-Tag-DNA, 5 µl der viralen pBacPAK6-DNA und 4 µl des Transfektionsreagenzes Bacfectin mit destilliertem Wasser auf ein Volumen von 100 µl gebracht und unter leichtem Schwenken gemischt. Als Positivkontrolle kam an Stelle des Klonierungsproduktes 500 ng eines Kontrollvektors pBacPAK8-GUS zum Einsatz, welcher die codierende Sequenz für eine ß-Glucuronidase trägt. Beide Ansätze wurden für 15 min bei RT inkubiert. Die SF21-Zellen wurden mit 1,5 ml frischem Grace`s Basic Medium versetzt, der Transfektionsansatz langsam zugetropft und für weitere 5 h bei 27°C inkubiert. Zur Durchführung einer blau-weiß Selektion (siehe 3.2.5.2.) wurde zu dem Positiv/Kontrollansatz anschließend 1,5 ml einer X-GAL Lösung (0,3 µg/µl) und zu dem experimentellen Ansatz 1,5 ml des proteinfreien Expressionsmediums Insect Express Sf9-S2 pipettiert. Nach einer Inkubationsphase von fünf Tagen und Überprüfung der Positivkontrolle konnte der virale Überstand (PO-Überstand) abgenommen und 5 min bei 1200 rpm zentrifugiert werden. Für den nächsten Schritt der Amplifizierung des Virus wurden je Versuchs- well 1x10⁶ Zellen in 3 ml Insect Express Sf9-S2 Medium ausgesät und nach 2 h bei 27°C mit dem P0-Virusüberstand im Verhältnis 1:10, 1:100 und 1:1000 versetzt. Sechs Tage nach Inkubation mit dem PO-Überstand wurden die Zellüberstände erneut abgenommen (P1-Überstand) und 5 min bei 1200 rpm zentrifugiert. Für die weitere Virusamplifizierung wurde, nach mikroskopischer Betrachtung der mit dem PO-Überstand infizierten Zellen, der virale Überstand der 1:100 Verdünnung verwendet. 1.5×10^6 SF21-Zellen wurden in Insect Express Sf9-S2 Medium in 25 cm² Zellkulturflaschen ausgesät und nach einer Inkubationszeit von 4 h bei 27°C mit dem 1:100 Überstand in den Verdünnungen 1:500, 1:62,5, und 1:25 versetzt. Sechs Tage nach Infektion mit dem P1-Überstand wurde der Zellüberstand erneut abgenommen und abzentrifugiert. Alle gewonnenen Virusüberstände wurden kurzfristig bei 4°C und zur langfristigen Konservierung bei -80°C gelagert. Die Überprüfung der einzelnen Überstände P0, P1 und P2 erfolgte mittels Westernblot. 1,6x10⁷ SF21-Zellen wurden mit 30 ml Insect Express Sf9-S2 Medium in 150 cm² Zellkulturflaschen ausgesät und nach 4 h bei 27°C mit 200 µl des 1:62,5 P2-Überstandes infiziert. Nach sieben Tagen Inkubation wurde der Zellüberstand abgenommen (P3-Überstand), zentrifugiert und in 200 µl Aliquots bei -80°C gelagert. Für die Expression von rekombinantem CTGF in SF21-Insektenzellen wurden im folgenden 1,6x10⁷ Zellen in 150 cm² Zellkulturflaschen ausgesät, mit 200 µl P3-Überstand infiziert und der Zellüberstand nach sieben Tagen Inkubation abgenommen. Nach Zentrifugation für 5 min bei 4500 rpm wird der Überstand, wie unter 3.2.6.2 beschrieben, aufgereinigt.

3.2.6.2. Affinitätschromatographie: Aufreinigung von rCTGF

Für die Aufreinigung von rekombinant hergestelltem CTGF aus dem Zellüberstand der SF21-Insektenzellen wurden die Affinitätschromatographiesäulen HiTrap[™] Protein G HP verwendet. Diese Aufreinigungssäulen sind mit G-Sepharose[™] High Performance gefüllt. An das Polymer Sepharose ist das Zelloberflächenprotein Protein G gekoppelt, an welches im neutralen bis schwach basischen ph-Bereich die Fc-Region eines IgG-Antikörpers binden kann. Durch Absenkung des ph-Wertes auf 2-3 kann die Bindung zwischen Protein G und der Fc-Region wieder aufgehoben und das gebundene Protein aus der Säule eluiert werden.

Der Überstand von $2x150 \text{ cm}^2$ Zellkulturflaschen wurde nach sieben Tagen Inkubation mit dem P3-Virusüberstand abgenommen, für 5 min bei 4500 rpm abzentrifugiert und sofort auf Eis gestellt. Die in 20% Ethanol gelagerte Aufreinigungssäule wurde zunächst mit 10 ml einer 1x PBS-Lösung (ph=8) äquilibriert und der Zellüberstand nachfolgend mit einer Geschwindigkeit von maximal 2 ml/min mit einer 10 ml Spritze über die Säule gegeben. Anschließend wurde die Säule in umgekehrter Richtung mit 10 ml 1x PBS gespült, um nicht gebundene Reste zu entfernen. Die Elution des gebundenen Proteins erfolgte mit 10 ml einer 100 mM Glycinlösung bei einem ph-Wert von 2,2. In einem Eppendorfgefäß wurde 20 µl einer 3 M Trislösung (ph=8) vorgelegt und die ersten 500 µl des Eluats zugetropft. In vier weiteren Gefäßen wurden 40 µl 3 M Trislösung vorgelegt und die nachfolgenden 4 ml des Eluats aufgefangen. Alle Fraktionen wurden auf Eis gestellt und mit 3 M Tris- oder 100 mM Glycinlösung ein ph-Wert von 7 eingestellt. Die restliche Glycinlösung wurde über die Säule gegeben, anschließend mit 10 ml 1x PBS gespült und die Aufreinigungssäule bis zur weiteren Verwendung mit Ethanol 20% befüllt und bei 4°C gelagert. Die Lagerung der Eluate erfolgte bei 4°C.

3.2.7. Proliferationsassay

Für die Durchführung eines Proliferationstests wurde der Celltiter 96® AQueous Non-Radioactive Cell Proliferation Assay der Firma Promega verwendet. Das Tetrazoliumsalz MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium] wird durch Dehydrogenasen, die von metabolisch aktiven Zellen in das Medium sezerniert werden, zu einem wasserlöslichen Formazanprodukt reduziert. Es kommt zu einem Farbumschlag von schwach rot nach dunkelrot, welcher bei einer Wellenlänge von 490 nm gemessen werden kann und proportional zu der Anzahl an lebenden Zellen ist. Durch die Anwesenheit eines Elektronenakzeptors PMS (5-Methylphenaziniummethylsulfat) wird das bei dieser Wellenlänge erhaltene Signal noch zusätzlich verstärkt.

3.2.7.1. Proliferation nach Herunterregulation von ctgf

Um den proliferativen Effekt nach Herunterregulation von *ctgf* in HPMEC-ST1.6R-Zellen zu untersuchen, wurden die *wells* einer 96-*well*-Platte mit Gelatinelösung beschichtet. Je *well* einer 96-*well*-Platte wurden 3000 *ctgf*-herunterregulierte und als Kontrollzellen 3000 *scrambled*-shRNA behandelte und 3000 unbehandelte Zellen in je 100 µl Medium ausgesät. Als Negativkontrolle dienten mit Medium versetzte *well* ohne Zellen. Die Platten wurden für 24 h bei 37°C inkubiert, mit 20 µl MTS/PMS Reagenz pro *well* versetzt, erneut 2 h inkubiert

und anschließend die Absorption bei einer Wellenlänge von 490 nm mit dem *Microplate Reader Sunrise Basic* gemessen.

Zur Erfassung des proliferativen Effektes in hMSC wurden zunächst, wie unter 3.2.2.1. beschrieben, HEK293T-Zellen mit der gegen CTGF gerichteten shRNA sh2 und den Kontrollplasmiden *scrambled* shRNA und GFP transfiziert. Je *well* einer 96-*well*-Platte erfolgte die Aussaat von 1500 hMSC und die Zugabe von 200 µl des lentiviralen HEK293T Überstandes. Fünf Tage nach Transduktion und Überprüfung der GFP-Positivkontrolle wurden pro *well* 100 µl frisches Medium zugegeben, die Zellen zunächst für 24 h bei 37°C und nach Zugabe von 20 µl MTS/PMS Reagenz pro *well* für weitere 2 h inkubiert. Die Messung der Absorption erfolgte bei 490 nm.

3.2.7.2. Funktionstest von rCTGF

Um die Funktionalität von rekombinant hergestelltem CTGF zu überprüfen wurden 4000 EAhy926-Zellen oder hMSC je well einer 96-well-Platte in 100 µl Medium ausgesät. Als Kontrollen dienten unbehandelte, mit Medium versetzte Zellen. Nach einer Inkubationszeit von 24 h erfolgte, nach Waschen der Zellen mit 1x PBS, ein Mediumwechsel mit serumreduziertem Medium (EAhy926: DMEM High Glucose, 1% FCS. 1% Penicillin/Streptomycin; hMSC: DMEM Ham's F12, 0,5% FCS, 1% Penicillin/Streptomycin, 50µg/ml L-Ascorbinsäure 2-Phosphat) und die Zellen wurden erneut 24 h inkubiert. Am darauffolgenden Tag wurde zu den Zellen frisch aufgereinigtes rCTGF Endkonzentrationen von 500 ng/ml und 1000 ng/ml pipettiert, nach einer Behandlungsdauer von weiteren 24 h 20 µl MTS/PMS Reagenz pro well zugegeben und nach 2 h Inkubation die Absorption bei 490 nm gemessen. Je Versuchsreihe wurde der Mittelwert aus 12 Absorptionswerten bestimmt und nach Abzug der Kontrollmesswerte (Medium ohne Zellen) angegeben.

4. Ergebnisse

4.1. Klonierung des offenen Leserahmens von CTGF

Abb.4 Übersichtsgrafik der Klonierungsschritte

Amplifizierung des cDNA-Klons durch PCR (1) und Ligation mit dem TOPO-Vektor. Die *ctgf*-Sequenz wurde nach Überprüfung der Basenfolge mit den Restriktionsenzymen XhoI und EcoRI aus dem TOPO-Vektor herausgeschnitten (2) und in den Transfervektor pBacPAK8 eingefügt. Nach erneuter Bestätigung der korrekten Basenfolge und wiederholt enzymatischen Verdau mit den Enzymen XhoI und EcoRI (3) wurde eine Fc-*Tag*-Sequenz an das 3`-Ende von *ctgf* angefügt. In einem letzten Schritt wurde, nach Sequenzierung des Klonierungsproduktes, durch einen Verdau mit den Restriktionsenzymen EcoRI/NotI bzw. XhoI/EcoRI das Vorhandensein der einklonierten Inserts bestätigt (4).

4.1.1. Amplifizierung von ctgf

Der offene Leserahmen, welcher für *ctgf* kodiert, konnte mittels PCR und den CTGF-ORF-flc Primern aus dem pSecTag2/Hygro B Vektor amplifiziert und ein PCR-Produkt mit einer Größe von 1049 Basenpaaren (bp) in der Gelelektrophorese bestätigt werden (Abbildung 5). Durch Verwendung der CTGF-ORF-flc Primer wurde an das N-terminale Ende des offenen Leserahmens von *ctgf* eine XhoI, an das C-terminale Ende eine EcoRI-Schnittstelle angefügt.

Marker CTGF

Abb.5 Agarosegelelektrophorese nach Amplifizierung von *ctgf*

Detektion des offenen Leserahmens von *ctgf* mit einer Größe von 1049 bp im Agarosegel nach RT-PCR mit CTGF-ORF-flc Primern. Die Proben wurden in einem 1,5% Agarosegel aufgetrennt, als Kontrolle wurde ein 1 kb DNA-Leiter mit einem Messbereich von 250-10000 bp aufgetragen.

4.1.2. TOPO-Klonierung

Das *ctgf* PCR-Produkt wurde aus dem Agarosegel eluiert und in den pCR®2.1 TOPO-Vektor ligiert. Nach Transformation in TOP 10 Zellen wurde die Bakteriensuspension auf einer mit

X-GAL versehenen LB/AMP-Agarplatte ausgestrichen und es konnten nachfolgend zahlreiche weiße, ein Insert enthaltende Klone selektioniert werden (ohne Abbildung). Durch einen anschließenden Restriktionsverdau mit den Restriktionsenzymen XhoI und EcoRI konnten die zuvor angefügten Schnittstellen überprüft und die Ligation von *ctgf* mit dem TOPO-Vektor in der Gelelektrophorese schließlich bestätigt werden (Abbildung 6). Um die exakte Basenabfolge der angefügten Restriktionsschnittstellen und des *ctgf*-Inserts im TOPO-Vektor zu analysieren wurde ein Klon sequenziert und für den nachfolgenden Klonierungsschritt verwendet. Zum Einen konnte in der Sequenzanalyse mit den M13 *forward* und M13 *reverse* Primern die richtige Basenfolge an der Schnittstelle des TOPO-Vektors mit den Restriktionsschnittstellen und dem Übergang in das *ctgf*-Insert und zum Anderen mit den CTGFseq1 und CTGFseq2 Primern die Basenfolge im *ctgf*-Insert selbst analysiert und bestätigt werden.

Detektion des offenen Leserahmens von *ctgf* mit einer Größe von 1049 bp und des pCR®2.1-TOPO Vektors mit einer Größe von 3900 bp nach Restriktionsverdau mit den Enzymen XhoI und EcoRI. Die Proben wurden in einem 1,5% Agarosegel aufgetrennt, zur Kontrolle wurde ein 1 kb DNA-Leiter mit einem Messbereich von 250-10000 bp aufgetragen.

4.1.3. Ligation mit dem Transfervektor pBacPAK8

Die Ligation des Transfervektors pBacPAK8 mit der für *ctgf* kodierenden Sequenz erfolgte nach Restriktionsverdau des sequenzierten TOPO-Klonierungsproduktes mit den Restriktionsenzymen XhoI und EcoRI. Nach der Transformation des Ansatzes in XL 10 Gold Zellen und dem Ausplattieren auf LB/Amp-Agar-Platten, konnten zahlreiche Klone

selektioniert werden. Durch einen nachfolgenden Restriktionsverdau mit den bereits verwendeten Restriktionsenzymen konnten die Schnittstellen erneut überprüft und eine Ligation mit dem Transfervektor bestätigt werden (Abbildung 7). Um die exakte Basenabfolge der angefügten Restriktionsschnittstellen und des *ctgf*-Inserts im Transfervektor zu analysieren wurde ein Klon sequenziert und für den nachfolgenden Klonierungsschritt verwendet. Mit den Primern Bac1 und Bac2 konnte die richtige Basenfolge an der Ligationsstelle zwischen Vektor und *ctgf*-Insert, mit den Primern CTGFseq1 und CTGFseq2 die Basenfolge im Insert selbst bestätigt werden.

Abb.7 Agarosegelelektrophorese nach Restriktionsverdau des pBacPAK8/ctgf-Vektors Detektion von *ctgf* mit einer Größe von 1049 bp und dem pBacPAK8 Vektor mit einer Größe von 5500 bp nach Restriktionsverdau mit den Enzymen XhoI und EcoRI. Die Proben wurden in einem 1,5% Agarosegel aufgetrennt, zur Kontrolle wurde ein 1 kb DNA-Leiter mit einem Messbereich von 250-10000 bp aufgetragen.

4.1.4. Ligation mit dem Fc-Tag

In einem letzten Schritt der Klonierungsfolge erfolgte die Ligation der pBacPAK8/*ctgf*-Sequenz mit einer für den Fc-Anteil eines humanen IgG Antikörpers kodierenden Sequenz (Fc-*Tag*). Nach Restriktionsverdau des sequenzierten pBacPAK8/*ctgf*-Klons mit den Restriktionsenzymen EcoRI und NotI wurde die Fc-Sequenz an das 3'-Ende der *ctgf*-Sequenz angefügt. Nach der Transformation des Ansatzes in XL 10 Gold Zellen und dem Ausplattieren auf LB/Amp-Agar-Platten konnten zahlreiche Klone selektioniert werden. In einem nachfolgenden Restriktionsverdau mit den Enzymen EcoRI und NotI konnten die Restriktionsschnittstellen für das Fc-*Tag* zwischen *ctgf*-Insert und Transfervektor überprüft und bestätigt werden (Abbildung 8a). Durch einen Restriktionsverdau mit EcoRI und XhoI konnten die Schnittstellen für das *ctgf*-Insert am Übergang zwischen Transfervektor und Fc-*Tag* ebenfalls überprüft und bestätigt werden (Abbildung 8b). Um die exakte Basenabfolge

der angefügten Restriktionsschnittstellen, des *ctgf*-Inserts und des Fc-*Tags* im Transfervektor zu analysieren wurde ein einzelner Klon sequenziert. Mit den Primern Bac1 und Bac2 konnte die richtige Basenfolge zwischen Transfervektor/*ctgf* und Transfervektor/Fc-*Tag*, mit den Primern CTGFseq1 und CTGFseq2 die richtige Basenfolge im Insert selbst bestätigt werden. Durch Sequenzierung mit den Primern IgGFc *forward/reverse* und IgGFc *reverse* Prot konnte die Sequenz des Fc-*Tags* und die Basenfolge an der Schnittstelle Fc-*Tag/ctgf*-Insert erfasst werden.

Das Klonierungsprodukt konnte, nach erfolgreicher Sequenzierung (Daten nicht aufgeführt), für die rekombinante Expression von CTGF im Baculovirus-Expressionssystem verwendet werden.

Abb.8a/8b Agarosegelelektrophorese nach Restriktionsverdau des pBacPAK8/ctgf/Fc-Tag Vektors

Detektion des Fc-*Tags* mit einer Größe von 750 bp und des pBacPAK8/*ctgf* Vektors mit einer Größe von 6549 bp nach Restriktionsverdau mit den Enzymen EcoRI und NotI (Abb.8a). Detektion des *ctgf*-Inserts mit einer Größe von 1049 bp und des pBacPAK8/Fc-*Tag* Vektors mit einer Größe von 6250 bp nach Restriktionsverdau mit den Enzymen EcoRI und XhoI (Abb.8b). Die Proben wurden in einem 1,5% Agarosegel aufgetrennt, zur Kontrolle wurde ein 1 kb DNA-Leiter mit einem Messbereich von 250-10000 bp aufgetragen.

4.2. Produktion und Aufreinigung von rekombinantem CTGF

4.2.1. Produktion von rekombinantem CTGF

Für die Gewinnung von rekombinantem CTGF wurde das Kit BacPAK[™] Baculovirus-Expressionssystem der Firma Takara Bio Europe/Clontech verwendet. Das Klonierungsprodukt, bestehend aus dem Transfervektor pBacPAK8, der codierenden Sequenz für *ctgf* und einer Fc-*Tag* Sequenz wurden zusammen mit der viralen DNA von AcMNPV (pBacPAK6) in SF21-Insektenzellen transfiziert und unter serumfreien Bedingungen inkubiert. Fünf Tage nach Transfektion konnten eine erfolgreiche Cotransfektion und Expression von rekombinantem Virus durch eine Blaufärbung der Positivkontrolle nach Expression von ß-Glucuronidase festgestellt werden. Der virus- und proteinhaltige P0-Überstand wurde zur Amplifizierung des Virustiters in den Verdünnungen 1:10, 1:100 und 1:1000 erneut auf SF21-Zellen pipettiert. Nach sechs Tagen zeigten die mit dem 1:100 verdünnten P0-Überstand versetzen Zellen die stärkste Infektionsrate, mikroskopisch erkenntlich an der Unförmigkeit der Zellen mit vergrößertem Durchmesser. Dieser P1-Überstand wurde zur weiteren Virusamplifizierung in den Verdünnungen 1:25, 1:62,5 und 1:500 auf SF21- Zellen pipettiert und nach einer weiteren Inkubationszeit von sechs Tagen der Überstand P2 abgenommen. Die Expressionsrate und Qualität an rekombinantem CTGF/Fc in den Überständen P0, P1 und P2 wurde in einem Westernblot überprüft (siehe Abbildung 9). Hierbei zeigte das im P2 (1:62,5) Überstand detektierte CTGF/Fc mit einer Größe von 65 k Da den höchsten Expressionsspiegel bei geringem Zerfall und wurde für die Gewinnung des P3-Überstandes verwendet.

Abb.9 Detektion von rekombinantem CTGF/Fc in den SF21 Überständen P0, P1 und P2

Es wurden je 10 μ l Probe in der SDS-PAGE (10%) getrennt und auf eine Nitrocellulosemembran geblottet. Für die Detektion von CTGF/Fc wurde der primäre CTGF Antikörper L-20 (Santa Cruz Biotechnology) und der sekundäre Antikörper anti-*Goat* IgG HRP (Sigma-Aldrich Chemie GmbH) verwendet. Das rekombinant exprimierte CTGF/Fc Protein besitz eine Größe von 65 kDa, zusammengesetzt aus der CTGF-Sequenz mit einer Größe von 38 kDa und der Fc-*Tag*-Sequenz mit einer Größe von 27 kDa. Es wurde ein Marker im Messbereich von 12-225 kDa aufgetragen.

4.2.2. Aufreinigung von rekombinantem CTGF

Für die Aufreinigung von rCTGF wurden die Affinitätschromatographiesäulen HiTrap[™] Protein G HP verwendet, welche das CTGF/Fc-*Tag* Protein im basischen ph-Bereich an G SepharoseTM bindet. Rekombinantes CTGF konnte mittels einer sauren Glycinlösung (ph 2,2) aus der Aufreinigungssäule eluiert werden. Aus dem Überstand von 2x 150 cm² Zellkulturflaschen (ca. 40 ml) wurden zwischen 170 μ g- 250 μ g rCTGF gewonnen. Während in den Fraktionen 1 (Vorlauf), 4 und 5 (Nachlauf) nur sehr geringe Proteinkonzentrationen gemessen werden konnten, wurden in der Fraktion 2 Konzentrationen im Bereich von 150-200 μ g/ml und in der Fraktion 3 Konzentrationen zwischen 20- 50 μ g/ml detektiert. Nach Überprüfen des ph-Wertes wurden die Fraktionen 2 und 3 bis zur weiteren Verwendung bei 4°C in einem 1,5 ml Eppendorfgefäß gelagert. Unmittelbar nach der Aufreinigung konnten die hohe Reinheit des eluierten Proteins durch eine Silbergelfärbung (Abbildung 10a, im Vergleich mit CYR61/Fc) und die Identität mittels Westernblot bestätigt werden (Abbildung 10b, im Vergleich mit rCYR61/Fc). Die Aufreinigung von rCYR61/Fc wurde entsprechend der Publikation von Schütze et al. (2005 a) durchgeführt.

Abb.10a/10b Detektion von rCTGF/Fc und rCYR61/Fc im Silbergel und Westernblot

Für die Überprüfung der Reinheit im Silbergel (Abb.10a) wurden 200 ng frisch aufgereinigtes Protein aufgetragen und nach Auftrennen in der SDS-PAGE mit dem Kit PlusOne[™] Silver Staining Protein angefärbt. Für die Bestimmung im Westernblot (Abb.10b) wurden analog 200 ng frisch aufgereinigtes Protein aufgetragen und nach Auftrennen in der SDS-PAGE auf eine Nitrocellulosemembran geblottet. Die Detektion der rekombinanten Proteine erfolgte mit dem primären Fc-*Tag* Antikörper *rabbit* anti-Fc-*Tag* 216. Als sekundärer Antikörper wurde ein HRP markierter anti *rabbit* IgG Antikörper verwendet. Das rCTGF/Fc Protein besitzt eine Größe von 65 kDa (CTGF 38 kDa, Fc-*Tag* 27 kDa), rCYR61/Fc eine Größe von 69 kDa (CYR61 42 kDa, Fc-*Tag* 27 kDa). Für die SDS-PAGE wurden 10%ige Gele verwendet und ein Marker im Messbereich von 12-225 kDa aufgetragen.

Bereits 24 h nach der Aufreinigung der rekombinanten Proteine konnte in den bei 4°C gelagerten Aliquots ein weißer Niederschlag beobachtet werden. Eine Überprüfung der

Proteinproben im Silbergel konnte den Zerfall der rekombinanten Proteine in verschieden große Fragmente bestätigen (Abbildung 11, Lagerung nach fünf Tagen). Auch durch eine Lagerung der aufgereinigten Proteine bei -20°C (Daten nicht gezeigt) konnte die Stabilität nicht verbessert werden.

Abb.11 Silbergelanalyse von aufgereinigtem rCTGF

Zur Überprüfung des Zerfalls wurden 200 ng einer frisch aufgereinigten rCTGF-Probe (a) und 200 ng einer für fünf Tage bei 4°C gelagerten Probe (b) aufgetragen. Für die SDS-PAGE wurden 10% Gele und ein Marker im Messbereich von 12-225 kDa verwendet.

Rekombinant exprimiertes, aufgereinigtes CTGF besitzt eine Größe von 65 kDa, zusammengesetzt aus CTGF mit einer Größe von 38 kDa und dem angefügten Fc-*Tag* mit einer Größe von 27 kDa. In Abbildung 12 sind vergleichend eine Proteinprobe aus mesenchymalen Stammzellen (hMSC, a) und dem kommerziell erhältlichen rCTGF der Firma Biovendor (b) aufgetragen. CTGF aus dem Zelllysat von hMSC und in *E.coli* exprimiertes rCTGF zeigen eine Doppelbande bei ca. 36- 38 kDa auf. Für in SF21-Insektenzellen exprimiertes CTGF konnte keine Doppelbande detektiert werden (c).

Abb.12 Westernblot verschiedener Proteinproben

CTGF aus dem Zelllysat von hMSC (a) und in *E.coli* exprimiertes rCTGF der Firma BioVendor (b) zeigen eine charakteristische Doppelbande bei einer Größe von ca. 38 kDa. In SF21 exprimiertes rCTGF (c) zeigt eine einzelne Bande bei 65 kDa. Für die Detektion wurden je 200 ng rCTGF aus SF21-Zellen bzw. hMSC und 10 ng des rekombinanten Proteins der Firma Biovendor aufgetragen. Die Proben wurden in einem 10% igen SDS-Gel aufgetrennt, ein Marker im Größenbereich von 12-225 kDa aufgetragen und die Proteine auf eine Nitrocellulosemembran geblottet. Der Nachweis von rCTGF erfolgte mit einem gegen CTGF gerichteten primären Antikörper, als sekundärer Antikörper wurde ein HRP markierter anti *goat* IgG Antikörper verwendet.

4.2.3. Rekombinante Proteine: Funktionstest

Für den Nachweis der Funktionalität von rekombinantem und in SF21-Insektenzellen produziertem CTGF wurde ein Proliferationstest durchgeführt. Unter Anwendung des Celltiter 96® AQueous Non-Radioactive Cell Proliferation Assays konnte ein proliferativer Effekt auf hMSC nach Behandlung mit 500 ng/ml und 1000 ng/ml rCTGF im Vergleich der unbehandelten Kontrollzellen gemessen werden. Ein Unterschied hinsichtlich der Stärke des proliferativen Effektes in Abhängigkeit von der Konzentration wurde nicht detektiert (Abbildung 13 oben). Hingegen konnte für die Behandlung der Zelllinien EAhy926 (Abbildung 13 unten) und HPMEC-ST1.6R (Daten nicht gezeigt) nach Zugabe von 500 ng/ml bzw. 1000 ng/ml rCTGF keine Steigerung der Proliferationsrate gemessen werden. Der Test wurde mehrmals durchgeführt, ein proliferatives Verhalten der mit rCTGF behandelten Zellen aber nur einmalig bestätigt, sodass eine statistische Auswertung nicht gegeben ist. In einer weiteren Versuchsreihe wurde, unter Verwendung von rekombinantem rCTGF der Firma Biovendor, ein dosisabhängiger Effekt auf das proliferative Verhalten von HPMEC-ST1.6R gemessen (Laug et al., 2012; Kooperation mit PD Dr. Steffen Kunzmann,

Universitätskinderklinik, Würzburg). Schütze et al. (2005 a) konnten die Funktionalität von rCYR61 bereits durch den positiven Einfluss auf das proliferative Verhalten primärer mesenchymaler Stammzellen (hMSC) und der Zelllinien hFOB (Osteoblasten) bzw. EAhy926-Zellen bestätigen.

Als Proliferationstest wurde der Test Celltiter 96[®] AQueous Non-Radioactive Cell Proliferation Assays von Promega verwendet. Die Zellen wurden für 24 h unter serumreduzierten Bedingungen mit je 500 ng/ml und 1000 ng/ml rCTGF behandelt. Dargestellt ist die prozentuale Veränderung der Proliferationsrate nach Behandlung mit rCTGF im Vergleich zu unbehandelten Kontrollzellen. In den Abbildungen ist jeweils ein repräsentatives Ergebnis nach Durchführung eines Proliferationstests aufgeführt. Je Versuchsreihe wurden 12 *well* in die Auswertung mit einbezogen, unter Angabe der Mittelwerte \pm SEM.

4.3. Herunterregulation von ctgf/CTGF in HPMEC-ST1.6R-Zellen und hMSC

Vier Tage nach Infektion der HEK293T-Zellen mit den fünf verschiedenen shRNAs und den Kontrollen Leervektor und *scrambled* shRNA, konnte eine erfolgreiche Transfektion der Zellen anhand der mitgeführten GFP-Kontrolle mikroskopisch unter UV-Licht bestätigt werden (Abbildung 14).

Abb.14 GFP-Kontrolle der HEK293T-Zellen

Die Aufnahmen zeigen einen identischen Ausschnitt der HEK293T-Zellen vier Tage nach Zugabe des Transfektionsansatzes unter UV-Licht (linke Abbildung) und Tageslicht (rechte Abbildung). Die Aufnahmen wurden mit 10x Vergrößerung aufgenommen.

Der lentivirale Überstand wurde vier Tage nach Transfektion der HEK293T-Zellen auf die Zielzellen pipettiert. Weitere fünf Tage nach lentiviraler Transduktion der HPMEC-ST1.6R-Zellen und hMSC mit dem viralen Überstand konnte die Infektion der Zielzellen erneut durch Expression der grün leuchtenden GFP-Kontrolle mikroskopisch detektiert werden (Abbildung 15 und 16).

Abb.15 GFP Kontrolle der HPMEC-ST1.6R-Zellen

Die Aufnahmen zeigen einen identischen Ausschnitt der HPMEC-ST1.6R-Zellen fünf Tage nach lentiviraler Transduktion mit dem Überstand der HEK293T-Zellen unter UV-Licht (linke Abbildung) und Tageslicht (rechte Abbildung). Die Aufnahmen wurden mit 10x Vergrößerung aufgenommen.

Abb.16 GFP Kontrolle der hMSC

Die Aufnahmen zeigen einen identischen Ausschnitt der hMSC fünf Tage nach lentiviraler Transduktion mit dem Überstand der HEK293T-Zellen unter UV-Licht (linke Abbildung) und Tageslicht (rechte Abbildung). Die Aufnahmen wurden mit 10x Vergrößerung aufgenommen.

Durch die Expression von GFP konnte die Integration der für GFP codierenden DNA-Sequenz in das Genom der Virus produzierenden HEK293T-Zellen und der Zielzellen bestätigt und von einer erfolgreichen Integration der shRNA Sequenzen ausgegangen werden.

4.3.1. Herunterregulation von ctgf/CTGF in HPMEC-ST1.6R-Zellen

Fünf Tage nach lentiviraler Transduktion mit dem Überstand der HEK293T-Zellen wurde aus den Lungenendothelzellen RNA und Protein isoliert. Eine Herunterregulation der endogenen *ctgf/*CTGF-Expression in HPMEC-ST1.6R-Zellen konnte mit CTGF spezifischen shRNAs gezeigt werden. Fünf Tage nach erfolgter Transduktion konnte für drei der eingesetzten shRNAs eine Reduktion der *ctgf/*CTGF-Expression auf RNA- sowie Proteinebene (Abbildung 17 und 18) nachgewiesen werden. Die densitometrische Auswertung mit dem Programm Bio-1D 11.9 ergab auf RNA-Ebene für sh2 eine Herunterregulation um 76%, für sh3 um 75% und sh4 um 53%, bezogen auf die *scrambled* shRNA sh3 die stärkste Regulation von CTGF auf Proteinebene bezogen auf die *scrambled* shRNA Kontrolle (Abbildung 11). Die shRNA behandelten Zellen wurden bis zu einer Passage von 34 verwendet und eine stabile Herunterregulation von *ctgf/*CTGF-Expression konnte für die shRNA sh3 der stärkste Effekt gezeigt werden.

Eine Reduktion der *ctgf*/CTGF-Expression konnte in drei weiteren unabhängigen Versuchsansätzen auf RNA-Ebene (83%) bestätigt und auch auf Proteinebene wiederholt nachgewiesen werden (Abbildung 19 und 20).

Fünf Tage nach lentiviraler Transduktion mit CTGF spezifischen shRNAs wurde RNA aus den Zielzellen isoliert. Die Regulation von *ctgf* wurde für die shRNAs sh1-sh5, sowie die mitgeführten Kontrollen Leervektor und *scrambled* shRNA in der RT-PCR überprüft und auf die interne Kontrolle EF1 α normiert. Dargestellt ist das prozentuale Expressionslevel von *ctgf* in HPMEC-ST1.6R-Zellen, bezogen auf *scrambled* shRNA behandelte Kontrollzellen (100%). Die densitometrische Auswertung erfolgte mit dem Programm Bio-1D 11.9 anhand eines repräsentativen Versuchsansatzes.

Abb.18 CTGF Proteinproduktion in HPMEC-ST1.6R-Zellen

Fünf Tage nach lentiviraler Transduktion mit CTGF spezifischen shRNAs wurde Protein aus dem Zelllysat der Zielzellen isoliert. Für die Detektion im Westernblot wurden 20 μg Gesamtprotein aufgetragen und die Proben nach Auftrennung in der SDS-PAGE (10%) auf eine Nitrocellulosemembran geblottet. Als interne Kontrolle wurde das Haushaltsgen β-Actin verwendet. Für die Detektion von CTGF wurde der primäre Antikörper L-20 (Santa Cruz), für β-Actin der Antikörper β-Actin *rabbit* mAb (New England Biolabs) eingesetzt.

Abb.19 *ctgf* RNA-Expression in HPMEC-ST1.6R-Zellen nach Behandlung mit shRNA sh3 Fünf Tage nach lentiviraler Transduktion wurde aus den Zielzellen (k.o.) und vergleichend *scrambled* shRNA behandelten und den unbehandelten Kontrollzellen RNA isoliert. Die densitometrische Auswertung erfolgte mit dem Programm Bio-1D 11.9, die erhaltenen Werte wurden auf das Haushaltsgen EF1 α normiert. Dargestellt ist die prozentuale Reduktion der *ctgf*-Expression in den sh3 behandelten HPMEC-ST1.6R-Zellen im Vergleich zur *scrambled* shRNA Kontrolle (100%) und den unbehandelten Konrollzellen. Angabe der Mittelwert ± SEM aus drei unabhängigen Versuchen.

Abb.20 CTGF Proteinexpression in HPMEC-ST1.6R-Zellen nach Behandlung mit shRNA sh3

Die Proteinproben wurden fünf Tage nach lentiviraler Transduktion aus shRNA sh3 (k.o.) und *scrambled* shRNA behandelten Zellen (scr.) isoliert. Vergleichend wurde Protein aus unbehandelten Zellen (Kontrolle) gewonnen. ß-Actin wurde als interne Kontrolle mitgeführt. Die Detektion im Westernblot erfolgte mit 20 µg Gesamtprotein. Für die Detektion von CTGF wurde der primäre Antikörper L-20 (Santa Cruz), für ß-Actin der Antikörper ß-Actin *rabbit* mAb (New England Biolabs) eingesetzt.

4.3.2. Herunterregulation von *ctgf*/CTGF in hMSC

Fünf Tage nach lentiviraler Transduktion mit dem Überstand der HEK293T-Zellen wurde aus den hMSC RNA und Protein isoliert. Eine Herunterregulation der endogenen *ctgf*/CTGF-Expression in hMSC konnte, fünf Tage nach Transduktion mit CTGF spezifischen shRNAs, gezeigt und für alle fünf eingesetzten shRNAs eine Reduktion der *ctgf*/CTGF-Expression auf RNA- sowie Proteinebene (Abbildung 21 und 22) nachgewiesen werden. In den nachfolgenden Abbildungen ist die repräsentative Auswertung eines Versuchsansatzes (Spender 601) dargestellt. Die densitometrische Auswertung dieses Ansatzes mit dem Programm Bio-1D 11.9 ergab auf RNA-Ebene für sh1 eine Herunterregulation um 53%, für sh2 um 92%, für sh3 um 83%, für sh4 um 82% und sh5 um 47% bezogen auf die *scrambled* shRNA sh2 die stärkste Regulation von CTGF auf Proteinebene, bezogen auf die *scrambled* shRNA Kontrolle (Abbildung 22). Aufgrund der stärksten regulatorischen Eigenschaften wurde sh2 für die weiteren Versuchsansätze verwendet.

Abb.21 Herunterregulation von ctgf auf RNA-Ebene in hMSC

Fünf Tage nach lentiviraler Transduktion wurde RNA aus den Zielzellen isoliert. Die Regulation von CTGF wurde für die shRNAs sh1-sh5, sowie die mitgeführten Kontrollen Leervektor und *scrambled* shRNA in der RT-PCR überprüft und auf die interne Kontrolle EF1 α normiert. Dargestellt ist das prozentuale Expressionslevel von CTGF in hMSC bezogen auf *scrambled* shRNA behandelte Zellen (100%) anhand eines repräsentativen Versuchsansatzes.

Abb.22 Herunterregulation von CTGF auf Proteinebene in hMSC

Fünf Tage nach lentiviraler Transduktion mit CTGF spezifischen shRNAs wurde Protein aus dem Zelllysat der Zielzellen isoliert. Für die Detektion im Westernblot wurden 20 μ g Gesamtprotein aufgetragen und die Proben nach Auftrennung in der SDS-PAGE (10%) auf eine Nitrocellulosemembran geblottet. Die Regulation von CTGF wurde für die shRNAs sh1, sh2, sh3, sh4, sh5, sowie die Kontrollen Leervektor und *scrambled* shRNA überprüft. Als interne Kontrolle wurde das Haushaltsgen β -Actin mitgeführt.

4.3.3. Verändertes Proliferationsverhalten nach Herunterregulation von ctgf/CTGF

Nach Behandlung der Lungenendothelzellen mit den shRNAs sh2 und sh3 konnte eine Veränderung im proliferativen Verhalten festgestellt werden. Sowohl für die Lungenendothelzelllinie HPMEC-ST1.6R, als auch die primären humanen mesenchymalen Stammzellen (hMSC) konnte bereits in der Zellkultur nach Herunterregulation von ctgf/CTGF eine verlängerte Zeitspanne bis zum Erreichen der Konfluenz beobachtet werden. Unter Verwendung des Proliferationstestes Celltiter 96® AQueous Non-Radioactive Cell Proliferation Assay der Firma Promega konnte dieser Effekt für beide Zellsysteme bestätigt werden. Für die Zelllinie HPMEC-ST1.6R wurde durch die shRNA sh3 ein Reduktion der Absorption/Proliferation gegenüber den Kontrollen scrambled shRNA und den unbehandelten Kontrollzellen um bis zu 66% gemessen (Abbildung 23). Auch konnte im Falle der hMSC, nach Herunterregulation von ctgf/CTGF durch die shRNA sh2, eine um bis zu 72% verringerte Absorption/Proliferation im Vergleich zu den Kontrollzellen verzeichnet werden (Abbildung 24).

Abb.23 Proliferation von shRNA behandelten HPMEC-ST1.6R-Zellen

Dargestellt ist die prozentual verringerte Proliferationsrate von HPMEC-ST1.6R-Zellen nach Herunterregulation von ctgf/CTGF in Bezug auf die *scrambled* shRNA behandelten und unbehandelten Kontrollzellen. Die Werte wurden aus drei unabhängigen Versuchen ermittelt und nach Abzug der Negativkontrolle (Medium ohne Zellen) mit Mittelwert ± SEM bezogen auf die Kontrollzellen (100%) graphisch dargestellt.

Abb.24 Proliferation von shRNA behandelten hMSC

Dargestellt ist die prozentual verringerte Proliferationsrate von hMSC nach Herunterregulation von ctgf/CTGF in Bezug auf auf die *scrambled* shRNA behandelten und unbehandelten Kontrollzellen. Die Werte wurden aus drei unabhängigen Versuchen ermittelt und nach Abzug der Negativkontrolle (Medium ohne Zellen) mit Mittelwert ± SEM bezogen auf die Kontrollzellen (100%) graphisch dargestellt.

4.3.4. Zeitlicher Verlauf der Herunterregulation

Nach erfolgreicher Herunterregulation der *ctgf*/CTGF-Expression unter Verwendung der shRNA sh3 in der Lungenendothelzelllinie HPMEC-ST1.6R, bzw. der shRNA sh2 in den hMSC, konnte in einer Versuchsreihe der zeitliche Verlauf der Regulation von *ctgf*/CTGF überprüft werden. Beginnend mit der Probenentnahme 24 h nach Zugabe des lentiviralen Überstandes der HEK293T-Zellen konnte, mit Ausnahme des 3. Tages, eine kontinuierliche Abnahme der *ctgf*-Expression auf RNA-Ebene gemessen werden. Für die Zelllinie HPMEC-ST1.6R wurde am 5. Tag nach lentiviraler Transduktion der stärkste Effekt mit einer Reduktion der *ctgf*-Expression auf RNA-Ebene um 79% gegenüber der *scrambled* Kontrolle gemessen (Abbildung 25). Durch eine Überprüfung der CTGF-Regulation auf Proteinebene konnte, nach Zugabe des lentiviralen Überstandes, die stärkste Herunterregulation von CTGF am Tag 5 bestätigt werden (Abbildung 26).

Abb.25 RT-PCR: Zeitlicher Verlauf der Herunterregulation von *ctgf* in HPMEC-ST1.6R-Zellen Die Grafik zeigt exemplarisch den zeitlichen Verlauf der Herunterregulation von *ctgf* durch die shRNA sh3, beginnend 24 h nach Zugabe des lentiviralen Überstandes. Nach Durchführung einer RT-PCR Analyse wurden die Signale densitometrisch erfasst und auf das Haushaltsgen EF1 α normiert. Dargestellt ist die prozentuale Expression von *ctgf* im Vergleich zu der *scrambled* Kontrolle (scr. mit 100%) in einer Zeitspanne von fünf Tagen nach lentiviraler Transduktion.

Abb.26 Westernblot: Zeitlicher Verlauf der Herunterregulation von CTGF in HPMEC-ST1.6R-Zellen

Im Westernblot ist der zeitliche Verlauf der Abnahme der CTGF-Expression nach Behandlung mit der shRNA sh3 in der Zelllinie HPMEC-ST1.6R-Zellen exemplarisch dargestellt. Als Haushaltsgen wurde β-Actin mitgeführt.

Auch konnte im zeitlichen Verlauf der Herunterregulation von *ctgf* in hMSC am 5. Tag eine Reduktion der *ctgf*-Expression auf RNA-Ebene um 78% im Vergleich mit der *scrambled* Kontrolle detektiert werden (Abbildung 27). Im Unterschied zu der Lungenendothelzelllinie HPMEC-ST1.6R wurde, mit Ausnahme der 24 h und 48 h Werte (fehlerhafte Probenaufbereitung der *scrambled* shRNA Kontrollen), bereits am 3. Tag eine effektive Herunterregulation der *ctgf*-Expression beobachtet. Eine separate Überprüfung des zeitlichen Verlaufes der CTGF-Expression in hMSC auf Proteinebene wurde nicht durchgeführt.

Die Grafik zeigt exemplarisch den zeitlichen Verlauf der Herunterregulation von *ctgf* durch die shRNA sh2 in hMSC, beginnend 24 h nach Zugabe des lentiviralen Überstandes. Nach Durchführung einer RT-PCR Analyse wurden die Signale densitometrisch erfasst und auf das Haushaltsgen EF1a normiert. Dargestellt ist die prozentuale Expression von *ctgf* im Vergleich zu der *scrambled* Kontrolle (scr. mit 100%) in einer Zeitspanne von fünf Tagen nach lentiviraler Transduktion.

4.4. Herunterregulation von cyr61/CYR61 in HPMEC-ST1.6R-Zellen und hMSC

Die Versuchsansätze für die Herunterregulation von *cyr61*/CYR61oder *ctgf*/CTGF in HPMEC-ST1.6R-Zellen und hMSC wurden zeitgleich angesetzt, sodass für die Überprüfung der Transfektions- und Transduktionseffizienz ein GFP-Kontrollansatz verwendet werden konnte. So konnte auch für den CYR61 Versuchsansatz, vier Tage nach Transfektion der HEK293T-Zellen, eine erfolgreiche Transfektion der Zellen anhand der mitgeführten GFP-Kontrolle unter dem UV-Licht bestätigt werden (siehe 4.3., Abbildung 14). Auch konnte, fünf Tage nach lentiviraler Transduktion der HPMEC-ST1.6R-Zellen und hMSC, die Infektion der Zielzellen erneut durch Expression der grün leuchtenden GFP-Kontrolle mikroskopisch detektiert werden (siehe 4.3., Abbildung 15 und 16).

4.4.1. Herunterregulation von cyr61/CYR61 in HPMEC-ST1.6R-Zellen

Fünf Tage nach lentiviraler Transduktion mit dem Überstand der HEK293T-Zellen wurde aus den HPMEC-ST1.6R-Zellen RNA und Protein isoliert. Nach zahlreichen Versuchsansätzen konnte für keine der eingesetzten shRNAs, weder auf RNA-Ebene noch auf Proteinebene eine signifikante Herunterregulation der endogenen *cyr61*/CYR61-Expression nachgewiesen werden (Abbildung 28 und 29). Nach densitometrischer Auswertung eines Versuchsansatzes konnte, bezogen auf die *scrambled* shRNA Kontrolle, für sh5 mit einer Herunterregulation der *cyr61* RNA-Expression um 33% die stärkste Regulation gezeigt werden. Wohingegen die Expression von *cyr61* nach Behandlung mit den shRNAs sh1-sh4 noch zwischen 84%-97% lag. Auch nach wiederholten Versuchen konnte die Expression von *cyr61*/CYR61 nicht zweifelsfrei mit spezifischen shRNAs in HPMEC-ST1.6R-Zellen reguliert werden, sodass keine weiteren Untersuchungen zur Herunterregulation von *cyr61*/CYR61 in den Lungenendothelzellen HPMEC-ST1.6R durchgeführt wurden.

Abb.28 Herunterregulation von cyr61 auf RNA-Ebene in HPMEC-ST1.6R-Zellen

Die Regulation von cyr61 wurde für die shRNAs sh1-sh5, sowie die mitgeführten Kontrollen Leervektor und *scrambled* shRNA (scr.) in der RT-PCR überprüft und auf die interne Kontrolle EF1 α normiert. Dargestellt ist das prozentuale Expressionslevel von cyr61 in HPMEC-ST1.6R-Zellen, bezogen auf *scrambled* shRNA behandelte Zellen (scr. mit 100%) nach densitometrischer Auswertung.

Abb.29 Herunterregulation von CYR61 auf Proteinebene in HPMEC-ST1.6R-Zellen

Fünf Tage nach lentiviraler Transduktion mit CYR61 spezifischen shRNAs (sh1-sh5), sowie den Kontrollen Leervektor (vektor) und *scrambled* shRNA (scr.), wurde Protein aus dem Zelllysat der Zielzellen isoliert. Für die Detektion im Westernblot wurden 20 μg Gesamtprotein aufgetragen und die Proben nach Auftrennung in der SDS-PAGE (10%) auf eine Nitrocellulosemembran geblottet. Als interne Kontrolle wurde das Haushaltsgen β-Actin mitgeführt.

4.4.2. Herunterregulation von cyr61/CYR61 in hMSC

Fünf Tage nach lentiviraler Transduktion mit dem Überstand der HEK293T-Zellen wurde aus den hMSC RNA und Protein isoliert. Für keine der eingesetzten shRNAs konnte eine reproduzierbare Herunterregulation der endogenen *cyr61*/CYR61-Expression auf RNA- und Proteinebene nachgewiesen werden (Abbildung 30 und 31). Nach densitometrischer Auswertung eines repräsentativen Versuchsansatzes (Spender 601) lag das RNA-Expressionslevel von *cyr61* nach Behandlung mit den shRNAs sh1-sh5 noch zwischen 82%-91%, bezogen auf die *scrambled* shRNA Kontrolle. Auch nach wiederholten Versuchen mit unterschiedlichen hMSC-Spendern konnte die Expression von *cyr61*/CYR61 unter Einsatz der verschiedenen, spezifischen shRNAs in hMSC nicht zweifelsfrei reguliert werden, sodass auch in diesem Fall keine weiteren Untersuchungen zur Herunterregulation von *cyr61*/CYR61 in humanen mesenchymalen Stammzellen durchgeführt wurden.

Abb.30 Herunterregulation von cyr61 auf RNA-Ebene in hMSC

Die Regulation von *cyr61* wurde für die shRNAs sh1-sh5 sowie die mitgeführten Kontrollen Leervektor (vektor) und *scrambled* shRNA (scr.) in der RT-PCR überprüft und auf die interne Kontrolle EF1 α normiert. Dargestellt ist das prozentuale Expressionslevel von *cyr61* in hMSC bezogen auf *scrambled* shRNA behandelte Zellen (scr. mit 100%) nach densitometrischer Auswertung.

Abb.31 Herunterregulation von CYR61 auf Proteinebene in hMSC

Fünf Tage nach lentiviraler Transduktion mit CYR61 spezifischen shRNAs (sh1-sh5), sowie den Kontrollen Leervektor (vektor) und *scrambled* shRNA (scr.), wurde Protein aus dem Zelllysat der Zielzellen isoliert. Für die Detektion im Westernblot wurden 20 μg Gesamtprotein aufgetragen und die Proben nach Auftrennung in der SDS-PAGE (10%) auf eine Nitrocellulosemembran geblottet. Als interne Kontrolle wurde das Haushaltsgen β-Actin mitgeführt.

4.5. Affymetrix Microarray-Analyse

4.5.1. HPMEC-ST1.6R-Zellen

Eine stabile Herunterregulation der *ctgf*/CTGF-Expression in der Lungenendothelzelllinie HPMEC-ST1.6R wurde durch Anwendung der shRNA sh3 erreicht. In drei unabhängigen Versuchsansätzen wurden drei verschiedene Passagen (P26, P29, P27) der HPMEC-ST1.6R-Zellen unter serumreduzierten Bedingungen für 24 h kultiviert. Nach weiteren 24 h wurde aus *ctgf*/CTGF herunterregulierten, *ctgf*/CTGF herunterregulierten und mit 500 ng/ml rCTGF bzw. 500 ng/ml rekombinantem Fc-*Tag* Protein behandelten und *scrambled* shRNA Kontrollzellen RNA isoliert.

4.5.1.1. Überprüfung der HPMEC-ST1.6R-Zell-Versuchsansätze

Für alle drei *Microarray*-Versuchsansätze (Array1, Array2, Array3) konnte eine Herunterregulation der *ctgf*/CTGF-Expression im Vergleich mit der *scrambled* Kontrolle sowohl auf RNA- (Abbildung 32) als auch auf Proteinebene (Abbildung 33) bestätigt werden. Neben einer Behandlung der Zellen mit 500 ng/ml rCTGF wurde für jeden Versuchsansatz eine Behandlung mit 500 ng/ml rekombinantem Fc-*Tag* Protein durchgeführt. Durch eine Behandlung der *ctgf*/CTGF herunterregulierten Zielzellen mit Fc-*Tag* Protein in den *Microarray*-Versuchsansätzen sollte, nach Auswertung der *Microarray*-Daten, ein möglicher Effekt des Fc-*Tag* Anhangs gegenüber den rCTGF behandelten Zellen ausgeschlossen werden. Durch eine Zugabe von 500 ng/ml rCTGF aus SF21-Insektenzellen oder rekombinantem Fc-*Tag* Protein konnte keine Erhöhung der endogenen *ctgf*-Expression in der RT-PCR Analyse detektiert werden (Abbildung 32).

Abb.32 Überprüfung der ctgf-Regulation durch RT-PCR

Dargestellt ist die endogene *ctgf*-Expression der für die *Microarray*-Analyse vorgesehenen Proben, nach Durchführung einer RT-PCR Analyse. Für die drei *Microarray*-Ansätze wurde das *ctgf*-Expressionslevel der Proben k.o. (CTGF herunterreguliert), k.o.+CTGF (CTGF herunterreguliert+500ng/ml rCTGF) und k.o.+Fc-Tag (CTGF herunterreguliert+500ng/ml Fc-*Tag* Protein) in Bezug auf die *scrambled* Kontrolle (scr.) ermittelt. Alle Proben wurden auf das Haushaltsgen EF1 α normiert und im Vergleich zu der *scrambled* Kontrolle (100%) mit Mittelwert ± SEM dargestellt.

Abb.33 Überprüfung der CTGF-Regulation im Westernblot

Die Abbildung zeigt die Herunterregulation von CTGF in den für die *Microarray*-Analyse vorgesehenen Proben in Bezug auf die *scrambled* Kontrolle. Für die Detektion im Westernblot wurden 20 µg Gesamtprotein aufgetragen und die Proben nach Auftrennung in der SDS-PAGE (10%) auf eine Nitrocellulosemembran geblottet. Als Haushaltsgen wurde β-Actin mitgeführt.

4.5.1.2. Affymetrix GeneChip HG-U 133 Plus 2.0

Das Ziel der *Microarray*-Analyse war es zum Einen die Veränderung im Genexpressionsmuster der *ctgf*/CTGF herunterregulierten, unbehandelten Zellen zu den *ctgf*/CTGF herunterregulierten und mit 500 ng/ml rCTGF behandelten Zellen zu analysieren. Des Weiteren sollte das gesamte Genexpressionsmuster nach Herunterregulation von *ctgf*/CTGF vergleichend zu einer mitgeführten *scrambled* shRNA Kontrolle erfasst werden. Mit Fc-*Tag* Protein behandelte Proben wurden nicht für die Auswertung in der *Microarray*-Analyse eingereicht. Für die Isolierung der RNA-Proben aus den Versuchsansätzen der HPMEC-ST1.6R-Zellen wurde ein Zeitpunkt von 24 h gewählt. Vor Durchführung der Analyse konnte die hinreichende Qualität der RNA-Proben in der Agarosegelelektrophorese durch Detektion der 28S und 18S RNA-Banden bestätigt werden (Abbildung 34).

Die für die Durchführung einer *Microarray*-Analyse gewonnenen RNA-Proben wurden in der Agarosegelelektrophorese untersucht. Je Probentasche wurden 700 ng RNA aufgetragen. Die Auftrennung erfolgte in einem 1% Agarosegel und für den Größenvergleich wurde ein 1 kb Marker mitgeführt. Das linke Gel zeigt die RNA-Proben aus den *ctgf*/CTGF herunterregulierten und mit 500 ng/ml rCTGF behandelten (k.o.+CTGF) und die *ctgf*/CTGF herunterregulierten, unbehandelten HPMEC-ST1.6R-Zellproben (k.o.). Im rechten Gel sind die aus den *scrambled* shRNA Kontrollzellen gewonnenen RNA-Proben dargestellt (scr.).

Die Hybridisierung der Proben CTGF k.o.+500ng/ml rCTGF, CTGF k.o. und der *scrambled* shRNA Kontrolle mit dem Genechip HG-U 133 Plus 2.0 wurde im Labor von Dr. L. Klein-Hitpass (Institut für Zellbiologie, BioChip-Labor, Universitätsklinikum Essen) durchgeführt. In Kooperation mit Dr. K. Schlegelmilch (Orthopädische Klinik König-Ludwig-Haus, Muskuloskelettales Zentrum, Würzburg) und Dr. A. Keller (Institut für Bioinformatik, Core facility of DNA analytics, Universität Würzburg) erfolgte die Auswertung der erhaltenen *Microarray*-Rohdaten mit der Statistik Software *R* und dem Zusatzprogramm *Bioconductor* zur Auswertung von *Microarrays*. In einem ersten Schritt wurde eine visuelle Qualitätskontrolle der erhaltenen Rohdaten durchgeführt, um eventuelle Fehler im Bereich der gespotteten Sequenz zu analysieren. Mittels eines RNA *degradation plot* konnte die Qualität der neun RNA-Proben erneut überprüft und bestätigt werden (Abbildung 35). Alle Proben zeigten eine gleichmäßige Abnahme der RNA-Intensitäten vom 3'- in Richtung 5'- Ende und konnten für weitere Versuche verwendet werden.

Abb.35 RNA Degradationsplot der HPMEC-ST1.6R Microarray-Proben

Der RNA Degradationsplot zeigt den Verlauf der RNA-Intensitäten vom Bereich des 5'-Endes in Richtung 3'-Ende auf. Dargestellt ist die gleichmässige Abnahme der Intensitäten in Richtung 5'-Ende der neun isolierten RNA-Proben von allen drei *Microarray*-Ansätzen.

Die Proben wurden nachfolgend vergleichend mit den Normalisierungsmethoden RMA (*robust multi-array average*) und Q (*quantiles*) normalisiert. In Abbildung 36a sind die Rohdaten der einzelnen *Microarray*-Proben vor der Normalisierung in einem *densityplot* Diagramm dargestellt. Nach Anwendung der Normalisierungsmethoden konnte, unter Betrachtung der erhaltenen *density plots*, für die RMA-Methode das beste Ergebnis erzielt werden (Abbildung 36b).

Abb.36a/36b Dichteplot vor und nach Normalisierung

Die linke Grafik zeigt die Rohdaten der insgesamt neun HPMEC-ST1.6R *Microarray*-Proben vor der Normalisierung in einem Dichtplot. In der rechten Grafik sind die normalisierten Rohdaten nach Anwendung der RMA-Methode dargestellt.

Der GeneChip Affymetrix HG-U 133 Plus 2.0 deckt einen Bereich von insgesamt 54675 probe sets ab. Durch Anwendung eines IQR (interquartile range) Filters (cutoff) konnte die hohe Anzahl der erhaltenen probe sets auf signifikant exprimierte probe sets reduziert werden. Die Bewertung der einzelnen Genregulationen erfolgte über die logFc Werte mit einem Signifikanzwert von p ≤ 0.05 (p-Wert, *p-value*). Im Vergleich der *ctgf*/CTGF herunterregulierten mit den ctgf/CTGF herunterregulierten und mit 500 ng/ml rCTGF behandelten HPMEC-ST1.6R-Zellen konnten, in der Auswertung der drei Versuchsansätze, keine signifikanten Unterschiede bezüglich der Genregulationen detektiert werden. Hingegen ergab die Microarray-Auswertung der unbehandelten, ctgf/CTGF herunterregulierten Zellen im Vergleich mit den scrambled shRNA behandelten Zellen eine Regulation von 455 exprimierten probe sets. Insgesamt konnten 22 probe sets zum Zeitpunkt der Analyse keinen in der Datenbank registrierten Genen zugeordnet, sowie drei *probe sets* mit einem p-Wert \geq 0,05 als nicht signifikant betrachtet werden. Die verbleibenden 430 probe sets repräsentieren eine Anzahl von 357 signifikant regulierten Genen mit einem p-Wert ≤ 0.05 . Hiervon sind 167 Gene gegenüber der scrambled shRNA Kontrolle hochreguliert und 190 Gene herunterreguliert (Abbildung 37).

Abb.37 Regulierte Gene der HPMEC-ST1.6R Microarray-Analyse

Anzahl der insgesamt regulierten Gene im Vergleich der *ctgf*/CTGF herunterregulierten Lungenendothelzellen gegenüber den *scrambled* Kontrollzellen, dargestellt in einem Venn-Diagramm. Von 357 signifikant regulierten Genen sind 167 in Bezug auf die Kontrolle hochreguliert, 190 herunterreguliert.

In Tabelle 10 sind die 50 am stärksten regulierten Gene entsprechend ihrer errechneten logFc-Werte aufgeführt, beginnend mit der höchsten Hochregulation bis zur niedrigsten Herunterregulation im Vergleich zur *scrambled* shRNA Kontrolle. Eine vollständige Liste der signifikant regulierten *probe sets* und der daraus resultierenden Genregulationen befindet sich im Anhang unter 7.1.1./Tabelle 18.

Tab.10 HPMEC-ST1.6R Microarray-Analyse: Tabelle der 50 am stärksten regulierten Gene

Die regulierten Gene sind entsprechend ihrer logFc-Werte in absteigender Reihenfolge aufgelistet. Die jeweiligen logFc- und Signifikanzwerte (p-Wert, *adjusted p-value*) beziehen sich im Falle der Gendetektion durch mehrere *probe sets* immer auf das am stärksten regulierte. Positive logFc-Werte = Hochregulation, negative = Herunterregulation des Genes gegenüber der *scrambled* shRNA Kontrolle.

Symbol	Genname	logFc	p-Wert
BST2	bone marrow stromal cell antigen 2	+2,21	3,3 x10 ⁻⁴
RSAD2	radical S-adenosyl methionine domain containing 2	+2,10	1,9 x10 ⁻⁴
OASL	2'-5'-oligoadenylate synthetase-like	+2,04	4,7 x10 ⁻⁵
CMPK2	cytidine monophosphate (UMP-CMP) kinase 2, mitochondr.	+1,87	$1,3 \times 10^{-4}$
MX2	myxovirus (influenza virus) resistance 2 (mouse)	+1,85	$2,9 \times 10^{-4}$
IFI44L	interferon-induced protein 44-like	+1,82	$5,0 \text{ x} 10^{-4}$
SLC16A3	sol. carrier family 16, member 3 (monocarb. acid transp. 4)	+1,74	$4,0 \text{ x} 10^{-5}$
IFIT3	interferon-induced protein with tetratricopeptide repeats 3	+1,73	$1,3 \text{ x} 10^{-4}$
IL8	interleukin 8	+1,72	5,5 x10 ⁻⁴
EGR1	early growth response 1	+1,69	1,7 x10 ⁻⁴
IFIT2	interferon-induced protein with tetratricopeptide repeats 2	+1,66	$1,6 \text{ x} 10^{-4}$
OAS1	2',5'-oligoadenylate synthetase 1, 40/46kDa	+1,65	2,9 x10 ⁻⁴
STIP1	stress-induced-phosphoprotein 1	+1,65	$4,0 \times 10^{-5}$
DNER	delta/notch-like EGF repeat containing	+1,64	4,0 x10 ⁻⁵
SP110	SP110 nuclear body protein	+1,60	1,7 x10 ⁻⁴
AGTR1	angiotensin II receptor, type 1	+1,58	$7,2 \text{ x} 10^{-4}$
OAS3	2'-5'-oligoadenylate synthetase 3, 100kDa	+1,58	2,1 x10 ⁻⁴
LAPTM4B	lysosomal protein transmembrane 4 beta	+1,58	1,0 x10 ⁻⁴
CDCP1	CUB domain containing protein 1	+1,51	1,9 x10 ⁻³
XAF1	XIAP associated factor 1	+1,50	2,1 x10 ⁻⁴
OAS2	2'-5'-oligoadenylate synthetase 2, 69/71kDa	+1,50	2,3 x10 ⁻⁴
IFI44	interferon-induced protein 44	+1,50	1,0 x10 ⁻⁴
FOXD1	forkhead box D1	+1,46	6,9 x10 ⁻⁵
TMED2	transmembrane emp24 domain trafficking protein 2	+1,45	1,6 x10 ⁻⁴
HIST1H2AC	histone cluster 1, H2ac	+1,45	8,1 x10 ⁻⁴
RP6-213H19.1	serine/threonine protein kinase MST4	- 1,46	3,9 x10 ⁻⁵
MYLK	myosin light chain kinase	- 1,46	$3,9 \times 10^{-5}$
PPPDE1	PPPDE peptidase domain containing 1	- 1,48	$1,9 \times 10^{-4}$
DCHS1	dachsous 1 (Drosophila)	- 1,50	$4,7 \text{ x}10^{-5}$
ARID5B	AT rich interactive domain 5B (MRF1-like)	- 1,51	$5,0 \times 10^{-4}$
VAMP3	vesicle-associated membrane protein 3 (cellubrevin)	- 1,52	$8,1 \times 10^{-3}$
RAB15	RAB15, member RAS onocogene family	- 1,53	$6,9 \times 10^{-5}$
EFNA1	ephrin-A1	- 1,54	$6,2 \times 10^{-3}$
MN1	meningioma (disrupted in balanced translocation) 1	- 1,54	$6,2 \times 10^{-5}$
KCTD12	potassium channel tetramerisation domain containing 12	- 1,58	$2,3 \times 10^{-4}$
SNCA	synuclein, alpha (non A4 component of amyloid precursor)	- 1,61	$3,9 \times 10^{-5}$
BGN	biglycan	- 1,62	$6,9 \times 10^{-3}$
LEPRELI	leprecan-like l	- 1,65	$5,1 \times 10^{-4}$
SORBS2	sorbin and SH3 domain containing 2	- 1,65	$1,2 \times 10^{-4}$
TMSB15A	thymosin beta 15a	- 1,66	$3,9 \times 10^{-5}$
PCDH10	protocadherin 10	- 1,69	$9,0 \times 10^{-5}$
CLDN12	claudin 12	- 1,77	$3,9 \times 10^{-5}$
НОРХ	HOP homeobox	- 1,83	$3,9 \times 10^{-5}$
PALMD	palmdelphin	- 1,88	$7,5 \times 10^{-5}$
C40rf49	chromosome 4 open reading frame 49	- 2,01	3.9×10^{-5}
MCIPI	multiple C2 domains, transmembrane 1	- 2,09	$6,9 \times 10^{-5}$
MEST TACLN	mesoderm specific transcript homolog (mouse)	- 2,18	$3,9 \times 10^{-4}$
IAGLN	transgein	- 2,19	$1,9 \times 10^{-5}$
AINKKDI TCFR2	ankyrin repeat domain 1 (cardiac muscle) transforming growth factor beta 2	- 2,45	$3,9 \times 10^{-5}$
101.04	transforming growth factor, beta 2	- 2,54	5,7 110

4.5.1.3. Validierung der HPMEC-ST1.6R Microarray-Daten durch RT-PCR

Nach Etablierung der spezifischen PCR-Reaktionen erfolgte die Validierung der erhaltenen Affymetrix *Microarray*-Daten mittels RT-PCR. Für die Überprüfung der unterschiedlichen Genregulationen wurden 13 verschiedene Gene aufgrund ihrer starken Regulation (logFc) und im Hinblick auf potentielle regulatorische Eigenschaften in HPMEC-ST1.6R-Zellen ausgewählt. Die Validierung mittels RT-PCR wurde mit den identischen RNA-Proben durchgeführt, welche in der *Microarray*-Analyse eingesetzt worden waren.

Tab.11 Genauswahl für die Validierung der HPMEC-ST1.6R Microarray-Auswertung

Auflistung der symbolischen Abkürzung, der *probe set* ID auf dem HG-U 133 Plus 2.0 Chip, dem Gennamen, dem logFc- und dem Signifikanzwert (p-Wert) der für die Validierung augewählten Gene. Sind mehrere *probe sets* für ein Gen gelistet, beziehen sich die aufgeführten logFc- und p-Werte auf das jeweils zuerst genannte. Negative logFc-Werte zeigen eine Herunterregulation, positive eine Hochregulation des jeweiligen Genes gegenüber der *scrambled* Kontrolle auf.

Symbol	probe set ID	Genname	logFc	p-Wert
TGFB2	228121_at	transforming growth factor, beta 2	- 2,54	3,9 x10 ⁻⁵
MAP3K3	227131_at	mitogen-activated protein kinase kinase kinase 3	- 1,36	1,2 x10 ⁻⁴
	203514_at			
DUSP4	204015_s_at	dual specificity phosphatase 4	+1,16	$2,1 \text{ x} 10^{-4}$
	204014_at			
BMP6	206176_at	bone morphogenetic protein 6	- 1,33	1,1 x10 ⁻⁴
ID1	208937_s_at	inhibitor of DNA binding 1, dominant negative	- 1,27	8,1 x10 ⁻⁴
		helix-loop-helix protein		
BMP4	211518_s_at	bone morphogenetic protein 4	- 1,15	$10x \ 10^{-5}$
THBS1	235086_at	thrombospondin 1	- 0,97	1,1 x10 ⁻³
SMAD6	207069_s_at	SMAD family member 6	- 0,78	$5,1 \text{ x} 10^{-2}$
STAT1	209969_s_at	signal transducer and activator of transcription 1,	+1,02	$4,0 \text{ x} 10^{-4}$
		91kDa		
VEGFA	210512_s_at	vascular endothelial growth factor A	+1,09	1,6 x10 ⁻⁴
MAPK8	229664_at	mitogen-activated protein kinase 8	- 0,91	$1,3 \text{ x} 10^{-4}$
SPHK1	219257_s_at	sphingosine kinase 1	+1,10	8,8 x10 ⁻⁴
JAK1	1552610_a_at	Janus kinase 1	+0,85	1,6 x10 ⁻⁴

Für alle drei *Microarray*-Ansätze konnte die Expression für 10 der ausgewählten 13 Gene nach Herunterregulation von *ctgf*/CTGF im Vergleich mit der *scrambled* shRNA Kontrolle entsprechend der in Tabelle 11 aufgeführten logFc-Werte in der RT-PCR Analyse bestätigt werden. Lediglich die Regulationen der in der *Microarray*-Auswertung aufgeführten Gene MAPK8, SPHK1 und JAK1 konnten in der RT-PCR Analyse nicht entsprechend ihrer logFc-Werte gezeigt werden (Daten nicht aufgeführt).

k.o. scr.	k.o. scr.	k.o. scr.	
			TGFß2
		1	MAP3K3
-		1	DUSP4
		I	BMP6
	·	-	ID1
·		-	BMP4
		-	THBS1
			SMAD6
		-	STAT1
		-	VEGFA
			EF1α
Array 1	Array2	Array3	

Abb.38 Validierung der HPMEC-ST1.6R Microarray-Ergebnisse durch RT-PCR

Die obere Abbildung zeigt die Regulationen der 10 für die Validierung der *Microarray*-Daten ausgewählten Gene nach RT-PCR im Agarosegel. Für alle drei *Microarray*-Ansätze wurde die Regulation des jeweiligen Genes nach Herunterregulation von CTGF (k.o.) im Vergleich zur *scrambled* Kontrolle (scr.) aufgeführt. Für die Auswertung erfolgte die Normierung der Proben auf das Haushaltsgen EF1 α . Die Grafik unten stellt die densitometrische Auswertung der RT-PCR Analyse von allen drei *Microarray*-Versuchsansätzen mit Angabe von Mittelwert ± SEM dar. Die *scrambled* shRNA Kontrolle wurde in der Auswertung für jedes Gen auf 100% gesetzt.

4.5.1.4. Zuordnung von Genregulationen nach Gene Ontology (GO) und KEGG

Nach Auswertung der Microarray-Ergebnisse wurden alle regulierten Gene (455 regulierte probe sets) unter Verwendung des Programmes GOstat (Gene Ontology, statistical) hinsichtlich ihrer Zugehörigkeit zu den GO-Kategorien molecular function (molekulare Funktion), biological process (biologischer Prozess) und cellular component (zelluläre Komponente) hin untersucht. Des Weiteren erfolgte, durch Zugriff auf die Datenbank KEGG (Kyoto Encyclopedia of Genes and Genomes), eine Zuordnung der differentiell exprimierten Gene zu verschiedenen Signalwegen. Nach der Herunterregulation von ctgf/CTGF in den Lungenendothelzellen konnten in der GO-Kategorie molecular function zahlreiche Gene dem Bereich binding zugeordnet werden, mit der höchsten Anzahl an regulierten Genen in der Unterklasse der Proteinbindung (protein binding). Des Weiteren konnten interessante Gencluster im Bereich der Bindung der extrazellulären Matrix (ECM extracellular matrix binding), von Integrinen (integrin binding) und von transforming growth factor beta gezeigt werden und verweisen auf einen Zusammenhang von CTGF und der ECM. In der Kategorie biological process wurden markante Gencluster im Bereich der Migration, Adhäsion und Proliferation von Zellen (cell migration, adhesion and proliferation), sowie der Entwicklung der Lunge und Lungenalveolen (lung-, lung alveolus development) detektiert und geben einen Hinweis auf die Auswirkung der Herunterregulation von ctgf/CTGF in HPMEC-ST1.6R-Zellen. Vergleichend mit den unter molecular function detektierten Genclustern, konnte für die Kategorie *cellular component* eine große Anzahl an regulierten Genen in Verbindung mit der ECM gebracht werden. In Tabelle 12 ist eine Auswahl an überrepräsentierten Genclustern hinsichtlich ihrer GO-Kategorien aufgeführt. Eine ausführliche Auflistung der regulierten Gene nach Einteilung in die GO-Klassen befindet sich im Anhang unter 7.1.2/Tabelle 19.

Tab.12 Auswahl überrepräsentierter Gengruppierungen nach GO-Analyse

Die nach Auswertung der *Microarray*-Daten erhaltenen regulierten Gene wurden einer GO-Analyse unterzogen. In der Tabelle ist eine Auswahl an regulierten Genen (Gensymbol) in Bezug auf die jeweilige GO-Kategorie mit p-Werten $\leq 0,05$ aufgelistet. In den Spalten p-Wert, OR, EC, C und S sind die anhand der Analyse errechneten Werte der Signifikanz (p-Wert, *p-value*), der Quotenzahl (*odds ratio*, ermittelt aus Gesamtanzahl der Gene/erhaltene Anzahl an Genen), der erwarteten Anzahl (EC-*expected count*), der erhaltenen Anzahl (C-*count*) und der Gesamtanzahl (S-*size*) an regulierten Genen aufgeführt. Nachfolgend werden die in der GO-Analyse errechneten Werte durch die Gesamtanzahl der auf dem Genchip lokalisierten Gene (G) und die signifikant regulierten Gene (SG) korrigiert.

GO-	Gensymbol	p-Wert	OR	EC	С	S	SG	G
Kategorien								
molecular funct	ion-molekulare Funk	tion						
extracellular matrix structural constituent	BGN COL4A1 COL4A5 FBLN2 FBN2 PXDN TFPI2 COL18A1	3,8 x10 ⁻⁴	5,04	1,8	8	83	8	65
extracellular matrix binding	BGN VEGFA	2,0 x10 ⁻³	8,50	0,6	4	26	2	13

integrin binding	CTGF ITGA2 LYN	7,6 x10 ⁻³	4,42	1,2	5	58	5	58
transforming	rming ACVRL1 THBS1		11,6	0,2	2	10	2	10
growth factor								
beta binding								
biological proces	ss-biologischer Prozes	55						
cell migration	CD44 CTGF MMP14 2,1 x10 ⁻¹⁰ 4,37 8,2 TNS3 PARP9		31	381	5	48		
angiogenesis	ACVRL1 JAG1 ANPEP BMP4	2,8 x10 ⁻⁷	4,78	4,3	18	197	13	105
	COL4A1 CTGF EFNA1 EPAS1 IL8 MMP14 TGFB2 DICER1 COL18A1							
wound healing	DSP SDC1 TGFB2 TPM1	1,5 x10 ⁻⁶	4,42	4,3	17	199	4	40
lung development	CTGF EPAS1 MMP14 DICER1	6,1 x10 ⁻⁵	5,80	1,8	9	81	4	57
cell proliferation	BST2 ISG20 ITGA2 KITLG CITED2 PDPN	3,3 x10 ⁻⁴	1,91	22,8	40	1052	8	249
negative regulation of cell proliferation	ACVRL1 BMP4 CDKN1B HMOX1 IL8 NF2 ZEB1 FOSL1 KLF11 IFITM1	1,4 x10 ⁻³	2,43	7,4	17	344	11	252
lung alveolus	COLISAI BMP4 VEGFA PDPN TNS3	6,4 x10 ⁻⁴	12,2	0,4	4	19	4	19
vasculogenesis	VEGFA CITED2 HEY2	$4,2 \text{ x} 10^{-2}$	4,14	0,8	3	36	3	35
response to hypoxia	EPAS1 HMOX1 ITGA2 MMP14 PLAT TGFB2 THBS1	4,9 x10 ⁻⁴	3,90	2,8	10	129	10	128
	VEGFA CITED2 DDIT4							
cellular compon	ent-zelluläre Kompon	ente						
extracellular	CD44 TGFB2 THBS1	9,6 x10 ⁻⁶	3,24	7,1	23	329	3	24
matrix								
proteinaceous	BGN BMP4 CTGF,	1,1 x10 ⁻⁴	2,98	6,5	18	303	13	210
extracellular matrix	FBLN2 FBN2 EFEMP1 LGALS3BP LOXL1 MMP1 MMP14 VWF PXDN							
focal adhesion	TFPI2 CD44 ITGA2 SDC1 FERMT2 FERMT1 TNS3 AIF1L JUB	1,1 x10 ⁻³	4,21	2,1	8	96	8	96

Neben einer Zuordnung der detektierten Gene zu verschiedenen GO-Kategorien konnten, über die Datenbank KEGG, alle differentiell exprimierten Gene 40 überrepräsentierten Signalwegen mit p-Werten von $\leq 0,05$ bzw. $\leq 0,1$ zugeteilt werden, welche in Abbildung 39 graphisch dargestellt sind. Insgesamt können 31 dieser Signalwege mit einem p-Wert von $\leq 0,05$ als signifikant überrepräsentiert bezeichnet werden. Eine Vielzahl an regulierten Genen konnte der Signalgebung im Bereich der Krebsentstehung zugeordnet werden. So wurde, neben den Signalwegen der allgemeinen Krebsentstehung (*pathway in cancer*), der

Entwicklung von Bauchspeichel-, Blasen- und Prostatakrebs (*pancreatic-, bladder-, prostata cancer*), eine Anzahl an regulierten Genen in der Signalkaskade des kleinzelligen Bronchialkarzinoms (*small cell lung cancer*) eingeordnet. Des Weiteren wurden Gencluster in Zusammenhang mit der Interaktion von Rezeptoren der extrazellulären Matrix (*ECM-receptor interaction*) und der fokalen Adhäsion (*focal adhesion*) - Zellverbindungen, welche das Zytoskelett mit der extrazellulären Matrix verbinden- gebracht. Eine Anzahl von acht regulierten Genen konnte der Signalkaskade von TGF-beta (*TGF-beta signaling pathway*) zugeordnet werden, mit der Verbindung zu TGFß2, dem in der Gesamtauswertung des HPMEC-ST1.6 *Microarrays* am stärksten herunterregulierten Gen. In Tabelle 13 ist ein Auszug von fünf verschiedenen, signifikant überrepräsentierten Signalwegen mit den dazugehörigen regulierten Genen gelistet. Eine ausführliche Auflistung der regulierten Gene nach Zuordnung zu den 31 überrepräsentierten Signalwegen befindet sich im Anhang 7.1.3./Tabelle 20.

Abb.39 Zuordnung der regulierten Gene zu Signalwegen nach KEGG

Die in der *Microarray*-Analyse regulierten Gene wurden über die Datenbank KEGG Signalwegen zugeordnet. In der Grafik sind die in der Analyse ermittelten 40 überrepräsentierten Signalwege mit einem p-Wert $\leq 0.05^*$ und $\leq 0.1^{**}$ dargestellt. Alle im Diagramm grau unterlegten Balken repräsentieren die für den jeweiligen Signalweg erwartete Anzahl an regulierten Genen (Exp.count), alle schwarz unterlegten die tatsächlich erhaltene Anzahl an regulierten Genen (Count). Mit 22 konnte für den Signalweg *pathway in cancer* die größte Anzahl an regulierten Genen detektiert werden.

Tab.13 Auswahl signifikant überrepräsentierter Signalwege nach KEGG

In der Tabelle ist eine Auswahl an signifikant überrepräsentierten Signalwegen mit Zuordnung von in der *Microarray*-Analyse detektierten Genen aufgeführt. Für den jeweiligen Signalweg sind die in der KEGG Analyse errechneten p-Werte angegeben. Für alle Gene sind, neben Gensymbol und Gename, die in der *Microarray*-Analyse ermittelten logFc- und p-Werte ($p \le 0.05$) gelistet.

Gensymbol	Genname	logFc	p-Wert
Signalweg: TGF	<i>-beta</i> (p-Wert: 1,4x10 ⁻³)		
ACVRL1	activin A receptor type II-like 1	- 0,98	2,4 x10 ⁻⁴
BMP4	bone morphogenetic protein 4	- 1,15	10,0 x10 ⁻⁵
BMP6	bone morphogenetic protein 6	- 1,33	1,1 x10 ⁻⁴
CDKN2B	cyclin-dependent kinase inhibitor 2B (p15, inhibits	- 0,85	8,8 x10 ⁻⁴
	CDK4)		
ID1	inhibitor of DNA binding 1, dominant negative helix-	- 1,27	8,1 x10 ⁻⁴
	loop-helix protein		
ID3	inhibitor of DNA binding 3, dominant negative helix-	- 0,91	1,0 x10 ⁻³
	loop-helix protein		_
TGFB2	transforming growth factor, beta 2	- 2,54	$3,9 \times 10^{-5}$
THBS1	thrombospondin 1	- 0,97	$1,1 \text{ x} 10^{-3}$
Signalweg: ECM	<i>I-receptor interaction</i> (p-Wert: 5,5x10 ⁻³)		1
CD44	CD44 molecule (Indian blood group)	+1,05	$1,3 \times 10^{-4}$
COL4A1	collagen, type IV, alpha 1	- 0,92	$2,0 \times 10^{-4}$
ITGA2	integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2	+0,87	1,8 x10 ⁻³
	receptor)		
SDC1	syndecan 1	+1,10	$6,8 \times 10^{-4}$
THBS1	thrombospondin 1	- 0,97	$1,1 \times 10^{-3}$
VWF	von Willebrand factor	- 1,22	$3,6 \times 10^{-4}$
SV2A	synaptic vesicle glycoprotein 2A	- 1,13	1,8 x10 ⁻⁴
Signalweg: <i>p53</i> (p-Wert: $8,0 \times 10^{-3}$)		5
CDK2	cyclin-dependent kinase 2	+1,22	$6,2 \times 10^{-3}$
CDK6	cyclin-dependent kinase 6	+0,96	$1,6 \times 10^{-4}$
MDM2	Mdm2 p53 binding protein homolog (mouse)	+1,05	$4,1 \times 10^{-4}$
THBS1	thrombospondin 1	- 0,97	$1,1 \times 10^{-5}$
CCNE2	cyclin E2	+1,10	$1,3 \times 10^{-4}$
SHISA5	shisa homolog 5 (Xenopus laevis)	+1,10	1,6 x10 ⁻⁴
Signalweg: Foca	<i>l adhesion</i> (p-Wert: 3,0 x10 ⁻²)	0.00	• • • • •
COL4A1	collagen, type IV, alpha I	- 0,92	$2,0 \times 10^{-4}$
IIGA2	integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2	+0,87	1,8 x10
	receptor)	1.40	2.0 10-5
MYLK DIV2D2	myosin light chain kinase	- 1,46	$3,9 \times 10^{-4}$
PIK5K2	phosphoinositide-3-kinase, regulatory subunit 2 (beta)	+0,88	$4,0 \times 10$
MAPK8	mitogen-activated protein kinase 8	- 0,91	$1,3 \times 10^{-3}$
THEST	thrombospondin I	- 0,97	$1,1 \times 10^{-4}$
VEGFA	vascular endotnelial growth factor A	+1,09	$1,6 \times 10$
	von Willebrand factor	- 1,22	$3,6 \times 10^{-4}$
PIK3R3	phosphoinositide-3-kinase, regulatory subunit 3	- 1,04	1,9 x10 ⁻
Cionalwan VEC	$(gamma)$ $E(n Worth 2.7 \times 10^{-2})$		
Signalweg: VEG	\mathbf{r} (p-werl: 5,7 x10) phosphoinositida 2 kinasa, regulatory subunit 2 (heta)	10.88	4.0×10^{-4}
PDD3R1	phosphomoshide-5-killase, legulatory subunit 2 (beta)	+0,00	$4,0 \times 10^{-4}$
IIIJKI	subunit P alpha icoform	- 0,84	2,7 X10
VEGEA	subulit D, alpha isololill vascular andothalial growth factor A	1.00	1.6×10^{-4}
PIK3R3	nhosphoinositide 3 kinase, regulatory subunit 2	$^{+1,09}$	$1,0 \times 10^{-4}$
i iixJiXJ	(gamma)	- 1,04	1,9 X10
SPHK1	(gamma)	⊥1 10	8.8×10^{-4}
511111	spiningosine kinase i	$^{+1,10}$	0,0 110

4.5.2. hMSC

Die Herunterregulation der endogenen *ctgf*/CTGF -Expression in den primären hMSC wurde unter Verwendung der shRNA sh2 erreicht. In drei unabhängigen Versuchsansätzen wurden hMSC von drei verschiedenen Spendern (Spender 692, 698, 696) fünf Tage nach lentiviraler Transduktion für 24 h unter serumreduzierten Bedingungen kultiviert. Nach weiteren 24 h wurde aus CTGF herunterregulierten, CTGF herunterregulierten und mit 500 ng/ml rCTGF bzw 500 ng/ml Fc-*Tag* Protein behandelten und *scrambled* shRNA Kontrollzellen RNA isoliert.

4.5.2.1. Überprüfung der hMSC-Versuchsansätze

Für alle drei *Microarray*-Versuchsansätze (Array1, Array2, Array3) konnte eine Herunterregulation der *ctgf*/CTGF-Expression im Vergleich mit der *scrambled* Kontrolle sowohl auf RNA- (Abbildung 40) als auch auf Proteinebene (Abbildung 41) bestätigt werden. Durch eine Behandlung der Zellen mit 500 ng/ml rCTGF bzw. 500 ng/ml Fc-*Tag* Protein über einen Zeitraum von 24 h konnte in der RT-PCR Analyse keine Erhöhung der *ctgf*/CTGF-Expression detektiert werden. Durch eine Behandlung mit Fc-*Tag* Protein sollte, im Anschluss an die *Microarray*-Auswertung, ein eventueller Einfluss des Fc-*Tag* Anteils auf das Genexpressionsmuster ausgeschlossen werden.

Abb.40 Überprüfung der ctgf-Regulation durch RT-PCR

Dargestellt sind die *ctgf*-Regulationen der für die *Microarray*-Analyse vorgesehenen Proben nach Durchführung einer RT-PCR Analyse. Für die drei *Microarray*-Ansätze wurde das *ctgf*-Expressionslevel der Proben k.o. (CTGF herunterreguliert), k.o.+CTGF (CTGF herunterreguliert+500ng/ml rCTGF) und k.o.+Fc-Tag (CTGF herunterreguliert+500ng/ml Fc-*Tag* Protein) in Bezug auf die *scrambled* Kontrolle (scr.) ermittelt. Alle Proben wurden auf das Haushaltsgen EF1 α normiert und nach densitometrischer Auswertung im Vergleich zu der *scrambled* Kontrolle (100%) mit Mittelwert ± SEM in der Grafik dargestellt.

Abb.41 Überprüfung der CTGF-Regulation im Westernblot

Der Westernblot zeigt die Herunterregulation von CTGF durch die shRNA sh2 im Vergleich zur *scrambled* shRNA Kontrolle in allen drei Versuchsansätzen. Für die Detektion im Westernblot wurden 20µg Gesamtprotein aufgetragen und die Proben, nach Auftrennung in der SDS-PAGE (10%), auf eine Nitrocellulosemembran geblottet. Als Haushaltsgen wurde β-Actin mitgeführt.

4.5.2.2. Affymetrix GeneChip HG-U 133 Plus 2.0

Das Ziel Microarray-Analyse ist es zum Einen die Veränderung der im Genexpressionsmuster der ctgf/CTGF herunterregulierten, unbehandelten hMSC zu den ctgf/CTGF herunterregulierten und mit 500ng/ml rCTGF behandelten Zellen zu analysieren. Zum Anderen soll das gesamte Genexpressionsmuster nach Herunterregulation von ctgf/CTGF vergleichend zu einer mitgeführten scrambled shRNA Kontrolle erfasst werden. Mit Fc-Tag Protein behandelte Proben wurden nicht für die Auswertung in der Microarray-Analyse eingereicht. Für die Isolierung der RNA-Proben aus den Versuchsansätzen der hMSC wurde ein Zeitpunkt von 24 h gewählt. Vor der Durchführung der Analyse konnte die hinreichende Qualität der RNA-Proben in der Agarosegelelektrophorese durch Detektion der 28S und 18S RNA-Banden bestätigt werden (Abbildung 42).

Abb.42 RNA-Gel der hMSC Microarray-Proben

Die für die Durchführung einer *Microarray*-Analyse gewonnenen RNA-Proben wurden in der Agarosegelelektrophorese untersucht. Je Tasche wurden 700 ng RNA aufgetragen. Die Auftrennung erfolgte in einem 1% Agarosegel und für den Größenvergleich wurde ein 1 kb Marker mitgeführt. Das linke Gel zeigt die RNA-Proben aus den *ctgf*/CTGF herunterregulierten und mit 500 ng/ml rCTGF behandelten (k.o.+CTGF) und die *ctgf*/CTGF herunterregulierten, unbehandelten hMSC Proben (k.o.). Im rechten Gel sind die aus den *scrambled* shRNA Kontrollzellen gewonnenen RNA-Proben dargestellt (scr.).

Die Hybridisierung der Proben CTGF k.o.+500ng/ml rCTGF, CTGF k.o. und der *scrambled* Kontrolle mit dem Genechip HG-U 133 Plus 2.0 erfolgte, analog der HPMEC-ST1.6R-Zellen Proben, im Labor von Dr. L. Klein-Hitpass. Ebenfalls wurde, in Kooperation mit Dr. K. Schlegelmilch und Dr. A. Keller, die Auswertung der erhaltenen *Microarray*-Rohdaten mit der Statistik Software *R* und dem Zusatzprogramm *Bioconductor* zur Auswertung von *Microarrays* durchgeführt. In einem ersten Schritt konnten, durch eine visuelle Qualitätskontrolle der erhaltenen Rohdaten, keine Fehler im Bereich der gespotteten Sequenzen detektiert werden (Daten nicht aufgeführt). Mittels eines RNA *degradation plot* konnte die Qualität der RNA-Proben erneut überprüft und bestätigt werden (Abbildung 43). Alle Proben zeigten eine gleichmäßige Abnahme der RNA-Intensitäten vom 3'- in Richtung 5'- Ende und konnten für weitere Versuche verwendet werden.

Abb.43 RNA Degradationsplot der hMSC Microarray-Proben

Der RNA Degradationsplot zeigt den Verlauf der RNA-Intensitäten vom Bereich des 5'-Endes in Richtung 3'-Ende auf. Dargestellt ist die gleichmässige Abnahme der Intensitäten in Richtung 5'-Ende der neun isolierten RNA-Proben von allen drei *Microarray*-Ansätzen.

Die Proben wurden nachfolgend vergleichend mit den Normalisierungsmethoden RMA (*robust multi-array average*) und Q (*quantiles*) normalisiert. In Abbildung 44a sind die Rohdaten der einzelnen *Microarray*-Proben vor der Normalisierung in einem *densityplot* Diagramm dargestellt. Nach Anwendung der Normalisierungsmethoden konnte ebenfalls für die RMA-Methode (Abbildung 44b) das beste Ergebnis erzielt werden.

Abb.44a/44b Dichteplot vor und nach Normalisierung

Die linke Grafik zeigt die Rohdaten der insgesamt neun hMSC *Microarray*-Proben vor der Normalisierung in einem Dichtplot. In der rechten Grafik sind die normalisierten Rohdaten nach Anwendung der RMA-Methode dargestellt.

Durch Anwendung eines IQR (*interquartile range*) Filters (*cutoff*) konnte die hohe Anzahl von 54675 regulierten *probe sets* auf signifikant exprimierte reduziert werden. Die Bewertung der Daten erfolgte über die logFc-Werte unter Angabe des jeweiligen Signifikanzwertes p mit $p \le 0,05$ (p-Wert, *p-value*). Im Vergleich der *ctgf*/CTGF herunterregulierten mit den *ctgf*/CTGF herunterregulierten und mit 500 ng/ml rCTGF behandelten hMSC Zellen konnten für keinen Spender in der Auswertung des jeweiligen Versuchsansatzes signifikante Genregulationen detektiert werden. Hingegen ergab die Auswertung der unbehandelten, *ctgf*/CTGF herunterregulierten Zellen im Vergleich mit den *scrambled* shRNA behandelten Zellen eine Regulation von 859 exprimierten *probe sets*. Insgesamt konnten 56 *probe sets* keinen zum Zeitpunkt der Analyse in der Datenbank registrierten Genen zugeordnet, sowie eine Anzahl von 309 *probe sets* mit einem p-Wert von $\ge 0,05$ als nicht signifikant betrachtet werden. Die verbleibenden 494 *probe sets* repräsentieren eine Anzahl von 407 signifikant regulierten Genen. Hiervon sind 129 Gene gegenüber der *scrambled* shRNA Kontrolle hochreguliert und 278 Gene herunterreguliert (Abbildung 45).

Abb.45 Regulierte Gene der hMSC Microarray-Analyse

Anzahl der insgesamt regulierten Gene im Vergleich der *ctgf*/CTGF herunterregulierten humanen mesenchymalen Stammzellen gegenüber den *scrambled* shRNA Kontrollzellen, dargestellt in einem Venn-Diagramm. Von 407 signifikant regulierten Genen sind 129 in Bezug auf die Kontrolle hochreguliert, 278 herunterreguliert.

In Tabelle 14 sind die 50 am stärksten regulierten Gene entsprechend ihrer errechneten logFc-Werte aufgeführt, beginnend mit der höchsten Hochregulation bis zur niedrigsten Herunterregulation im Vergleich zur *scrambled* shRNA Kontrolle. Eine vollständige Liste der 494 regulierten *probe sets* und der daraus resultierenden Genregulationen befindet sich im Anhang in 7.2.1./Tabelle 21.

Tab.14 hMSC Microarray-Analyse: Tabelle der 50 am stärksten regulierten Gene

Alle regulierten Gene sind entsprechend ihrer logFc-Werte in absteigender Reihenfolge aufgelistet. Der jeweilige logFc- und Signifikanzwert (p-Wert, *adjusted p-value*) bezieht sich im Falle der Detektion eines Genes durch mehrere *probe sets* immer auf das am stärksten regulierte *probe set*. Positive logFc-Werte = Hochregulation, negative = Herunterregulation des Genes gegenüber der *scrambled* shRNA Kontrolle.

Symbol	Genname	logFc	p-Wert
IFIT1	interferon-induced protein with tetratricopeptide repeats 1	+4,88	3,1 x10 ⁻²
IFIT3	interferon-induced protein with tetratricopeptide repeats 3	+4,26	$3,8 \times 10^{-2}$
ISG15	ISG15 ubiquitin-like modifier	+3,53	$5,3 \times 10^{-2}$
IFITM1	interferon induced transmembrane protein 1 (9-27)	+3,17	$5,2 \text{ x} 10^{-2}$
EPSTI1	epithelial stromal interaction 1 (breast)	+3,05	$2,8 \times 10^{-2}$
BTN3A2	butyrophilin, subfamily 3, member A2	+2,55	1,6 x10 ⁻²
PARP9	poly (ADP-ribose) polymerase family, member 9	+2,39	$5,0 \times 10^{-2}$
MATN2	matrilin 2	+2,38	7,9 x10 ⁻³
PSMB9	proteasome (prosome, macropain) subunit, beta type, 9	+2,33	2,8 x10 ⁻²
	(large multifunctional peptidase 2)		
MGP	matrix Gla protein	+2,23	$2,8 \times 10^{-3}$
ANPEP	alanyl (membrane) aminopeptidase	+2,22	$3,2 \times 10^{-3}$
UBE2L6	ubiquitin-conjugating enzyme E2L 6	+2,20	$5,0 \times 10^{-2}$
PTN	pleiotrophin	+2,14	$4,9 \text{ x} 10^{-2}$
CLU	clusterin	+2,12	$3,7 \times 10^{-3}$
SP110	SP110 nuclear body protein	+2,11	$4,9 \text{ x} 10^{-2}$
APOBEC3G	apolipoprotein B mRNA editing enzyme, catalytic	+2,10	$4,6 \text{ x} 10^{-2}$
	polypeptide-like 3G		2
LY6E	lymphocyte antigen 6 complex, locus E	+2,10	$4,9 \times 10^{-2}$
DTX3L	deltex 3-like (Drosophila)	+1,99	$3,1 \times 10^{-2}$
SCARB2	scavenger receptor class B, member 2	+1,97	$6,9 \times 10^{-3}$
LGALS3BP	lectin, galactoside-binding, soluble, 3 binding protein	+1,91	$8,7 \times 10^{-3}$
TMED2	transmembrane emp24 domain trafficking protein 2	+1,89	$3,3 \times 10^{-3}$
SFXN3	sideroflexin 3	+1,86	$2,3 \times 10^{-3}$
RCN3	reticulocalbin 3, EF-hand calcium binding domain	+1,85	$2,1 \times 10^{-3}$
C19orf66	chromosome 19 open reading frame 66	+1,79	$4,0 \times 10^{-2}$
BTN3A1	butyrophilin, subfamily 3, member A1	+1,75	$4,8 \times 10^{-2}$
UBE2K	ubiquitin-conjugating enzyme E2K (UBC1 homolog,	- 1,76	$2,4 \times 10^{-5}$
	yeast)	1 50	1 2 10-2
ANKRDI	ankyrin repeat domain 1 (cardiac muscle)	- 1,78	$1,2 \times 10^{-2}$
KAB12	RAB12, member RAS oncogene family	- 1,80	$3,8 \times 10^{-3}$
PURB CNA12	purine-rich element binding protein B	- 1,80	$2,4 \times 10^{-3}$
GNAI2	guanine nucleotide binding protein (G protein) alpha 12	- 1,85	$2,2 \times 10^{-3}$
L5IVI14A EDI IN1	ED ligid geft accessized 1	- 1,80	$2,3 \times 10^{-3}$
EKLINI ITCDI 1	EK lipid fall associated 1 integrin, beta like 1 (with ECE like repeat domains)	- 1,8/	$2,1 \times 10^{-3}$
DDDDE1	DDDE pontidese domain containing 1	- 1,00	$4,5 \times 10^{-3}$
CI PY5	glutarodovin 5	- 1,09	$2,1 \times 10^{-3}$
GLKA5 CI TP	glucolinid transfer protein	- 1,94	$2,1 \times 10^{-3}$
ENC1	ectodermal_neural cortex (with BTB_like domain)	- 1,95	$2,2 \times 10^{-3}$
PAK2	n21 protein (Cdc42/Rac)-activated kinase 2	- 1 98	2.2×10^{-3}
NACC2	NACC family member 2 BEN and BTB (POZ) domain	- 2 00	3.4×10^{-3}
101002	containing	2,00	3, 4 XI0
LCLAT1	lysocardiolipin acyltransferase 1	- 2.02	2.7×10^{-3}
PXDN	peroxidasin homolog (Drosophila)	- 2.02	2.8×10^{-3}
PDGFA	platelet-derived growth factor alpha polypentide	- 2.03	2.2×10^{-3}
CLDN12	claudin 12	- 2.05	2.1×10^{-3}
FAM101B	family with sequence similarity 101. member B	- 2,15	3.1×10^{-3}
RAN	RAN, member RAS oncogene family	- 2,20	$2,1 \times 10^{-3}$

VAMP3	vesicle-associated membrane protein 3 (cellubrevin)	- 2,31	2,2 x10 ⁻³
NRAS	neuroblastoma RAS viral (v-ras) oncogene homolog	- 2,34	2,2 x10 ⁻³
TGFB2	transforming growth factor, beta 2	- 2,49	5,3 x10 ⁻³
TMEM30A	transmembrane protein 30A	- 2,65	2,1 x10 ⁻³
CCND1	cyclin D1	- 2,90	3,3 x10 ⁻³

4.5.2.3. Validierung der hMSC *Microarray*-Daten durch RT-PCR

Nach Etablierung der jeweiligen genspezifischen PCR-Reaktionen erfolgte die Validierung der erhaltenen Affymetrix *Microarray*-Daten mittels RT-PCR. Für die Überprüfung der in der Analyse aufgeführten unterschiedlichen Genregulationen wurden 10 verschiedene Gene aufgrund ihrer starken Regulation gegenüber den Kontrollzellen (logFc) und im Hinblick auf potentielle regulatorische Eigenschaften in hMSC ausgewählt (Tabelle 15). Die Validierung mittels RT-PCR wurde mit den identischen Proben durchgeführt, welche in der *Microarray* Analyse eingesetzt wurden.

Tab.15 Genauswahl für die Validierung der hMSC *Microarray*-Daten durch RT-PCR Auflistung der symbolischen Abkürzung, der *probe set* ID auf dem HG-U 133 Plus 2.0 Chip, dem Gennamen, dem logFc- und dem Signifikanzwert (p-Wert) der für die Validierung augewählten Gene. Sind mehrere *probe sets* für ein Gen gelistet, beziehen sich die aufgeführten logFc- und p-Werte auf das jeweils zuerst genannte. Negative logFc-Werte zeigen eine Herunterregulation, positive eine Hochregulation des jeweiligen Genes gegenüber der *scrambled* Kontrolle auf.

Symbol	Probe set ID	Genname	logFc	p-Wert
TGFB2	228121_at	transforming growth factor, beta 2	- 2,49	5,3 x10 ⁻³
PAK2	208877_at	p21 protein (Cdc42/Rac)-activated kinase 2	- 1,98	$2,2 \times 10^{-3}$
FGF7	205782_at	fibroblast growth factor 7 (keratinocyte growth	- 1,34	$3,0 \times 10^{-2}$
		factor)		
MAP3K3	227131_at	mitogen-activated protein kinase kinase kinase	- 1,65	$2,2 \times 10^{-3}$
		3		2
CCND1	208712_at	cyclin D1	- 2,90	$3,3 \times 10^{-3}$
	208711_s_at			
VAMP3	201336_at	vesicle-associated membrane protein 3	- 2,31	$2,2 \times 10^{-3}$
	211749_s_at	(cellubrevin)		
STAT2	225636_at	signal transducer and activator of transcription	+1,40	6,2 x10 ⁻³
		2, 113kDa		
PDGFA	205463_s_at	platelet-derived growth factor alpha	- 2,03	$2,2 \times 10^{-3}$
		polypeptide		
WISP2	205792_at	WNT1 inducible signaling pathway protein 2	+1,49	$2,1 \times 10^{-2}$
NRAS	224985_at	neuroblastoma RAS viral (v-ras) oncogene	- 2,34	$2,2 \times 10^{-3}$
	202647_s_at	homolog		

Alle 10 für die Validierung der *Microarray*-Daten ausgewählten Gene konnte in der RT-PCR Analyse bestätigt werden. Für alle drei Versuchsansätze wurden die in Tabelle 15 aufgeführten Genregulationen gegenüber der *scrambled* Kontrolle bestätigt und sind in Abbildung 46 bildlich und grafisch dargestellt.

k.o. scr.	k.o. scr.	k.o. scr.	
	1	1	TGFß2
			PAK2
			FGF7
			MAP3K3
			CCND1
			VAMP3
		-	STAT2
			PDGFA
	-		WISP2
			NRAS
			EF1α
Array 1	Array2	Array3	•

Abb.46 Validierung der hMSC Microarray-Ergebnisse durch RT-PCR

In der oberen Abbildung sind die Regulationen der 10 für die Validierung der *Microarray*-Daten ausgewählten Gene nach RT-PCR im Agarosegel dargestellt. Für alle drei *Microarray*-Ansätze wurde die Regulation des jeweiligen Genes nach Herunterregulation von CTGF (k.o.) im Vergleich zur *scrambled* Kontrolle (scr.) aufgeführt. Für die Auswertung erfolgte die Normierung der Proben auf das Haushaltsgen EF1 α . Die Grafik zeigt die densitometrische Auswertung der drei *Microarray*-Ansätze mit Mittelwert \pm SEM. Die *scrambled* shRNA Kontrolle wurde für jedes Gen jeweils auf 100% gesetzt.

4.5.2.4. Zuordnung von Genregulationen nach Gene Ontology (GO) und KEGG

Nach Auswertung der Microarray-Ergebnisse wurden, analog dem HPMEC-ST1.6R Microarray, die detektierten Gene (859 regulierte probe sets) mit Hilfe des Programmes GOStat den verschiedenen GO-Kategorien molecular function, biological process und cellular component zugeordnet. Des Weiteren erfolgte eine Einteilung der differentiell exprimierten Gene in signifikant überrepräsentierte Signalwege mit dem online Programm KEGG. In der GO-Kategorie molecular function konnte, vergleichend mit der Auswertung des HPMEC-ST1.6R Arrays, eine Vielzahl an regulierten Genen der Untergruppe binding, mit der höchsten Anzahl an signifikant regulierten Genen im Bereich protein binding, zugeordnet werden. Weitere interessante Gengruppierungen in der Untergruppe binding konnten im Bereich der Heparin-, Calmodulin- und Collagenbindung (heparin-, calmodulin-, collagen binding) und dem Aufbau der ECM (extracellular matrix structural constituent) detektiert werden. Zahlreiche weitere Gene konnten in der Kategorie molecular function bezüglich ihrer Aktivität im Tätigkeitsbereich verschiedener Enzyme (isomerase-, transferase-, metalloexopeptidase activity) und Wachstumsfaktoren (growth factor activity) eingeordnet werden. Für die Kategorie biological process zeigte die GOstat Analyse Gencluster in den Untergruppen der Adhäsion, Differenzierung und Proliferation von Zellen (cell adhäsion-, differentiation-, proliferation) auf. Auch konnten für diese Kategorie einige Gene in Verbindung mit Angiogenese, dem Aufbau der ECM und der Entwicklung des skelettalen Systems (angiogenesis, extracellular matrix organization, skeletal system development) gebracht werden. In der dritten GO-Kategorie cellular component konnten die meisten regulierten Gene in Bezug auf das Zytoplasma und den extrazellulären Bereich eingeordnet (cytoplasm, extracellular space/region), einige wenige Gene aber auch in Zusammenhang mit der ECM gebracht werden (proteinaceous extracellular matrix, extracellular matrix). In Tabelle 16 ist eine Auswahl an Genclustern nach ihrer Zugehörigkeit zu den verschiedenen GO-Kategorien gelistet. Eine ausführliche Auflistung der regulierten Gene nach Einteilung in die GO-Klassen befindet sich im Anhang unter 7.2.2/Tabelle 22.
Tab.16 Auswahl überrepräsentierter Gengruppierungen nach GO-Analyse

Die nach Auswertung der *Microarray*-Daten erhaltenen regulierten Gene wurden einer GO-Analyse unterzogen. In der obigen Tabelle ist eine Auswahl an regulierten Genen (Gensymbol) in Bezug auf die jeweilige GO-Kategorie mit p-Werten $\leq 0,05$ aufgelistet. In den Spalten p-Wert, OR, EC, C und S sind die anhand der GO-Analyse errechneten Werte der Signifikanz (p-Wert, *p-value*), der Quotenzahl (*odds ratio*), der erwarteten Anzahl (EC-*expected count*), der erhaltenen Anzahl (C-*count*) und der Gesamtanzahl (S-*size*) an regulierten Genen aufgeführt. Nachfolgend werden die in der GO-Analyse errechneten Werte durch die Gesamtanzahl der auf dem Genchip lokalisierten Gene (G) und die signifikant regulierten Gene (SG) korrigiert

GO-	Gensymbol	p-Wert	OR	EC	С	S	SG	G
Kategorien								
molecular function-	molekulare Funktion							
heparin binding	CTGF HBEGF FGF7 PTN, CCL2 TGFBR3 THBS1 ADAMTS1 PCOLCE2 KGFLP2	1,0 x10 ⁻²	2,52	4,25	10	108	10	108
calmodulin binding	ATP2B1 CAMK2D CNN1 DAPK1 MYLK MYO1D MYO5A RGS4 CAMTA1 MARCKSL1	5,0 x10 ⁻²	1,90	5,50	10	140	10	140
collagen binding	CD44 DPP4 PDGFA ITGA10 NID2 ANTXR1	3,0 x10 ⁻⁴	6,40	1,34	7	34	6	31
insulin-like growth factor binding	CTGF WISP3 WISP2	1,3 x10 ⁻²	4,92	0,94	4	24	3	17
extracellular matrix structural constituent	COL1A1 COL8A2 COL15A1 FBLN1 MGP PXDN MFAP5	1,6 x10 ⁻²	2,63	3,26	8	83	7	65
growth factor activity	CSF1 CTGF HBEGF FGF7 GPI IL6 KITLG, PDGFA PTN CXCL12 TGFB2 GDF5 WISP3 KGFLP2	2,7 x10 ⁻³	2,52	5,98	14	152	14	152
type II transforming growth factor beta	TGFB2 TGFBR3	2,8 x10 ⁻²	9,81	0,28	2	7	2	7
receptor binding								
biological process-b	iologischer Prozess							
ossification	CTGF EXT1 IBSP MGP TWSG1	6,1 x10 ⁻⁶	3,52	6,41	20	158	5	46
skeletal system	BGLAP CMKLR1 COL12A1 EXT1	9,3 x10 ⁻⁵	2,29	14,2	30	350	10	106
angiogenesis	HOXA10 TNFRSF11B SHOX2 CLEC3B EIF2AK3 ANKH ANGPT1 ANPEP COL8A2 COL15A1	1,5 x10 ⁻⁴	2,74	7,99	20	197	12	105
	CTGF GPI PDGFA PLAU TGFB2 DICER1 ERAP1 C1GALT1 COL8A2 P4CAUT1	6.5 - 10-4	2 21	4.02	12	00	7	5 0
organization	IBSP TNFRSF11B PXDN SERAC1 EGFLAM	6,5 X10 ⁺	3,31	4,02	12	99	/	28
cell proliferation	CRIP1 CSRP2 IFI16 INSIG1 LIPA KITLG MIF SERPINF1 TCF7L2 PDXK TMX1	6,7 x10 ⁻⁴	1,60	42,6	64	1052	11	249

GO-	Gensymbol	p-Wert	OR	EC	С	S	SG	G
Kategorien								
biological process-	biologischer Prozess							
cell differentiation	ANGPT1 ANPEP RHOB COL15A1 CSF1 CSRP2 CTGF DBN1 DUSP6 EFNB2 GNA12 MEF2C MGP SLIT3 SPAST SEMA7A NRP2 HTATIP2 CCDC85B CADM1 BZW2 RNF114 C1GALT1 TWSG1	1,2 x10 ⁻³	1,46	66,79	91	1646	26	454
transforming	KCTD11 SLFN5 SMAD5 PDGFA	1.3×10^{-2}	2 56	3 77	0	03	6	46
growth factor beta receptor signaling	CCL2 TGFB2 TGFBR3 GDF5	1,5 x10	2,30	5,77	7	95	0	40
pathway								
cellular componen	t-zelluläre Komponen	te						
	CALU CLU COLIA1 COL8A2 COL12A1 COL15A1 CPE HAPLN1 CSF1 CST6 CTGF DPP4 HBEGF FBLN1 EFEMP1 FGF7 FMOD B4GALT1 GPI CFH IBSP IGFBP3 IL6 IL6ST LFNG LGALS3BP MATN2 KITLG MGP MIF TNFRSF11B P4HB PDGFA SERPINF1 PENK PLAU PLAUR PTGDS PTN RNASE4 CCL2 CXCL12 SLIT3 TFRC TGFB2 TGFBR3 THBS1 CLEC3B PXDN ADAM12 MFAP5 GDF5 STC2 RNASET2 WISP3 WISP2 ITGBL1 ADAMTS1 ISG15	[
	GPC6 FST CRTAP SCRG1 NID2 ENDD1 ANGPTL2 APOL2, MXRA5 PAMR1 OLFML2B PCOLCE2 SRPX2 ERAP1 EPDR1 OLFML3 TWSG1 SEPN1 NTN4 ARSJ KRTAP1-3 KRTAP1-1 ADPGK HMCN1 LOXL4 LOXL3 ACPL2 CTHRC1 EGFLAM GLIPR2 FIBIN C5orf53							

Nach Durchführung einer KEGG-Analyse konnten alle differentiell exprimierten Gene insgesamt 21 überrepräsentierten Signalwegen zugeteilt werden, welche in der Abbildung 47 dargestellt sind. Eine Anzahl von 10 dieser 21 Signalwege ist mit einem p-Wert von ≤ 0.05 signifikant überrepräsentiert. Nach Herunterregulation von ctgf/CTGF in hMSC und einer Zuordnung der regulierten Gene zu verschiedenen Signalwegen, konnten zahlreiche Gencluster in Zusammenhang mit der Entstehung von Krebs im allgemeinen (pathway in cancer), sowie differentierter der Entstehung des renalen Zellkarzinoms (renal cell carcinoma) und von Schilddrüsenkrebs (thyroid cancer) gebracht werden. Auch konnten einige Gene in den Bereich der Bildung von hämatopoetischen Zellen (hematopoietic cell lineage) eingeordnet werden. Desweiteren wurden nach Auswertung der hMSC Microarray-Daten mittels KEGG diverse Gene der Signalkaskade der fokalen Adhäsion (focal adhesion) und der TGF-beta Signalgebung (TGF-beta signaling) zugeteilt. Auch kann für die Auswertung des hMSC Microarrays TGFB2 zu den am stärksten herunterregulierten Genen gezählt werden. In der nachfolgenden Tabelle sind drei der signifikant überrepräsentierten dazugehörigen Genregulationen Signalwege mit den gelistet. Eine ausführliche Zusammenstellung aller ermittelten Signalwege ist im Anhang 7.2.3./Tabelle 23 gelistet.

Abb.47 Zuordnung der regulierten Gene zu Signalwegen nach KEGG

Die in der *Microarray*-Analyse regulierten Gene wurden über die Datenbank KEGG Signalwegen zugeordnet. In der Grafik sind alle in der Analyse ermittelten 31 Signalwege mit einem p-Wert von $\leq 0,05^*$ und $\leq 0,1^{**}$ dargestellt. Alle im Diagramm grau unterlegten Balken repräsentieren die für den jeweiligen Signalweg erwartete Anzahl an regulierten Genen (Exp.count), alle schwarz unterlegten die erhaltene Anzahl an regulierten Genen (Count).

Tab.17 Auswahl signifikant überrepräsentierter Signalwege nach KEGG

In der Tabelle ist eine Auswahl an signifikant überrepräsentierten Signalwegen mit Zuordnung von in der *Microarray*-Analyse detektierten Genen aufgeführt. Für den jeweiligen Signalweg sind die in der KEGG Analyse errechneten p-Werte angegeben. Für alle Gene sind, neben Gensymbol und Gename, die in der *Microarray*-Analyse ermittelten logFc- und p-Werte gelistet ($p \le 0.05^*$).

Gensymbol	Genname	logFc	p-Wert				
Signalweg: TGF-beta (p-Wert:1,81x10 ⁻²)							
ACVR2A	activin A receptor, type IIA	- 0,58	$3,2x10^{-1}$				
BMPR2	bone morphogenetic protein receptor, type II	- 0,82	9,8x10 ⁻³ *				
	(serine/threonine kinase)						
CDKN2B	cyclin-dependent kinase inhibitor 2B (p15, inhibits	- 0,80	$2,1x10^{-1}$				
	CDK4)						
ID4	inhibitor of DNA binding 4, dominant negative helix-	- 0,35	$5,9x10^{-1}$				
	loop-helix protein						
SMAD5	SMAD family member 5	- 1,09	$2,8x10^{-3}*$				
TGFB2	transforming growth factor, beta 2	- 2,49	5,3x10 ⁻³ *				
THBS1	thrombospondin 1	+0,90	$1,4x10^{-2*}$				
GDF5	growth differentiation factor 5	+0,11	$8,7 \times 10^{-1}$				
FST	follistatin	- 0,51	$4,4x10^{-1}$				
Signalweg: Focal adhesion (p-Wert:4,68x10 ⁻²)							
CCND1	cyclin D1	- 2,90	3,3x10 ⁻³ *				
CDC42	cell division cycle 42 (GTP binding protein, 25kDa)	+0,08	$9,1x10^{-1}$				
COL1A1	collagen, type I, alpha 1	+1,00	$3,7 \times 10^{-3} *$				
CRKL	v-crk sarcoma virus CT10 oncogene homolog (avian)-like	- 1,23	$2,8x10^{-3}*$				
IBSP	integrin-binding sialoprotein	- 0,89	$3,7x10^{-1}$				

ITGB8	integrin, beta 8	+1,30	7,9x10 ⁻³ *
MYLK	myosin light chain kinase	- 0,72	$2,0x10^{-1}$
PAK2	p21 protein (Cdc42/Rac)-activated kinase 2	- 1,98	$2,2x10^{-3}*$
PDGFA	platelet-derived growth factor alpha polypeptide	- 2,03	$2,2x10^{-3}$
PPP1CC,	protein phosphatase 1, catalytic subunit, gamma isoform	+0,91	5,0x10 ⁻³ *
THBS1	thrombospondin 1	+0,90	$1,4x10^{-2*}$
VASP	vasodilator-stimulated phosphoprotein	- 1,43	$2,8 \times 10^{-3}$ *
ITGA10	integrin, alpha 10	- 0,45	$5,9x10^{-1}$
AKT3	v-akt murine thymoma viral oncogene homolog 3 (protein	+0,89	$5,2x10^{-3}*$
	kinase B, gamma)		
Signalweg: Hem			
ANPEP	alanyl (membrane) aminopeptidase	+2,22	$3,2x10^{-3}*$
CD9	CD9 molecule	- 0,26	$7,7x10^{-1}$
CD44	CD44 molecule (Indian blood group)	+1,22	$1,3x10^{-2}*$
CSF1	colony stimulating factor 1 (macrophage)	+1,18	$9,8x10^{-2}$
CD55	CD55 molecule, decay accelerating factor for complement	+0,26	$7,3x10^{-1}$
	(Cromer blood group)		
IL1R1	interleukin 1 receptor, type I	+1,14	$7,1x10^{-3}*$
IL6	interleukin 6 (interferon, beta 2)	- 0,26	$8,2x10^{-1}$
KITLG	KIT ligand	+1,08	$4,3x10^{-3}*$
TFRC	transferrin receptor (p90, CD71)	- 0,52	$5,9x10^{-1}$

4.6. Behandlung mit rekombinanten Proteinen: TGFB2, rCTGF

Nach erfolgreicher Herunterregulation von ctgf/CTGF in der Lungenendothelzelllinie HPMEC-ST1.6R und in primären humanen mesenchymalen Stammzellen (hMSC) konnten, im Vergleich mit scrambled shRNA behandelten Kontrollzellen, zahlreiche unterschiedliche Genregulationen detektiert werden. In der Auswertung beider Microarrays konnte TGF-beta 2 (TGFB2, transforming growth factor beta 2) als eines der am stärksten herunterregulierten Gene, mit einem logFc von "-" 2,54 für den HPMEC-ST1.6R und einem logFc von "-" 2,49 für den hMSC Microarray, detektiert werden. Basierend auf diesen Ergebnissen wurden CTGF herunterregulierte Lungenendothelzellen, scrambled shRNA behandelte (scrambled) und unbehandelte Kontrollzellen (Kontrolle) mit 10 ng/ml TGFB2 und 100 ng/ml rCTGF (Biovendor) behandelt. Eine Versuchsreihe für hMSC wurde nicht angesetzt. Aus den behandelten Zellen wurde 12 h, 24 h und 48 h nach Behandlung mit TGFB2 zur Untersuchung der ctgf/CTGF -Expression RNA und Protein, für die Untersuchung der TGFß2-Expression nach Behandlung mit rCTGF nur RNA isoliert. Der Einfluss von TGFB2 und rCTGF auf die endogene Expression von CTGF bzw. TGFB2 in Lungenendothelzellen ist in den nachfolgenden Abbildungen dargestellt. Bereits 12 h nach Zugabe von 10 ng/ml TGFß2 konnte in CTGF herunterregulierten Zellen (k.o.) eine Steigerung der CTGF-Expressionrate sowohl auf RNA- wie auch auf Proteinebene detektiert werden (Abbildung 48 und 49). Der stärkste Effekt von TGFB2 auf ctgf/CTGF herunterregulierte HPMEC-ST1.6R-Zellen konnte, nach einer Behandlungsdauer von 48 h, sowohl auf RNA- wie auch Proteinebene bestätigt und eine erhöhte Expression von ctgf/CTGF gegenüber der Kontrolle gemessen werden. Auch konnte, für die in den *Microarray* Versuchsansätzen verwendeten *scrambled* shRNA behandelten Kontrollzellen, 12 h nach Zugabe von TGFB2 eine erhöhte *ctgf*/CTGF - Expression auf RNA- und Proteinebene gemessen werden, mit der höchsten Expressionsrate nach 24 h bzw 48 h (Abbildung 48 und 49). Die Auswertung der TGFB2 behandelten Kontrollzellen zeigte ebenfalls nach 12 h eine erhöhte CTGF-Expression auf RNA- und Proteinebene (Abbildung 48 und 49). Durch eine weitere Behandlung über 24 h und 48 h konnte keine gesteigerte *ctgf*/CTGF -Expression im Vergleich mit dem 12 h Wert gemessen werden.

Abb.48 RT-PCR: Regulation von ctgf nach Behandlung mit TGF82

Dargestellt ist das RNA-Expressionslevel von *ctgf* in *ctgf*/CTGF herunterregulierten (k.o+TGF β 2), *scrambled* shRNA behandelten (scrambled+TGF β 2) und unbehandelten HPMEC-ST1.6R-Zellen (Kontrolle+TGF β 2), nach Behandlung über 12 h, 24 h und 48 h mit 10 ng/ml TGF β 2. Die Werte wurden aus drei unabhängigen Versuchsansätzen ermittelt und unter Angabe der Mittelwerte ± SEM bezogen auf die Kontrolle (100%) graphisch dargestellt.

Abb.49 Westernblot: Regulation von CTGF nach Behandlung mit TGFß2

Die im Westernblot detektierten Signale zeigen das Expressionslevel von CTGF in *ctgf*/CTGF herunterregulierten HPMEC-ST1.6R-Zellen (CTGF/k.o., Abbildung links), *scrambled* shRNA behandelten (CTGF/scr., Abbildung mitte) und unbehandelten Kontrollzellen (CTGF/K., Abbildung rechts) nach einer Behandlung über 12 h, 24 h und 48 h mit 10ng/ml TGFB2. Es wurden jeweils 20 µg Gesamtprotein aufgetragen und die Proben nach Auftrennung in der SDS-PAGE (12%) auf eine PVDF-Membran übertragen. Als Haushaltsgen wurde β-Actin mitgeführt.

Analog der Behandlung mit TGFß2 wurden *ctgf*/CTGF herunterregulierte Lungenendothelzellen, *scrambled* shRNA und unbehandelte Kontrollzellen mit 100 ng/ml rCTGF (BioVendor) behandelt (Abbildung 50).

Abb.50 RT-PCR: Regulation von tgfß2 nach Behandlung mit rCTGF

Dargestellt ist das RNA-Expressionslevel von $tgf\beta 2$ nach Behandlung über 12 h, 24 h und 48 h mit 100 ng/ml rCTGF (Biovendor) in CTGF herunterregulierten (k.o+rCTGF), *scrambled* shRNA behandelten (scrambled+rCTGF) und unbehandelten HPMEC-ST1.6R-Zellen (Kontrolle+rCTGF). Die Werte wurden aus drei unabhängigen Versuchsansätzen ermittelt und unter Angabe der Mittelwerte ± SEM bezogen auf die Kontrolle (100%) graphisch dargestellt.

Für den Versuchsansatz der *ctgf*/CTGF herunterregulierten Lungenendothelzellen, wie für den der unbehandelten Kontrollzellen, konnte nach Zugabe von rCTGF zu keinem Zeitpunkt der Probenentnahme eine Veränderung im RNA-Expressionslevel von *tgfβ2* festgestellt werden. Im Vergleich hierzu wurde nach Zugabe von rCTGF zu den *scrambled* Kontrollzellen eine erhöhte Expression von *tgfβ2* nach 12 h und 48 h, aber kein messbarer Effekt nach 24 h gemessen. In Anbetracht der stark abweichenden Rohdaten innerhalb der einzelnen Versuchsansätze ist der Einfluß von rCTGF auf eine erhöhte Expression von *tgfβ2* in *scrambled* Kontrollzellen kritisch zu betrachten.

5. Diskussion

Seit ihrer Entdeckung vor über zwei Jahrzehnten konnte für CYR61/CCN1 und CTGF/CCN2, die ersten Vertreter der Familie der CCN-Proteine, eine Verbindung zu zahlreichen biologischen Abläufen nachgewiesen werden. Diese multifunktionellen, dynamisch exprimierten Proteine sind eng mit der extrazellulären Matrix verknüpft und konnten, unter anderem aufgrund ihrer angiogenen und chondrogenen Eigenschaften, mit der skelettalen und Frakturheilung, aber auch der Entwicklung Entstehung verschiedener Lungenerkrankungen in Verbindung gebracht werden (Chen und Lau 2009; Burgess 2005; Ning et al., 2004; Kunzmann et al., 2007). Neben der Expression von CYR61 in hMSC und der Osteoblastenzelllinie hFOB, konnte innerhalb der Arbeitsgruppe die differentielle Expression von CYR61 und CTGF nach der Differenzierung von hMSC in Adipozyten, Osteozyten und Chondrozyten gezeigt werden (Schütze et al., 2005 b, 2007). Weitere Studien, welche sich mit einer erhöhten Expressionsrate von CTGF in Chondrozyten und Osteoblasten nach erfolgter Fraktur (Nakata et al., 2002), bzw. von CYR61 im fibrösen Gewebe von Chondrozyten und Osteoblasten während der Knochenheilung beschäftigen (Hadjiargyrou et al., 2000) untermauern die Beteiligung der Kandidatenproteine an der Knochenentwicklung. Auch wird für CYR61 und CTGF ein Zusammenhang im Auf- und Umbau von Lungengefäßen (vascular-, airway remodeling) und folglich einer Beteiligung an der Ausbildung verschiedener Lungenerkrankungen vermutet (Ning et al., 2004; Kunzmann et al., 2007; Burgess 2005). Des Weiteren sind CYR61 und CTGF, basierend auf den nachweislich angiogenen Eigenschaften (Schütze et al., 2005 a; Shimo et al., 1999), in die Tumorentwicklung involviert (Kubota und Takigawa 2007). In dieser Arbeit wurde der Schwerpunkt auf die Untersuchung der CCN-Proteine CYR61 und CTGF und deren Einfluss auf humane mesenchymale Stammzellen und humane Lungenendothelzellen gelegt. So konnten, neben der Gewinnung von rekombinantem CTGF und der Herunterregulation der endogenen *ctgf*/CTGF-Expression in beiden Zellsystemen, vor allem im Hinblick auf einen Zusammenhang der postulierten Eigenschaften von CTGF wichtige Erkenntnisse erlangt werden.

5.1. Rekombinantes CTGF (rCTGF)

5.1.1. Von der Klonierung bis zur Aufreinigung

Die codierende Sequenz von CTGF wurde aus dem pSecTag2/Hygro B Vektor amplifiziert und über den Zwischenschritt einer TOPO-Klonierung schließlich in den für die nachfolgende Produktion von rekombinantem CTGF (rCTGF) benötigten Transfervektor kloniert. In einem letzten Klonierungsschritt konnte die Fc-Domäne (Fc-*Tag*) eines humanen IgG Antikörpers an das 3'-Ende der CTGF-Sequenz angefügt werden, welche für die Aufreinigung in der Affinitätschromatographie nötig ist. Ein fehlerfreies Klonierungsprodukt konnte durch Sequenzanalysen bestätigt werden. Die Produktion von rCTGF erfolgte unter Verwendung des Baculovirus-Expessionssystems in Insektenzellen. Nach Transfektion der Insektenzellen mit dem Klonierungsprodukt wurde rCTGF schliesslich als ein CTGF/Fc-*Tag* Fusionsprotein exprimiert und konnte mittels Affinitätschromatographie aus dem Überstand aufgereinigt werden. Die hohe Reinheit, aber auch die Identität der gewonnenen Proteine rCTGF und rCYR61 konnten unmittelbar nach der Aufreinigung in der Silbergelanalyse und im Westernblot nachgewiesen werden. Im direkten Vergleich mit nativem CTGF aus dem Zelllysat von hMSC (siehe 4.2.2, Abb.12), HPMEC-ST1.6R-Zellen (siehe 4.3.1, Abb.18) aber auch rCTGF exprimiert in *E.coli* Zellen (siehe 4.2.2, Abb.12) kann für das in Insektenzellen exprimierte rCTGF keine charakteristische Doppelbande, welche auf eine Glykosilierung hinweist, detektiert werden. Des Weiteren zeigt das aufgereinigte Fusionsprotein eine Größe von 65 kd, im Vergleich zu nativen Protein von 38 kd.

Um hohe Konzentrationen an rCTGF für die nachfolgenden Untersuchungen zu erhalten wurde ein Baculovirus-Expressionssystem gewählt, welches die Expression von rekombinanten Proteinen in Insektenzellen ermöglicht. Die Produktion und Aufreinigung von rCYR61 wurde bereits in der Arbeitsgruppe etabliert (Schütze et al., 2005 a).

5.1.2. Proteingewinnung-eine kritische Betrachtung

Weitere Möglichkeiten für die Gewinnung von rekombinanten Proteinen sind, unter Betracht der jeweiligen Vor- und Nachteile, z.B. der Einsatz von Bakterienzellen (z.B. *Escherichia coli-E.coli*) oder Säugetierzellen (z.B. HEK293 -humane embryonale Nierenzellen). Das Baculovirus-Expressionssystem stellt ein sehr preiswertes System dar, ist unkompliziert in der Handhabung und bietet die Möglichkeit in kurzer Zeit hohe Konzentrationen an eukaryontischen Proteinen in Insektenzellen zu produzieren. So konnte, eine Woche nach der Infektion/Transfektion mit dem Klonierungsprodukt, aus ca. 40 ml Zellüberstand zwischen 170 µg- 250 µg rCTGF gewonnen werden. Stabil transfizierte HEK293-Klone für die Expression von rekombinantem Protein zu selektionieren ist kostspielig, von Seiten der Zellkultur sehr aufwendig und im Vergleich die Ausbeute an Protein oft um ein Vielfaches geringer. Ein Problem stellt die posttranslationale Modifikation der Proteine dar. Hierzu zählen unter anderem Glykosilierungs- und Phosphorylierungsvorgänge an Serin-, Threonin- und Tyrosinresten, aber auch die Ausbildung von Disulfidbrücken, Modifikationen welche sich auf Löslichkeit, Stabilität und auch die Funktion der Proteine auswirken können (Misrahi et al., 1994; Geisse et al., 1996; Salinas et al., 2011; Chen et al., 2010). Die Expression von

rekombinanten, eukaryontischen Proteinen in Säugetierzellen wie HEK293-Zellen gewährleistet eine vollständige posttranslationale Modifikation der Proteine. Auch gestaltet sich die Anwendung eines bakteriellen Expressionssystems wie E.coli sehr unkompliziert und kostengünstig und lässt eine hohe Ausbeute an Protein erwarten. Allerdings führt die Verwendung eines prokaryontischen Systems für die Produktion von eukaryontischen (heterologen) Proteinen dabei häufig zu schwer löslichen, inaktiven Proteinen, bedingt durch eine fehlende Fähigkeit Proteine posttranslational durch N- oder O-Glykosylierungen modifizieren zu können (Porro et al., 2005; Chen et al., 2010). Demgegenüber stimmen viele Signalwege hinsichtlich der posttranslationalen Modifizierung zwischen dem eukaryontischen Baculovirus-Expressionssystem in Insektenzellen und Säugetierzellen überein und ermöglichen die Expression von teilweise vergleichbaren Proteinen (Shimo et al., 2002). Jedoch konnte in einer von Misrahi et al. (1994) vorgelegten Studie, zum Vergleich eines in Insektenzellen und in L-Zellen exprimierten TSH-Rezeptorproteins, für das in Insektenzellen produzierte keine Funktionsfähigkeit nachgewiesen werden, was auf eine unvollständige Glykosylierung des Proteins hinweist. Hollister et al. (2002) zeigten, dass sich das Glykosylierungsmuster der Proteine als weniger komplex gegenüber höheren Eukaryonten darstellt, gekennzeichnet durch fehlende Verzweigungen in der N-Glycan-Kette und der Abwesentheit einer Sialinsäuresequenz.

Die Auswahl des hier verwendeten Expressionssystems für CTGF wurde vor allem im Hinblick auf die Vergleichbarkeit mit in Säugetierzellen exprimiertem Protein, aber auch die hohe Expressionsrate und die einfache Handhabung getroffen. Auch konnten innerhalb der Arbeitsgruppe Erfahrungen in der Gewinnung von rekombinantem CYR61 unter Einsatz dieses Systems gewonnen werden. Hinsichtlich der Wahl des Expressionssystems muß zwischen Qualität und Quantität des zu erwartenden Proteins und dem späteren Verwendungsziel für beispielsweise *in vitro* oder *in vivo* Untersuchungen abgewogen werden, sodass die Wahl immer auf einer Kosten/Nutzen Entscheidung basiert.

5.1.3. Stabilität und Funktion

Die Aufreinigung von rekombinantem CTGF aus dem Überstand der Insektenzellen wurde mittels Affinitätschromatographie unter Anwendung einer G-Sepharosesäule erreicht. Das CTGF/Fc Fusionsprotein wurde zunächst im schwach basischen Bereich an das G-Protein an der Oberfläche der Sepharose gebunden und durch eine nachfolgende Spülung mit einer sauren Glycinlösung (ph 2,2) aus der Säule eluiert. Die gewonnen Aliquots wurden, nach Einstellung eines ph-Wertes von 7, bis zur weiteren Verwendung bei 4°C bzw. -20°C gelagert. Eine unmittelbar nach der Aufreinigung durchgeführte Silbergelanalyse konnte die hohe Reinheit des Proteins bestätigen.

Die angefügte Fc-Domäne eines humanen IgG Antikörpers dient zum Einen der gezielten Aufreinigung des Proteins aus dem Überstand, zum Anderen wird die Löslichkeit erhöht und eine Detektion des Proteins erleichtert. Für rCTGF konnte allerdings bereits 24 h nach der Aufreinigung ein weißer Niederschlag und damit ein Ausfallen des Proteins im Lagerungsgefäß beobachtet werden. Die Silbergelanalyse bestätigte (siehe 4.2.2, Abb.11) im Vergleich von einer frisch aufgereinigten zu einer fünf Tage bei 4°C gelagerten Probe den Zerfall in mehrere Fragmente. Auch durch eine Lagerung des Proteins bei -20°C wurde keine verbesserte Stabilität erreicht. Offensichtlich läuft, zeitnah nach der Aufreinigung des Proteins, ein Denaturierungsprozess ab. Hierbei kommt es zu einer Veränderung der räumlichen Struktur eines Proteins, d.h. einem reversiblen oder auch irreversiblen Verlust der biologischen Funktion durch einen Einfluß auf Sekundär-, Tertiär- und evtl. auch die Quartärstruktur. Ursachen hierfür können sowohl chemischen als auch physikalischen Ursprungs sein. So könnte bei der hier angewendeten, manuellen Aufreinigung über Chromatographiesäulen ein zu hoher Elutionsdruck und eine folglich zu hohe Elutionsgeschwindigkeit entstanden sein; mechanische Belastungen, welche die Stabilität von Proteinen beeinflussen können. Auch können Proteasen in den Laborgefäßen, Temperaturoder auch ph-Wert Änderungen die Denaturierung fördern. Möglicherweise könnte durch den Einsatz einer mechanischen Elutionspumpe mit konstanter Fließgeschwindigkeit und konstantem Elutionsdruck die physikalische Belastung der Proteine verringert werden. In Bezug auf die chemischen Einflüsse müssten weitere Untersuchungen angestellt werden, um eine ausreichende Stabilität des Proteins über einen längeren Zeitraum zu gewährleisten.

Die Funktionsfähigkeit von rCTGF aus Insektenzellen wurde, basierend auf den nachgewiesenen proliferierenden Eigenschaften von CTGF, in einem Proliferationsassay überprüft. Die Tests wurden mehrfach durchgeführt und für die Behandlung rCTGF aus verschiedenen Aufreinigungen verwendet. So konnte, trotz zahlreicher Versuchsansätze, ein proliferativer Effekt auf hMSC nur einmal gemessen werden. Für die Zelllinien EAhy926 und HPMEC-ST1.6R konnte ein derartiger Effekt nicht beobachtet werden. Hingegen wurde, in Kooperation mit PD Dr. Steffen Kunzmann, unter der Behandlung von HPMEC-ST1.6R-Zellen mit rekombinantem CTGF aus *E.coli* (Firma Biovendor) ein dosisabhängiger Effekt auf die Proliferationsstudien, dass eine Behandlung von EAhy926-Zellen mit rCTGF aus Säugetierzellen (HEK293) einen positiven Einfluss auf die Proliferation hat, eine Behandlung

mit rCTGF von bakterieller Herkunft (*E.coli*) dagegen keine Auswirkung hat. In Anbetracht dieser Ergebnisse stellt, neben der wirtsabhängigen Produktion der Proteine, auch die Wahl des Zellsystems einen wichtigen Faktor für die Überprüfung der Funktionsfähigkeit dar. So könnte, unter Ausschluß der eventuellen Denaturierung von rCTGF (SF 21), durch die unter 5.1.2. diskutierte Problematik von in Insektenzellen produziertem Protein die biologische Wirkung von rCTGF in diesen Zellsystemen nicht gegeben sein.

Die Gewinnung von rCTGF wurde gemäß der im Labor für rCYR61 etablierten Methode durchgeführt, eine Funktionsfähigkeit konnte aber für rCTGF nur bedingt nachgewiesen werden. Auch wurde rCYR61 im Rahmen dieser Arbeit erneut aufgereinigt und eine gleichbleibende Qualität und Reinheit entsprechend der veröffentlichten Studie von Schütze et al. (2005 a) erreicht. Die Funktionsfähigkeit des CYR61/Fc-Fusionsproteins wurde unter anderem über den angiogenen Effekt in einem CAM-Assay, aber auch durch die Beeinflussung der Migration von undifferenzierten hMSC, sowie die Formation von Osteoklasten nachgewiesen (Schütze et al., 2005 b, 2007; Crockett et al., 2007). Auch konnte ein Effekt durch die angefügte Fc-Domäne in diesen Studien ausgeschlossen werden.

Zu meiner Kenntnis wurde im Rahmen dieser Arbeit CTGF erstmals rekombinant unter Verwendung eines Baculovirus-Expressionssystems in Insektenzellen hergestellt. Zwar konnte ein Protein von hoher Reinheit gewonnen, ein Nachweis der Funktionsfähigkeit des Proteins aber nur bedingt erbracht werden. Neben einem proliferativen, aber nicht signifikanten Effekt auf hMSC konnte in der Arbeitsgruppe von Dr. J. Crockett, welche mit rCTGF/Fc aus Insektenzellen arbeitet, eine Hemmung der Osteoklastenformation beobachtet werden (nicht veröffentlichte Studie, persönlicher Kontakt). Die zeitnah nach der Aufreinigung des Proteins einsetzende Degradation lässt eine hohe Sensitivität der Proteine vermuten. Von der Infektion der Insektenzellen bis zur Aufreinigung des Proteins vergehen in der Regel 2-3 Wochen, ein Zeitraum, welcher die Anwendung von stets frisch aufgereinigtem Protein in der Versuchsplanung schwer möglich macht. Ein proliferativer Effekt von in E.coli produziertem rCTGF auf Lungenendothelzellen und von in HEK293-Zellen exprimiertem rCTGF auf EAhy926-Zellen (Bohr et al., 2010), nicht aber von rCTGF aus Insektenzellen auf diese beiden Zelllinien lassen eine unzureichende Funktionsfähigkeit des Proteins vermuten. So könnte, neben der geringen Stabilität von rCTGF auch die Größe der angefügten Fc-Domäne, welche mit 27 kd eine Größe von über 70% des nativen Proteins erreicht, ein weiterer Grund für die fehlende Wirkung sein. Eine veränderte Primär- und folglich auch Sekundär-, Tertiär- und Quartärstruktur von rCTGF, sowie eventuell aufgetretene fehlerhafte Glykosylierungsprozesse (siehe 5.1.2) könnten weitere Erklärungen für die ausbleibende

Wirkung von rCTGF sein. Boucher et al. (2008) zeigten, dass sowohl die Art der angefügten Domäne, als auch die Verknüpfungsposition mit dem Protein (N- oder C-terminal) einen starken Einfluss auf die Wirkung eines Proteins haben können. Vergleichend mit dem 27 kd großen Fc-Fusionsprotein (Fc-*Tag*) könnten, unter Verwendung einer Polyhistidin-Kette (His-*Tag*, i.d.R. aus 6 Histidinresten bestehend) oder einer FLAG-Kette (FLAG-*Tag*, i.d.R. aus acht Aminosäuren bestehend), Proteine mit reduzierter Größe exprimiert werden (Shimo et al., 2002; Otani et al., 2010). Auch die Abspaltung des Fc-*Tags* nach der Aufreinigung des Proteins in einem Proteaseverdau wäre denkbar (Asano et al., 2010), würde die Löslichkeit allerdings stark verringern.

Basierend auf den innerhalb der Arbeitsgruppe erlangten Erkenntnissen zu rekombinant exprimiertem CYR61/Fc müssen hinsichtlich Stabilität und Funktion von rCTGF nachfolgend Versuche angeschlossen werden, um eine gleichbleibende Qualität zu gewährleisten.

5.2. Herunterregulation der endogenen cyr61/CYR61- oder ctgf/CTGF-Expression

Beide CCN-Proteine sind offensichtlich an zahlreichen Abläufen im Zusammenhang mit Zellen des muskuloskelettalen Systems, aber auch Zellen des Bronchialtraktes beteiligt. Um nähere Erkenntnisse über das multifunktionale Potential von CYR61 und CTGF zu erlangen, wurde der Weg der lentiviralen Transduktion gewählt über welchen, unter Verwendung von RNA-Viren, shRNAs stabil in das Genom der Lungenendothelzellen und der primären humanen mesenchymalen Stammzellen integriert werden können. Dieser Schritt ist entscheidend, um in nachfolgenden *Microarray*-Analysen die Wirkung der CCN-Proteine auf die beiden unterschiedlichen Zellsysteme näher zu erfassen.

5.2.1. Lungenendothelzellen: Herunterregulation der *ctgf*/CTGF-Expression führt zu verringertem Proliferationsverhalten

Um die endogene *ctgf*/CTGF-Expression in den Lungenendothelzellen zu regulieren, wurden fünf verschiedene shRNAs getestet, welche zielgerichtet gegen unterschiedliche mRNA Abschnitte der für *ctgf* codierenden Sequenz sind. Für shRNA 2 und 3 konnte eine deutlich verringerte *ctgf*/CTGF-Expression gegenüber den *scrambled* shRNA und Leervektor behandelten Kontrollzellen gezeigt und ein sogenannter *off target* Effekt damit ausgeschlossen werden.

Die Verwendung einer Zelllinie und der Einsatz eines lentiviralen Transduktionssystems bieten den Vorteil eine stabile Herunterregulation von *ctgf*/CTGF zu erreichen. So konnten HPMEC-ST1.6R-Zellen in sehr niedrigen Zellpassagen stabil transduziert und ohne Verlust der *ctgf*/CTGF -Suppression bis zu hohen Passagen kultiviert werden. Fünf Tage nach

lentiviraler Transduktion mit der shRNA 3 wurde die stärkste Herunterregulation von ctgf/CTGF sowohl auf RNA-, als auch auf Proteinebene durch RT-PCR- wie auch Westernblot-Analysen bestätigt. Während der Kultivierungsphase konnte, gegenüber den Kontrollzellen GFP und scrambled shRNA, neben einem veränderten Phänotyp der shRNA 3 transduzierten Zellen auch eine deutlich verlängerte Zeitspanne bis zum Erreichen der Konfluenz beobachtet werden. In einem anschließend durchgeführten Proliferationstest wurde ein signifikant verringertes Proliferationsverhalten nach Herunterregulation von *ctgf*/CTGF in Lungenendothelzellen gegenüber unbehandelten Kontrollzellen, aber auch den scrambled shRNA behandelten Kontrollzellen gemessen. Meiner Kenntnis nach wurde das verringerte Proliferationsverhalten der Lungenendothelzelllinie HPMEC-ST1.6R nach Herunterregulation von CTGF erstmals gezeigt und geht mit zahlreichen bereits veröffentlichten Studien, welche den Einfluß von CTGF auf die Proliferation von Zellen unterschiedlicher Herkunft belegen, konform. So wiesen Baguma-Nibasheka und Kablar (2008) ein stark verringertes Proliferationsverhalten von epithelialen wie auch mesenchymalen Lungenzellen in CTGF k.o. Mäusen nach. Auch konnten eine verminderte Proliferation von humanen Magenkrebs Zellen (Jiang et al., 2011), sowie auch humanen Leberzellkarzinom Zellen (Jia et al., 2011) nach Herunterregulation von CTGF belegt werden.

5.2.2. Humane mesenchymale Stammzellen: Herunterregulation der *ctgf*/CTGF-Expression führt zu verringertem Proliferationsverhalten

Analog der Anwendung bei den Lungenendothelzellen wurden die fünf verschiedenen shRNAs in Bezug auf die Herunterregulation der *ctgf*/CTGF-Expression in primären hMSC getestet. Die endogene *ctgf*/CTGF -Expression konnte durch die shRNAs 2, 3 und 4 deutlich gegenüber den Kontrollen *scrambled* shRNA und Leervektor herunterreguliert und somit, aufgrund der Funktionsfähigkeit mehrere shRNAs, ein *off target* Effekt ausgeschlossen werden.

Die im Rahmen dieser Arbeit verwendeten hMSC wurden aus dem Knochenmark von Patienten gewonnen, welche einer Hüftoperation unterlagen. Unter Verwendung eines lentiviralen Systems ist die stabile Herunterregulation von *ctgf*/CTGF in den primären Stammzellen zwar möglich, aber im Vergleich zu einer Zelllinie eine Kultivierung über höhere Passagen hinaus nicht gegeben. So wurden alle Versuche mit hMSC der Passage 1 von verschiedenen Spendern durchgeführt. Eine Veränderung hinsichtlich des Phänotyps und dem proliferativen Verhalten nach Transduktion mit den shRNA Konstrukten konnte zunächst nicht beobachtet werden und könnte auf die relativ kurze Versuchsdauer von fünf Tagen zurückzuführen sein. In einem nachfolgend durchgeführten Proliferationsassay konnte

allerdings eine deutlich verringerte Proliferationsrate der stabil transduzierten hMSC gegenüber den unbehandelten, aber auch den *scrambled* shRNA behandelten Kontrollzellen gemessen werden.

Ein Zusammenhang zwischen CTGF und dem Proliferationsverhalten konnte bereits für Zellen des muskuloskelettalen Systems nachgewiesen werden, der Einfluss auf hMSC, nach Herunterregulation von CTGF, wurde zu meiner Kenntnis noch nicht beschrieben. So konnte, neben einer verringerten Chondrozytenproliferation in CTGF-null Mäusen (Ivkovic et al., 2003) auch eine Verbindung von CTGF und der skelettalen Entwicklung hergestellt werden (Arnott et al., 2011).

Im Rahmen dieser Arbeit konnte unter Anwendung eines lentiviralen Systems eine deutliche Herunterregulation von *ctgf*/CTGF durch shRNAs sowohl in der Lungenendothelzelllinie HPMEC-ST1.6R, wie auch den primären humanen mesenchymalen Stammzellen gezeigt werden. In Bezug auf die effektive Herunterregulation von *ctgf*/CTGF durch zwei bzw. drei shRNAs in HPMEC-ST1.6R-Zellen bzw. hMSC konnte ein *off target* Effekt ausgeschlossen werden. Für beide Zellsysteme wurde, nach Herunterregulation von CTGF, eine deutlich verminderte Proliferationsrate nachgewiesen und lässt einen Zusammenhang von CTGF mit essentiellen Vorgängen in hMSC und HPMEC-ST1.6R-Zellen vermuten.

5.2.3. Kein regulatorischer Effekt von shRNAs auf die endogene Expression von *cyr61*/CYR61 in hMSC und HPMEC-ST1.6R-Zellen

Unter Anwendung fünf verschiedener shRNAs, zielgerichtet gegen unterschiedliche Domänen der für CYR61 codierenden Sequenz, konnte eine Herunterregulation der endogenen Expression weder in den primären hMSC noch in der Lungenendothelzelllinie hinreichend belegt werden. Auch konnte durch Abwandlungen in der Methodik, wie verlängerte Transfektionszeiten der HEK293T-Zellen zum Erhalt höherer Virustiter und auch ein längeres Verbleiben des viralen Überstandes auf den Zielzellen keine verbesserte Transduktionsrate in den Zellen erreicht werden. Offensichtlich ist die Spezifität der eingesetzen shRNAs zu gering, um eine stabile Herunterregulation der *cyr61*/CYR61-Expression in den beiden Zellsystemen hMSC und HPMEC-ST1.6R zu gewährleisten.

Trotz standardisierter Transfektions- und Transduktionsmethoden konnte, unter Einsatz eines kommerziellen shRNA Sets, keine ausreichende Herunterregulation der *cyr61*/CYR61-Expression auf RNA- und Proteinebene erzielt werden. Ein Fehler in der Methodik kann ausgeschlossen werden, da die Abläufe bzgl. Transfektion und Transduktion denen für CTGF identisch waren. So lässt sich nur eine zu geringe *cyr61* Spezifität der verwendeten shRNAs vermuten. Nachfolgend war die Durchführung der Folgeuntersuchungen hinsichtlich des

Einflusses von rekombinantem CYR61 auf die beiden Zellsysteme, sowie die Untersuchung des Genexpressionsmusters in einer *Microarray*-Analyse nicht möglich.

5.3. *Microarray*-Analyse: Zahlreiche Genregulationen nach Herunterregulation der *ctgf*/CTGF-Expression in hMSC und HPMEC-ST1.6R-Zellen

Die nach Durchführung der *Microarray*-Analyse erhaltenen Daten wurden, unter Verwendung der identischen, in der Analyse eingesetzten RNA-Proben, mittels semiquantitativer PCR (RT-PCR) validiert. In beiden Ansätzen konnten die in der *Microarray*-Analyse detektierten Unterschiede im Genexpressionsmuster zwischen *ctgf*/CTGF herunterregulierten Zellen und den verwendeten *scrambled* shRNA Kontrollzellen durch Evaluierung vereinzelter Gene bestätigt werden. Nach der Auswertung beider Versuchsansätze konnte, sowohl für die primären humanen mesenchymalen Stammzellen wie auch die Lungenendothelzelllinie, *tgfβ2 (transforming growth factor beta 2)* als das mit am stärksten regulierte Gen detektiert werden. Nach der Herunterregulation von *ctgf*/CTGF wurde im Falle der hMSC und HPMEC-ST1.6R-Zellen eine verminderte Expression von *tgfβ2* gegenüber der *scrambled* shRNA Kontrolle mit einem logFc von "-" 2.49, bzw. "-" 2.54 gemessen.

5.3.1. Der TGFß-Signalweg

Die TGFß-Familie umfasst eine große Anzahl strukturverwandter Peptide zu welchen, neben der Activin-Unterfamilie, die Mitglieder der BMP- (*bone morphogenic proteins*), GDF- (*growth and differentiation factor*) und vor allem der TGFß-Unterfamilie, mit TGFß1, TGFß2 und TGFß3 gehören. Mit über 40 im menschlichen Genom vorkommenden Mitgliedern sind diese an unterschiedlichen Prozessen wie der Zellteilung, Migration, Differenzierung aber auch dem programmierten Zelltod beteiligt (Massagué 1998; Massagué und Gomis 2006). Für die Mitglieder der TGFß-Familie konnten Interaktionen mit verschiedenen Membranproteinen nachgewiesen werden, aber verantwortlich für die meisten biologischen Aktivitäten ist ein Zusammenspiel verschiedener, membrangebundener Typ I und Typ II Serin/Threonin-Kinase-Rezeptoren (Attisano et al., 1994). Insgesamt konnten im menschlichen Genom sieben verschiedene Typ I sowie fünf unterschiedliche Typ II-Rezeptoren identifiziert werden, wobei jedes TGF-beta Mitglied an eine unterschiedliche Kombination dieser Rezeptoren bindet (ten Dijke und Hill 2004).

Modifizierte Grafik in Anlehnung an Massagué 1998 "TGF-ß Signal Transduction"

Abb.51 TGF[®]-Signalweg.

TGFß kann durch einen mit der Membran assoziierten TßR-III (z.B. Betaglycan) bzw. TßR-IIb Rezeptor gebunden und den signalgebenden Rezeptoren präsentiert werden, oder direkt an den TßR-II Rezeptor binden. Nach der Kopplung mit TßR-II bildet sich im Zusammenspiel mit TßR-I ein bidimerischer Rezeptorkomplex, bestehend aus je zwei Untereinheiten TßR-I und TßR-II, in welchem es zu einer Phosphorylierung von Rezeptor Typ I durch Typ II kommt. Rezeptor regulierte SMAD-Proteine (R-SMADs) werden nachfolgend phosphoryliert, bilden einen Komplex mit SMAD4, um sich anschließend im Zellkern anzureichern. Zusammen mit weiteren Co-Faktoren erfolgt die Transkription der jeweiligen Zielgene. I-Smads (*inhibitory*-Smads) können die R-Smad vermittelte Signalgebung unterbinden.

Die Signalkaskade von TGFß ist schematisch in Abbildung 51 dargestellt und verläuft über die membranständigen, signalgebenden Serin/Threonin-Kinase-Rezeptoren TGFß I (TßR-I) und TGFß II (TßR-II). Als weitere Rezeptoren werden TGFß III (TßR-III) oder auch Betaglycan und TGFß IIb (TßR-IIb, eine Splice Variante von TßR-II) diskutiert, welche offensichtlich nicht an der direkten Signalgebung beteiligt sind aber TGFß (vor allem TGFß2) binden, um es den signalgebenden Rezeptoren I und II zu präsentieren (Liu et al., 2000; Rotzer et al., 2001). Im direkten Vergleich von TGFß1 und TGFß2 besitzt TGFß2 nur eine geringe Bindungsaffinität an TßR-I/II und bedingt somit der Anwesenheit von Betaglycanen (TßR-III), um eine optimale Affinität zu erreichen (Esparza-Lopez et al., 2001). Eine Weiterleitung der Signalgebung innerhalb der Zelle erfolgt durch Rezeptor regulierte Smad-Proteine (R-Smads) zu welchen Smad 1, 2, 3, 5 und 8 gehören. Nach der Aktivierung durch den TßR-I/II Komplex bildet sich ein Komplex aus phosphoryliertem R-Smad und dem Co-Mediator Smad 4, welcher nach Translokation in den Zellkern mit weiteren Co Faktoren die

Transkription TGF^B responsiver Gene reguliert. Eine Inhibition der durch R-Smads vermittelten Signalgebung kann durch endogene I-Smads (*inhibitory*-Smads), zu welchen Smad6 und Smad7 gehören, hervorgerufen werden (Shi und Massagué 2003). Smad6/7 sind endogene Inhibitoren der TGF^B Signalkaskade und können, nach Komplexbildung mit den Ligasen Smurf1 oder Smurf2 eine Degradation der TGF^B-Rezeptoren hervorrufen und folglich die Effekte von TGF^B limitieren (Kavsak et al., 2000; Ebisawa et al., 2001).

5.3.2. CTGF und der Einfluss von transforming growth factor beta

Die Expression von CTGF wird von zahlreichen ex- und intrinsischen Faktoren beeinflusst. So sind unter anderem erhöhte Sauerstoffkonzentrationen, mechanische Belastungen und eine verminderte Sauerstoffzufuhr, aber auch verschiedene Faktoren wie VEGF, PDGF, BMPs und vor allem die Hauptvertreter der TGFB Familie TGFB1, TGFB2 und TGFB3 maßgeblich an der Signalgebung von CTGF beteiligt. TGFß und CTGF werden auch als profibrotische Proteine bezeichnet, da ein Zusammenhang zwischen der Entstehung fibrotischer Erkrankungen -gekennzeichnet durch stark erhöhte Produktion und Deposition an Bestandteilen der Extrazellulärmembran- und CTGF bzw. TGFß nachgewiesen werden konnte (Grotendorst 1997; Blom et al., 2002). CTGF wird vielfach als downstream Mediator von TGFß beschrieben, dessen Expression unter TGFß in zahlreichen Zellsystemen induziert wird. So konnte eine erhöhte Expression von CTGF nach der Behandlung mit TGFß1 beispielsweise in Fibroblastenzellen (Igarashi et al., 1993; Grotendorst 1997; Chang und Wu 2010), aber auch glatten Aorten-Muskelzellen (Hishikawa et al., 1999) und der murinen Stammzelllinie C3H10T1/T2 (Song et al., 2007) gezeigt werden. Analog hierzu wurde, nach der Behandlung von humanen Nierenzellen mit TGFB2 (Ren et al., 2009) oder auch von Leiomyom Zellen mit TGFß3 (Joseph et al., 2010), eine vermehrte Expression von CTGF festgestellt. Nach Herunterregulation von CTGF durch antisense Oligonucleotide bzw. siRNAs konnte im Umkehrschluss gezeigt werden, dass ein durch TGFB1 hervorgerufener Effekt beispielsweise auf die Apoptose von glatten Muskelzellen (Hishikawa et al., 1999), oder auch die Verdichtung muriner Stammzellen (Song et al., 2007) ausblieb und folglich CTGF abhängig war.

Der prozentual größte Anteil der veröffentlichten Studien befasst sich mit der Untersuchung der Zusammenhänge von TGFß1 und CTGF, gefolgt von einer geringeren Studienzahl die Verknüpfung von TGFß2 bzw. TGFß3 und CTGF betreffend und postuliert CTGF als *downstream* Mediator von TGFß. Die nach Auswertung der *Microarray*-Analyse erhalten Daten zeigen eine deutliche Herunterregulation von TGFß2 sowohl in den hMSC als auch der Lungenendothelzelllinie HPMEC-ST1.6R, wohingegen bezüglich der Regulation von TGFß1

und TGFB3 keine Veränderung ersichtlich ist. Auch wird, neben der Funktion von CTGF als Akteur einer TGFB-Stimulation, eine gegenseitige Abhängigkeit von TGFB und CTGF beschrieben, über welche die Herunterregulation von TGFB2 nach Behandlung mit CTGF spezifischen shRNAs erklärt werden könnte. Abreu et al. (2002) wiesen, in Anwesentheit von rCTGF, eine verstärkte Bindung von TGF
ß1 an die membrangebundenen Rezeptoren T
ßR-I/II sowie Betaglycan (TBR-III) nach. In einer von Wang et al. (2011) publizierten Studie wurde eine synergistischer Effekt von TGFB2 und CTGF aufgezeigt, ein weiterer Hinweis darauf dass CTGF nicht nur als downstream Mediator von TGFB fungiert, sondern vielmehr eine gegenseitige Abhängigkeit der beiden Zytokine voneinander besteht. Auch konnte, zwar mit geringer Affinität, eine Bindung von CTGF an TGFß1, sowie eine verstärkte TGFß1 Signalgebung durch Phosphorylierung von Smad2 in Anwesenheit von CTGF detektiert werden (Abreu et al., 2002). Der Effekt der verstärkten Smad2/3 Phosphorylierung konnte von Wahab et al. (2005) unter der Zugabe von CTGF ebenfalls bestätigt, sowie eine rapide Abnahme von inhibitorisch aktivem Smad7 beobachtet werden. Zahlreiche Modellversuche zur Untersuchung der Entstehung fibrotischer Erkrankungen im Zusammenhang mit CTGF und TGFß belegen eine verminderte TGFß-Expression nach Herunterregulation von CTGF durch siRNAs bzw. antisense Oligonucleotide (Li et al., 2006; Brigstock et al., 2009).

Auch wurde ein solcher Effekt im Rahmen dieser Arbeit, nach der Transduktion mit CTGF spezifischen shRNAs beobachtet und eine signifikante Herunterregulation von TGFB2 sowohl in humanen mesenchymalen Stammzellen, wie auch der Lungenendothelzelllinie HPMEC-ST1.6R aufgezeigt. In Anlehnung an die postulierten Zusammenhänge zwischen TGFB und CTGF konnte, neben den *scrambled* shRNA und unbehandelten Kontrollzellen, auch in den *ctgf*/CTGF herunterregulierten Lungenendothelzellen eine erhöhte Expression von *ctgf*/CTGF nach Zugabe von rekombinantem TGFB2 auf RNA- und Proteinebene bestätigt werden (siehe 4.6.). Eine inverse Regulation von TGFB2 wurde, nach der Behandlung mit rekombinantem CTGF aus *E.coli* (siehe 4.6.) und auch rCTGF aus SF21-Insektenzellen, weder für die shRNA regulierten noch die Kontrollzellen nachgewiesen und könnte auf die bereits unter 5.1.3 behandelte Problematik der Proteinstabilität zurückzuführen sein.

5.3.3. CTGF und TGFB2: ein möglicher Zusammenhang in der Lungenentwicklung

In Bezug auf die in dieser Arbeit eingesetzte humane Lungenendothelzelllinie können, unter Betracht der erhaltenen Genregulationen, eventuell Rückschlüsse bezüglich der Aufgaben von CTGF und auch TGFß während der Lungenentwicklung, aber auch der Ausbildung verschiedener Erkrankungen gezogen werden. CTGF wird von einer Vielzahl an Zellen des Lungengewebes wie beispielsweise Epithel-, Endothel-, Fibroblasten- und glatten Muskelzellen exprimiert und ist aufgrund seiner multifunktionalen Eigenschaften vermutlich an Auf- und Umbauprozessen der Lunge beteiligt (Burgess 2005). Auch sind TGFB2, sowie TGFB1 und TGFB3, die markantesten Vertreter der TGFB-Familie, offensichtlich in diese Prozesse involviert (Bartram und Speer 2004). Sowohl CTGF also auch TGFß werden als profibrotische Faktoren bezeichnet und die Bildung von fibrösem Gewebe konnte, in Verbindung mit CTGF und auch TGFB in verschiedenen Organen, so auch der Lunge festgestellt werden (Leask und Abraham 2004). Unter Betracht der möglichen Zusammenhänge von CTGF und der Lungenentwicklung wurde in weiteren Publikationen auch TGFB2 mit verschiedenen zellulären Aufbau- und Umbauprozessen, aber auch der Entstehung pulmonaler Erkrankungen in Verbindung gebracht. Liu et al (2000) konnten in einem Zellkulturmodell mit Lungenepithelzellen aus Rattenembryonen einen positiven Effekt von TGFB2 auf die Verzweigung des Bronchialbaums der Lunge feststellen, wohingegen für TGFB1 und TGFB3 keine Auswirkung nachweisbar war. Eine Herunterregulation von TGFB2 durch antisense Oligonucleotide führte in diesem Versuchsansatz zu einer verminderten Lungenverästelung, Sanford et al (1997) wiesen in TGFB2-null Mäusen zahlreiche Entwicklungsdefekte in unterschiedlichsten Geweben und Organen, unter anderem der Lunge, nach. Die Mäuse litten unter starker Atemnot, welche eventuell auf eine verminderte Lungenentwicklung zurückzuführen sein könnte und starben vorwiegend unmittelbar nach der Geburt. Erhöhte TGFB2 Konzentrationen wurde bei Patienten mit einer Lungenentzündung, aber auch Patienten welche unter einen schweren Verlaufsform von Asthma litten, gemessen (Bühling et al., 1999; Balzar et al., 2005) und lassen einen Zusammenhang von TGFB2 und der Ausbildung weiterer pulmonaler Erkrankungen wie COPD und auch BPD vermuten.

5.3.4. CTGF und TGFB2 und das muskuloskelettale System

CTGF ist ein multifunktionales Protein, welches an unterschiedlichsten Prozessen wie Migration, Adhäsion, Proliferation und auch der Produktion von Bestandteilen der EZM beteiligt ist und bzgl. dieser biologischen Abläufe nicht nur als *downstream* Mediator, sondern auch als gleichwertiger Partner von TGFß fungiert. CTGF konnte in verschiedenen Zellen des muskuloskelettalen Systems nachgewiesen und ein Zusammenhang von CTGF und der skelettalen Entwicklung durch zahlreiche Publikationen belegt werden. So konnte innerhalb der Arbeitsgruppe die Expression von CTGF nach der Differenzierung von hMSC sowohl in Chondrozyten als auch in Osteoblasten und Adipozyten bestätigt werden. Weitere Arbeitsgruppen wiesen beispielsweise einen Effekt von CTGF auf das Migrationsverhalten von mesenchymalen Stammzellen (Luo et al., 2004), wie auch einen Effekt auf das Proliferationsverhalten einer Osteoblasten- und Chondrozytenzelllinie nach (Nishida et al., 2000; Nakanishi et al., 2000).

Vergleichend hierzu konnte auch für die drei TGFß-Isoformen TGFß1, TGFß2 und TGFß3 ein dosisabhängiger Effekt auf die chondrogene Differenzierung von humanen Stammzellen (Cals et al., 2012), wie auch erhöhte mRNA Level unter anderem von TGFß1 und TGFß2 nach der spontanen chondrogenen Differenzierung von bovinen mesenchymalen Stammzellen nachgewiesen werden (Bosnakowski et al., 2006). Ripamonti und Roden (2010) wiesen in einem Tiermodell unter der Behandlung mit TGFß2 einen Einfluß auf die Knochenformation nach.

In zahlreichen Publikationen wurde, sowohl für CTGF (z.B. Schütze et al., 2005 b) als auch TGFß2 (Ripamonti und Roden 2010), der Einfluss auf Zellen des muskuloskelettalen Systems gezeigt. Auch konnte in dieser Arbeit, nach Herunterregulation von CTGF durch spezifische shRNAs, ein Zusammenhang zwischen CTGF und TGFß2 belegt werden. Die Auswertung der *Microarray*-Analyse ergab eine signifikante Herunterregulation von TGFß2 in hMSC und liefert einen weiteren Hinweis auf die mögliche biologische Verknüpfung von CTGF und TGFß2 innerhalb des muskuloskelettalen Systems. Basierend auf den erhaltenen Daten müssten noch weitere Anschlussversuche durchgeführt werden, um einen genaueren Zusammenhang von CTGF und TGFß2 darlegen zu können.

5.3.5. Schlusswort

In der vorliegenden Arbeit wurde die Funktion von CTGF und CYR61, den beiden ersten Vertretern aus der Familie der CCN-Proteine, in primären mesenchymalen Stammzellen und einer Lungenendothelzelllinie näher untersucht.

Während die Expression, Aufreinigung und auch die Überprüfung der Funktionalität von rekombinant exprimiertem CYR61 in der Arbeitsgruppe von Prof. Dr. Schütze bereits gezeigt wurde (Schütze et al., 2005 a), konnten im Rahmen dieser Arbeit erstmals wichtige Erkenntnisse im Zusammenhang mit CTGF erlangt werden.

Die für CTGF kodierende Sequenz und ein Fc-Anteil eines humanen IgG Antikörpers konnten fehlerfrei in den Transfervektor eines Baculovirus-Expressionsvektors kloniert und nach der Transfektion von Insektenzellen rekombinant exprimiertes CTGF/Fc Fusionsprotein (rCTGF) von hoher Reinheit aus dem Zellüberstand gewonnen werden. Neben der Gewinnung von rekombinantem rCTGF sollte ein weiteres Ziel dieser Arbeit die Überprüfung der Funktionalität von rCTGF sein, welches nur bedingt erreicht wurde. Zwar konnte mittels eines Proliferationsassays ein vereinzelter Effekt auf hMSC gemessen werden, eine Überprüfung mit verschiedenen Chargen aufgereinigten Proteins an weiteren Zellsystemen brachte allerdings keinen wiederholbaren Effekt. Neben der Expression als Fusionsprotein und verwendeten Insektenzellsystem könnten möglicherweise dem auch die Lagerungsbedingungen einen Einfluss auf die Funktionsfähigkeit von rCTGF und rCYR61 haben. In nachfolgenden Tests sollten diese Einflüsse näher untersucht werden, um eine gleichbleibende Qualität der rekombinanten Proteine über einen längeren Zeitraum gewährleisten zu können.

Ein weiteres Vorhaben war, das gesamte Genexpressionsmuster in hMSC und HPMEC-ST1.6R-Zellen nach Herunterregulation der endogenen *cyr61*/CYR61- oder *ctgf*/CTGF-Expression durch *Microarray*-Analysen zu erfassen. Unter Verwendung kommerziell erhältlicher shRNA Sets konnte keine Auswirkung auf die endogene CYR61-Expression erreicht werden, wohingegen *ctgf*/CTGF auf RNA- und Proteinebene in beiden Zellsystemen deutlich herunterreguliert werden konnte.

In nachfolgenden *Microarray*-Analysen wurde das gesamte Genexpressionsmuster nach Herunterregulation von *ctgf*/CTGF in beiden Zellsystemen erstmalig erfasst und eine Vielzahl an interessanten Genregulationen detektiert, zu welchen neben TGFß2 auch BMP 4/6, VEGFA, FGF7 und PDGFA gehören.

Die große Anzahl der in der Auswertung der *Microarray*-Analyse erhaltenen Genregulationen liefert die Basis für zahlreiche Folgeversuche, um die wichtigen Funktionen und Aufgaben von CTGF in den beiden Zellsystemen noch näher zu untersuchen.

6. Literaturverzeichnis

Abdallah, B M, und M Kassem. "Human mesenchymal stem cells: from basic biology to clinical applications". Gene Therapy 15, Nr. 2 (Januar 2008): 109–116. doi:10.1038/sj.gt.3303067.

Abreu, José G, Nan I Ketpura, Bruno Reversade, und E M De Robertis. "Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta". Nature Cell Biology 4, Nr. 8 (August 2002): 599–604. doi:10.1038/ncb826.

Ades, E W, F J Candal, R A Swerlick, V G George, S Summers, D C Bosse, und T J Lawley. "HMEC-1: establishment of an immortalized human microvascular endothelial cell line". The Journal of Investigative Dermatology 99, Nr. 6 (Dezember 1992): 683–690.

Arnott, John A, Alex G Lambi, Christina Mundy, Honey Hendesi, Robin A Pixley, Thomas A Owen, Fayez F Safadi, und Steven N Popoff. "The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis". Critical Reviews in Eukaryotic Gene Expression 21, Nr. 1 (2011): 43–69.

Asano, Ryutaro, Keiko Ikoma, Hiroko Kawaguchi, Yuna Ishiyama, Takeshi Nakanishi, Mitsuo Umetsu, Hiroki Hayashi, u. a. "Application of the Fc fusion format to generate tag-free bi-specific diabodies". The FEBS journal 277, Nr. 2 (Januar 2010): 477–487. doi:10.1111/j.1742-4658.2009.07499.x.

Attisano, L, J L Wrana, F López-Casillas, und J Massagué. "TGF-beta receptors and actions". Biochimica Et Biophysica Acta 1222, Nr. 1 (Mai 26, 1994): 71–80.

Babic, A M, C C Chen, und L F Lau. "Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo". Molecular and Cellular Biology 19, Nr. 4 (April 1999): 2958–2966.

Babic, A M, M L Kireeva, T V Kolesnikova, und L F Lau. "CYR61, a product of a growth factorinducible immediate early gene, promotes angiogenesis and tumor growth". Proceedings of the National Academy of Sciences of the United States of America 95, Nr. 11 (Mai 26, 1998): 6355–6360.

Baguma-Nibasheka, Mark, und Boris Kablar. "Pulmonary hypoplasia in the connective tissue growth factor (Ctgf) null mouse". Developmental Dynamics: An Official Publication of the American Association of Anatomists 237, Nr. 2 (Februar 2008): 485–493. doi:10.1002/dvdy.21433.

Balzar, Silvana, Hong Wei Chu, Phillip Silkoff, Meghan Cundall, John B Trudeau, Matthew Strand, und Sally Wenzel. "Increased TGF-beta2 in severe asthma with eosinophilia". The Journal of allergy and clinical immunology 115, Nr. 1 (Januar 2005): 110–117. doi:10.1016/j.jaci.2004.09.034.

De Bari, C, F Dell'Accio, P Tylzanowski, und F P Luyten. "Multipotent mesenchymal stem cells from adult human synovial membrane". Arthritis and Rheumatism 44, Nr. 8 (August 2001): 1928–1942. doi:10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P.

Bartram, Ulrike, und Christian P Speer. "The role of transforming growth factor beta in lung development and disease". Chest 125, Nr. 2 (Februar 2004): 754–765.

Bühling, F, G Thölert, D Kaiser, B Hoffmann, D Reinhold, S Ansorge, und T Welte. "Increased release of transforming growth factor (TGF)-beta1, TGF-beta2, and chemoattractant mediators in pneumonia". Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 19, Nr. 3 (März 1999): 271–278. doi:10.1089/107999099314207.

Bianco, P, M Riminucci, S Gronthos, und P G Robey. "Bone marrow stromal stem cells: nature, biology, and potential applications". Stem Cells (Dayton, Ohio) 19, Nr. 3 (2001): 180–192. doi:10.1634/stemcells.19-3-180.

Blom, Ingrid E, Roel Goldschmeding, und Andrew Leask. "Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy?" Matrix Biology: Journal of the International Society for Matrix Biology 21, Nr. 6 (Oktober 2002): 473–482.

Bohr, Wilhelm, Michael Kupper, Kurt Hoffmann, und Ralf Weiskirchen. "Recombinant expression, purification, and functional characterisation of connective tissue growth factor and nephroblastoma-overexpressed protein". PloS one 5, Nr. 12 (2010): e16000. doi:10.1371/journal.pone.0016000.

Bork, P. "The modular architecture of a new family of growth regulators related to connective tissue growth factor". FEBS Letters 327, Nr. 2 (Juli 26, 1993): 125–130.

Bornstein, P. "Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1". The Journal of Cell Biology 130, Nr. 3 (August 1995): 503–506.

Bornstein, Paul, und E Helene Sage. "Matricellular proteins: extracellular modulators of cell function". Current Opinion in Cell Biology 14, Nr. 5 (Oktober 2002): 608–616.

Bosnakovski, Darko, Morimichi Mizuno, Gonhyung Kim, Satoshi Takagi, Masahiro Okumur, und Toru Fujinag. "Gene expression profile of bovine bone marrow mesenchymal stem cell during spontaneous chondrogenic differentiation in pellet culture system". The Japanese journal of veterinary research 53, Nr. 3–4 (Februar 2006): 127–139.

Boucher, Cyril, Gilles St-Laurent, Martin Loignon, Mario Jolicoeur, Gregory De Crescenzo, und Yves Durocher. "The bioactivity and receptor affinity of recombinant tagged EGF designed for tissue engineering applications is defined by the nature and position of the tags". Tissue Engineering. Part A 14, Nr. 12 (Dezember 2008): 2069–2077. doi:10.1089/ten.tea.2008.0037.

Bradham, D M, A Igarashi, R L Potter, und G R Grotendorst. "Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10". The Journal of Cell Biology 114, Nr. 6 (September 1991): 1285–1294.

Brigstock, D R. "The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family". Endocrine Reviews 20, Nr. 2 (April 1999): 189–206.

Brigstock, D R, R Goldschmeding, K-i Katsube, S C-T Lam, L F Lau, K Lyons, C Naus, u. a. "Proposal for a unified CCN nomenclature". Molecular Pathology: MP 56, Nr. 2 (April 2003): 127–128.

Brigstock, D R, C L Steffen, G Y Kim, R K Vegunta, J R Diehl, und P A Harding. "Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor". The Journal of Biological Chemistry 272, Nr. 32 (August 8, 1997): 20275–20282.

Brigstock, David R. "Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61)". Angiogenesis 5, Nr. 3 (2002): 153–165.

Brigstock, David R. "Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2): From pharmacological inhibition in vitro to targeted siRNA therapy in vivo". Journal of Cell Communication and Signaling 3, Nr. 1 (März 2009): 5–18. doi:10.1007/s12079-009-0043-9.

Brunner, A, J Chinn, M Neubauer, und A F Purchio. "Identification of a gene family regulated by transforming growth factor-beta". DNA and Cell Biology 10, Nr. 4 (Mai 1991): 293–300.

Burgess, Janette K. "Connective tissue growth factor: a role in airway remodelling in asthma?" Clinical and Experimental Pharmacology & Physiology 32, Nr. 11 (November 2005): 988–994. doi:10.1111/j.1440-1681.2005.04296.x.

Cals, F L J, C A Hellingman, W Koevoet, R J Baatenburg de Jong, und G J V M van Osch. "Effects of transforming growth factor- β subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells". Journal of tissue engineering and regenerative medicine 6, Nr. 1 (Januar 2012): 68–76. doi:10.1002/term.399.

Caplan, A I. "Mesenchymal stem cells". Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society 9, Nr. 5 (September 1991): 641–650. doi:10.1002/jor.1100090504.

Chang, Yuan, und Xin-Yi Wu. "JNK1/2 siRNA inhibits transforming-growth factor-beta1-induced connective tissue growth factor expression and fibrotic function in THSFs". Molecular and Cellular Biochemistry 335, Nr. 1–2 (Februar 2010): 83–89. doi:10.1007/s11010-009-0245-8.

Chaqour, Brahim, und Margarete Goppelt-Struebe. "Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins". The FEBS Journal 273, Nr. 16 (August 2006): 3639–3649. doi:10.1111/j.1742-4658.2006.05360.x.

Chen, Chih-Chiun, und Lester F Lau. "Functions and mechanisms of action of CCN matricellular proteins". The International Journal of Biochemistry & Cell Biology 41, Nr. 4 (April 2009): 771–783. doi:10.1016/j.biocel.2008.07.025.

Chen, Chung-Ming, Leng-Fang Wang, Hsiu-Chu Chou, Yaw-Dong Lang, und Yi-Ping Lai. "Upregulation of connective tissue growth factor in hyperoxia-induced lung fibrosis". Pediatric Research 62, Nr. 2 (August 2007): 128–133. doi:10.1203/PDR.0b013e3180987202.

Chen, Quan, Laurence J Miller, und Maoqing Dong. "Role of N-linked glycosylation in biosynthesis, trafficking, and function of the human glucagon-like peptide 1 receptor". American Journal of Physiology. Endocrinology and Metabolism 299, Nr. 1 (Juli 2010): E62–68. doi:10.1152/ajpendo.00067.2010.

Cicha, Iwona, und Margarete Goppelt-Struebe. "Connective tissue growth factor: context-dependent functions and mechanisms of regulation". BioFactors (Oxford, England) 35, Nr. 2 (April 2009): 200–208. doi:10.1002/biof.30.

Cines, D B, E S Pollak, C A Buck, J Loscalzo, G A Zimmerman, R P McEver, J S Pober, u. a. "Endothelial cells in physiology and in the pathophysiology of vascular disorders". Blood 91, Nr. 10 (Mai 15, 1998): 3527–3561.

De Coppi, Paolo, Georg Bartsch Jr, M Minhaj Siddiqui, Tao Xu, Cesar C Santos, Laura Perin, Gustavo Mostoslavsky, u. a. "Isolation of amniotic stem cell lines with potential for therapy". Nature Biotechnology 25, Nr. 1 (Januar 2007): 100–106. doi:10.1038/nbt1274.

Crockett, Julie C, Norbert Schütze, Denise Tosh, Susanne Jatzke, Angela Duthie, Franz Jakob, und Michael J Rogers. "The matricellular protein CYR61 inhibits osteoclastogenesis by a mechanism independent of alphavbeta3 and alphavbeta5". Endocrinology 148, Nr. 12 (Dezember 2007): 5761–5768. doi:10.1210/en.2007-0473.

Ten Dijke, Peter, und Caroline S Hill. "New insights into TGF-beta-Smad signalling". Trends in Biochemical Sciences 29, Nr. 5 (Mai 2004): 265–273. doi:10.1016/j.tibs.2004.03.008.

Dolinay, Tamás, Naftali Kaminski, Martina Felgendreher, Hong P Kim, Paul Reynolds, Simon C Watkins, Dörte Karp, Stefan Uhlig, und Augustine M K Choi. "Gene expression profiling of target genes in ventilator-induced lung injury". Physiological Genomics 26, Nr. 1 (Juni 16, 2006): 68–75. doi:10.1152/physiolgenomics.00110.2005.

Dominici, M, K Le Blanc, I Mueller, I Slaper-Cortenbach, Fc Marini, Ds Krause, Rj Deans, A Keating, Dj Prockop, und Em Horwitz. "Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement". Cytotherapy 8, Nr. 4 (2006): 315–317. doi:10.1080/14653240600855905.

Ebisawa, T, M Fukuchi, G Murakami, T Chiba, K Tanaka, T Imamura, und K Miyazono. "Smurfl interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation". The Journal of Biological Chemistry 276, Nr. 16 (April 20, 2001): 12477–12480. doi:10.1074/jbc.C100008200.

Esparza-Lopez, J, J L Montiel, M M Vilchis-Landeros, T Okadome, K Miyazono, und F López-Casillas. "Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions for transforming growth factor-beta and inhibin A". The Journal of Biological Chemistry 276, Nr. 18 (Mai 4, 2001): 14588–14596. doi:10.1074/jbc.M008866200.

Fishman, A P. "Endothelium: a distributed organ of diverse capabilities". Annals of the New York Academy of Sciences 401 (1982): 1–8.

Fromigue, Olivia, Zahia Hamidouche, Pascal Vaudin, Fernando Lecanda, Ana Patino, Pascal Barbry, Bernard Mari, und Pierre J Marie. "CYR61 downregulation reduces osteosarcoma cell invasion, migration, and metastasis". Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 26, Nr. 7 (Juli 2011): 1533–1542. doi:10.1002/jbmr.343.

Geisse, S, H Gram, B Kleuser, und H P Kocher. "Eukaryotic expression systems: a comparison". Protein Expression and Purification 8, Nr. 3 (November 1996): 271–282. doi:10.1006/prep.1996.0101.

Grotendorst, G R. "Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts". Cytokine & Growth Factor Reviews 8, Nr. 3 (September 1997): 171–179.

Grotendorst, Gary R, und Matthew R Duncan. "Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation". The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 19, Nr. 7 (Mai 2005): 729–738. doi:10.1096/fj.04-3217com.

Hadjiargyrou, M, W Ahrens, und C T Rubin. "Temporal expression of the chondrogenic and angiogenic growth factor CYR61 during fracture repair". Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 15, Nr. 6 (Juni 2000): 1014–1023. doi:10.1359/jbmr.2000.15.6.1014.

Hashimoto, Gakuji, Isao Inoki, Yutaka Fujii, Takanori Aoki, Eiji Ikeda, und Yasunori Okada. "Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165". The Journal of Biological Chemistry 277, Nr. 39 (September 27, 2002): 36288–36295. doi:10.1074/jbc.M201674200.

Hashimoto, Y, N Shindo-Okada, M Tani, Y Nagamachi, K Takeuchi, T Shiroishi, H Toma, und J Yokota. "Expression of the Elm1 gene, a novel gene of the CCN (connective tissue growth factor, Cyr61/Cef10, and neuroblastoma overexpressed gene) family, suppresses In vivo tumor growth and metastasis of K-1735 murine melanoma cells". The Journal of Experimental Medicine 187, Nr. 3 (Februar 2, 1998): 289–296.

Hashimoto, Yasunobu, Nobuko Shindo-Okada, Masachika Tani, Kaori Takeuchi, Hiroshi Toma, und Jun Yokota. "Identification of Genes Differentially Expressed in Association with Metastatic Potential of K-1735 Murine Melanoma by Messenger RNA Differential Display". Cancer Research 56, Nr. 22 (November 15, 1996): 5266–5271.

Hishikawa, K, T Nakaki, und T Fujii. "Transforming growth factor-beta(1) induces apoptosis via connective tissue growth factor in human aortic smooth muscle cells". European Journal of Pharmacology 385, Nr. 2–3 (Dezember 3, 1999): 287–290.

Holbourn, Kenneth P, K Ravi Acharya, und Bernard Perbal. "The CCN family of proteins: structure-function relationships". Trends in Biochemical Sciences 33, Nr. 10 (Oktober 2008): 461–473. doi:10.1016/j.tibs.2008.07.006.

Holbourn, Kenneth P, Bernard Perbal, und K Ravi Acharya. "Proteins on the catwalk: modelling the structural domains of the CCN family of proteins". Journal of Cell Communication and Signaling 3, Nr. 1 (März 2009): 25–41. doi:10.1007/s12079-009-0048-4.

Hollister, Jason, Eckart Grabenhorst, Manfred Nimtz, Harald Conradt, und Donald L Jarvis. "Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans". Biochemistry 41, Nr. 50 (Dezember 17, 2002): 15093–15104.

Igarashi, A, H Okochi, D M Bradham, und G R Grotendorst. "Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair". Molecular Biology of the Cell 4, Nr. 6 (Juni 1993): 637–645.

Ivkovic, Sanja, Byeong S Yoon, Steven N Popoff, Fayez F Safadi, Diana E Libuda, Robert C Stephenson, Aaron Daluiski, und Karen M Lyons. "Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development". Development (Cambridge, England) 130, Nr. 12 (Juni 2003): 2779–2791.

Jia, Xiao-Qin, Hai-Qing Cheng, Hong Li, Yan Zhu, Yu-Hua Li, Zhen-Qing Feng, und Jian-Ping Zhang. "Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo". Chinese medical journal 124, Nr. 22 (November 2011): 3794–3799.

Jiang, Cheng-Gang, Ling Lv, Fu-Rong Liu, Zhen-Ning Wang, Fu-Nan Liu, Yan-Shu Li, Chun-Yu Wang, Hong-Yan Zhang, Zhe Sun, und Hui-Mian Xu. "Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination". Molecular cancer 10 (2011): 122. doi:10.1186/1476-4598-10-122.

Jin, Yang, Hong Pyo Kim, Emeka Ifedigbo, Lester F Lau, und Augustine M K Choi. "Cyr61 protects against hyperoxia-induced cell death via Akt pathway in pulmonary epithelial cells". American Journal of Respiratory Cell and Molecular Biology 33, Nr. 3 (September 2005): 297–302. doi:10.1165/rcmb.2005-0144OC.

Johnson, Peter R A, und Janette K Burgess. "Airway smooth muscle and fibroblasts in the pathogenesis of asthma". Current Allergy and Asthma Reports 4, Nr. 2 (März 2004): 102–108.

Joliot, V, C Martinerie, G Dambrine, G Plassiart, M Brisac, J Crochet, und B Perbal. "Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas". Molecular and Cellular Biology 12, Nr. 1 (Januar 1992): 10–21.

Joseph, Doina S, Minnie Malik, Sahadat Nurudeen, und William H Catherino. "Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor beta-3". Fertility and Sterility 93, Nr. 5 (März 15, 2010): 1500–1508. doi:10.1016/j.fertnstert.2009.01.081.

Kavsak, P, R K Rasmussen, C G Causing, S Bonni, H Zhu, G H Thomsen, und J L Wrana. "Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation". Molecular Cell 6, Nr. 6 (Dezember 2000): 1365–1375.

Kim, Soo-Hyun, Jeremy Turnbull, und Scott Guimond. "Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor". Journal of Endocrinology 209, Nr. 2 (Mai 1, 2011): 139–151. doi:10.1530/JOE-10-0377.

Kireeva, M L, S C Lam, und L F Lau. "Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3". The Journal of biological chemistry 273, Nr. 5 (Januar 30, 1998): 3090–3096.

Kireeva, M L, F E MO, G P Yang, und L F Lau. "Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion". Molecular and Cellular Biology 16, Nr. 4 (April 1996): 1326–1334.

Kompass, Kenneth S, Gaetan Deslee, Carla Moore, Donald McCurnin, und Richard A Pierce. "Highly conserved transcriptional responses to mechanical ventilation of the lung". Physiological Genomics 42, Nr. 3 (August 2010): 384–396. doi:10.1152/physiolgenomics.00117.2009.

Krump-Konvalinkova, V, F Bittinger, R E Unger, K Peters, H A Lehr, und C J Kirkpatrick. "Generation of human pulmonary microvascular endothelial cell lines". Laboratory Investigation; a Journal of Technical Methods and Pathology 81, Nr. 12 (Dezember 2001): 1717–1727.

Kubota, Satoshi, und Masaharu Takigawa. "CCN family proteins and angiogenesis: from embryo to adulthood". Angiogenesis 10, Nr. 1 (2007): 1–11. doi:10.1007/s10456-006-9058-5.

Kunzmann, Steffen, Christian P Speer, Alan H Jobe, und Boris W Kramer. "Antenatal inflammation induced TGF-beta1 but suppressed CTGF in preterm lungs". American Journal of Physiology. Lung Cellular and Molecular Physiology 292, Nr. 1 (Januar 2007): L223–231. doi:10.1152/ajplung.00159.2006.

Kuznetsov, S A, M H Mankani, S Gronthos, K Satomura, P Bianco, und P G Robey. "Circulating skeletal stem cells". The Journal of Cell Biology 153, Nr. 5 (Mai 28, 2001): 1133–1140.

Lau, L F, und S C Lam. "The CCN family of angiogenic regulators: the integrin connection". Experimental Cell Research 248, Nr. 1 (April 10, 1999): 44–57. doi:10.1006/excr.1999.4456.

Lau, L F, und D Nathans. "Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells". The EMBO Journal 4, Nr. 12 (Dezember 1, 1985): 3145–3151.

Lau, Lester F. "CCN1/CYR61: the very model of a modern matricellular protein". Cellular and Molecular Life Sciences: CMLS 68, Nr. 19 (Oktober 2011): 3149–3163. doi:10.1007/s00018-011-0778-3.

Laug, Roderich, Markus Fehrholz, Norbert Schütze, Boris W. Kramer, Vera Krump-Konvalinkova, Christian P. Speer, und Steffen Kunzmann. "IFN-γ and TNF-α Synergize to Inhibit CTGF Expression in Human Lung Endothelial Cells". PLoS ONE 7, Nr. 9 (September 20, 2012). doi:10.1371/journal.pone.0045430.

Leask, Andrew, und David J Abraham. "All in the CCN family: essential matricellular signaling modulators emerge from the bunker". Journal of Cell Science 119, Nr. Pt 23 (Dezember 1, 2006): 4803–4810. doi:10.1242/jcs.03270.

Leask, Andrew, und David J Abraham. "TGF-beta signaling and the fibrotic response". FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 18, Nr. 7 (Mai 2004): 816–827. doi:10.1096/fj.03-1273rev.

Leu, Shr-Jeng, Stephen C-T Lam, und Lester F Lau. "Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells". The Journal of Biological Chemistry 277, Nr. 48 (November 29, 2002): 46248–46255. doi:10.1074/jbc.M209288200.

Li, Guangming, Qing Xie, Yi Shi, Dingguo Li, Mingjun Zhang, Shan Jiang, Huijuan Zhou, Hanming Lu, und Youxin Jin. "Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats". The Journal of Gene Medicine 8, Nr. 7 (Juli 2006): 889–900. doi:10.1002/jgm.894.

Liu, J, I Tseu, J Wang, K Tanswell, und M Post. "Transforming growth factor beta2, but not beta1 and beta3, is critical for early rat lung branching". Developmental Dynamics: An Official Publication of the American Association of Anatomists 217, Nr. 4 (April 2000): 343–360. doi:10.1002/(SICI)1097-0177(200004)217:4<343::AID-DVDY2>3.0.CO;2-F.

Luo, Qing, Quan Kang, Weike Si, Wei Jiang, Jong Kyung Park, Ying Peng, Xinmin Li, u. a. "Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells". The Journal of biological chemistry 279, Nr. 53 (Dezember 31, 2004): 55958–55968. doi:10.1074/jbc.M407810200.

Massagué, J. "TGF-beta signal transduction". Annual Review of Biochemistry 67 (1998): 753–791. doi:10.1146/annurev.biochem.67.1.753.

Massagué, Joan, und Roger R Gomis. "The logic of TGFbeta signaling". FEBS Letters 580, Nr. 12 (Mai 22, 2006): 2811–2820. doi:10.1016/j.febslet.2006.04.033.

Misrahi, M, N Ghinea, S Sar, B Saunier, A Jolivet, H Loosfelt, M Cerutti, G Devauchelle, und E Milgrom. "Processing of the precursors of the human thyroid-stimulating hormone receptor in various eukaryotic cells (human thyrocytes, transfected L cells and baculovirus-infected insect cells)". European journal of biochemistry / FEBS 222, Nr. 2 (Juni 1, 1994): 711–719.

Miura, Masako, Stan Gronthos, Mingrui Zhao, Bai Lu, Larry W Fisher, Pamela Gehron Robey, und Songtao Shi. "SHED: stem cells from human exfoliated deciduous teeth". Proceedings of the National Academy of Sciences of the United States of America 100, Nr. 10 (Mai 13, 2003): 5807–5812. doi:10.1073/pnas.0937635100.

Mo, Fan-E, und Lester F Lau. "The matricellular protein CCN1 is essential for cardiac development". Circulation Research 99, Nr. 9 (Oktober 27, 2006): 961–969. doi:10.1161/01.RES.0000248426.35019.89.

Mo, Fan-E, Andrew G Muntean, Chih-Chiun Chen, Donna B Stolz, Simon C Watkins, und Lester F Lau. ,,CYR61 (CCN1) is essential for placental development and vascular integrity". Molecular and Cellular Biology 22, Nr. 24 (Dezember 2002): 8709–8720.

Mori, Akio, Julian C Desmond, Naoki Komatsu, James O'Kelly, Carl W Miller, Ronald Legaspi, Alberto M Marchevsky, Robert J McKenna Jr, und H Phillip Koeffler. "CYR61: a new measure of lung cancer outcome". Cancer Investigation 25, Nr. 8 (Dezember 2007): 738–741. doi:10.1080/02770900701512597.

Mori, T, S Kawara, M Shinozaki, N Hayashi, T Kakinuma, A Igarashi, M Takigawa, T Nakanishi, und K Takehara. "Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model". Journal of Cellular Physiology 181, Nr. 1 (Oktober 1999): 153–159. doi:10.1002/(SICI)1097-4652(199910)181:1<153::AID-JCP16>3.0.CO;2-K.

Moussad, E E, und D R Brigstock. "Connective tissue growth factor: what's in a name?" Molecular Genetics and Metabolism 71, Nr. 1–2 (Oktober 2000): 276–292. doi:10.1006/mgme.2000.3059.

Nakanishi, T, Y Kimura, T Tamura, H Ichikawa, Y Yamaai, T Sugimoto, und M Takigawa. "Cloning of a mRNA preferentially expressed in chondrocytes by differential display-PCR from a human chondrocytic cell line that is identical with connective tissue growth factor (CTGF) mRNA". Biochemical and Biophysical Research Communications 234, Nr. 1 (Mai 8, 1997): 206–210.

Nakanishi, T, T Nishida, T Shimo, K Kobayashi, T Kubo, T Tamatani, K Tezuka, und M Takigawa. "Effects of CTGF/Hcs24, a product of a hypertrophic chondrocyte-specific gene, on the proliferation and differentiation of chondrocytes in culture". Endocrinology 141, Nr. 1 (Januar 2000): 264–273.

Nakata, E, T Nakanishi, A Kawai, K Asaumi, T Yamaai, M Asano, T Nishida, S Mitani, H Inoue, und M Takigawa. "Expression of connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24) during fracture healing". Bone 31, Nr. 4 (Oktober 2002): 441–447.

Ning, Wen, Chao-Jun Li, Naftali Kaminski, Carol A Feghali-Bostwick, Sean M Alber, Yuanpu P Di, Sherrie L Otterbein, u. a. "Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease". Proceedings of the National Academy of Sciences of the United States of America 101, Nr. 41 (Oktober 12, 2004): 14895–14900. doi:10.1073/pnas.0401168101.

Nishida, T, T Nakanishi, M Asano, T Shimo, und M Takigawa. "Effects of CTGF/Hcs24, a hypertrophic chondrocyte-specific gene product, on the proliferation and differentiation of osteoblastic cells in vitro". Journal of Cellular Physiology 184, Nr. 2 (August 2000): 197–206. doi:10.1002/1097-4652(200008)184:2<197::AID-JCP7>3.0.CO;2-R.

Nöth, Ulrich, Anna M Osyczka, Richard Tuli, Noreen J Hickok, Keith G Danielson, und Rocky S Tuan. "Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells". Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society 20, Nr. 5 (September 2002): 1060–1069. doi:10.1016/S0736-0266(02)00018-9.

O'Brien, T P, und L F Lau. "Expression of the growth factor-inducible immediate early gene cyr61 correlates with chondrogenesis during mouse embryonic development". Cell growth & differentiation: the molecular biology journal of the American Association for Cancer Research 3, Nr. 9 (September 1992): 645–654.

O'Brien, T P, G P Yang, L Sanders, und L F Lau. "Expression of cyr61, a growth factor-inducible immediate-early gene". Molecular and Cellular Biology 10, Nr. 7 (Juli 1990): 3569–3577.

Otani, Takayuki, Toshihiro Hashizume, Tadahiro Nagaoka, Tomoko Fukuda, Careen K Tang, David S Salomon, und Masaharu Seno. "Production of biologically active IgG hinge-tag soluble epidermal growth factor receptors (ErbB)". Biotechnology Letters 32, Nr. 3 (März 2010): 361–366. doi:10.1007/s10529-009-0160-9.

Pennica, D, T A Swanson, J W Welsh, M A Roy, D A Lawrence, J Lee, J Brush, u. a. "WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors". Proceedings of the National Academy of Sciences of the United States of America 95, Nr. 25 (Dezember 8, 1998): 14717–14722.

Perbal, B. "NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues". Molecular Pathology: MP 54, Nr. 2 (April 2001): 57–79.

Perbal, Bernard. "CCN proteins: multifunctional signalling regulators". Lancet 363, Nr. 9402 (Januar 3, 2004): 62–64. doi:10.1016/S0140-6736(03)15172-0.

Pittenger, M F, A M Mackay, S C Beck, R K Jaiswal, R Douglas, J D Mosca, M A Moorman, D W Simonetti, S Craig, und D R Marshak. "Multilineage potential of adult human mesenchymal stem cells". Science (New York, N.Y.) 284, Nr. 5411 (April 2, 1999): 143–147.

Pittenger, Mark F. "Mesenchymal stem cells from adult bone marrow". Methods in molecular biology (Clifton, N.J.) 449 (2008): 27–44. doi:10.1007/978-1-60327-169-1_2.

Porro, Danilo, Michael Sauer, Paola Branduardi, und Diethard Mattanovich. "Recombinant protein production in yeasts". Molecular Biotechnology 31, Nr. 3 (November 2005): 245–259. doi:10.1385/MB:31:3:245.

Ren, Shuyu, Andrea Babelova, Kristin Moreth, Cuiyan Xin, Wolfgang Eberhardt, Anke Doller, Hermann Pavenstädt, Liliana Schaefer, Josef Pfeilschifter, und Andrea Huwiler. "Transforming growth factor-beta2 upregulates sphingosine kinase-1 activity, which in turn attenuates the fibrotic response to TGF-beta2 by impeding CTGF expression". Kidney international 76, Nr. 8 (Oktober 2009): 857–867. doi:10.1038/ki.2009.297.

Ripamonti, U, und L C Roden. "Induction of bone formation by transforming growth factor-beta2 in the non-human primate Papio ursinus and its modulation by skeletal muscle responding stem cells". Cell proliferation 43, Nr. 3 (Juni 2010): 207–218. doi:10.1111/j.1365-2184.2010.00675.x.

Rosada, C, J Justesen, D Melsvik, P Ebbesen, und M Kassem. "The human umbilical cord blood: a potential source for osteoblast progenitor cells". Calcified Tissue International 72, Nr. 2 (Februar 2003): 135–142. doi:10.1007/s00223-002-2002-9.

Rotzer, D, M Roth, M Lutz, D Lindemann, W Sebald, und P Knaus. "Type III TGF-beta receptorindependent signalling of TGF-beta2 via TbetaRII-B, an alternatively spliced TGF-beta type II receptor". The EMBO journal 20, Nr. 3 (Februar 1, 2001): 480–490. doi:10.1093/emboj/20.3.480.

Safadi, Fayez F, Jie Xu, Steven L Smock, Reem A Kanaan, Abdul-Hafez Selim, Paul R Odgren, Sandy C Marks Jr, Thomas A Owen, und Steven N Popoff. "Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo". Journal of Cellular Physiology 196, Nr. 1 (Juli 2003): 51–62. doi:10.1002/jcp.10319.

Salinas, Gustavo, Leonardo Pellizza, Mariana Margenat, Martín Fló, und Cecilia Fernández. "Tuned Escherichia coli as a host for the expression of disulfide-rich proteins". Biotechnology Journal 6, Nr. 6 (Juni 2011): 686–699. doi:10.1002/biot.201000335.

Sanford, L P, I Ormsby, A C Gittenberger-de Groot, H Sariola, R Friedman, G P Boivin, E L Cardell, und T Doetschman. "TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes". Development (Cambridge, England) 124, Nr. 13 (Juli 1997): 2659–2670.

Schilling, Tatjana, Ulrich Nöth, Ludger Klein-Hitpass, Franz Jakob, und Norbert Schütze. "Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells". Molecular and Cellular Endocrinology 271, Nr. 1–2 (Juni 15, 2007): 1–17. doi:10.1016/j.mce.2007.03.004.

Schütze, N, A Lechner, C Groll, H Siggelkow, M Hüfner, J Köhrle, und F Jakob. "The human analog of murine cystein rich protein 61 [correction of 16] is a 1alpha,25-dihydroxyvitamin D3 responsive immediate early gene in human fetal osteoblasts: regulation by cytokines, growth factors, and serum". Endocrinology 139, Nr. 4 (April 1998): 1761–1770.

Schütze, Norbert, Karin Kunzi-Rapp, Rita Wagemanns, Ulrich Nöth, Susanne Jatzke, und Franz Jakob. "Expression, purification, and functional testing of recombinant CYR61/CCN1". Protein Expression and Purification 42, Nr. 1 (Juli 2005): 219–225. doi:10.1016/j.pep.2005.03.031. **a**

Schütze, Norbert, Rita Schenk, Jörg Fiedler, Thomas Mattes, Franz Jakob, und Rolf E Brenner. "CYR61/CCN1 and WISP3/CCN6 are chemoattractive ligands for human multipotent mesenchymal stroma cells". BMC Cell Biology 8 (2007): 45. doi:10.1186/1471-2121-8-45.

Schütze, Norbert, Ulrich Noth, Jutta Schneidereit, Christian Hendrich, und Franz Jakob. "Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation". Cell Communication and Signaling: CCS 3, Nr. 1 (März 17, 2005): 5. doi:10.1186/1478-811X-3-5. **b**

Shi, Yigong, und Joan Massagué. "Mechanisms of TGF-beta signaling from cell membrane to the nucleus". Cell 113, Nr. 6 (Juni 13, 2003): 685–700.

Shimo, T, T Nakanishi, Y Kimura, T Nishida, K Ishizeki, T Matsumura, und M Takigawa. "Inhibition of endogenous expression of connective tissue growth factor by its antisense oligonucleotide and antisense RNA suppresses proliferation and migration of vascular endothelial cells". Journal of Biochemistry 124, Nr. 1 (Juli 1998): 130–140.

Shimo, T, T Nakanishi, T Nishida, M Asano, M Kanyama, T Kuboki, T Tamatani, u. a. "Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo". Journal of Biochemistry 126, Nr. 1 (Juli 1999): 137–145.

Shimo, Tsuyoshi, Changshan Wu, Paul C Billings, Ronald Piddington, Joel Rosenbloom, Maurizio Pacifici, und Eiki Koyama. "Expression, gene regulation, and roles of Fisp12/CTGF in developing tooth germs". Developmental Dynamics: An Official Publication of the American Association of Anatomists 224, Nr. 3 (Juli 2002): 267–278. doi:10.1002/dvdy.10109.

Song, Jason J, Rulla Aswad, Reem A Kanaan, Mario C Rico, Thomas A Owen, Mary F Barbe, Fayez F Safadi, und Steven N Popoff. "Connective tissue growth factor (CTGF) acts as a downstream mediator of TGF-beta1 to induce mesenchymal cell condensation". Journal of Cellular Physiology 210, Nr. 2 (Februar 2007): 398–410. doi:10.1002/jcp.20850.

Speer, C P. "Pulmonary inflammation and bronchopulmonary dysplasia". Journal of Perinatology: Official Journal of the California Perinatal Association 26 Suppl 1 (Mai 2006): S57–62; discussion S63–64. doi:10.1038/sj.jp.7211476.

Todorovic, Viktor, Chih-Chiun Chen, Nissim Hay, und Lester F Lau. "The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts". The Journal of Cell Biology 171, Nr. 3 (November 7, 2005): 559–568. doi:10.1083/jcb.200504015.

Unger, Ronald E, Vera Krump-Konvalinkova, Kirsten Peters, und C James Kirkpatrick. "In vitro expression of the endothelial phenotype: comparative study of primary isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R". Microvascular Research 64, Nr. 3 (November 2002): 384–397.

Wahab, Nadia Abdel, Benjamin S Weston, und Roger M Mason. "Modulation of the TGFbeta/Smad signaling pathway in mesangial cells by CTGF/CCN2". Experimental Cell Research 307, Nr. 2 (Juli 15, 2005): 305–314. doi:10.1016/j.yexcr.2005.03.022.

Wallace, Megan J, Megan E Probyn, Valerie A Zahra, Kelly Crossley, Timothy J Cole, Peter G Davis, Colin J Morley, und Stuart B Hooper. "Early biomarkers and potential mediators of ventilation-induced lung injury in very preterm lambs". Respiratory Research 10 (2009): 19. doi:10.1186/1465-9921-10-19.

Wang, Qingjian, William Usinger, Blake Nichols, Julia Gray, Leon Xu, Todd W Seeley, Mitch Brenner, u. a. "Cooperative interaction of CTGF and TGF- β in animal models of fibrotic disease". Fibrogenesis & Tissue Repair 4 (Februar 1, 2011): 4. doi:10.1186/1755-1536-4-4.

De Winter, Patricia, Patricia Leoni, und David Abraham. "Connective tissue growth factor: structure-function relationships of a mosaic, multifunctional protein". Growth Factors (Chur, Switzerland) 26, Nr. 2 (April 2008): 80–91. doi:10.1080/08977190802025602.

Wu, Shu, Astrid Platteau, Shaoyi Chen, George McNamara, Jeffrey Whitsett, und Eduardo Bancalari. "Conditional overexpression of connective tissue growth factor disrupts postnatal lung development". American Journal of Respiratory Cell and Molecular Biology 42, Nr. 5 (Mai 2010): 552–563. doi:10.1165/rcmb.2009-0068OC.

Yeger, Herman, und Bernard Perbal. "The CCN family of genes: a perspective on CCN biology and therapeutic potential". Journal of Cell Communication and Signaling 1, Nr. 3 (Dezember 2007): 159–164. doi:10.1007/s12079-008-0022-6.

7. Anhang

7.1. HPMEC-ST1.6R Microarray-Tabellen

7.1.1. Regulierte probe sets in der HPMEC-ST1.6R Microarray-Analyse

Tab.18 Liste der regulierten probe sets mit Genzuordnung

Die Auswertung der HPMEC-ST1.6R *Microarray*-Analyse ergab eine Regulation von 430 signifikant exprimierten *probe sets*, welche eine Anzahl von 357 signifikant regulierten Genen (p-Wert≤0,05) im Vergleich der CTGF herunterregulierten zu den *scrambled* Kontrollzellen repräsentieren. Über die Gendatenbank NCBI wurden die in der Auswertung ermittelte *probe set* IDs den jeweiligen Genen unter Angabe des Gennamen und Symbols zugeordnet. Alle Gene sind in alphabetischer Reihenfolge unter Angabe der logFc und p-Werte (adj.p.val.)gelistet. Mehrere *probe sets* können für ein Gen stehen, sodass verschiedene *probe set* IDs für ein Gen aufgeführt sind.

Symbol	probe set ID	GeneName	logFC	adj.p.val
ACO1	207071_s_at	aconitase 1, soluble	-1,01	2,42E-04
ACVRL1	226950_at	activin A receptor type II-like 1	-0,98	2,41E-04
ADAM19	209765_at	ADAM metallopeptidase domain 19	0,89	8,38E-03
ADD3	201753_s_at	adducin 3 (gamma)	-0,92	1,70E-04
ADD3	201034_at	adducin 3 (gamma)	-0,90	1,74E-04
ADD3	205882_x_at	adducin 3 (gamma)	-0,89	2,54E-04
ADD3	201752_s_at	adducin 3 (gamma)	-0,94	2,67E-04
AGTR1	205357_s_at	angiotensin II receptor, type 1	1,58	7,22E-04
AGTRAP	1555736_a_at	angiotensin II receptor-associated protein	1,39	4,67E-05
AGTRAP	225059_at	angiotensin II receptor-associated protein	1,03	1,30E-04
AIF1L	223075_s_at	allograft inflammatory factor 1-like	-1,22	2,25E-04
AKIRIN1	222458_s_at	akirin 1	0,90	1,64E-04
ALDH2	201425_at	aldehyde dehydrogenase 2 family (mitochondrial)	-1,13	1,12E-04
ANKRD1	206029_at	ankyrin repeat domain 1 (cardiac muscle)	-2,45	3,90E-05
ANPEP	202888_s_at	alanyl (membrane) aminopeptidase	1,17	2,54E-04
ANXA3	209369_at	annexin A3	-1,21	8,09E-05
APOL1	209546 s at	apolipoprotein L, 1	0,98	5,85E-04
APOL2	221653 x at	apolipoprotein L, 2	0,83	5,57E-04
ARFRP1	215984 s at	ADP-ribosylation factor related protein 1	0,91	1,73E-04
ARHGAP1	225166 at	Rho GTPase activating protein 18	-0,86	2,15E-04
8		CI CI		,
ARID2	225486_at	AT rich interactive domain 2 (ARID, RFX-like)	-0,80	1,66E-04
ARID5B	212614_at	AT rich interactive domain 5B (MRF1-like)	-1,51	5,01E-04
ARL4C	202207_at	ADP-ribosylation factor-like 4C	1,26	3,01E-04
ARL4C	202208_s_at	ADP-ribosylation factor-like 4C	1,04	4,68E-04
ARL4C	202206_at	ADP-ribosylation factor-like 4C	1,02	1,13E-03
ASAH1	1555419_a_at	N-acylsphingosine amidohydrolase (acid ceramidase) 1	0,79	1,71E-04
ATP11A	230875_s_at	ATPase, class VI, type 11A	-0,84	7,22E-04
B4GALT4	210540_s_at	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase,	0,75	5,57E-04
		polypeptide 4		
BDNF	239367_at	brain-derived neurotrophic factor	-0,85	5,57E-04
BDNF	206382_s_at	brain-derived neurotrophic factor	-1,02	5,59E-04
BGN	201261_x_at	biglycan	-1,57	5,77E-05
BGN	213905_x_at	biglycan	-1,62	6,90E-05
BMP4	211518_s_at	bone morphogenetic protein 4	-1,15	9,98E-05
BMP6	206176_at	bone morphogenetic protein 6	-1,33	1,12E-04
BST2	201641_at	bone marrow stromal cell antigen 2	2,21	3,34E-04
BTBD7	1556000_s_at	BTB (POZ) domain containing 7	-1,04	1,43E-04
BTBD7	224945_at	BTB (POZ) domain containing 7	-1,16	1,49E-04
BTN3A2	209846_s_at	butyrophilin, subfamily 3, member A2	0,93	1,09E-03
BTN3A3	38241_at	butyrophilin, subfamily 3, member A3	1,31	2,16E-04
BTN3A3	204821_at	butyrophilin, subfamily 3, member A3	1,10	6,16E-04
C19orf66	53720_at	chromosome 19 open reading frame 66	0,91	2,05E-04
C19orf66	218429_s_at	chromosome 19 open reading frame 66	0,89	2,81E-04
Clorf133	230121_at	chromosome 1 open reading frame 133	-1,36	4,67E-05
Clorf144	212005_at	chromosome 1 open reading frame 144	0,89	1,77E-04
Clorf174	238010_at	chromosome 1 open reading frame 174	0,93	2,41E-04
Clorf198	223063_at	chromosome 1 open reading frame 198	-0,96	1,40E-04

HPMEC-ST1.6R-Liste der regulierten probe sets mit Genzuordnung						
Symbol	probe set ID	GeneName	logFC	adj.p.val		
Clorf38	210785_s_at	chromosome 1 open reading frame 38	1,00	5,49E-04		
Clorf54	219506_at	chromosome 1 open reading frame 54	-0,88	2,29E-04		
C4orf49	223734_at	chromosome 4 open reading frame 49	-2,01	3,90E-05		
CALD1	201615_x_at	caldesmon 1	-0,87	5,82E-04		
CAMTA1	225692_at	calmodulin binding transcription activator 1	-0,86	2,53E-04		
CAND2	213547_at	cullin-associated and neddylation-dissociated 2 (putative)	-0,94	1,32E-04		
CARD16	1552701_a_at	caspase recruitment domain family, member 16	-0,86	4,14E-04		
CCDC28A	209479_at	coiled-coil domain containing 28A	-0,96	1,52E-04		
CCL5	1555759_a_at	chemokine (C-C motif) ligand 5	1,12	1,69E-04		
CCL5	204655_at	chemokine (C-C motif) ligand 5	0,91	3,38E-04		
CCL5	1405_i_at	chemokine (C-C motif) ligand 5	1,01	3,91E-04		
CCNE2	211814_s_at	cyclin E2	1,10	1,32E-04		
CCT2	201946_s_at	chaperonin containing TCP1, subunit 2 (beta)	0,84	2,05E-04		
CD274	227458_at	CD274 molecule	-0,81	4,00E-03		
CD34	209543_s_at	CD34 molecule	-1,00	3,49E-04		
CD44	210916_s_at	CD44 molecule (Indian blood group)	1,05	1,28E-04		
CD44	1557905_s_at	CD44 molecule (Indian blood group)	0,94	1,63E-04		
CDC37	209953_s_at	cell division cycle 37 homolog (S. cerevisiae)	0,77	2,32E-04		
CDC42BPA	214464_at	CDC42 binding protein kinase alpha (DMPK-like)	-1,11	1,17E-04		
CDC42BPA	203794_at	CDC42 binding protein kinase alpha (DMPK-like)	-0,92	1,88E-04		
CDCP1	218451_at	CUB domain containing protein 1	1,51	1,94E-03		
CDK2	211804_s_at	cyclin-dependent kinase 2	1,22	6,23E-05		
CDK6	224847_at	cyclin-dependent kinase 6	0,96	1,63E-04		
CDKN1B	209112_at	cyclin-dependent kinase inhibitor 1B (p27, Kip1)	-0,98	2,91E-04		
CDKN2B	236313_at	cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)	-0,85	8,76E-04		
CITED2	209357_at	Cbp/p300-interacting transactivator, with Glu/Asp-rich	-0,75	1,07E-03		
CKADA	200000 s at	carboxy-terminal domain, 2	0.82	171E 04		
CLDN12	200999_8_at	cytosketeton-associated protein 4	-0,82	1,71E-04		
CLDN12 CLN3	223249_{at}	caroid-linofuscinosis, neuronal 3	-1,77	3,90E-03		
CLN3 CMPK2	210839_x_at	cytidine monophosphate (LIMP, CMP) kinase 2	1.87	2,03E-04		
CIVII K2	220702_at	mitochondrial	1,07	1,202-04		
COL18A1	209082 s at	collagen type XVIII alpha 1	-0.97	3 13E-04		
COL4A1	211980 at	collagen, type IV, alpha 1	-0.92	2.02E-04		
COL4A5	213110 s at	collagen, type IV, alpha 5	-0.81	7.67E-04		
CREM	207630 s at	cAMP responsive element modulator	0.80	2.52E-04		
CRIM1	202551 s at	cysteine rich transmembrane BMP regulator 1 (chordin-like)	-0.80	1.45E-03		
CRNDE	238021 s at	colorectal neoplasia differentially expressed (non-protein	-0.91	1.18E-03		
		coding)		,		
CTGF	209101_at	connective tissue growth factor	-0,91	2,57E-04		
CTSC	225647_s_at	cathepsin C	0,83	2,67E-04		
CTSH	202295_s_at	cathepsin H	-1,12	3,32E-04		
DCHS1	222101_s_at	dachsous 1 (Drosophila)	-1,50	4,67E-05		
DCP2	212919_at	DCP2 decapping enzyme homolog (S. cerevisiae)	-0,86	3,48E-04		
DDA1	218260_at	DET1 and DDB1 associated 1	0,85	1,94E-04		
DDIT4	202887_s_at	DNA-damage-inducible transcript 4	-1,01	1,94E-04		
DDX58	218943_s_at	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	1,21	3,07E-04		
DDX58	222793_at	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	1,31	5,59E-04		
DENND5B	228551_at	DENN/MADD domain containing 5B	-1,03	5,84E-04		
DICER1	213229_at	dicer 1, ribonuclease type III	-1,42	7,88E-05		
DICER1	212888_at	dicer 1, ribonuclease type III	-1,07	1,43E-04		
DNER	226281_at	delta/notch-like EGF repeat containing	1,64	3,90E-05		
DSP	200606_at	desmoplakin	1,27	4,67E-05		
DUSP4	204015_s_at	dual specificity phosphatase 4	1,16	2,06E-04		
DUSP4	204014_at	dual specificity phosphatase 4	1,08	6,53E-04		
DYNLRB1	21/91/_s_at	dynein, light chain, roadblock-type l	1,26	4,67E-05		
DYNLRB1	21/918_at	dynein, light chain, roadblock-type I	1,20	5,70E-05		
EFEMP1	201843_s_at	EGF containing fibulin-like extracellular matrix protein 1	-0,98	1,21E-03		
EFNAI	202023_at	epnrin-Al	-1,54	6,23E-05		
EGRI	201694_s_at	early growth response 1	1,69	1,70E-04		
EHBPI	212650_at	En domain binding protein l	-0,82	4,84E-04		
ENUI EDAS1	21/294_s_at	enotase 1, (appia)	1,52	1,50E-04		
EPASI	2008/8_at	endotnenial PAS domain protein 1	-1,20	1,08E-04		

HPMEC-ST1.6R-Liste der regulierten probe sets mit Genzuordnung							
Symbol	probe set ID	GeneName	logFC	adi.p.val			
EPSTI1	227609 at	epithelial stromal interaction 1 (breast)	1,00	2,73E-03			
ERMP1		endoplasmic reticulum metallopeptidase 1	-0,84	8,31E-04			
EXT1	230183_at	exostosin 1	-0,86	1,13E-03			
FADS2	202218_s_at	fatty acid desaturase 2	-0,99	3,07E-04			
FAM43A	227410_at	family with sequence similarity 43, member A	-1,09	8,09E-05			
FAM49A	209683_at	family with sequence similarity 49, member A	-1,18	6,86E-04			
FAM69B	229002_at	family with sequence similarity 69, member B	-1,15	1,49E-04			
FAR2	239108_at	fatty acyl CoA reductase 2	-1,08	7,32E-05			
FARSA	216602_s_at	phenylalanyl-tRNA synthetase, alpha subunit	1,02	1,40E-04			
FBLN2	203886_s_at	fibulin 2	-1,01	1,57E-03			
FBN2	203184_at	fibrillin 2	-0,83	2,48E-04			
FBRSL1	225703_at	fibrosin-like 1	0,99	3,48E-04			
FERMT1	218796_at	fermitin family member 1	0,93	2,81E-03			
FERMT1	60474_at	fermitin family member 1	1,09	3,75E-03			
FERMT2	214212_x_at	fermitin family member 2	-1,19	8,09E-05			
FERM12	209210_s_at	fermitin family member 2	-1,03	1,64E-04			
FGD5	226985_at	FYVE, RhoGEF and PH domain containing 5	-0,97	3,02E-04			
FILIPIL	204135_at	filamin A interacting protein 1-like	-0,98	2,88E-03			
FILIPIL EKDD1D	1554966_a_at	Filamin A interacting protein 1-like	-0,87	5,23E-03			
FKBP1B	200857_s_at	FK500 binding protein 1B, 12.0 kDa	-0,80	3,38E-04			
FLII FOSU 1	204230_at	Friend leukemia virus integration 1	-0,99	1,/IE-04			
FOSL1	204420_at	FOS-like antigen 2	0,85	2,13E-04			
FOSL2 FOXD1	220100_at	forkhead box D1	-1,00	4,18E-04			
FUS	200307_8_at	fused in sarcoma	1,40	0,90E-03			
G0\$2	1303717_s_a	G0/G1 switch 2	0,93	9,40E-04			
GABARAP	213324_s_at	GABA(A) recentor-associated protein like 1	-0.84	5,16E-04			
L1	200007_s_at	GADA(A) receptor-associated protein like 1	-0,04	5,102-04			
GATA6	210002 at	GATA binding protein 6	-1.04	1.05E-04			
GGCX	214005 at	gamma-glutamyl carboxylase	-0.79	1,81E-04			
GINS3	218719 s at	GINS complex subunit 3 (Psf3 homolog)	0.78	1.70E-04			
GLCE	213552 at	glucuronic acid epimerase	-0.88	6.53E-04			
GLIPR2	225602 at	GLI pathogenesis-related 2	-1.34	1.69E-04			
GLIPR2	225604 s at	GLI pathogenesis-related 2	-1,18	3,34E-04			
GLRX5	 221932_s_at	glutaredoxin 5	-0,96	1,69E-04			
GLTP	226177_at	glycolipid transfer protein	-1,19	9,55E-05			
GLTP	219267_at	glycolipid transfer protein	-1,04	1,63E-04			
GPRC5A	203108_at	G protein-coupled receptor, family C, group 5, member A	-1,18	1,77E-04			
GSN	200696_s_at	gelsolin	-1,10	1,63E-04			
GXYLT1	226868_at	glucoside xylosyltransferase 1	-1,23	1,17E-04			
H3F3B	211998_at	H3 histone, family 3B (H3.3B)	-0,86	2,85E-04			
HERC5	219863_at	hect domain and RLD 5	1,10	2,75E-04			
HERC6	219352_at	hect domain and RLD 6	1,32	1,17E-04			
HEY2	222921_s_at	hairy/enhancer-of-split related with YRPW motif 2	-1,24	7,91E-03			
HINT3	228697_at	histidine triad nucleotide binding protein 3	0,95	3,06E-02			
HIST1H2A	215071_s_at	histone cluster 1, H2ac	1,45	8,13E-04			
ULLA D	200720		1.00	2.005.02			
HLA-B	208729_x_at	major histocompatibility complex, class I, B	1,00	2,99E-03			
HLA-B	211911_x_at	major histocompatibility complex, class I, B	0,97	3,53E-03			
HLA-C	211/99_x_at	major histocompatibility complex, class I, C	0,89	2,23E-03			
HLA-F	204806_x_at	major histocompatibility complex, class I, F	0,79	5,95E-03			
HLA-G	211329_x_at	major histocompatibility complex, class I, G	0,82	0,55E-04			
HI A-G	210514_X_at 211528_v_at	major instocompatibility complex, class I, G	0.86	1,11E-03			
HMOY1	203665 at	heme oxygenase (decycling) 1	1.04	1,12E-03			
HOMER3	205005_at	homer homolog 3 (Drosophila)	0.88	5 24F-04			
HOPX	211597 s at	HOP homeobox	-1.83	3 90E-05			
HPCAL1	205462 s at	hippocalcin-like 1	1.20	2.57E-04			
HSD17B10	202282 at	hydroxysteroid (17-beta) dehydrogenase 10	1.35	4.67E-05			
HSPD1	200806 s at	heat shock 60kDa protein 1 (chaneronin)	0.82	2,25E-04			
ID1	208937 s at	inhibitor of DNA binding 1. dominant negative helix-loop-	-1,27	8,13E-04			
	· · _ · _ · _ · · · ·	helix protein	, ·	,			
ID3	207826_s_at	inhibitor of DNA binding 3, dom. negative-loop-helix protein	-0,91	1,02E-03			
HPMEC-ST1.6R-Liste der regulierten probe sets mit Genzuordnung							
--	--------------	---	-------	-----------	--	--	--
Symbol	probe set ID	GeneName	logFC	adi.p.val			
IFI35	209417_s_at	interferon-induced protein 35	1,41	3,38E-04			
IFI44	214059_at	interferon-induced protein 44	1,50	1,01E-04			
IFI44	214453_s_at	interferon-induced protein 44	1,05	2,30E-04			
IFI44L	204439_at	interferon-induced protein 44-like	1,82	5,01E-04			
IFI6	204415_at	interferon, alpha-inducible protein 6	1,01	1,67E-03			
IFIH1	219209_at	interferon induced with helicase C domain 1	1,38	3,23E-04			
IFIT1	203153_at	interferon-induced protein with tetratricopeptide repeats 1	1,24	5,37E-04			
IFIT2	217502_at	interferon-induced protein with tetratricopeptide repeats 2	1,66	1,63E-04			
IFIT2	226757_at	interferon-induced protein with tetratricopeptide repeats 2	1,30	2,52E-04			
IFIT3	204747_at	interferon-induced protein with tetratricopeptide repeats 3	1,73	1,27E-04			
IFIT3	229450_at	interferon-induced protein with tetratricopeptide repeats 3	1,33	1,78E-04			
IFITM1	214022_s_at	interferon induced transmembrane protein 1 (9-27)	1,03	1,12E-03			
IFITM1	201601_x_at	interferon induced transmembrane protein 1 (9-27)	1,15	1,92E-03			
IL6ST	204863_s_at	interleukin 6 signal transducer (gp130, oncostatin M	-0,88	4,89E-04			
H O	202950 /	receptor)	1.70	5 405 04			
IL8	202859_x_at	interleukin 8	1,72	5,49E-04			
IKF/	208430_s_at	interferon regulatory factor /	0,89	2,19E-03			
IKF9	203882_at	Interferon regulatory factor 9	0,98	1,1/E-04			
15015	203485_8_at	interferen stimuleted evenueleges gene 20kDe	1,08	3,81E-04			
	204098_at	integrin, alpha 2 (CD40P, alpha 2 subunit of VLA 2	0,88	2,03E-03			
IIGA2	227314_at	receptor)	0,87	1,03E-04			
ITM2C	221004 s at	integral membrane protein 2C	-1.08	2.43E-04			
JAG1	209098 s at	jagged 1	0.81	4.44E-04			
JAK1	1552610 a at	Janus kinase 1	0.85	1.63E-04			
JUB	225806 at	jub, ajuba homolog (Xenopus laevis)	-0,90	3,34E-04			
JUB	225807 at	jub, ajuba homolog (Xenopus laevis)	-0,94	4,91E-04			
JUP		junction plakoglobin	-1,20	1,49E-04			
KATNAL1	227713_at	katanin p60 subunit A-like 1	0,87	1,52E-04			
KCTD12	212188_at	potassium channel tetramerisation domain containing 12	-1,58	2,25E-04			
KCTD12	212192_at	potassium channel tetramerisation domain containing 12	-1,36	3,69E-04			
KDELR3	207265_s_at	KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 3	1,03	1,63E-04			
KDM4B	212496_s_at	lysine (K)-specific demethylase 4B	-1,07	1,45E-04			
KDM4B	212492_s_at	lysine (K)-specific demethylase 4B	-0,81	1,83E-04			
KIF2C	211519_s_at	kinesin family member 2C	0,88	2,21E-04			
KITLG	226534_at	KIT ligand	1,00	2,32E-04			
KLF11	218486_at	Kruppel-like factor 11	-0,78	2,38E-04			
LACTB	226354_at	lactamase, beta	-0,90	1,60E-04			
LAPTM4B	1554679_a_at	lysosomal protein transmembrane 4 beta	1,58	1,01E-04			
LAPTM4B	208767_s_at	lysosomal protein transmembrane 4 beta	0,93	3,53E-04			
LEPREL1	218717_s_at	leprecan-like 1	-1,65	5,14E-04			
LGALS3BP	200923_at	lectin, galactoside-binding, soluble, 3 binding protein	1,43	5,84E-04			
LIMCHI	212328_at	LIM and calponin homology domains 1	-0,92	2,46E-03			
LMLN	244881_at	leishmanolysin-like (metallopeptidase M8 family)	1,45	9,74E-05			
378	1559965_at	nypotnetical LOC100192378	-1,17	2,80E-04			
LOC100287 616	232752_at	hypothetical LOC100287616	-0,97	1,83E-04			
LOC100288 911	236656_s_at	hypothetical LOC100288911	-1,11	8,87E-05			
LOC100288 911	236657_at	hypothetical LOC100288911	-1,09	1,34E-04			
LOC158376	1557371 a at	hypothetical LOC158376	-0,82	3,48E-04			
LOC221710	227124_at	hypothetical protein LOC221710	-1,35	6,23E-05			
LOXL1	203570_at	lysyl oxidase-like 1	-1,26	1,70E-04			
LPGAT1	202651_at	lysophosphatidylglycerol acyltransferase 1	-0,79	1,76E-04			
LPP	224811_at	LIM domain containing preferred translocation partner in	-0,87	2,13E-04			
		lipoma					
LSM14A	212131_at	LSM14A, SCD6 homolog A (S. cerevisiae)	-1,08	7,00E-05			
LSM14A	222099_s_at	LSM14A, SCD6 homolog A (S. cerevisiae)	-0,81	1,69E-04			
LSS	202245_at	lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)	-0,91	2,57E-04			
LY6E	202145_at	lymphocyte antigen 6 complex, locus E	1,18	1,43E-03			

HPMEC-ST1.6R-Liste der regulierten probe sets mit Genzuordnung							
Symbol	probe set ID	GeneName	logFC	adi.p.val			
LYN	202625 at	v-ves-1 Yamaguchi sarcoma viral related oncogene homolog	-0,87	2,39E-04			
LYN	202626_s_at	v-yes-1 Yamaguchi sarcoma viral related oncogene homolog	-0,79	4,50E-04			
MAGEA3	209942_x_at	melanoma antigen family A, 3	1,09	3,34E-04			
MAGEA6	214612_x_at	melanoma antigen family A, 6	1,03	4,50E-04			
MAGEC1	206609_at	melanoma antigen family C, 1	1,28	1,63E-04			
MAGI1	225465_at	membrane associated guanylate kinase, WW and PDZ	-1,03	7,19E-04			
MADOWO	227121	domain containing I	1.26	1.175.04			
MAP3K3	22/131_at	mitogen-activated protein kinase kinase kinase 3	-1,36	1,1/E-04			
MAPSKS	205514_at	mitogen-activated protein kinase kinase s	-0,80	9,84E-04			
MAY	229004_at	MVC associated factor X	-0,91	1,26E-04			
MRNI 2	210734_x_{at}	muscleblind-like 2 (Drosonbila)	-0.94	4,85E-04			
MCAM	209087 x at	museleonid-like 2 (Diosophila)	-0,94	2.62E-04			
MCAM	211340 s at	melanoma cell adhesion molecule	-0.83	2,67E-04			
MCAM	210869 s at	melanoma cell adhesion molecule	-0.91	3.93E-04			
MCTP1	220122 at	multiple C2 domains, transmembrane 1	-2,09	6,90E-05			
MDM2	229711_s_at	Mdm2 p53 binding protein homolog (mouse)	1,05	4,09E-04			
ME1	204058_at	malic enzyme 1, NADP(+)-dependent, cytosolic	-0,95	1,69E-04			
MED19	226293_at	mediator complex subunit 19	0,80	1,69E-04			
MEF2A	214684_at	myocyte enhancer factor 2A	-0,78	3,80E-04			
MEST	202016_at	mesoderm specific transcript homolog (mouse)	-2,18	3,90E-05			
MFI2	235911_at	antigen p97 (melanoma associated) identified by monoclonal antibodies 133.2 and 96.5	-1,05	1,66E-04			
MICB	206247 at	MHC class I polypeptide-related sequence B	0.91	2.19E-04			
MKNK2	223199 at	MAP kinase interacting serine/threenine kinase 2	0.85	2.28E-04			
MLPH	218211 s at	melanophilin	0.85	4.91E-03			
MMP1	204475 at	matrix metallopeptidase 1 (interstitial collagenase)	1.06	4.46E-04			
MMP14	202827 s at	matrix metallopeptidase 14 (membrane-inserted)	0,98	2,91E-04			
MN1	205330_at	meningioma (disrupted in balanced translocation) 1	-1,54	6,23E-05			
MOSPD1	1557455_s_at	motile sperm domain containing 1	0,77	3,80E-04			
MPZL2	203780_at	myelin protein zero-like 2	-1,28	2,57E-04			
MRPL4	223743_s_at	mitochondrial ribosomal protein L4	0,88	1,70E-04			
MST4	218499_at	serine/threonine protein kinase MST4	-1,46	3,90E-05			
MTMR10	225810_at	myotubularin related protein 10	-0,97	1,70E-04			
MTUS1	212096_s_at	microtubule associated tumor suppressor 1	-1,00	8,78E-04			
MTUS1	212095_s_at	microtubule associated tumor suppressor 1	-0,89	4,24E-03			
MX1	202086_at	myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse)	0,94	8,28E-04			
MX2	204994_at	myxovirus (influenza virus) resistance 2 (mouse)	1,85	2,85E-04			
MYLK	224823_at	myosin light chain kinase	-1,46	3,90E-05			
MYLK	202555_s_at	myosin light chain kinase	-1,32	5,77E-05			
MYO6	203215_s_at	myosin VI	-0,97	4,36E-04			
NAPG	225448_at	N-ethylmaleimide-sensitive factor attachment protein, gamma	0,83	5,49E-04			
NCRNA002 75	224915_x_at	non-protein coding RNA 275	0,82	2,39E-04			
NEAT1	224566_at	nuclear paraspeckle assembly transcript 1 (non-protein coding)	0,90	3,86E-04			
NF2	218915 at	neurofibromin 2 (merlin)	1 18	1 12E-04			
NFIB	230291 s at	nuclear factor I/B	-0.81	1,12E 04			
NLRC5	226474 at	NLR family. CARD domain containing 5	1.01	1.69E-04			
NMI	203964 at	N-myc (and STAT) interactor	0.88	8.78E-04			
NNMT	202237 at	nicotinamide N-methyltransferase	-0,82	6,46E-03			
NUDT19	235384_at	nudix (nucleoside diphosphate linked moiety X)-type motif	1,00	1,78E-04			
OAS1	205552 s at	2'.5'-oligoadenylate synthetase 1, 40/46kDa	1.65	2.85E-04			
OAS1	202869 at	2'.5'-oligoadenylate synthetase 1, 40/46kDa	1.39	2,98E-04			
OAS2	204972 at	2'-5'-oligoadenylate synthetase 2, 69/71kDa	1.50	2,32E-04			
OAS2	228607 at	2'-5'-oligoadenylate synthetase 2, 69/71kDa	0,99	1,62E-03			
OAS3	218400_at	2'-5'-oligoadenylate synthetase 3, 100kDa	1,58	2,07E-04			
OASL	210797_s_at	2'-5'-oligoadenylate synthetase-like	2,04	4,67E-05			
OASL	205660_at	2'-5'-oligoadenylate synthetase-like	1,72	7,00E-05			
ODZ2	231867_at	odz, odd Oz/ten-m homolog 2 (Drosophila)	1,17	3,62E-04			

HPMEC-ST1.6R-Liste der regulierten probe sets mit Genzuordnung							
Symbol	probe set ID	GeneName	logFC	adi.p.val			
OGT	229787 s at	O-linked N-acetylglucosamine (GlcNAc) transferase (UDP-	-0.99	5,32E-04			
		N-acetylglucosamine:polypeptide-N-acetylglucosaminyl	,	,			
		transferase)					
OTUD1	226140_s_at	OTU domain containing 1	-0,80	1,70E-04			
PABPC4L	238865_at	poly(A) binding protein, cytoplasmic 4-like	-1,05	1,12E-04			
PALMD	218736_s_at	palmdelphin	-1,88	7,47E-05			
PARP10	229350_x_at	poly (ADP-ribose) polymerase family, member 10	0,95	4,87E-04			
PARP9	223220_s_at	poly (ADP-ribose) polymerase family, member 9	0,90	6,26E-04			
PATLI	225468_at	protein associated with topoisomerase II homolog 1 (yeast)	0,76	3,03E-04			
PBX3	204082_at	pre-B-cell leukemia homeobox 3	-1,00	1,40E-04			
PCDH10	228635_at	protocadherin 10	-1,69	9,00E-05			
PDPN	220038_at		1,21	4,70E-04			
PDPN	221898_at	podoplanin	1.06	2,39E-03			
PD7D8	204679_at	PDZ domain containing 8	1,00	2,73E-03			
PGBD3	213349_at	niggyBac transposable element derived 3	-0,92	2 74E-04			
PGRMC1	201120 s at	progesterone receptor membrane component 1	0.94	2,74E-04			
PIK3R2	1568629 s at	phosphoinositide-3-kinase, regulatory subunit 2 (beta)	0.88	4 01E-04			
PIK3R3	202743 at	phosphoinositide 3 kinase, regulatory subunit 3 (gamma)	-1.04	1.86E-04			
PLSCR4	218901 at	phospholipid scramblase 4	-1.04	1.78E-04			
PNMA2	209598 at	paraneoplastic antigen MA2	-1.12	1,17E-04			
PPIF	201490 s at	peptidylprolyl isomerase F	0,85	1,69E-04			
PPM1K	235061_at	protein phosphatase, Mg2+/Mn2+ dependent, 1K	0,86	8,42E-04			
PPP3R1	204506_at	protein phosphatase 3, regulatory subunit B, alpha	-0,84	2,73E-04			
PPPDE1	212371_at	PPPDE peptidase domain containing 1	-1,33	9,33E-05			
PPPDE1	222158_s_at	PPPDE peptidase domain containing 1	-1,48	1,86E-04			
PQLC3	225579_at	PQ loop repeat containing 3	-0,87	1,28E-04			
PRKCE	226101_at	protein kinase C, epsilon	-0,99	1,26E-04			
PRKCH	218764_at	protein kinase C, eta	-1,00	1,68E-04			
PRNP	215707_s_at	prion protein	1,39	4,92E-05			
PRSS23	226279_at	protease, serine, 23	-0,85	1,69E-04			
PRSS3	207463_x_at	protease, serine, 3	0,94	8,28E-04			
PRSS3	213421_x_at	protease, serine, 3	0,84	1,94E-03			
PSAT1	220892_s_at	phosphoserine aminotransferase 1	1,33	6,23E-05			
PSMB9	1555852_at	proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional peptidase 2)	1,00	3,38E-04			
PSMB9	204279_at	proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional peptidase 2)	1,10	4,68E-04			
PTGES2	218083_at	prostaglandin E synthase 2	0,79	2,42E-04			
PXDN	212012_at	peroxidasin homolog (Drosophila)	-1,03	1,23E-04			
PXDN	212013_at	peroxidasin homolog (Drosophila)	-0,94	2,43E-04			
RAB15	59697_at	RAB15, member RAS onocogene family	-1,53	6,90E-05			
RANBP9	216125_s_at	RAN binding protein 9	0,80	2,15E-04			
RAP1GAP2	213280_at	RAP1 GTPase activating protein 2	1,01	1,58E-04			
RFX7	222630_at	regulatory factor X, 7	-1,02	1,63E-04			
RGS2	202388_at	regulator of G-protein signaling 2, 24kDa	0,93	3,48E-04			
RHPN2	22/196_at	rhophilin, Rho GTPase binding protein 2	-0,86	1,63E-04			
RNASEK	224573_at	ribonuclease, RNase K	-0,78	2,25E-04			
RNF120	205748_s_at	ring finger protein 126	0,95	1,03E-04			
RNF24	210/06_s_at	ring finger protein 24	0,89	1,28E-04			
RPSOKA2	212912_at	radical S adaposal mathioning domain containing 2	-1,18	4,14E-04			
RSAD2	242023_at	radical S adenosyl methionine domain containing 2	2,10	1,00E-04			
RSAD2 RSE1	213797_at 222541_at	remodeling and spacing factor 1	2,03	2,38E-04			
SAMD9	222341_at	sterile alpha motif domain containing 9	1.01	1,54E-04			
SAMD9	219091_at	sterile alpha motif domain containing 9	1,01	2 85E-04			
SAMD9	226531_at	sterile alpha motif domain containing 9-like	1,02	7 28F-04			
SCARB2	201646 at	scavenger receptor class B. member 2	1.32	1.06E-04			
SCD	223839 s at	stearoyl-CoA desaturase (delta-9-desaturase)	-1.08	1,68E-04			
SCML1	222747 s at	sex comb on midleg-like 1 (Drosophila)	-0.84	2.57E-04			
SDC1	201286 at	syndecan 1	1,08	4,26E-04			
SDC1	201287_s_at	syndecan 1	1,10	6,80E-04			
SDPR	222717_at	serum deprivation response	-0,96	8,28E-04			

HPMEC-ST1.6R-Liste der regulierten probe sets mit Genzuordnung								
Symbol	probe set ID	GeneName	logFC	adi.p.val				
SERPINH1	207714 s at	serpin peptidase inhibitor, clade H (heat shock protein 47).	0.97	1.85E-04				
		member 1, (collagen binding protein 1)		-,				
SETD3	212465_at	SET domain containing 3	-1,19	1,09E-04				
SFRP1	202037_s_at	secreted frizzled-related protein 1	0,79	7,82E-04				
SFRP1	202035_s_at	secreted frizzled-related protein 1	0,74	2,43E-02				
SGMS2	227038_at	sphingomyelin synthase 2	-0,98	2,38E-04				
SHISA5	222986_s_at	shisa homolog 5 (Xenopus laevis)	1,10	1,63E-04				
SIGMAR1	214484_s_at	sigma non-opioid intracellular receptor 1	0,94	2,22E-04				
SIX2	206510_at	SIX homeobox 2	-0,92	2,85E-04				
SLC15A3	219593_at	solute carrier family 15, member 3	1,34	1,69E-04				
SLC16A3	202855_s_at	solute carrier family 16, member 3 (monocarboxylic acid transporter 4)	1,74	3,90E-05				
SLC16A3	202856_s_at	solute carrier family 16, member 3 (monocarboxylic acid transporter 4)	0,92	1,30E-04				
SLC3A2	200924_s_at	solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2	1,25	1,17E-04				
SNCA	204466_s_at	synuclein, alpha (non A4 component of amyloid precursor)	-1,61	3,90E-05				
SNHG12	223773_s_at	small nucleolar RNA host gene 12 (non-protein coding)	0,87	1,63E-04				
SNHG12	223774_at	small nucleolar RNA host gene 12 (non-protein coding)	0,95	1,85E-04				
SNN	218032_at	stannin	-1,25	1,63E-04				
SNX18	226683_at	sorting nexin 18	-0,77	2,38E-04				
SNX5	223666_at	sorting nexin 5	0,81	2,05E-04				
SORBS2	225728_at	sorbin and SH3 domain containing 2	-1,65	1,17E-04				
SORT1	224818_at	sortilin 1	-1,11	3,72E-04				
SP110	209761_s_at	SP110 nuclear body protein	1,60	1,66E-04				
SP110	223980_s_at	SP110 nuclear body protein	0,97	2,85E-04				
SP110	208012_x_at	SP110 nuclear body protein	1,22	4,15E-04				
SP110	209762_x_at	SP110 nuclear body protein	1,15	1,02E-03				
SPANXC	220217_x_at	SPANX family, member C	-0,83	1,44E-02				
SPHK1	219257_s_at	sphingosine kinase 1	1,10	8,76E-04				
SS18	202817_s_at	synovial sarcoma translocation, chromosome 18	1,27	1,28E-04				
STAT1	209969_s_at	signal transducer and activator of transcription 1, 91kDa	1,02	3,99E-04				
STIP1	212009_s_at	stress-induced-phosphoprotein 1	1,64	3,90E-05				
SULFI	212353_at	sulfatase I	-0,96	5,64E-03				
SV2A	203069_at	synaptic vesicle glycoprotein 2A	-1,13	1,78E-04				
SYNPO	202796_at	synaptopodin	-1,06	1,12E-04				
TAGLN	205547_s_at	transgelin	-2,19	1,85E-04				
TAGLN	1555/24_s_at	transgelin	-1,/2	3,72E-04				
TANCI	225308_s_at	containing 1	-0,91	2,13E-04				
TAPBP	208829_at	TAP binding protein (tapasin)	0,80	2,41E-04				
TBC1D9	212956_at	TBC1 domain family, member 9 (with GRAM domain)	-1,02	1,17E-04				
TCEA2	203919_at	transcription elongation factor A (SII), 2	-0,82	1,83E-04				
TDG	203743_s_at	thymine-DNA glycosylase	-0,90	2,22E-04				
TFPI2	209277_at	tissue factor pathway inhibitor 2	0,90	1,70E-03				
TFPI2	209278_s_at	tissue factor pathway inhibitor 2	0,81	1,93E-03				
TUDS1	228121_at	transforming growth factor, beta 2	-2,54	3,90E-05				
	235086_at	thrombospondin 1	-0,97	1,08E-03				
11MM44	203093_s_at	(yeast)	0,83	1,70E-04				
TMED2	204426_at	transmembrane emp24 domain trafficking protein 2	1,45	1,63E-04				
TMED2	204427_s_at	transmembrane emp24 domain trafficking protein 2	1,17	2,15E-04				
TMED4	224680_at	transmembrane emp24 protein transport domain containing 4	1,03	9,00E-05				
TMEM158	213338_at	transmembrane protein 158 (gene/pseudogene)	1,06	1,98E-02				
TMEM30A	222391_at	transmembrane protein 30A	-1,16	1,09E-04				
TMEM30A	217743_s_at	transmembrane protein 30A	-0,85	2,52E-04				
TMEM56	234980_at	transmembrane protein 56	-0,87	2,06E-04				
TMEM98	2231/0_at	transmembrane protein 98	-0,93	2,85E-04				
TMSB15A	20534/_s_at	utymosin beta 150	-1,00	3,90E-05				
TMTC4	214031_at	unymosin deta 15B	-0,85	2,05E-04				
TMTC4	223000_at	thioradovin rolated transmembrane pretrin 1	-0,90	1,94E-04				
TNESE10	200097_8_at	unoredoxin-related transmemorane protein 1	1.22	1,74E-04				
INFSFIU	202088_at	tumor necrosis factor (figand) superfamily, member 10	1,23	6,10E-03				

	HPMEC-ST	1.6R-Liste der regulierten probe sets mit Genzuor	rdnung	
Symbol	probe set ID	GeneName	logFC	adj.p.val
TNFSF10	202687_s_at	tumor necrosis factor (ligand) superfamily, member 10	1,20	8,54E-03
TNNT1	213201_s_at	troponin T type 1 (skeletal, slow)	-0,98	6,26E-04
TNS3	217853_at	tensin 3	-1,21	3,82E-04
TOX	204529_s_at	thymocyte selection-associated high mobility group box	-0,82	2,71E-04
TP53INP1	225912_at	tumor protein p53 inducible nuclear protein 1	-0,98	3,62E-04
TPD52	201690_s_at	tumor protein D52	0,80	1,74E-02
TPM1	210987_x_at	tropomyosin 1 (alpha)	-0,81	2,57E-04
TRAK1	226013_at	trafficking protein, kinesin binding 1	-0,90	1,70E-04
TRAPPC6A	204985_s_at	trafficking protein particle complex 6A	-1,02	1,63E-04
TRIB1	202241_at	tribbles homolog 1 (Drosophila)	0,84	8,63E-04
TRIM14	203147_s_at	tripartite motif containing 14	0,88	2,16E-04
TRIM14	203148_s_at	tripartite motif containing 14	0,94	3,34E-04
TRIM21	204804_at	tripartite motif containing 21	0,96	5,22E-04
TRIM22	213293_s_at	tripartite motif containing 22	0,84	4,24E-04
TRIM37	213009_s_at	tripartite motif containing 37	-0,98	1,17E-04
TRIM69	1568592_at	tripartite motif containing 69	1,14	1,11E-03
TRPV2	219282_s_at	transient receptor potential cation channel, subfamily V, member 2	-1,14	9,00E-05
TXNRD2	211177_s_at	thioredoxin reductase 2	-0,93	4,72E-04
UBE2K	225179_at	ubiquitin-conjugating enzyme E2K (UBC1 homolog, yeast)	-0,86	1,91E-04
UBE2L6	201649_at	ubiquitin-conjugating enzyme E2L 6	1,40	1,71E-04
UGCG	221765_at	UDP-glucose ceramide glucosyltransferase	-0,93	1,86E-04
UGCG	204881_s_at	UDP-glucose ceramide glucosyltransferase	-0,86	8,04E-04
USP46	203870_at	ubiquitin specific peptidase 46	-0,95	2,43E-04
VAMP3	201336_at	vesicle-associated membrane protein 3 (cellubrevin)	-1,52	8,09E-05
VEGFA	210512_s_at	vascular endothelial growth factor A	1,09	1,63E-04
VPS54	222627_at	vacuolar protein sorting 54 homolog (S. cerevisiae)	-0,77	1,69E-04
VWF	202112_at	von Willebrand factor	-1,22	3,62E-04
WEE1	212533_at	WEE1 homolog (S. pombe)	-1,05	2,58E-04
WNK4	229158_at	WNK lysine deficient protein kinase 4	-0,83	1,78E-04
XAF1	228617_at	XIAP associated factor 1	1,40	1,69E-04
XAF1	206133_at	XIAP associated factor 1	1,50	2,07E-04
YPEL2	227020_at	yippee-like 2 (Drosophila)	-1,02	1,69E-04
YPEL5	217783_s_at	yippee-like 5 (Drosophila)	-0,78	1,70E-04
ZEB1	210875_s_at	zinc finger E-box binding homeobox 1	0,90	4,89E-04
ZHX2	203556_at	zinc fingers and homeoboxes 2	-0,91	2,18E-04
ZNF238	212774_at	zinc finger protein 238	-0,96	1,28E-04
ZNFX1	225076_s_at	zinc finger, NFX1-type containing 1	0,84	2,53E-04

7.1.2. Genregulationen nach Einteilung in GO-Kategorien

Tab.19 Liste der Genregulationen nach Einteilung in GO-Kategorien

Die nach Auswertung der *Microarray*-Daten erhaltenen regulierten Gene wurden einer GO-Analyse unterzogen. In der nachfolgenden Tabelle sind alle Gene in Bezug auf die jeweiligen GO-Kategorien *molecular function, biological process* und *cellular component* mit p-Werten $\leq 0,05$ aufgelistet. In den Spalten p-Wert, OR, EC, C und S sind die anhand der GO-Analyse errechneten Werte der Signifikanz (p-Wert, *p-value*), der odds ratio (OR-Quotenzahl ermittelt aus Gesamtanzahl der Gene/erhaltene Anzahl an Genen), der erwarteten Anzahl (EC-*expected count*), der erhaltenen Anzahl (C-*count*) und der Gesamtanzahl (S-*size*) an regulierten Genen aufgeführt. Nachfolgend werden die in der GO-Analyse errechneten Werte durch die Gesamtanzahl der auf dem Genchip lokalisierten Gene (G) und die signifikant regulierten Gene (SG) korrigiert (Inf= Infinitely/unendlich). GO-Kategorien ohne Zuordnung signifikant regulierter Gene sind in der Tabelle nicht gelistet.

GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
molecular function									
protein binding	126 Gene	1,55E-05	1,67	166	202	7861	126	5344	
receptor-protein activity	CD44, IFITM1	3,37E-05	4,26	3,37	13	159	2	35	
Hematop./interferon- class cyto- receptor signal transducer activ	SP110, STAT1	1,79E-04	46,68	0,13	3	6	2	4	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien								
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G
	то	lecular fu	nction					
MHC class I receptor activity	HLA-B, HLA-C, HLA-F, HLA-G	2,24E-04	17,02	0,32	4	15	4	13
extracellular matrix structural constituent	BGN, COL4A1, COL4A5, FBLN2, FBN2, PXDN, TFPI2, COL18A1	3,67E-04	5,04	1,76	8	83	8	65
collagen binding	SERPINH1, CD44, ITGA2, VWF	6,92E-04	8,09	0,72	5	34	4	31
stearoyl-CoA 9- desaturase activity	SCD, FADS2	1,32E-03	93,06	0,06	2	3	2	3
cytoskeletal protein binding	JUP, NF2, SDC1	1,70E-03	2,16	10,33	21	488	3	38
extracellular matrix binding	BGN, VEGFA	2,04E-03	8,50	0,55	4	26	2	13
phosphoinositide 3- kinase regulator activity	PIK3R2, PIK3R3	2,61E-03	46,53	0,08	2	4	2	3
beta-amyloid binding	HSD17B10, TGFB2, ITM2C	3,54E-03	11,66	0,32	3	15	3	15
cyclin-dependent protein kinase regulator activity	CCNE2	5,13E-03	9,99	0,36	3	17	1	6
disulfide oxidoreductase activity	TMX1	6,06E-03	9,33	0,38	3	18	1	3
integrin binding	CTGF, ITGA2, LYN, THBS1, VWF	7,55E-03	4,42	1,23	5	58	5	58
identical protein binding	ALDH2, CDK2, CTSC, HSD17B10, ITGA2, MDM2, KITLG, PRNP, SNCA, THBS1, CDC42BPA, CLDN12, IRF9, RP6-213H19.1	8,67E-03	1,80	13,45	23	635	14	296
fibronectin binding	THBS1, VEGFA	8,75E-03	18,61	0,15	2	7	2	7
chemoattractant activity	BMP4, CCL5	8,75E-03	18,61	0,15	2	7	2	7
GABA receptor binding	TRAK1, GABARAPL1	8,75E-03	18,61	0,15	2	7	2	7
calmodulin binding	ADD3, CALD1, MYLK, MYO6, PPP3R1, RGS2, SPHK1, CAMTA1	9,90E-03	2,85	2,96	8	140	8	140
receptor binding	FKBP1B, APOL2	1,10E-02	1,66	17,70	28	836	2	129
glycolipid binding	GLTP	1,15E-02	15,50	0,17	2	8	1	4
growth factor activity	JAGI, DNEK JAGI, BDNF, BMP4, BMP6, CTGF, KITLG, TGFB2, VEGFA	1,46E-02 1,57E-02	2,61	3,22	8	152	8	152
manganese ion binding	ACVRL1, ISG20, ME1, B4GALT4, DICER1, PPM1K, DCP2, NUDT19	1,62E-02	2,59	3,24	8	153	8	153
transforming growth factor beta binding	ACVRL1, THBS1	1,80E-02	11,63	0,21	2	10	2	10
structural constituent of cytoskeleton	ACTB, ADD3, DSP, TPM1, SORBS2	2,02E-02	3,39	1,57	5	74	5	74
lanosterol synthase activity	LSS	2,12E-02	Inf	0,02	1	1	1	1
angiotensin type I receptor activity	AGTR1	2,12E-02	Inf	0,02	1	1	1	1
2'-5'-oligoadenylate synthetase activity	OAS2	2,12E-02	Inf	0,02	1	1	1	1
O-phospho-L- serine:2-oxoglutarate aminotransferase activity	PSAT1	2,12E-02	Inf	0,02	1	1	1	1

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	то	lecular fu	nction						
interleukin-11 receptor activity	IL6ST	2,12E-02	Inf	0,02	1	1	1	1	
nicotinamide N- methyltransferase activity	NNMT	2,12E-02	Inf	0,02	1	1	1	1	
Ceramide-g- transferase activity	UGCG	2,12E-02	Inf	0,02	1	1	1	1	
pyrimidine-specific mismatch bp DNA N- glycosylase activity	TDG	2,12E-02	Inf	0,02	1	1	1	1	
single-stranded DNA specific 3'-5' exodeoxyribonuclease activity	ISG20	2,12E-02	Inf	0,02	1	1	1	1	
gamma-glutamyl carboxylase activity	GGCX	2,12E-02	Inf	0,02	1	1	1	1	
7-alpha- hydroxysteroid dehydrogenase activity	HSD17B10	2,12E-02	Inf	0,02	1	1	1	1	
exoribonuclease II activity	ISG20	2,12E-02	Inf	0,02	1	1	1	1	
nerve growth factor receptor activity	SORT1	2,12E-02	Inf	0,02	1	1	1	1	
D-erythro- sphingosine kinase activity	SPHK1	2,12E-02	Inf	0,02	1	1	1	1	
acetoacetyl-CoA reductase activity	HSD17B10	2,12E-02	Inf	0,02	1	1	1	1	
neurotensin receptor activity, non-G- protein coupled	SORT1	2,12E-02	Inf	0,02	1	1	1	1	
arsenate reductase (thioredoxin) activity	TMX1	2,12E-02	Inf	0,02	1	1	1	1	
vascular endothelial growth factor receptor 1 binding	VEGFA	2,12E-02	Inf	0,02	1	1	1	1	
vascular endothelial growth factor receptor 2 binding	VEGFA	2,12E-02	Inf	0,02	1	1	1	1	
3-hydroxy-2- methylbutyryl-CoA dehydrogenase activity	HSD17B10	2,12E-02	Inf	0,02	1	1	1	1	
fibroblast growth factor 2 binding	THBS1	2,12E-02	Inf	0,02	1	1	1	1	
UDP-glucuronate 5'- epimerase activity	GLCE	2,12E-02	Inf	0,02	1	1	1	1	
minus-end directed microfilament motor activity	MYO6	2,12E-02	Inf	0,02	1	1	1	1	
phospholipase D inhibitor activity	SNCA	2,12E-02	Inf	0,02	1	1	1	1	
fibrinogen binding	THBS1	2,12E-02	Inf	0,02	1	1	1	1	
cyclin-dependent protein kinase inhibitor activity	CDKN1B, CDKN2B	2,17E-02	10,33	0,23	2	11	2	11	
platelet-derived growth factor receptor binding	LYN, VEGFA	2,17E-02	10,33	0,23	2	11	2	11	
1-p-phatidylinositol- 3-kinase activity	PIK3R2, PIK3R3	2,17E-02	10,33	0,23	2	11	2	11	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	mo	lecular fu	nction						
kinesin binding	ACTB, SNCA	2,17E-02	10,33	0,23	2	11	2	11	
unfolded protein binding	SERPINH1, CLN3, HSPD1, TAPBP, CCT2,	2,31E-02	2,87	2,20	6	104	6	104	
anguma hindina	CDC37	2.44E.02	1.72	10.92	10	511	6	00	
enzyme binding	PRKCE, PRKCH, SORT1, RANBP9	2,44E-02	1,/3	10,82	18	511	0	88	
cell surface binding	HSPD1, VEGFA	2,50E-02	5,18	0,64	3	30	2	12	
magnesium ion binding	ACVRL1, ENO1, MKNK2, ITGA2, MAP3K3, MYLK, RPS6KA2, SNCA, WEE1, CDC42BPA, SPHK1, ATP11A, DICER1, RP6-213H19.1, PPM1K, NUDT19	2,83E-02	1,76	9,44	16	446	16	446	
kinase activity	CMPK2, SGMS2	2,93E-02	1,57	15,90	24	751	2	90	
laminin binding	ITGA2, THBS1	2,99E-02	8,45	0,28	2	13	2	9	
calcium ion binding	JAG1, ANXA3, FBLN2, FBN2, EFEMP1, GSN, HPCAL1, ITGA2, MMP1, MMP14, MYLK, PPP3R1, PRSS3, SNCA, STAT1, THBS1, TPD52, PXDN, DCHS1, TBC1D9, SULF1, TRPV2, PLSCR4, PCDH10, MCTP1, AIF1L, DNER	3,09E-02	1,52	18,49	27	873	27	873	
protein	MKNK2, MAP3K3,	3,13E-02	1,77	8,79	15	415	8	301	
serine/threonine kinase activity	MAPK8, RPS6KA2, WEE1, CDC42BPA, RP6-213H19.1, WNK4								
ATP binding	Nicht einzeln aufgeführt (40 regulierte Gene)	3,40E-02	1,40	29,86	40	1410	40	1410	
tropomyosin binding	CALD1, TNNT1	3,44E-02	7,75	0,30	2	14	2	14	
protein disulfide oxidoreductase activity	GLRX5, PTGES2	3,44E-02	7,75	0,30	2	14	2	14	
receptor signaling protein serine/threonine kinase activity	TGFB2	3,61E-02	3,39	1,25	4	59	1	2	
actin binding	ADD3, CALD1, GSN, MYLK, TAGLN, TPM1, TMSB15A, SYNPO, LIMCH1, MLPH	3,71E-02	1,86	6,69	12	316	10	263	
structural molecule activity	JAG1, JUP, THBS1, CLDN12, MOSPD1	3,88E-02	1,61	12,24	19	578	5	181	
protein kinase C activity	PRKCH	3,91E-02	7,15	0,32	2	15	1	12	
protein kinase activity	TRIB1	4,12E-02	1,60	12,32	19	582	1	55	
aconitate hydratase activity	ACO1	4,19E-02	46,37	0,04	1	2	1	2	
cytidylate kinase activity	CMPK2	4,19E-02	46,37	0,04	1	2	1	2	
heme oxygenase (decyclizing) activity	HMOX1	4,19E-02	46,37	0,04	1	2	1	2	
malate dehydrogenase (oxaloacetate- decarboxylating) (NADP+) activity	ME1	4,19E-02	46,37	0,04	1	2	1	2	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	mo	lecular fu	nction						
calcium-independent protein kinase C activity	PRKCE	4,19E-02	46,37	0,04	1	2	1	2	
interleukin-6 receptor activity	IL6ST	4,19E-02	46,37	0,04	1	2	1	2	
leukemia inhibitory factor receptor activity	IL6ST	4,19E-02	46,37	0,04	1	2	1	2	
interleukin-8 receptor binding	IL8	4,19E-02	46,37	0,04	1	2	1	2	
sphinganine kinase activity	SPHK1	4,19E-02	46,37	0,04	1	2	1	2	
acetyltransferase activator activity	AGTR1	4,19E-02	46,37	0,04	1	2	1	2	
basal transcription repressor activity	MDM2	4,19E-02	46,37	0,04	1	2	1	2	
procollagen-proline 3- dioxygenase activity	LEPREL1	4,19E-02	46,37	0,04	1	2	1	2	
iron-responsive element binding	ACO1	4,19E-02	46,37	0,04	1	2	1	2	
protein tag	ISG15	4,19E-02	46,37	0,04	1	2	1	2	
myosin V binding	MLPH	4,19E-02	46,37	0,04	1	2	1	2	
bradykinin receptor binding	AGTR1	4,19E-02	46,37	0,04	1	2	1	2	
sphingomyelin synthase activity	SGMS2	4,19E-02	46,37	0,04	1	2	1	2	
histone kinase activity	CDK2	4,19E-02	46,37	0,04	1	2	1	2	
heparan sulfate N- acetylglucosaminyltra nsferase activity	EXT1	4,19E-02	46,37	0,04	1	2	1	2	
interleukin-27 receptor activity	IL6ST	4,19E-02	46,37	0,04	1	2	1	2	
natural killer cell lectin-like receptor binding	MICB	4,19E-02	46,37	0,04	1	2	1	2	
ceramide cholinephosphotransf erase activity	SGMS2	4,19E-02	46,37	0,04	1	2	1	2	
long-chain-fatty-acyl- CoA reductase	FAR2	4,19E-02	46,37	0,04	1	2	1	2	
N- acetylglucosaminyl- proteoglycan 4-beta- glucuronosyltransfera se activity	EXT1	4,19E-02	46,37	0,04	1	2	1	2	
protein kinase inhibitor activity	CDKN1B, TRIB1	4,30E-02	4,11	0,78	3	37	2	22	
enzyme inhibitor activity	CRIM1, LXN	4,53E-02	1,92	5,40	10	255	2	26	
protein heterodimerization activity	AGTR1, EPAS1, EXT1, ITGA2, MAX, TGFB2, TPD52, VEGFA	4,58E-02	2,10	3,96	8	187	8	187	
non-membrane spanning protein tyrosine kinase activity	JAK1, LYN, WEE1	4,60E-02	3,99	0,80	3	38	3	38	
transcription regulator activity	CAMTA1	4,87E-02	1,37	29,79	39	1407	1	87	
isomerase activity	FKBP1B, PPIF, GLCE, PTGES2	4,98E-02	2,36	2,65	6	125	4	103	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien								
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G
	bio	ological pr	ocess					
cell migration	CD44, CTGF, MMP14, TNS3, PARP9	2,13E-10	4,37	8,25	31	381	5	48
response to virus	BST2, CDK6, ENO1, IFI35, IRF7, ISG20, MX1, MX2, CCL5, STAT1, FOSL1, ISG15, TRIM22, IRF9, IFI44, DDX58, IFIH1	2,77E-10	7,29	3,12	19	144	17	109
cellular component movement	ACTB, CALD1, IL8, ITGA2, MAPK8, CCL5, TPM1	6,91E-09	3,35	12,31	36	569	7	99
blood vessel	PLAT	1,16E-08 2,68E-08	2,06	65,90 5,43	108 22	3045 251	1	265 7
regulation of locomotion	SNCA	2,74E-08	5,34	4,09	19	189	1	5
blood vessel development	CITED2	5,96E-08	4,23	6,17	23	285	1	37
regulation of cell migration	JAG1, JUB	1,49E-07	5,31	3,66	17	169	2	28
angiogenesis	ACVRL1, JAG1, ANPEP, BMP4, COL4A1, CTGF, EFNA1, EPAS1, IL8, MMP14, TGFB2, DICER1, COL18A1	2,75E-07	4,78	4,26	18	197	13	105
response to stress	MKNK2, MAPK8, SNN, STIP1, TMX1, TP53INP1	5,79E-07	2,12	36,08	66	1667	6	99
wound healing	DSP, SDC1, TGFB2, TPM1	1,52E-06	4,42	4,31	17	199	4	40
anatomical structure morphogenesis	FBN2, MCAM, SCML1, SFRP1, TPD52, MPZL2	1,83E-06	2,21	26,62	52	1230	6	91
response to biotic stimulus	IFITM1	2,47E-06	3,25	8,18	24	378	1	11
immune response	BMP6, CTSC, IFI6, HLA-B, HLA-C, HLA-F, HLA-G, IFI35, IL8, MICB, OAS1, OAS2, OAS3, PSMB9, CCL5, TAPBP, ZEB1, THBS1, PXDN, OASL, TNFSF10, TRIM22, IFI44L	2,48E-06	2,60	14,98	35	692	23	362
antigen processing and presentation of peptide antigen via MHC class I	HLA-B, HLA-C, HLA-F, HLA-G	1,65E-05	20,89	0,35	5	16	4	9
antigen processing and presentation	HLA-B, HLA-C, HLA-F, HLA-G, MICB, PSMB9	1,66E-05	8,24	1,15	8	53	6	29
negative regulation of cell-matrix adhesion	NF2	2,49E-05	36,66	0,19	4	9	1	4
response to oxidative stress	EPAS1, HMOX1, MICB, MMP14, PRNP, CCL5, PXDN	5,77E-05	4,03	3,55	13	164	7	99
lung development	CTGF, EPAS1, MMP14, DICER1	6,13E-05	5,80	1,75	9	81	4	57
regulation of cell adhesion	GSN, IL8	6,24E-05	4,66	2,62	11	121	2	22
positive regulation of cellular component movement	LYN	7,10E-05	5,05	2,21	10	102	1	9

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	bio	ological pr	ocess						
response to nutrient	IL6ST, STAT1, OGT	7,81E-05	4,54	2,68	11	124	3	60	
response to wounding	CTGF, ID3, VWF	8,01E-05	2,43	12,08	27	558	3	38	
development		8,18E-05	5,57	1,82	9	84	0	3	
cell adhesion	SCARB2, CTGF, LGALS3BP, MCAM, KITLG, CCL5, THBS1, DCHS1, MAGI1,	8,84E-05	2,21	16,30	33	753	17	486	
	C1orf38, MPZL2, FERMT2, FERMT1, PCDH10, COL18A1, JUB, LMLN								
cell death	CLN3, FOSL2, HMOX1, HSPD1, TGFB2	9,29E-05	1,98	24,46	44	1130	5	114	
apoptosis	GATA6, GSN, MEF2A, THBS1, KLF11, SULF1, SHISA5, DDIT4, XAF1, TP53INP1, TRIM69	9,65E-05	2,03	22,23	41	1027	11	391	
negative regulation of focal adhesion assembly	ACVRL1, MMP14, THBS1	9,71E-05	68,51	0,11	3	5	3	5	
leukocyte migration	CD34	1,05E-04	6,17	1,47	8	68	1	16	
regulation of apoptosis	PPIF, RP6-213H19.1, IFIH1, CARD16	1,44E-04	2,12	17,44	34	806	4	110	
gliogenesis	CDK6	1,57E-04	5,78	1,56	8	72	1	2	
ossification	CTGF, EXT1, MMP14, MAPK8, SORT1	1,67E-04	3,83	3,42	12	158	5	46	
positive regulation of cell migration	SPHK1, PDPN, COL18A1	1,80E-04	4,97	2,01	9	93	3	54	
negative regulation of cell migration	NF2, TPM1, CITED2	1,93E-04	6,59	1,21	7	56	3	32	
smooth muscle cell migration	PLAT	2,43E-04	16,66	0,32	4	15	1	3	
response to organic substance	CTSC, DUSP4	2,50E-04	2,16	15,06	30	696	2	32	
negative regulation of apoptosis	BMP4, CD44, HSPD1, MAPK8, SORT1	3,22E-04	2,63	7,79	19	360	5	108	
cell proliferation	BST2, ISG20, ITGA2, KITLG, CITED2, PDPN, KIF2C, TMX1	3,27E-04	1,91	22,77	40	1052	8	249	
enzyme linked receptor protein signaling pathway	JAK1	3,37E-04	2,48	9,11	21	421	1	4	
negative regulation of cell death	BMP4	4,37E-04	2,56	7,99	19	369	1	4	
cell-substrate adhesion	VWF	4,62E-04	3,93	2,77	10	128	1	4	
response to iron(II) ion	ACO1, SNCA	4,67E-04	Inf	0,04	2	2	2	2	
defense response	HLA-B, MX1, MX2, ANKRD1	4,73E-04	2,16	13,48	27	623	4	65	
cell-matrix adhesion	CD44, CTGF, ITGA2	4,82E-04	4,30	2,29	9	106	3	66	
response to hypoxia	EPAS1, HMOX1, ITGA2, MMP14, PLAT, TGFB2, THBS1,VEGFA, CITED2, DDIT4	4,92E-04	3,90	2,79	10	129	10	128	
lung alveolus development	BMP4, VEGFA, PDPN, TNS3	6,44E-04	12,21	0,41	4	19	4	19	
response to organic cyclic substance	BMP4, CD44, CDKN2B, ITGA2, LYN, STAT1, FOSL1	6,76E-04	4,09	2,40	9	111	7	73	
positiv regulation of cell adhesion	ITGA2, TPM1	7,75E-04	6,13	1,10	6	51	2	15	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	bio	ological pr	ocess						
interspecies interaction between organisms	ANPEP, HLA-B, HLA-C, HSPD1, SP110, IRF7, ITGA2, LYN, MDM2, MICB, MMP1, STAT1, ISG15, TRIM22, SEPT6, IFIH1	8,17E-04	2,65	6,47	16	299	16	272	
regulation of cell proliferation	JAG1, AGTR1	8,60E-04	1,99	16,23	30	750	2	62	
endothelial cell migration	PRSS3	8,61E-04	6,00	1,13	6	52	1	13	
response to progesterone stimulus	ALDH2, TGFB2, THBS1, FOSL1	9,61E-04	10,77	0,45	4	21	4	21	
platelet-derived growth factor receptor signaling pathway	PLAT, VEGFA, ARID5B	9,61E-04	10,77	0,45	4	21	3	18	
anti-apoptosis	BDNF, IFI6, PRNP, SFRP1, SNCA, THBS1, VEGFA, SPHK1, CITED2, TMX1	1,06E-03	2,91	4,78	13	221	10	169	
regulation of Notch signaling pathway	IL6ST	1,08E-03	19,57	0,22	3	10	1	2	
zymogen activation	MMP14, PRSS3	1,08E-03	19,57	0,22	3	10	2	4	
protein kinase cascade	MKNK2, HMOX1, JAK1, RPS6KA2, SS18, WNK4	1,16E-03	2,15	11,43	23	528	6	91	
membrane lipid metabolic process	B4GALT4	1,17E-03	4,74	1,62	7	75	1	1	
regulation of ossification	SFRP1, RSAD2	1,17E-03	4,74	1,62	7	75	2	9	
negative regulation of cell proliferation	ACVRL1, BMP4, CDKN1B, HMOX1, IL8, NF2, ZEB1, FOSL1, KLF11, IFITM1, COL18A1	1,36E-03	2,43	7,45	17	344	11	252	
focal adhesion assembly	JUB	1,37E-03	9,64	0,50	4	23	1	15	
positive regulation of interferon-alpha production	HSPD1, DDX58	1,38E-03	91,03	0,06	2	3	2	3	
kidney development	AGTR1, SDC1, ARID5B	1,45E-03	4,01	2,16	8	100	3	49	
regulation of macrophage activation	SNCA	1,46E-03	17,12	0,24	3	11	1	5	
response to cadmium ion	GSN, MAPK8, PRNP	1,46E-03	17,12	0,24	3	11	3	11	
negative regulation of transcription, DNA- dependent	RSF1, ARID5B	1,64E-03	2,39	7,57	17	350	2	72	
hemostasis	FLI1	1,66E-03	3,56	2,73	9	126	1	7	
endothelial cell proliferation	HMOX1, MMP14	2,25E-03	6,04	0,93	5	43	2	8	
cell chemotaxis	AGTR1	2,25E-03	6,04	0,93	5	43	1	4	
cellular response to oxidative stress	SNCA	2,50E-03	5,88	0,95	5	44	1	9	
positive regulation of smooth muscle cell proliferation	BMP4, ITGA2, STAT1, VEGFA	2,55E-03	7,96	0,58	4	27	4	27	
positive regulation of chemotaxis	THBS1	2,55E-03	7,96	0,58	4	27	1	3	
erythrocyte homeostasis	HMOX1	2,55E-03	4,75	1,39	6	64	1	6	
glucosylceramide metabolic process	CLN3	2,72E-03	45,51	0,09	2	4	1	1	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	bio	ological pr	ocess						
positive regulation of macrophage activation	HSPD1, THBS1	2,72E-03	45,51	0,09	2	4	2	4	
regulation of transcription from RNA polymerase II promoter in response	EPAS1, HMOX1	2,72E-03	45,51	0,09	2	4	2	4	
to oxidative stress negative regulation of	SNCA	2,72E-03	45,51	0,09	2	4	1	2	
exocytosis positive regulation of cardioblast	GATA6, TGFB2	2,72E-03	45,51	0,09	2	4	2	4	
differentiation positive regulation of kidney development	BMP4, FOXD1	2,72E-03	45,51	0,09	2	4	2	2	
epithelial cell differentiation	ID3, VEGFA	2,95E-03	3,25	2,97	9	137	2	34	
positive regulation of transforming growth factor beta receptor signaling pathway	CDKN2B, THBS1, CITED2	3,06E-03	12,45	0,30	3	14	3	14	
protein maturation	SERPINH1, HSPD1	3,14E-03	3,51	2,45	8	113	2	4	
response to mechanical stimulus	BMP4, ITGA2, MMP14, STAT1, FOSL1	3,35E-03	5,46	1,02	5	47	5	30	
sphingolipid metabolic process	UGCG, SGMS2	3,73E-03	4,38	1,49	6	69	2	14	
branching morphogenesis of a tube	MMP14, DICER1	3,73E-03	4,38	1,49	6	69	2	20	
positive regulation of leukocyte migration	ITGA2, VEGFA	3,76E-03	11,41	0,32	3	15	2	4	
positive regulation of endothelial cell migration	BMP4	3,76E-03	11,41	0,32	3	15	1	6	
heparan sulfate proteoglycan metabolic process	SULF1	3,76E-03	11,41	0,32	3	15	1	3	
transforming growth factor beta receptor signaling pathway	ACVRL1, ID1, TGFB2	4,01E-03	3,75	2,01	7	93	3	46	
negative regulation of DNA binding	RSF1	4,02E-03	5,21	1,06	5	49	1	7	
regulation of transcription from RNA polymerase II promoter	FOSL2, TCEA2, FOSL1, TRAK1, ANKRD1, MED19	4,25E-03	1,85	14,93	26	690	6	170	
metanephros development	SIX2	4,38E-03	5,09	1,08	5	50	1	14	
liver development	ALDH2, GATA6, VWF, CITED2	4,38E-03	5,09	1,08	5	50	4	47	
healing during inflammatory response	CD44, HMOX1	4,47E-03	30,34	0,11	2	5	2	2	
glial cell migration	TGFB2	4,47E-03	30,34	0,11	2	5	1	3	
tibroblast migration	ARID5B	4,47E-03	30,34	0,11	2	5	1	3	
conjugation	UBE2L6, ISG15	4,47E-03	30,34	0,11	2	5	2	5	
negative regulation of DNA damage response, signal transduction by p53 class mediator	CD44, MDM2	4,47E-03 4,47E-03	30,34	0,11	2	5	2	5	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
<u> </u>	bio	ological pr	ocess						
blood coagulation	GGCX, ITGA2, PLAT, TFPI2, PLSCR4	4,54E-03	3,29	2,60	8	120	5	63	
positive regulation of positive chemotaxis	ITGA2	4,56E-03	10,53	0,35	3	16	1	8	
positive regulation of cell cycle	MDM2, TGFB2, FOSL1, CITED2	4,78E-03	4,98	1,10	5	51	4	12	
positive regulation of inflammatory response	AGTR1, ITGA2	5,36E-03	6,31	0,71	4	33	2	20	
transcription from RNA polymerase II promoter	MAX, STAT1, NMI, IRF9	5,42E-03	1,73	18,35	30	848	4	119	
G1 phase of mitotic cell cycle	CDK6	5,45E-03	9,78	0,37	3	17	1	10	
glutamate secretion	BDNF, MYO6	5,45E-03	9,78	0,37	3	17	2	5	
response to protein stimulus	EGR1, ID1, ID3, ITGA2,	5,65E-03	3,50	2,14	7	99	4	33	
tyrosine phosphorylation of STAT protein	STAT1	5,98E-03	6,10	0,74	4	34	1	3	
response to hydrogen peroxide	HMOX1, SDC1, STAT1, FOSL1	6,10E-03	4,68	1,17	5	54	4	38	
regulation of synaptic plasticity	BDNF, MYO6, PLAT	6,10E-03	4,68	1,17	5	54	3	19	
peptidyl-tyrosine phosphorylation	JAK1, LYN	6,30E-03	3,43	2,19	7	101	2	30	
regulation of cell shape	VEGFA, PDPN, FERMT2, PALMD, FGD5	6,60E-03	4,58	1,19	5	55	5	55	
traversing start control point of mitotic cell cycle	CDK2, MDM2	6,61E-03	22,75	0,13	2	6	2	6	
positive regulation of epithelial cell migration	ITGA2, TGFB2	6,61E-03	22,75	0,13	2	6	2	6	
positive regulation of smooth muscle cell migration	IL6ST, ITGA2	6,61E-03	22,75	0,13	2	6	2	6	
positive regulation of BMP signaling pathway	ACVRL1, FOXD1	6,61E-03	22,75	0,13	2	6	2	6	
norepinephrine metabolic process	EPAS1, LY6E	6,61E-03	22,75	0,13	2	6	2	4	
dopamine biosynthetic process	SNCA, TGFB2	6,61E-03	22,75	0,13	2	6	2	5	
regulation of cyclin- dependent protein kinase activity	CDKN1B, CDKN2B, CCNE2, CDC37, HERC5	7,12E-03	4,49	1,21	5	56	5	36	
regulation of cell	ID3	7,29E-03	2,21	6,67	14	308	1	37	
erythrocyte differentiation	BMP4, EPAS1, LYN	7,67E-03	4,41	1,23	5	57	3	21	
response to cytokine stimulus	CDKN2B, IL6ST, STAT1, FOSL1	7,69E-03	3,72	1,73	6	80	4	43	
organ morphogenesis	JAG1, FL11, ITGA2, HEY2, COL18A1	7,86E-03	1,87	11,82	21	546	5	113	
ovarian follicle	BMP4, MMP14, VEGFA, ERMP1	8,09E-03	5,54	0,80	4	37	4	30	
BMP signaling	BMP4, BMP6, ID1	8,25E-03	4,32	1,26	5	58	3	32	
pathway-restricted SMAD protein phosphorylation	BMP6, TGFB2	8,71E-03	8,05	0,43	3	20	2	4	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien										
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G		
	bia	ological pr	ocess							
chronic inflammatory response	CCL5, THBS1	9,12E-03	18,20	0,15	2	7	2	3		
response to magnesium ion	SNCA, THBS1	9,12E-03	18,20	0,15	2	7	2	7		
ephrin receptor signaling pathway	EFNA1, SS18	9,12E-03	18,20	0,15	2	7	2	7		
response to hyperoxia	ALDH2, PDPN	9,12E-03	18,20	0,15	2	7	2	7		
negative regulation of transcription from RNA polymerase II promoter	EGR1, ENO1, ID1, ID3, IRF7, MDM2, ZEB1, KLF11, CITED2, ZNF238, ZHX2	9,14E-03	2,31	5,48	12	253	11	211		
multicellular organismal development	JAG1, ANPEP, BMP6, BST2, CREM, EPAS1, ID1, ID3, MEF2A, SORT1, SFRP1, VEGFA, SIX2, HEY2, APOL2, HOPX	9,30E-03	1,40	60,06	77	2775	16	847		
skeletal system development	EXT1	9,36E-03	2,08	7,57	15	350	1	106		
cell cycle arrest	CDKN1B, CDKN2B, IL8, TGFB2, THBS1, TP53INP1	9,44E-03	3,15	2,36	7	109	6	102		
ceramide metabolic process	ASAH1	9,74E-03	5,22	0,84	4	39	1	9		
negative regulation of cell adhesion	ACVRL1	9,74E-03	5,22	0,84	4	39	1	21		
blood vessel remodeling	BGN, EPAS1, VEGFA	1,00E-02	7,60	0,45	3	21	3	20		
activation of pro- apoptotic gene products	PPP3R1, MAPK8, TNFSF10	1,00E-02	7,60	0,45	3	21	3	21		
JAK-STAT cascade	IL6ST, NMI	1,02E-02	4,09	1,32	5	61	2	19		
protein amino acid phosphorylation	ACVRL1, CDK2, CDK6, MKNK2, MYLK, PRKCE, PRKCH, RPS6KA2, WEE1, CDC42BPA, TRIB1, RP6-213H19.1, WNK4	1,04E-02	1,71	16,04	26	741	13	415		
positive regulation of apoptosis	BMP4, HSPD1, ID3, FOSL1, COL18A1	1,07E-02	1,95	9,15	17	423	5	83		
leukocyte activation	TMX1	1,14E-02	2,09	7,03	14	325	1	5		
regulation of heart rate	EPAS1	1,14E-02	7,20	0,48	3	22	1	9		
positive regulation of ossification	TGFB2	1,14E-02	7,20	0,48	3	22	1	4		
ureteric bud development	BDNF, BMP4	1,16E-02	4,94	0,89	4	41	2	20		
negative regulation of phosphorylation	BMP4, CDKN1B, CDKN2B	1,16E-02	4,94	0,89	4	41	3	13		
positive regulation of cell death	BMP4	1,17E-02	1,93	9,24	17	427	1	1		
wound healing, spreading of epidermal cells	ACVRL1, JUB	1,20E-02	15,17	0,17	2	8	2	8		
surfactant homeostasis	EPAS1, VEGFA	1,20E-02	15,17	0,17	2	8	2	8		
induction of positive chemotaxis	IL8, VEGFA	1,20E-02	15,17	0,17	2	8	2	8		
growth	BMP4, BMP6, VPS54	1,21E-02	1,88	10,02	18	463	3	25		
positive regulation of cell proliferation	CDK2, IL6ST, MDM2, TGFB2, FOSL1, TNS3, COL18A1	1,23E-02	1,96	8,55	16	395	7	236		
response to vitamin A	CD44	1,26E-02	4,81	0,91	4	42	1	9		

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	bio	ological pr	ocess						
negative regulation of epithelial cell proliferation	CDK6, CDKN2B, TGFB2	1,29E-02	6,84	0,50	3	23	3	22	
response to hormone stimulus	ME1, MMP14	1,37E-02	1,98	7,92	15	366	2	36	
negative regulation of transcription factor activity	HMOX1, ID1, ID3, TRIB1	1,37E-02	4,69	0,93	4	43	4	28	
cellular response to extracellular stimulus	CDKN2B, LYN, FOSL1	1,40E-02	3,75	1,43	5	66	3	15	
regulation of angiogenesis	HMOX1, ID1	1,40E-02	3,75	1,43	5	66	2	17	
glycosphingolipid metabolic process	CREM	1,45E-02	6,52	0,52	3	24	1	5	
positive regulation of osteoblast differentiation	BMP4, BMP6, IL6ST	1,45E-02	6,52	0,52	3	24	3	24	
regulation of peptidyl- tyrosine	PRKCE	1,49E-02	3,69	1,45	5	67	1	10	
positive regulation of	CALD1	1,52E-02	13,00	0,19	2	9	1	8	
positive regulation of blood vessel endothelial cell migration	THBS1, VEGFA	1,52E-02	13,00	0,19	2	9	2	7	
mesoderm development	EXT1, MEST, VEGFA	1,58E-02	3,63	1,47	5	68	3	25	
regulation of transforming growth factor beta receptor signaling pathway	ZEB1	1,60E-02	4,46	0,97	4	45	1	10	
mechanoreceptor differentiation	BDNF	1,62E-02	6,22	0,54	3	25	1	4	
positive regulation of fibroblast proliferation	CDK6, FOSL2, SPHK1	1,62E-02	6,22	0,54	3	25	3	25	
regulation of muscle contraction	TPM1	1,77E-02	3,52	1,51	5	70	1	12	
protein amino acid O- linked glycosylation	OGT, TRAK1	1,81E-02	5,95	0,56	3	26	2	16	
peptide cross-linking	DSP, THBS1	1,81E-02	5,95	0,56	3	26	2	20	
response to abiotic stimulus	SNN	1,82E-02	1,96	7,47	14	345	1	1	
embryonic development	TGFB2, PDPN	1,83E-02	1,76	11,25	19	520	2	64	
negative regulation of transcription	BMP4, ID1, ID3	1,87E-02	1,82	9,74	17	450	3	126	
sphingomyelin metabolic process	CLN3	1,87E-02	11,37	0,22	2	10	1	3	
cellular response to nutrient	CDKN2B, HMOX1	1,87E-02	11,37	0,22	2	10	2	3	
SMAD protein signal transduction	BMP4, BMP6	1,87E-02	11,37	0,22	2	10	2	10	
myoblast differentiation	JAG1	2,00E-02	5,70	0,58	3	27	1	13	
positive regulation of angiogenesis	THBS1, VEGFA, SPHK1	2,00E-02	5,70	0,58	3	27	3	25	
tube morphogenesis	PDPN	2,05E-02	2,68	2,75	7	127	1	4	
autophagic vacuole fusion	CLN3	2,16E-02	Inf	0,02	1	1	1	1	
globoside metabolic process	CLN3	2,16E-02	Inf	0,02	1	1	1	1	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	bio	ological pr	ocess						
B cell cytokine production	HSPD1	2,16E-02	Inf	0,02	1	1	1	1	
Neg. regulation of antigen processing and pres. of peptide or polysaccharide antigen via MHC class II	THBS1	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of dendritic cell antigen processing and presentation	THBS1	2,16E-02	Inf	0,02	1	1	1	1	
positive regulation of heart rate by epinephrine	TPM1	2,16E-02	Inf	0,02	1	1	1	1	
outflow tract septum morphogenesis	GATA6	2,16E-02	Inf	0,02	1	1	1	1	
ergosterol biosynthetic process	SIGMAR1	2,16E-02	Inf	0,02	1	1	1	1	
NADP biosynthetic process	ME1	2,16E-02	Inf	0,02	1	1	1	1	
anterior compartment pattern formation	PBX3	2,16E-02	Inf	0,02	1	1	1	1	
posterior compartment specification	PBX3	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of transcription by transcription factor localization	ID1	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of platelet-derived growth factor receptor signaling pathway	SNCA	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of alkaline phosphatase activity	TGFB2	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of nitric oxide mediated signal transduction	THBS1	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of cGMP-mediated signaling	THBS1	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of plasminogen activation	THBS1	2,16E-02	Inf	0,02	1	1	1	1	
positive regulation of macrophage chemotaxis	THBS1	2,16E-02	Inf	0,02	1	1	1	1	
tryptophan transport	SLC3A2	2,16E-02	Inf	0,02	1	1	1	1	
peptidyl-glutamic acid carboxylation	GGCX	2,16E-02	Inf	0,02	1	1	1	1	
protein amino acid deamination	LOXL1	2,16E-02	Inf	0,02	1	1	1	1	
positive regulation of aldosterone biosynthetic process	BMP6	2,16E-02	Inf	0,02	1	1	1	1	
positive regulation of neutrophil apoptosis	CD44	2,16E-02	Inf	0,02	1	1	1	1	
positive regulation of collagen binding	ITGA2	2,16E-02	Inf	0,02	1	1	1	1	
response to L- ascorbic acid	ITGA2	2,16E-02	Inf	0,02	1	1	1	1	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	bio	ological pr	ocess						
negative regulation of mast cell	HMOX1	2,16E-02	Inf	0,02	1	1	1	1	
engulfment of apoptotic cell	THBS1	2,16E-02	Inf	0,02	1	1	1	1	
cell dedifferentiation	CDK6	2,16E-02	Inf	0,02	1	1	1	1	
intermediate mesodermal cell differentiation	BMP4	2,16E-02	Inf	0,02	1	1	1	1	
regulation of acyl- CoA biosynthetic process	SNCA	2,16E-02	Inf	0,02	1	1	1	1	
peptide antigen stabilization	ТАРВР	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of dopamine uptake	SNCA	2,16E-02	Inf	0,02	1	1	1	1	
response to hydrostatic pressure	COL18A1	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of serotonin uptake	SNCA	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of norepinephrine uptake	SNCA	2,16E-02	Inf	0,02	1	1	1	1	
positive regulation of catagen	TGFB2	2,16E-02	Inf	0,02	1	1	1	1	
pos. regulation of phagocytosis, engulfment	ITGA2	2,16E-02	Inf	0,02	1	1	1	1	
primitive erythrocyte differentiation	VEGFA	2,16E-02	Inf	0,02	1	1	1	1	
leucine import	SLC3A2	2,16E-02	Inf	0,02	1	1	1	1	
epithelial cell prolif. involved in lung morphogenesis	BMP4	2,16E-02	Inf	0,02	1	1	1	1	
bud dilation involved in lung branching	BMP4	2,16E-02	Inf	0,02	1	1	1	1	
dichotomous subdivision of terminal units involved in ureteric bud branching	FOXD1	2,16E-02	Inf	0,02	1	1	1	1	
branch elongation involved in ureteric bud branching	BMP4	2,16E-02	Inf	0,02	1	1	1	1	
positive regulation of inositol phosphate biosynthetic process	SNCA	2,16E-02	Inf	0,02	1	1	1	1	
interleukin-27- mediated signaling pathway	IL6ST	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of thrombin receptor signaling pathway	SNCA	2,16E-02	Inf	0,02	1	1	1	1	
cellular response to heparin	EGR1	2,16E-02	Inf	0,02	1	1	1	1	
cellular response to mycophenolic acid	EGR1	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of branching involved in ureteric bud morphogenesis	BMP4	2,16E-02	Inf	0,02	1	1	1	1	
negative regulation of glomerulus development	BMP4	2,16E-02	Inf	0,02	1	1	1	1	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	bio	ological pr	ocess						
branching involved in	CD44	2,20E-02	5,47	0,61	3	28	1	25	
ureteric bud morphogenesis									
blood vessel	ID1	2,20E-02	5,47	0,61	3	28	1	8	
endothelial cell									
migration	ELLI STATI	2 22E 02	2.19	1 70	10	221	2	40	
negative regulation of	CITED2	2,22E-02 2,23E-02	2,18	4,78	10	495	1	40 9	
gene expression		2,232 02	1,75	10,71	10		-		
positive regulation of I-kappaB kinase/NF-	BS12, HMOX1, MAP3K3, TNFSF10,	2,23E-02	2,89	2,19	6	101	6	101	
kappaB cascade	SHISA5, TMED4		10.11	0.24				-	
positive regulation of acute inflammatory	1L681	2,26E-02	10,11	0,24	2	11	1	6	
response									
adrenal gland	LY6E, CITED2	2,26E-02	10,11	0,24	2	11	2	11	
development									
positive regulation of stress fiber assembly	NF2, TPM1	2,26E-02	10,11	0,24	2	11	2	11	
protein trimerization	TRIM21, TRIM22	2,26E-02	10,11	0,24	2	11	2	5	
calcium-mediated	AGTR1, IL8, SPHK1,	2,27E-02	3,97	1,08	4	50	4	27	
signaling muscle organ	MCIPI GATA6 MEE2A	2 35E-02	2.16	1.83	10	223	3	90	
development	TAGLN	2,351-02	2,10	4,05	10	223	5	70	
regulation of cell	AGTR1, CD44, CTGF,	2,40E-02	2,26	4,16	9	192	4	55	
growth	CRIM1	0.675.00	0.10	0.04		10			
heparan sulfate	GLCE	2,67E-02	9,10	0,26	2	12	I	3	
biosynthetic process									
lipopolysaccharide-	STAT1	2,67E-02	9,10	0,26	2	12	1	9	
mediated signaling									
pathway signal transduction	ACVDI 1 ACTD1	2 80E 02	1.32	58 37	72	2607	25	1332	
signal transduction	ACVRLI, AGIRI, ANXA3, CREM, EPAS1,	2,00E-02	1,52	56,57	12	2097	23	1552	
	EXT1, IL6ST,								
	LGALS3BP, KITLG,								
	MX1, PIK3R2, MAPK8,								
	OGT. TNESE10.								
	GPRC5A, ARFRP1,								
	PDPN, ANKRD1, ODZ2,								
	TMX1, RHPN2,								
chemotaxis	IL 8 CCL 5 FOSL 1	2 89E-02	2 31	3.61	8	167	3	120	
hemopoiesis	JAG1, CDK6, EPAS1,	2,99E-02	1,93	6,47	12	299	5	48	
1	KITLG, TGFB2	,	,	,					
cellular defense	HLA-G, LGALS3BP,	3,09E-02	3,58	1,19	4	55	4	55	
response	CCL5, FOSLI	2.00E.02	2 5 9	1 10	4	55	2	15	
gene-specific	FOXD1	5,09E-02	3,38	1,19	4	33	3	15	
transcription	1 01221								
SMAD protein	TGFB2	3,11E-02	8,27	0,28	2	13	1	6	
nuclear translocation		2.115.02	0.07	0.00	2	10	2	10	
negative regulation of caspase activity	IF16, SNCA	3,11E-02	8,27	0,28	2	13	2	13	
DNA damage	MYO6	3,13E-02	4,72	0,69	3	32	1	2	
response, signal			,	, -					
transduction by p53									
class mediator	CL N2	2.25E.02	1.07	5 00	11	260	1	0	
catalytic activity	CLINS	3,23E-02	1,90	3,82	11	209	1	ð	
heart development	BMP4, ID1, ID3,	3,27E-02	2,13	4,39	9	203	4	113	
	CITED2								

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	bio	ological pr	ocess						
response to drug	BDNF, ITGA2, LYN, CCL5, SNCA, SS18, STAT1, FOSL1, COL18A1	3,27E-02	2,13	4,39	9	203	9	190	
response to carbohydrate stimulus	ME1	3,28E-02	3,51	1,21	4	56	1	7	
response to retinoic acid	BMP4, MEST, MICB	3,39E-02	4,56	0,71	3	33	3	33	
response to heat	MICB, TRPV2	3,47E-02	3,45	1,23	4	57	2	41	
odontogenesis	SDC1, TGFB2	3,47E-02	3,45	1,23	4	57	2	15	
cell-cell adhesion	CD34, CD44, JUP, PDPN	3,48E-02	1,94	5,89	11	272	4	53	
cell communication	JAG1, SNX5, SNX18	3,52E-02	1,39	32,62	43	1507	3	75	
trophectodermal cell differentiation	CITED2, HOPX	3,58E-02	7,58	0,30	2	14	2	11	
'de novo' protein folding	FKBP1B, HSPD1	3,58E-02	7,58	0,30	2	14	2	3	
positive regulation of heart contraction	TGFB2	3,58E-02	7,58	0,30	2	14	1	4	
cardiac muscle cell proliferation	TGFB2	3,58E-02	7,58	0,30	2	14	1	5	
inflammatory response	BMP6, IL8, NMI, PDPN	4,07E-02	1,78	7,55	13	349	4	214	
negative regulation of endothelial cell migration	ACVRL1	4,07E-02	7,00	0,32	2	15	1	6	
oligodendrocyte	GSN	4,07E-02	7,00	0,32	2	15	1	12	
collagen biosynthetic	SERPINH1	4,07E-02	7,00	0,32	2	15	1	5	
response to nicotine	ALDH2, HMOX1	4,07E-02	7,00	0,32	2	15	2	9	
auditory receptor cell differentiation	JAG1, MYO6	4,07E-02	7,00	0,32	2	15	2	7	
cell growth	SLC3A2	4,08E-02	1,96	5,30	10	245	1	43	
intracellular signaling cascade	CTGF, IL8, LYN, PRKCE, PRKCH, CDC/28PA_SPHK1	4,09E-02	1,38	31,19	41	1441	7	261	
vasculogenesis	VEGEA CITED2 HEY2	4 24E-02	4 14	0.78	3	36	3	35	
protein modification	GGCX, PLAT, HERC5, HERC6	4,24E-02	1,36	34,84	45	1610	4	126	
endothelial cell	COL18A1	4,28E-02	45,36	0,04	1	2	1	2	
positive regulation of neurotransmitter secretion	SNCA	4,28E-02	45,36	0,04	1	2	1	2	
renin-angiotensin regulation of aldosterone production	AGTR1	4,28E-02	45,36	0,04	1	2	1	2	
positive regulation of T cell mediated immune response to tumor cell	HSPD1	4,28E-02	45,36	0,04	1	2	1	2	
sphingosine metabolic	SPHK1	4,28E-02	45,36	0,04	1	2	1	2	
glucosylceramide biosynthetic process	UGCG	4,28E-02	45,36	0,04	1	2	1	1	
heme oxidation	HMOX1	4,28E-02	45.36	0,04	1	2	1	2	
hypotonic response	ITGA2	4,28E-02	45,36	0,04	1	2	1	2	
JUN phosphorylation	MAPK8	4,28E-02	45,36	0,04	1	2	1	2	
positive regulation of oxygen and reactive oxygen species	THBS1	4,28E-02	45,36	0,04	1	2	1	2	
metabolic process									

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	bia	ological pr	ocess						
positive regulation of alkaline phosphatase activity	ITGA2	4,28E-02	45,36	0,04	1	2	1	2	
positive regulation of fibroblast migration	THBS1	4,28E-02	45,36	0,04	1	2	1	2	
reg. of cardiac muscle contraction by reg. of the release of sequestered ca- ion	FKBP1B	4,28E-02	45,36	0,04	1	2	1	2	
smooth muscle hyperplasia	HMOX1	4,28E-02	45,36	0,04	1	2	1	2	
heparin biosynthetic process	GLCE	4,28E-02	45,36	0,04	1	2	1	2	
establishment or maintenance of microtubule cytoskeleton polarity	KIF2C	4,28E-02	45,36	0,04	1	2	1	2	
slow-twitch skeletal muscle fiber contraction	TNNT1	4,28E-02	45,36	0,04	1	2	1	2	
induction of apoptosis in response to chemical stimulus	MAPK8	4,28E-02	45,36	0,04	1	2	1	2	
positive regulation of fever	CCL5	4,28E-02	45,36	0,04	1	2	1	2	
negative regulation of protein phosphatase type 2B activity	FKBP1B	4,28E-02	45,36	0,04	1	2	1	2	
negative regulation of mast cell cytokine production	HMOX1	4,28E-02	45,36	0,04	1	2	1	2	
positive regulation of transforming growth factor-beta1 production	THBS1	4,28E-02	45,36	0,04	1	2	1	2	
pos. reg. of NAD(P)H oxidase activity	AGTR1	4,28E-02	45,36	0,04	1	2	1	2	
cytoplasmic mRNA processing body assembly	LSM14A	4,28E-02	45,36	0,04	1	2	1	2	
macrophage fusion	CD44	4,28E-02	45,36	0,04	1	2	1	1	
negative regulation of tyrosine phosphorylation of Stat5 protein	NF2	4,28E-02	45,36	0,04	1	2	1	2	
positive regulation of vascular permeability	VEGFA	4,28E-02	45,36	0,04	1	2	1	2	
astrocyte cell migration	MMP14	4,28E-02	45,36	0,04	1	2	1	2	
pos. reg. of integrin biosynthetic process	TGFB2	4,28E-02	45,36	0,04	1	2	1	2	
autophagic cell death	CDKN1B	4,28E-02	45,36	0,04	1	2	1	2	
plasma membrane to endosome transport	SORT1	4,28E-02	45,36	0,04	1	2	1	2	
myoblast development	SDC1	4,28E-02	45,36	0,04	1	2	1	2	
negative regulation of defense response to virus by host	МІСВ	4,28E-02	45,36	0,04	1	2	1	2	
detection of temperature stimulus involved in sensory perception of pain	LXN	4,28E-02	45,36	0,04	1	2	1	2	

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien										
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G		
	bio	ological pr	ocess	•			•			
negative regulation of mitochondrial depolarization	IFI6	4,28E-02	45,36	0,04	1	2	1	2		
Sertoli cell development	SDC1	4,28E-02	45,36	0,04	1	2	1	2		
regulation of type I interferon-mediated	CDC37	4,28E-02	45,36	0,04	1	2	1	2		
Clara cell differentiation	GATA6	4,28E-02	45,36	0,04	1	2	1	2		
Type II pneumocyte differentiation	GATA6	4,28E-02	45,36	0,04	1	2	1	2		
regulation of DNA replication	CDK2, ID3	4,51E-02	3,15	1,34	4	62	2	6		
glial cell differentiation	DNER	4,51E-02	3,15	1,34	4	62	1	12		
cell redox homeostasis	TXNRD2, GLRX5, PTGES2, TMX1	4,51E-02	3,15	1,34	4	62	4	62		
defense response to virus	RSAD2	4,54E-02	4,02	0,80	3	37	1	19		
neutrophil chemotaxis	IL8, TGFB2	4,59E-02	6,50	0,35	2	16	2	16		
cellular response to heat	LYN, THBS1	4,59E-02	6,50	0,35	2	16	2	15		
smooth muscle cell	BMP4	4,59E-02	6,50	0,35	2	16	1	9		
organ growth	LY6E	4,85E-02	3,90	0,82	3	38	1	7		
cellular cation	CD44, CTGF, MMP14,	4,89E-02	1,89	5,48	10	253	0	1		
nomeostasis INSS, PARP9										
	Cell	iular comp	onent	152.6	105	5105	126	1006		
cytoplasm	(126 Gene)	1,69E-06	1,72	153,6	195	/12/	126	4296		
endoplasmic reticulum	Nicht einzeln aufgeführt (40 Gene)	4,78E-06	2,31	20,16	42	935	40	852		
ruffle membrane	MYO6, NF2, TPM1, PDPN, FERMT1, AIF1L	7,09E-06	16,31	0,50	6	23	6	23		
extracellular matrix	CD44, TGFB2, THBS1	9,61E-06	3,24	7,09	21	329	3	24		
MHC class I protein complex	HLA-B, HLA-C, HLA-F, HLA-G, MICB	6,91E-05	14,39	0,45	5	21	5	21		
proteinaceous extracellular matrix	BGN, BMP4, CTGF, FBLN2, FBN2, EFEMP1, LGALS3BP, LOXL1, MMP1, MMP14, VWF, PXDN, TFP12	1,05E-04	2,98	6,53	18	303	13	210		
ruffle	CDK6, FGD5	1,26E-04	5,98	1,51	8	70	2	47		
adherens junction	NF2	3,44E-04	3,77	3,17	11	147	1	25		
Cell leading edge Golgi apparatus	CDC42BPA Nicht einzeln aufgeführt	3,44E-04 8,20E-04	3,77	3,17 18,39	33	147 853	1 31	12 788		
focal adhesion	CD44, ITGA2, SDC1, FERMT2, FERMT1, TNS3, AIF1L, JUB	1,09E-03	4,21	2,07	8	96	8	96		
intracellular part	BGN	1,22E-03	1,49	2183	243	10124	1	8		
cell junction	DSP, CLDN12, VAMP3, HOMER3, SV2A, SIGMAR1, FERMT2, SYNPO, FERMT1, TNS3, WNK4, JUB, TANC1	1,33E-03	2,16	10,82	22	502	13	365		
actin cytoskeleton	GSN, JUP, SNCA, SORBS2, SYNPO, MLPH	1,36E-03	2,70	5,52	14	256	6	89		
insoluble fraction	MDM2	1,49E-03	1,91	16,77	30	778	1	34		

HEMEC-S	HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G		
	cell	lular com	onent							
membrane fraction	CALD1, SCARB2,	1,71E-03	1,91	16,17	29	750	18	461		
	CLN3, GGCX, HLA-B,									
	HMOX1, JUP, LYN,									
	SI C16A3 FADS2 PPIF									
	ARFRP1, CKAP4,									
	MCTP1, TMX1									
intracellular	Nicht einzeln aufgeführt	2,32E-03	1,47	225,3	248	10452	34	1784		
coll curfo co	(34 Gene)	2.07E.02	2.20	6.66	15	200	0	190		
cell surface	SORT1 SDC1 SLC3A2	2,97E-05	2,38	0,00	15	309	9	180		
	VEGFA, PGRMC1,									
	SULF1									
filopodium membrane	NF2, PDPN	4,44E-03	30,44	0,11	2	5	2	5		
endoplasmic	GGCX, MEST, SORT1,	5,03E-03	1,92	12,07	22	560	19	493		
reticulum membrane	SCD, TAPBP, UGCG, FADS2_IPGAT1									
	SIGMAR1. PGRMC1.									
	KDELR3, APOL2,									
	SHISA5, FAR2,									
	AGTRAP, ERMP1,									
platalat alpha grapula	TMX1, RSAD2, TMED4	5 56E 03	4 70	1.14	5	53	1	5		
X chromosome	CDK2	6.56E-03	22.83	0.13	2	6	1	2		
collagen type IV	COL4A1, COL4A5	6,56E-03	22,83	0,13	2	6	2	6		
myofibril	CALD1	8,01E-03	3,26	2,29	7	106	1	10		
microsome	HMOX1, LSS, OAS1,	8,05E-03	2,45	4,72	11	219	11	217		
	OAS2, OAS3, SORT1,									
	TAPBP, FOSLI, VAMP3 PGPMC1									
	TMED2									
actin filament	CALD1, AIF1L	8,79E-03	5,39	0,82	4	38	2	24		
plasma membrane	HSPD1	9,75E-03	1,45	41,18	56	1910	1	1		
part										
perinuclear region of	GSN, ITGA2, TRIM37,	9,85E-03	2,19	6,21	13	288	12	284		
cytopiasm	$\frac{M}{100}, \frac{NF2}{50RB52}, \frac{SOR11}{50}, \frac{SOR852}{50}$									
	RAP1GAP2, HERC5.									
	PTGES2, RHPN2									
fascia adherens	DSP, JUP	1,19E-02	15,22	0,17	2	8	2	8		
MLL5-L complex	ACTB, OGT	1,19E-02	15,22	0,17	2	8	2	8		
cytoplasmic mRNA	LSM14A, DCP2, PATL1	1,44E-02	6,54	0,52	3	24	3	24		
sarcomere	TPM1	1 45E-02	3 21	1.98	6	92	1	23		
vesicle lumen	ANPEP	1,45E-02	4.36	0.99	4	46	1	23		
membrane-bounded	BMP4, VEGFA	1,73E-02	1,70	13,52	22	627	2	9		
vesicle										
postsynaptic density	CALD1, LYN,	1,75E-02	3,53	1,51	5	70	5	70		
	HOMER3, SYNPO,									
ER-Golgi	ANPEP SERPINH1	1 83E-02	4 26	1.01	4	47	3	30		
intermediate	TMED2	1,051 02	1,20	1,01	•	.,	5	50		
compartment										
apicolateral plasma	JUP	1,93E-02	3,00	2,11	6	98	1	4		
membrane	CON NEO HID ECDS	2.0CE 02	2 27	1.57	5	72	4	((
actin can	CALD1	2,00E-02	3,37 Inf	1,57	5	/3	4	00		
ciliary neurotrophic	IL6ST	2,16E-02	Inf	0.02	1	1	1	1		
factor receptor		_,_ 02 02		-,	-		-	-		
complex										
cell cortex	ADD3, MYO6, SNCA,	2,61E-02	2,54	2,89	7	134	4	76		
	FEKM12									

HPMEC-ST1.6R-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	Ce	ellular comp	onent						
cyclin-dependent	CDK2, CDK6	2,65E-02	9,13	0,26	2	12	2	8	
protein kinase									
holoenzyme complex									
phosphoinositide 3-	PIK3R2, PIK3R3	2,65E-02	9,13	0,26	2	12	2	11	
kinase complex									
filamentous actin	MYO6, FERMT1	3,09E-02	8,30	0,28	2	13	2	13	
cytoplasmic vesicle	CLN3	3,34E-02	1,95	5,84	11	271	1	1	
part									
endomembrane	JAK1, LAPTM4B,	3,82E-02	1,39	29,21	39	1355	3	75	
system	SNX18								
collagen	COL4A1, COL4A5,	3,91E-02	4,29	0,75	3	35	3	22	
-	COL18A1								
cell-cell junction	ADD3, CDC42BPA,	4,04E-02	2,15	3,86	8	179	3	39	
5	MAGI1								
cytoplasmic	BDNF, SORT1	4,16E-02	1,57	13,15	20	610	2	78	
membrane-bounded									
vesicle									
Y chromosome	CDK2	4,27E-02	45,53	0,04	1	2	1	2	
cell outer membrane	ITGA2	4,27E-02	45,53	0,04	1	2	1	1	
RSF complex	RSF1	4,27E-02	45,53	0,04	1	2	1	2	
Weibel-Palade body	VWF	4,27E-02	45,53	0,04	1	2	1	2	
cytoplasmic	SS18, KIF2C	4,56E-02	6,52	0,34	2	16	2	15	
microtubule									
secretory granule	HSPD1, PLAT	4,87E-02	2,07	4,01	8	186	2	54	

7.1.3. Zuordnung regulierter Gene zu Signalwegen nach KEGG

Tab.20 Genzuordnung zu Signalwegen nach KEGG

Alle in der *Microarray*-Analyse regulierten Gene wurden, über eine Verknüpfung mit der Datenbank KEGG, Signalwegen zugeteilt. Nachfolgend sind alle 31 überrepräsentierten Signalwege mit einem p-Wert $\leq 0,05$ angegeben. Die einzelnen Gene sind unter ihrer Gensymbolbezeichnung in Verbindung mit dem jeweiligen Signalweg gelistet. Neben dem p-Wert sind die Werte OR (*odds* ratio, Quotenzahl), EC (*expected count*, erwartete Anzahl), C (*count*, tatsächliche Anzahl), S (*size*, Gesamtanzahl), G (*gene*, Anzahl der gespotteten Gene) und SG (*significant gene*, Anzahl der signifikant regulierten Gene) in Bezug auf den Signalweg aufgeführt.

Signalweg	Gensymbol	p-Wert	OR	EC	С	S	SG	G
Pathways in	BMP4, CDK2, CDK6, CDKN1B,	2,58E-05	3,08	8,48	22	326	22	326
cancer	CDKN2B, COL4A1, EPAS1, IL8,							
	ITGA2, JAK1, JUP, MAX, MDM2,							
	KITLG, MMP1, PIK3R2, MAPK8,							
	STAT1, TGFB2, VEGFA, PIK3R3,							
	CCNE2							
Small cell lung	CDK2, CDK6, CDKN1B, CDKN2B,	5,34E-05	5,42	2,19	10	84	10	84
cancer	COL4A1, ITGA2, MAX, PIK3R2,							
	PIK3R3, CCNE2							
Pancreatic	CDK6, JAK1, PIK3R2, MAPK8, STAT1,	4,96E-04	4,93	1,87	8	72	8	72
cancer	TGFB2, VEGFA, PIK3R3							
TGF-beta	ACVRL1, BMP4, BMP6, CDKN2B, ID1,	1,39E-03	4,14	2,19	8	84	8	84
signaling	ID3, TGFB2, THBS1							
pathway								
Type I diabetes	HLA-B, HLA-C, HLA-F, HLA-G,	2,77E-03	5,87	0,99	5	38	5	38
mellitus	HSPD1							
Bladder cancer	IL8, MDM2, MMP1, THBS1, VEGFA	4,32E-03	5,23	1,09	5	42	5	42
ECM-receptor	CD44, COL4A1, ITGA2, SDC1, THBS1,	5,49E-03	3,60	2,16	7	83	7	83
interaction	VWF, SV2A							
p53 signaling	CDK2, CDK6, MDM2, THBS1, CCNE2,	8,05E-03	3,76	1,77	6	68	6	68
pathway	SHISA5							
Allograft	HLA-B, HLA-C, HLA-F, HLA-G	8,93E-03	5,49	0,83	4	32	4	32
rejection								

HPMEC-ST1.6R -Zuordnung regulierter Gene zu Signalwegen nach KEGG								
Signalweg	Gensymbol	p-Wert	OR	EC	С	S	SG	G
RIG-I-like	IL8, IRF7, MAPK8, ISG15, DDX58,	9,25E-03	3,64	1,82	6	70	6	70
receptor	IFIH1							
signaling								
mTOR	PIK3R2 RPS6KA2 VEGEA PIK3R3	9 92E-03	4 20	1 33	5	51	5	51
signaling	DDIT4	<i>),)2</i> E 03	4,20	1,55	5	51	5	51
pathway								
Graft-versus-	HLA-B, HLA-C, HLA-F, HLA-G	1,11E-02	5,13	0,88	4	34	4	34
host disease	CDKC CDKNID MDM2 DIK2D2	1.200 02	2.42	1.02	6	74	6	74
Chronic	CDK6, CDKN1B, MDM2, PIK3K2, TGFB2 PIK3R3	1,20E-02	3,42	1,92	0	74	6	/4
leukemia	101 02, 111(3)(3)							
Sphingolipid	ASAH1, UGCG, SPHK1, SGMS2	1,22E-02	4,96	0,91	4	35	4	35
metabolism								
Prion diseases	EGR1, PRNP, CCL5, STIP1	1,22E-02	4,96	0,91	4	35	4	35
Toll-like	IL8, IRF/, PIK3R2, MAPK8, CCL5, STAT1 DIV2D2	1,33E-02	2,99	2,55	1	98	1	98
signaling	STATI, FIKSKS							
pathway								
Cell cycle	CDK2, CDK6, CDKN1B, CDKN2B,	1,42E-02	2,72	3,20	8	123	8	123
	MDM2, TGFB2, WEE1, CCNE2							
Natural killer	HLA-B, HLA-C, HLA-G, MICB,	1,69E-02	2,62	3,30	8	127	8	127
cytotoxicity	PIK5K2, PPP5K1, PIK5K5, INFSF10							
Viral	ACTB, HLA-B, HLA-C, HLA-F, HLA-G	2.62E-02	3.21	1.69	5	65	5	65
myocarditis	- , , , , , -	,	- 7	y	_		_	
Prostate cancer	CDK2, CDKN1B, MDM2, PIK3R2,	2,75E-02	2,79	2,32	6	89	6	89
E D	PIK3R3, CCNE2	2.025.02	0.70	0.07		01	6	01
Fc gamma R-	GSN, LYN, PIK3R2, PRKCE, PIK3R3,	3,03E-02	2,73	2,37	6	91	6	91
phagocytosis	SETIKE							
Focal adhesion	COL4A1, ITGA2, MYLK, PIK3R2,	3,05E-02	2,10	5,10	10	196	9	195
	MAPK8, THBS1, VEGFA, VWF,							
<u>т н</u>	PIK3R3	2.075.00	2.65	1.20	4	10	4	10
l ype II diabetes	PIK3R2, PRKCE, MAPK8, PIK3R3	3,07E-02	3,05	1,20	4	40	4	40
mellitus								
Autoimmune	HLA-B, HLA-C, HLA-F, HLA-G	3,07E-02	3,65	1,20	4	46	4	46
thyroid disease								
Renal cell	EPAS1, PIK3R2, TGFB2, VEGFA,	3,28E-02	3,01	1,79	5	69	5	69
L vsosome	PIK3K3 ASAH1 SCAPB2 CTSC CLN3 CTSH	3 50E 02	2.40	3 1 2	7	120	7	120
Lysosome	SORT1. LAPTM4B	3,39E-02	2,40	3,12	/	120	/	120
VEGF	PIK3R2, PPP3R1, VEGFA, PIK3R3,	3,65E-02	2,91	1,85	5	71	5	71
signaling	SPHK1							
pathway					_			
Neurotrophin	BDNF, MAP3K3, PIK3R2, MAPK8,	4,02E-02	2,33	3,20	7	123	7	123
nathway	RPS0KA2, SUR11, PIK3K3							
Fc epsilon RI	PIK3R2, PRKCE, MAPK8, PIK3R3	4.25E-02	2.79	1.92	5	74	4	74
signaling		,	,	,				
pathway								
B cell receptor	PIK3R2, PPP3R1, PIK3R3, IFITM1	4,47E-02	2,74	1,95	5	75	4	75
signaling								
Antigen	HLA-B. HLA-C. HLA-F. HLA-G	4.91E-02	2.67	2.00	5	77	5	77
processing and	ТАРВР	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,,	_,00				
presentation								

7.2. hMSC *Microarray*-Tabellen

7.2.1. Regulierte probe sets in der hMSC Microarray-Analyse

Tab.21 Liste der regulierten probe sets mit Genzuordnung

Die Auswertung der hMSC *Microarray*-Analyse ergab eine Regulation von 494 signifikant exprimierten *probe sets*, welche eine Anzahl von 407 signifikant regulierten Genen (p-Wert $\leq 0,05$) im Vergleich der CTGF herunterregulierten zu den *scrambled* Kontrollzellen repräsentieren. Über die Gendatenbank NCBI wurden die in der Auswertung ermittelten *probe set* IDs den jeweiligen Genen unter Angabe des Gennamen und Symbols zugeordnet. Alle Gene sind in alphabetischer Reihenfolge unter Angabe der logFc und p-Werte (adj.p.val.) gelistet. Mehrere *probe sets* können für ein Gen stehen, sodass verschiedene *probe set* IDs für ein Gen aufgeführt sind.

Symbol	probe set ID	GeneName	logFC	adj.p.val
ABI2	225098_at	abl-interactor 2	-0,88	4,31E-03
ABI2	225112_at	abl-interactor 2	-0,95	3,34E-03
ACOT7	208002_s_at	acyl-CoA thioesterase 7	-1,06	6,74E-03
ACPL2	226925_at	acid phosphatase-like 2	-1,24	1,38E-02
ADAM12	213790_at	ADAM metallopeptidase domain 12	-1,09	3,76E-02
ADPGK	220980_s_at	ADP-dependent glucokinase	1,01	3,18E-03
AGL	203566_s_at	amylo-1, 6-glucosidase, 4-alpha-glucanotransferase	-1,13	5,19E-03
AIM1	212543_at	absent in melanoma 1	1,64	3,25E-02
AKT3	212607_at	v-akt murine thymoma viral oncogene homolog 3 (protein kinase B gamma)	0,89	5,24E-03
AMFR	202203 s at	autocrine motility factor receptor	-1.17	4.94E-02
AMFR	202204 s at	autocrine motility factor receptor	-0.95	6.94E-03
AMIGO2	222108 at	adhesion molecule with Ig-like domain 2	-1.04	1.33E-02
ANKRA2	218769 s at	ankyrin repeat, family A (RFXANK-like), 2	-1.05	5,89E-03
ANKRD1	206029 at	ankyrin repeat domain 1 (cardiac muscle)	-1,78	1,24E-02
ANPEP	202888 s at	alanyl (membrane) aminopeptidase	2,22	3,18E-03
APOBEC3G	204205_at	apolipoprotein B mRNA editing enzyme, catalytic	2,10	4,61E-02
APOL2	221653 x at	apolipoprotein L. 2	1.38	4.21E-02
APPBP2	202630 at	amyloid beta precursor protein (cytoplasmic tail) binding	-0.78	5.16E-03
	202000_00	protein 2	0,70	0,102 00
APPBP2	202629_at	amyloid beta precursor protein (cytoplasmic tail) binding protein 2	-0,84	4,31E-03
AOR	212584 at	aquarius homolog (mouse)	-0,81	4,71E-03
ARF3	200734 s at	ADP-ribosylation factor 3	-0,84	5,66E-03
ARF5	201526_at	ADP-ribosylation factor 5	-0,90	5,19E-03
ARL6IP1	211935_at	ADP-ribosylation factor-like 6 interacting protein 1	-1,02	4,31E-03
ARMCX1	218694_at	armadillo repeat containing, X-linked 1	0,91	3,11E-02
ARRDC3	224797_at	arrestin domain containing 3	0,99	2,44E-02
ARSD	223696_at	arylsulfatase D	0,99	4,31E-03
ASAP1	221039_s_at	ArfGAP with SH3 domain, ankyrin repeat and PH domain 1	1,08	4,97E-03
ASAP1	224790_at	ArfGAP with SH3 domain, ankyrin repeat and PH domain	1,30	4,59E-03
ASNS	205047 s at	asparagine synthetase	-1.46	4.50E-02
ASS1	207076 s at	argininosuccinate synthetase 1	1,12	2,75E-02
ATP11C	226785 at	ATPase, class VI, type 11C	-1.49	2.36E-03
ATP2B1	215716 s at	ATPase, Ca++ transporting, plasma membrane 1	-1.01	8,79E-03
ATP2B1	212930 at	ATPase, Ca++ transporting, plasma membrane 1	-1.09	8.38E-03
B3GNT1	203188_at	UDP-GlcNAc:betaGal beta-1,3-N-	-1,45	2,26E-03
		acetylglucosaminyltransferase 1	-	
B4GALT1	201883_s_at	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase,	-1,05	2,97E-03
DACALTA	010076	polypeptide I	0.96	4.245.02
B4GAL14	212876_at	polypeptide 4	0,86	4,24E-02
B4GALT4	210540_s_at	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 4	1,11	2,42E-02
BICD2	213154_s_at	bicaudal D homolog 2 (Drosophila)	-1,03	4,00E-03
BMPR2	231873_at	bone morphogenetic protein receptor, type II (serine/threonine kinase)	-0,82	9,84E-03

hMSC-Liste der regulierten probe sets mit Genzuordnung						
Symbol	probe set ID	GeneName	logFC	adj.p.val		
BMPR2	225144_at	bone morphogenetic protein receptor, type II	-0,82	9,62E-03		
		(serine/threonine kinase)				
BTN3A1	209770_at	butyrophilin, subfamily 3, member A1	1,75	4,77E-02		
BTN3A2	209846_s_at	butyrophilin, subfamily 3, member A2	2,55	1,56E-02		
BZW2	217809_at	basic leucine zipper and W2 domains 2	-1,10	4,03E-03		
C10orf116	203571_s_at	chromosome 10 open reading frame 116	1,28	2,40E-02		
Cl4orf126	22/158_at	chromosome 14 open reading frame 126	-0,80	3,14E-02		
C100r103	225087_at	chromosome 10 open reading frame 65	-1,13	2,0/E-03		
C1901150	217780_at	chromosome 19 open reading frame 66	-0,89	3,81E-03		
C1901100	53720 at	chromosome 19 open reading frame 66	1,48	3.94F-02		
Clorf43	1555226 s at	chromosome 1 open reading frame 43	1,75	9.47E-03		
C20orf194	226607 at	chromosome 20 open reading frame 194	0.81	4.96E-03		
C20orf3	206656 s at	chromosome 20 open reading frame 3	-0,96	5,77E-03		
C4orf34	 224990_at	chromosome 4 open reading frame 34	-1,12	2,85E-02		
C5orf13	201310_s_at	chromosome 5 open reading frame 13	0,93	1,97E-02		
C5orf13	201309_x_at	chromosome 5 open reading frame 13	1,22	8,60E-03		
C5orf24	1553106_at	chromosome 5 open reading frame 24	-0,95	1,47E-02		
C5orf24	224876_at	chromosome 5 open reading frame 24	-1,38	2,26E-03		
C5orf53	226977_at	chromosome 5 open reading frame 53	-1,13	2,80E-03		
C9orf69	224962_at	chromosome 9 open reading frame 69	-0,81	7,15E-03		
CALU	214845_s_at	calumenin	0,78	1,19E-02		
CAMSAP1L1	217196_s_at	calmodulin regulated spectrin-associated protein 1-like 1	-1,02	3,97E-03		
CAMSAP1L1	212765_at	calmodulin regulated spectrin-associated protein 1-like 1	-1,12	2,80E-03		
CAMTA1	225693_s_at	calmodulin binding transcription activator 1	-1,62	2,21E-03		
CAMIAI	225692_at	calmodulin binding transcription activator 1	-1,/6	2,12E-03		
CCDC28A	209479_at	colled-coll domain containing 28A	-1,32	2,46E-03		
CCDC05P	223010_at	colled coil domain containing 85P	-0,81	3,34E-03		
CCND1	204010_8_at	cyclin D1	-2.28	4,90E-03		
CCND1	208712_at	cyclin D1	-2,20	3 34E-03		
CD302	200712_at	CD302 molecule	-0.86	1.85E-02		
CD44	1557905 s at	CD44 molecule (Indian blood group)	1.00	1.49E-02		
CD44	210916 s at	CD44 molecule (Indian blood group)	1,22	1,30E-02		
CERCAM	 224794_s_at	cerebral endothelial cell adhesion molecule	0,90	3,88E-03		
CHERP	202230_s_at	calcium homeostasis endoplasmic reticulum protein	-1,22	2,28E-03		
CHMP4B	225498_at	chromatin modifying protein 4B	-1,39	3,01E-03		
CHPF2	221799_at	chondroitin polymerizing factor 2	-0,98	9,17E-03		
CHPF2	55093_at	chondroitin polymerizing factor 2	-1,07	4,96E-03		
CIAPIN1	208424_s_at	cytokine induced apoptosis inhibitor 1	-1,33	2,67E-03		
CIAPIN1	208968_s_at	cytokine induced apoptosis inhibitor 1	-1,65	2,13E-03		
CKAP4	200998_s_at	cytoskeleton-associated protein 4	-1,12	3,20E-03		
CKAP4	200999_s_at	cytoskeleton-associated protein 4	-1,23	2,26E-03		
CLCN3	201734_at	chloride channel 3	-0,93	1,16E-02		
CLUN12	223249_at	claudin 12	-2,05	2,12E-03		
CLU	222043_at	clusterin	1,78	1,10E-02		
CLU	208792_s_at	clusterin	2,00	3 73E-03		
CNIH4	228306 at	cornichon homolog 4 (Drosonhila)	-0.86	5.44E-03		
COBLL1	203642 s at	COBL-like 1	1.01	2.03E-02		
COLIAI	217430 x at	collagen, type I, alpha 1	1,00	3,70E-03		
COPS6	201405_s_at	COP9 constitutive photomorphogenic homolog subunit 6	-0,77	5,44E-03		
		(Arabidopsis)	,	,		
CREB3L2	212345_s_at	cAMP responsive element binding protein 3-like 2	1,10	2,78E-03		
CRIP1	205081_at	cysteine-rich protein 1 (intestinal)	-1,37	4,71E-03		
CRKL	212180_at	v-crk sarcoma virus CT10 oncogene homolog (avian)-like	-1,23	2,78E-03		
CROT	204573_at	carnitine O-octanoyltransferase	-0,90	7,99E-03		
CRTAP	1554464_a_at	cartilage associated protein	1,17	2,67E-03		
CRYZLI	226151_x_at	crystallin, zeta (quinone reductase)-like 1	-0,88	1,37E-02		
CKYZLI	219/6/_s_at	crystallin, zeta (quinone reductase)-like l	-1,01	5,6/E-03		
	209101_at	connective tissue growin factor	-1,21	2,0/E-03		
CTPS	200407_8_at	CTP synthese	-0,89	0,94E-03		
CIIS	202013_at	CII synulase	-1,14	1,57E-02		

hMSC-Liste der regulierten probe sets mit Genzuordnung							
Symbol	probe set ID	GeneName	logFC	adi.p.val			
CUL5	203531 at	cullin 5	-1,20	2,78E-03			
CYB5R3		cytochrome b5 reductase 3	1,14	2,67E-03			
DAP	201095_at	death-associated protein	0,98	4,96E-03			
DBN1	202806_at	drebrin 1	-1,14	1,33E-02			
DCP2	212919_at	DCP2 decapping enzyme homolog (S. cerevisiae)	-1,06	2,97E-03			
DHX40	222574_s_at	DEAH (Asp-Glu-Ala-His) box polypeptide 40	-0,83	2,40E-02			
DHX40	218277_s_at	DEAH (Asp-Glu-Ala-His) box polypeptide 40	-1,14	4,05E-03			
DICER1	212888_at	dicer 1, ribonuclease type III	-1,45	6,03E-03			
DICER1	213229_at	dicer 1, ribonuclease type III	-1,51	3,34E-03			
DNAJA2	226994_at	DnaJ (Hsp40) homolog, subfamily A, member 2	-1,09	3,88E-03			
DNAJB12	202866_at	DnaJ (Hsp40) homolog, subfamily B, member 12	-0,95	4,24E-03			
DNAJB6	209015_s_at	DnaJ (Hsp40) homolog, subfamily B, member 6	-1,17	1,69E-02			
DNAJC15	227808_at	DnaJ (Hsp40) homolog, subfamily C, member 15	-0,93	4,63E-03			
DNAJC24	213853_at	DnaJ (Hsp40) homolog, subfamily C, member 24	-1,27	2,67E-03			
DPP4	203/17_at	dipeptidyl-peptidase 4	1,36	2,09E-02			
DIX3L	225415_at	deltex 3-like (Drosophila)	1,99	3,12E-02			
DYNLRBI DVNLDD1	21/91/_s_at	dynein, light chain, roadblock-type 1	0,95	4,31E-03			
DINLKDI ECUSI	21/918_at	appell, fight chain, foadblock-type I	0,99	3,18E-03			
ECH51 EENB2	201155_at	enbyr Coenzyme A nydratase, snort cham, 1, mitochondriai	-1,55	2,20E-03			
EFIND2 EIE2AK3	202008_at	ephilin-D2 eukervotic translation initiation factor 2 alpha kinasa 3	-1,15	4,00E-03			
EIF/ERP2	210090_at	eukaryotic translation initiation factor 4E binding protein 2	-1.67	1,74E-02			
EIF4EDF2 EIF4G2	200004 at	eukaryotic translation initiation factor 4 gamma 2	-1,07	2,65E-03			
FLOVL1	57163 at	elongation of very long chain fatty acids (FFN1/Flo2	-0.73	1 22E-02			
LLOVLI	57105_at	SUR4/Elo3, yeast)-like 1	-0,75	1,221-02			
ELOVL6	204256_at	ELOVL family member 6, elongation of long chain fatty acids (FEN1/Elo2, SUR4/Elo3-like, yeast)	1,03	1,15E-02			
ELP3	227075_at	elongation protein 3 homolog (S. cerevisiae)	-0,76	9,56E-03			
ENC1	201341_at	ectodermal-neural cortex (with BTB-like domain)	-1,97	6,03E-03			
EPB41L2	201718_s_at	erythrocyte membrane protein band 4.1-like 2	1,14	2,51E-02			
EPDR1	223253_at	ependymin related protein 1 (zebrafish)	-1,30	7,08E-03			
EPSTI1	227609_at	epithelial stromal interaction 1 (breast)	3,05	2,75E-02			
ERLIN1	202441_at	ER lipid raft associated 1	-1,87	2,12E-03			
EXTI	230183_at	exostoses (multiple) 1	-0,96	7,45E-03			
FAMIOIB	226876_at	family with sequence similarity 101, member B	-1,86	4,31E-03			
FAMIUIB	226905_at	family with sequence similarity 101, member B	-2,15	3,14E-03			
FAM45A EPVO2	225551_at	E how protein 2	-1,10	4,11E-03			
FDAU5 FDFT1	210452_at	r-box protein 5	-0,93	5.19E-02			
FDFT1	210550_s_at	farnesyl-diphosphate farnesyltransferase 1	-0,78	2 73E-03			
FECH	203116 s at	ferrochelatase (protoporphyria)	-0.95	5.67E-03			
FERMT2	209210 s at	fermitin family homolog 2 (Drosophila)	-1.41	2.28E-03			
FERMT2	214212 x at	fermitin family homolog 2 (Drosophila)	-1.64	2,21E-03			
FGF7	205782_at	fibroblast growth factor 7 (keratinocyte growth factor)	-1,34	3,04E-02			
FIBIN	226769_at	fin bud initiation factor homolog (zebrafish)	0,98	7,65E-03			
FKBP11	219118_at	FK506 binding protein 11, 19 kDa	1,08	5,22E-02			
FKBP11	219117_s_at	FK506 binding protein 11, 19 kDa	1,00	3,79E-02			
FKBP1A	200709_at	FK506 binding protein 1A, 12kDa	-0,96	5,42E-03			
FNBP1	212288_at	formin binding protein 1	-0,98	4,08E-02			
G3BP2	208841_s_at	GTPase activating protein (SH3 domain) binding protein 2	-0,83	7,01E-03			
GALNT5	236129_at	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 5 (GalNAc-T5)	1,28	3,76E-02			
GALNT7	222587_s_at	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 7 (GalNAc-T7)	1,13	1,16E-02			
GALNT7	218313_s_at	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 7 (GalNAc-T7)	1,03	5,86E-03			
GBAS	201816 s at	glioblastoma amplified sequence	-0.93	4,95E-03			
GDE1	202593_s_at	glycerophosphodiester phosphodiesterase 1	1,03	8,69E-03			
GFM2	225392_at	G elongation factor, mitochondrial 2	-1,00	5,01E-03			
GLRX5	221932_s_at	glutaredoxin 5	-1,94	2,12E-03			
GLTP	226177_at	glycolipid transfer protein	-1,95	2,21E-03			
GLTP	219267_at	glycolipid transfer protein	-1,63	2,12E-03			
GNA12	224681_at	guanine nucleotide binding protein (G protein) alpha 12	-1,85	2,21E-03			

hMSC-Liste der regulierten probe sets mit Genzuordnung						
Symbol	probe set ID	GeneName	logFC	adj.p.val		
GOLGA7	217819_at	golgin A7	-1,52	2,21E-03		
GPD2	225447_at	glycerol-3-phosphate dehydrogenase 2 (mitochondrial)	-0,99	3,07E-02		
GRSF1	201501_s_at	G-rich RNA sequence binding factor 1	-0,92	7,74E-03		
GTF3A	201338_x_at	general transcription factor IIIA	-0,98	3,40E-03		
GTF3A	215091_s_at	general transcription factor IIIA	-1,07	3,34E-03		
HBEGF	203821_at	heparin-binding EGF-like growth factor	-1,05	5,09E-03		
HDHD2	223155_at	haloacid dehalogenase-like hydrolase domain containing 2	-1,38	2,21E-03		
HLA-B	208729_x_at	major histocompatibility complex, class I, B	1,02	4,67E-02		
HLA-B	211911_x_at	major histocompatibility complex, class I, B	1,09	2,02E-02		
HN1	222396_at	hematological and neurological expressed 1	-1,33	6,78E-03		
HOOK3	226395_at	hook homolog 3 (Drosophila)	-1,15	3,34E-03		
HOXA10	213147_at	homeobox A10	-1,04	3,81E-03		
HOXA10	213150_at	homeobox A10	-1,33	2,79E-03		
HSD17B10	202282_at	hydroxysteroid (17-beta) dehydrogenase 10	1,08	2,78E-03		
HSP90AA1	211969_at	heat shock protein 90kDa alpha (cytosolic), class A member 1	-0,86	4,11E-03		
HSP90AA1	210211_s_at	heat shock protein 90kDa alpha (cytosolic), class A member 1	-0,85	4,02E-03		
HSP90AA1	214328_s_at	heat shock protein 90kDa alpha (cytosolic), class A	-0,88	3,68E-03		
	200448 at	HIV 1 Tet interactive protein 2, 20kDe	0.02	5 22E 02		
	207180 s at	HIV 1 Tat interactive protein 2, 30kDa	0,93	3.34E.03		
IFI16	207160_s_at	interferon gamma-inducible protein 16	1,17	2 39E-02		
IFI16	206332 s at	interferon, gamma-inducible protein 16	1,01	2,39E-02		
IFI16	200332 <u>s</u> at	interferon, gamma-inducible protein 16	1,02	2,32E-02		
IFIT1	200705 <u>s</u> at	interferon-induced protein with tetratricopentide repeats 1	4 88	3.12E-02		
IFIT3	200100_at	interferon-induced protein with tetratricopeptide repeats 3	4 26	3,12E-02		
IFIT5	203595 s at	interferon-induced protein with tetratricopeptide repeats 5	1 14	4 25E-02		
IFITM1	201601 x at	interferon induced transmembrane protein 1 (9-27)	3 17	5 22E-02		
IFRD1	202146 at	interferon-related developmental regulator 1	-1.09	4.33E-03		
IGFBP3	212143 s at	insulin-like growth factor binding protein 3	1.14	1.28E-02		
IL13RA1	210904 s at	interleukin 13 receptor, alpha 1	0.90	8.90E-03		
IL1R1	202948 at	interleukin 1 receptor, type I	1.14	7.12E-03		
IL6ST	204863_s_at	interleukin 6 signal transducer (gp130, oncostatin M	-0,79	5,15E-02		
INO80C	220582 at	INO80 complex subunit C	-1.08	5.26E-03		
IPO5	229362_at	importin 5	-1,08	3,20E-03		
IDE0	211)35_s_at	interferon regulatory factor 9	-1,18	3,01E-03		
ISG15	205483 s at	ISG15 ubiquitin-like modifier	3 53	5,75E-02		
ITGB8	205485 <u>s</u> at	integrin beta 8	1 30	7.94E-03		
ITGBL1	231993 at	integrin, beta-like 1 (with EGE-like repeat domains)	-1.83	7,94E 03		
ITGBL1	1557080 s at	integrin, beta-like 1 (with EGF-like repeat domains)	-1.60	4 49F-03		
ITGBL1	214927 at	integrin, beta-like 1 (with EGF-like repeat domains)	-1.88	4 33E-03		
JAM3	212813 at	iunctional adhesion molecule 3	-0.97	8.57E-03		
KCNE4	222379_at	potassium voltage-gated channel, Isk-related family,	-0,84	3,45E-02		
KCNK2	210261_at	potassium channel, subfamily K, member 2	1,16	3,16E-02		
KCTD10	226518_at	potassium channel tetramerisation domain containing 10	-1,13	5,19E-03		
KCTD12	212192_at	potassium channel tetramerisation domain containing 12	-1,08	1,38E-02		
KCTD12	212188_at	potassium channel tetramerisation domain containing 12	-1,16	9,46E-03		
KDELR2	200699_at	KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2	-1,35	8,68E-03		
KDELR3	204017_at	KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 3	0,98	7,27E-03		
KDELR3	207265_s_at	KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 3	1,55	3,01E-03		
KDM4B	212492_s_at	lysine (K)-specific demethylase 4B	-0,94	7,01E-03		
KDM4B	212496_s_at	lysine (K)-specific demethylase 4B	-1,55	6,07E-03		
KGFLP2	231031_at	keratinocyte growth factor-like protein 2	-1,46	4,71E-03		
KIAA0802	213358_at	KIAA0802	-0,86	1,33E-02		
KIAA1609	221843_s_at	KIAA1609	-0,83	5,94E-03		
KIAA1632	227638_at	KIAA1632	-0,84	1,69E-02		
KIAA1632	228453_at	KIAA1632	-1,04	9,69E-03		

hMSC-Liste der regulierten probe sets mit Genzuordnung						
Symbol	probe set ID	GeneName	logFC	adi.p.val		
KITLG	226534 at	KIT ligand	1,08	4,31E-03		
KLF7	204334_at	Kruppel-like factor 7 (ubiquitous)	-0,83	4,27E-02		
KLHL28	228328_at	kelch-like 28 (Drosophila)	-0,94	3,34E-03		
KPNA3	221503_s_at	karyopherin alpha 3 (importin alpha 4)	-0,88	8,99E-03		
KPNA3	221502_at	karyopherin alpha 3 (importin alpha 4)	-0,84	4,71E-03		
KRT34	206969_at	keratin 34	-1,30	4,94E-02		
LAMP1	201553_s_at	lysosomal-associated membrane protein 1	-0,98	2,97E-03		
LAMP1	201552_at	lysosomal-associated membrane protein 1	-1,12	2,67E-03		
LCLAT1	226996_at	lysocardiolipin acyltransferase 1	-2,02	2,67E-03		
LGALS3BP	200923_at	lectin, galactoside-binding, soluble, 3 binding protein	1,91	8,69E-03		
LGMN	201212_at	legumain	-1,25	1,37E-02		
LIMS2	220765_s_at	LIM and senescent cell antigen-like domains 2	-0,83	3,36E-02		
LIPA	201847_at	lipase A, lysosomal acid, cholesterol esterase	1,50	2,15E-02		
LOC221710	227124_at	hypothetical protein LOC221710	-1,75	2,38E-03		
LOXL3	228253_at	lysyl oxidase-like 3	1,11	1,93E-02		
LOXL4	22/145_at	lysyl oxidase-like 4	1,39	5,24E-03		
LPP	202822_at	lipoma	-1,04	7,49E-03		
LSM14A	212132_at	LSM14A, SCD6 homolog A (S. cerevisiae)	-1,29	3,18E-03		
LSM14A	212131_at	LSM14A, SCD6 homolog A (S. cerevisiae)	-1,86	2,26E-03		
LSS	202245_at	lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)	-1,11	3,12E-03		
LUC7L2	220099_s_at	LUC7-like 2 (S. cerevisiae)	-1,11	3,44E-03		
LY6E	202145_at	lymphocyte antigen 6 complex, locus E	2,10	4,94E-02		
M6PR	200900_s_at	mannose-6-phosphate receptor (cation dependent)	1,05	3,05E-03		
MAGI1	225465_at	membrane associated guanylate kinase, WW and PDZ	-0,88	4,96E-03		
MACT1	210506 at	domain containing 1	0.02	6 20E 02		
MAGII MAD2V2	210596_at	magnesium transporter 1	-0,95	0,29E-03		
MAPSK5 MADVA	22/131_at	MAD/microtubulo offinity regulating kinase A	-1,03	2,21E-05		
MARK4 MARVELD1	223005_at	MAP/Incrotubule animity-regulating kinase 4	-1,28	2,07E-03		
MATN2	223093_at	matrilin 2	-1,05	2,07E-03		
MED13	202330_8_at	madiator complex subunit 13	-0.81	7,88E-03		
MED13	201300_at	mediator complex subunit 7	-1.06	3.96E-03		
MESDC1	204349_at	mesoderm development candidate 1	1,00	2.88E-03		
MEST	202016 at	mesoderm specific transcript homolog (mouse)	1,13	3.44E-03		
METAP2	213899 at	methionyl aminopeptidase 2	-1,00	4,59E-03		
MFAP5	213764_s_at	microfibrillar associated protein 5	-0,98	1,60E-02		
MGAT4B	224598_at	mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-	-1,00	3,88E-03		
		acetylglucosaminyltransferase, isozyme B				
MGP	202291_s_at	matrix Gla protein	2,23	2,82E-03		
MICB	206247_at	MHC class I polypeptide-related sequence B	1,64	4,71E-03		
MID1	203637_s_at	midline 1 (Opitz/BBB syndrome)	1,21	1,89E-02		
MID1	203636_at	midline 1 (Opitz/BBB syndrome)	1,13	1,78E-02		
MLPH	218211_s_at	melanophilin	0,85	1,89E-02		
MLXIP	225157_at	MLX interacting protein	-1,12	7,65E-03		
MRFAPILI	212199_at	Mort4 family associated protein 1-like 1	-1,25	2,26E-03		
MRPL20	220526_s_at	mitochondrial ribosomal protein L20	-0,97	4,05E-03		
MIMRI MTMD12	213511_s_at	myotubuların related protein 1	-0,90	6,52E-03		
MIMKI2 MVD 45	225232_at	myotubularin related protein 12	-1,18	7,94E-03		
MARAJ MVDA7	209390_at	matrix-remodelling associated 7	1,40	3,13E-03		
MAKA/	227520_at	matrix-remodeling associated /	-0,90	1,07E-02		
MYADM	223075_at	myeloid-associated differentiation marker	-0,92	9,47E-03		
MYO10	224920_X_at	myosin X	-0,89	4 71E-03		
MYO5A	227761 at	myosin VA (heavy chain 12 myoxin)	-1.00	6.42E-03		
N6AMT2	227054 at	N-6 adenine-specific DNA methyltransferase 2 (putative)	-0.88	3.81E-03		
NACC2	212993_at	NACC family member 2, BEN and BTB (POZ) domain	-2,00	3,37E-03		
		containing	,	·		
NADK	208919_s_at	NAD kinase	-0,81	5,21E-03		
NDFIP1	222423_at	Nedd4 family interacting protein 1	-0,98	3,51E-03		
NDFIP2	224799_at	Nedd4 family interacting protein 2	0,95	4,25E-02		
NDST1	202607_at	N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 1	-0,82	5,18E-03		
NEO1	225270_at	neogenin homolog 1 (chicken)	-0,85	1,12E-02		

hMSC-Liste der regulierten probe sets mit Genzuordnung						
Symbol	probe set ID	GeneName	logFC	adj.p.val		
NEXN	226103_at	nexilin (F actin binding protein)	-0,94	3,44E-03		
NID2	204114_at	nidogen 2 (osteonidogen)	0,89	3,73E-03		
NKIRAS2	218240_at	NFKB inhibitor interacting Ras-like 2	0,83	5,51E-03		
NMI	203964_at	N-myc (and STAT) interactor	1,73	4,81E-02		
NRAS	202647_s_at	neuroblastoma RAS viral (v-ras) oncogene homolog	-1,35	2,26E-03		
NRAS	224985_at	neuroblastoma RAS viral (v-ras) oncogene homolog	-2,34	2,21E-03		
NRBP1	217765_at	nuclear receptor binding protein 1	-0,87	4,03E-03		
NUDT19	235384_at	nudix (nucleoside diphosphate linked moiety X)-type motif 19	0,90	3,81E-03		
NUDT21	202697_at	nudix (nucleoside diphosphate linked moiety X)-type motif 21	0,86	5,19E-03		
NUPL1	204435_at	nucleoporin like 1	1,12	4,62E-03		
NUTF2	202397_at	nuclear transport factor 2	-1,01	6,94E-03		
OGFRL1	226810_at	opioid growth factor receptor-like 1	-1,31	5,67E-03		
OSMR	205729_at	oncostatin M receptor	1,03	6,65E-03		
OSTM1	218196_at	osteopetrosis associated transmembrane protein 1	-1,04	3,27E-03		
OSTMI	235198_at	osteopetrosis associated transmembrane protein I	-1,32	2,21E-03		
	226140_s_at		-1,24	3,09E-03		
P4HB D4UD	200656_s_at	prolyl 4-hydroxylase, beta polypeptide	0,84	8,59E-03		
P4HB DAK2	1564494_s_at	prolyl 4-nydroxylase, beta polypeptide	1,34	3,18E-03		
PAK2	2088//_at	p21 protein (Cdc42/Rac)-activated kinase 2	-1,98	2,21E-03		
PAMKI	213001_at	regeneration 1	1,50	2,03E-03		
PARP9	223220_s_at	poly (ADP-ribose) polymerase family, member 9	2,39	4,95E-02		
PAWR	204004_at	PRKC, apoptosis, WT1, regulator	-0,99	9,63E-03		
PCGF3	212753_at	polycomb group ring finger 3	-1,39	4,31E-03		
PCYOX1	225274_at	prenylcysteine oxidase 1	-1,34	1,40E-02		
PCYOXI	203803_at	prenylcysteine oxidase 1	-1,29	1,12E-02		
PDGFA	205463_s_at	platelet-derived growth factor alpha polypeptide	-2,03	2,21E-03		
PDIA5	203857_s_at	protein disulfide isomerase family A, member 5	1,12	9,84E-03		
PDXK	2026/1_s_at	pyridoxal (pyridoxine, vitamin B6) kinase	0,84	1,89E-02		
PGKMC1 DUE10	201120_s_at	PUD fin con protein 10	1.092	4,31E-03		
РПГ10 РНГ20	223048_at	PHD finger protein 20	-1,08	7,92E-05		
	200422_at	plasminogen activator, urokinase recentor	-0,75	2,02E-02 8 59E-03		
PLAUR	211)24_s_at	plasminogen activator, urokinase receptor	-1.49	3 44F-03		
PPAP2B	209355 s at	phosphatidic acid phosphatase type 2B	1.06	3,47E-02		
PPAP2B	212226 s at	phosphatidic acid phosphatase type 2B	0.80	3.27E-02		
PPAPDC1B	223568_s_at	phosphatidic acid phosphatase type 2 domain containing	0,90	3,28E-02		
PPAPDC1B	226150_at	phosphatidic acid phosphatase type 2 domain containing	0,95	2,51E-02		
PPP1CC	200726 at	protein phosphatase 1 catalytic subunit gamma isoform	0.91	4 97F-03		
PPP4R2	226317 at	protein phosphatase 4, regulatory subunit 2	-0.98	5.67E-03		
PPP4R2	225519 at	protein phosphatase 4, regulatory subunit 2	-1.06	3.24E-03		
PPPDE1	212371 at	PPPDE peptidase domain containing 1	-1,89	2,12E-03		
PQLC3		PQ loop repeat containing 3	-0,97	3,97E-03		
PRKRIR	209323_at	protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor)	-1,02	6,94E-03		
PRNP	215707 s at	prion protein	1,26	7,45E-03		
PS1TP4	226381_at	HBV preS1-transactivated protein 4	-1,28	2,70E-03		
PSMB8	 209040_s_at	proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional peptidase 7)	1,74	1,27E-02		
PSMB9	204279_at	proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional pentidase 2)	2,33	2,75E-02		
PSMD10	219485_s_at	proteasome (prosome, macropain) 26S subunit, non- ATPase, 10	-0,80	4,81E-03		
PSME1	200814_at	proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)	1,11	3,98E-02		
PTN	211737 x at	pleiotrophin	2.14	4.94E-02		
PTPLAD2	244050 at	protein tyrosine phosphatase-like A domain containing 2	1.10	5.23E-03		
PTPN11	212610 at	protein tyrosine phosphatase, non-receptor type 11	-1.06	4,03E-03		
PTPRJ	227396_at	protein tyrosine phosphatase, receptor type, J	-1,06	7,92E-03		

hMSC-Liste der regulierten probe sets mit Genzuordnung						
Symbol	probe set ID	GeneName	logFC	adj.p.val		
PTRF	208790_s_at	polymerase I and transcript release factor	-0,98	8,96E-03		
PTRF	208789_at	polymerase I and transcript release factor	-0,88	4,44E-03		
PURA	204020_at	purine-rich element binding protein A	-0,89	4,31E-03		
PURB	226762_at	purine-rich element binding protein B	-1,66	2,78E-03		
PURB	225120_at	purine-rich element binding protein B	-1,80	2,38E-03		
PXDN	212013_at	peroxidasin homolog (Drosophila)	-1,93	3,09E-03		
PXDN	212012_at	peroxidasin homolog (Drosophila)	-2,02	2,78E-03		
QKI	212636_at	quaking homolog, KH domain RNA binding (mouse)	-1,06	1,70E-02		
QPCT	205174_s_at	glutaminyl-peptide cyclotransferase	1,26	4,62E-03		
RAB12	235059_at	RAB12, member RAS oncogene family	-1,63	5,67E-03		
RAB12	239891_x_at	RAB12, member RAS oncogene family	-1,80	3,84E-03		
RAB22A	213405_at	RAB22A, member RAS oncogene family	-1,06	1,31E-02		
RAB2/A	209515_s_at	RAB2/A, member RAS oncogene family	-0,94	5,16E-03		
RABGAPI	204028_s_at	RAB GIPase activating protein 1	-0,92	8,49E-03		
RABGAPI DALDD1	213313_at	RAB GTPase activating protein 1	-1,05	6,94E-03		
	202844_8_at	ralA binding protein 1	-1,17	3,34E-03		
RALDP1 DAN	202843_8_at	PAN member PAS oncogene family	-1,55	2,82E-05		
RAN RASSE8	200749_at	Ras association (RalGDS/AE_6) domain family (N	-2,20	2,12E-03		
KASSI'o	223940_at	terminal) member 8	-1,10	4,9712-03		
RBM43	228304 at	RNA binding motif protein 43	1 48	4 12E-02		
RBM7	218379 at	RNA binding motif protein 7	0.83	6.42E-03		
RBM8A	210373_at	RNA binding motif protein 8A	-1 51	2.67E-03		
RCC2	224578 at	regulator of chromosome condensation 2	-0.80	1.12E-02		
RCN3	219102 at	reticulocalbin 3. EF-hand calcium binding domain	1.70	2.21E-03		
RCN3	61734 at	reticulocalbin 3. EF-hand calcium binding domain	1.85	2.12E-03		
RFX7	222630 at	regulatory factor X. 7	-0.99	4.03E-03		
RHOB	212099_at	ras homolog gene family, member B	-1,67	2,21E-03		
RNASE4	205158_at	ribonuclease, RNase A family, 4	0,91	6,74E-03		
RNASEK	224573_at	ribonuclease, RNase K	-1,56	2,21E-03		
RPE	225040_s_at	ribulose-5-phosphate-3-epimerase	-0,96	4,43E-03		
RPL22L1	225541_at	ribosomal protein L22-like 1	0,87	1,06E-02		
RPRD1A	225953_at	regulation of nuclear pre-mRNA domain containing 1A	-0,92	3,84E-03		
RRP1B	212846_at	ribosomal RNA processing 1 homolog B (S. cerevisiae)	-1,07	5,46E-03		
RTF1	212301_at	Rtf1, Paf1/RNA polymerase II complex component,	-1,11	5,19E-03		
		homolog (S. cerevisiae)				
RWDD4A	225574_at	RWD domain containing 4A	-0,90	6,03E-03		
RYK	202853_s_at	RYK receptor-like tyrosine kinase	-0,93	5,01E-03		
SI00A16	227998_at	S100 calcium binding protein A16	-1,00	4,80E-03		
SC4MOL	209146_at	sterol-C4-methyl oxidase-like	-0,8/	1,56E-02		
SCARB2	224985_at	scavenger receptor class B, member 2	1,17	5,04E-02		
SCARB2	201040_at	Scavenger receptor class B, member 2	1,97	0,80E-03		
SECOLAI SEU1I	222363_X_at	SEH1 like (S. cerevisiae)	1.00	4,31E-03		
SEPHS1	221)31_s_at	selenophosphate synthetase 1	-1,00	1.27E-02		
SEPN1	200757_at	selenoprotein N 1	1 34	2.67E-02		
SERAC1	232183 at	serine active site containing 1	-1 35	4 89E-02		
SERPINB1	212268 at	serpin peptidase inhibitor, clade B (ovalbumin), member 1	0.98	1.18E-02		
SERPINF1	202283 at	serpin peptidase inhibitor, clade E (o'dicumin), menser i	0.98	1,33E-02		
	_000u	pigment epithelium derived factor). member 1	0,20	1,002 02		
SERTAD2	202656_s_at	SERTA domain containing 2	-1,04	4,71E-03		
SERTAD2	202657_s_at	SERTA domain containing 2	-1,15	4,11E-03		
SESN1	218346_s_at	sestrin 1	-1,05	5,18E-03		
SETD3	212465_at	SET domain containing 3	-1,61	2,60E-03		
SFRS1	211784_s_at	splicing factor, arginine/serine-rich 1	-0,97	5,62E-03		
SFRS15	226082_s_at	splicing factor, arginine/serine-rich 15	-1,26	2,26E-03		
SFXN3	217226_s_at	sideroflexin 3	1,85	2,38E-03		
SFXN3	220974_x_at	sideroflexin 3	1,86	2,26E-03		
SGCB	228584_at	sarcoglycan, beta (43kDa dystrophin-associated	-1,22	4,96E-03		
		glycoprotein)				
SGCB	226112_at	sarcoglycan, beta (43kDa dystrophin-associated	-1,32	4,85E-03		
	225020	glycoprotein)	=	10		
SGMS2	227038_at	sphingomyelin synthase 2	-1,47	4,96E-03		

hMSC-Liste der regulierten probe sets mit Genzuordnung						
Symbol	probe set ID	GeneName	logFC	adj.p.val		
SLC16A3	217691_x_at	solute carrier family 16, member 3 (monocarboxylic acid	1,00	2,67E-02		
SLC16A3	202856_s_at	solute carrier family 16, member 3 (monocarboxylic acid transporter 4)	1,20	1,74E-02		
SLC17A5	223441_at	solute carrier family 17 (anion/sugar transporter), member 5	1,55	4,43E-03		
SLC2A3	202498_s_at	solute carrier family 2 (facilitated glucose transporter), member 3	1,25	2,87E-02		
SLC31A2	204204_at	solute carrier family 31 (copper transporters), member 2	-1,42	5,03E-02		
SLC35C2	225037_at	solute carrier family 35, member C2	-0,92	4,96E-03		
SLC39A11	227046_at	solute carrier family 39 (metal ion transporter), member 11	0,77	2,40E-02		
SLC39A6	202088_at	solute carrier family 39 (zinc transporter), member 6	-0,83	5,14E-03		
SLC4A7	209884_s_at	solute carrier family 4, sodium bicarbonate cotransporter, member 7	-1,03	2,15E-02		
SLFN5	238430_x_at	schlafen family member 5	0,84	2,74E-02		
SLIT3	203813_s_at	slit homolog 3 (Drosophila)	1,17	1,92E-02		
SLMO2	217851_s_at	slowmo homolog 2 (Drosophila)	1,14	2,97E-03		
SMAD5	225219_at	SMAD family member 5	-1,05	3,09E-03		
SMAD5	225223_at	SMAD family member 5	-1,09	2,78E-03		
SNX14	225101_s_at	sorting nexin 14	-1,38	2,34E-03		
SNX18	226683_at	sorting nexin 18	-1,05	3,88E-03		
SP100	210218_s_at	SP100 nuclear antigen	1,25	3,46E-02		
SP110	208012_x_at	SP110 nuclear body protein	2,11	4,94E-02		
SP110	209762_x_at	SP110 nuclear body protein	2,08	4,80E-02		
SPAST	209748_at	spastin	-0,83	6,74E-03		
SPG21	217827_s_at	spastic paraplegia 21 (autosomal recessive, Mast syndrome)	-0,83	8,85E-03		
SPNS1	223173_at	spinster homolog 1 (Drosophila)	-1,08	2,82E-03		
SPTLC2	203128_at	serine palmitoyltransferase, long chain base subunit 2	-1,04	1,26E-02		
SPTLC2	225095_at	serine palmitoyltransferase, long chain base subunit 2	-0,99	1,12E-02		
SRI	208921_s_at	sorcin	-1,20	2,28E-03		
SSH1	221753_at	slingshot homolog 1 (Drosophila)	-1,17	5,57E-03		
SSH1	221752_at	slingshot homolog 1 (Drosophila)	-1,35	5,24E-03		
SSR3	217790_s_at	signal sequence receptor, gamma (translocon-associated protein gamma)	-1,28	2,46E-02		
SSR3	222412_s_at	signal sequence receptor, gamma (translocon-associated protein gamma)	-1,02	6,94E-03		
STARD3NL	223065_s_at	STARD3 N-terminal like	-0,82	4,69E-03		
STARD7	200028_s_at	StAR-related lipid transfer (START) domain containing 7	-1,52	2,44E-03		
STAT2	225636_at	signal transducer and activator of transcription 2, 113kDa	1,40	6,15E-03		
STX6	212799_at	syntaxin 6	-1,17	3,34E-03		
STXBP3	203310_at	syntaxin binding protein 3	-0,84	6,42E-03		
SUPT16H	217815_at	suppressor of Ty 16 homolog (S. cerevisiae)	-0,88	5,66E-03		
SWAP70	209307_at	SWAP switching B-cell complex 70kDa subunit	-0,88	4,11E-03		
TAGLN	226523_at	transgelin	-1,56	1,01E-02		
TBPL1	208398_s_at	TBP-like 1	-1,01	4,62E-03		
TCF/L2	212761_at	transcription factor 7-like 2 (T-cell specific, HMG-box)	-1,06	5,09E-03		
TDG	203743_s_at	thymine-DNA glycosylase	-1,11	4,31E-03		
TECPRI	227580_s_at	tectonin beta-propeller repeat containing 1	-0,87	4,31E-03		
TGFB2	228121_at	transforming growth factor, beta 2	-2,49	5,32E-03		
TGFBR3	226625_at	transforming growth factor, beta receptor III	0,91	2,65E-02		
TGFBR3	204731_at	transforming growth factor, beta receptor III	1,07	1,41E-02		
THBSI	201107_s_at	thrombospondin 1	0,90	1,38E-02		
TM2D3	1552426_a_at	1 M2 domain containing 3	-0,83	3,88E-03		
TM9SF3	224/55_at	transmembrane 9 superfamily member 3	-0,83	1,09E-02		
TMCCI	22/112_at	transmembrane and coiled-coil domain family 1	-1,27	2,21E-03		
TMED2	204426_at	transmembrane emp24 domain trafficking protein 2	1,89	3,34E-03		
TMED2	204427_s_at	transmemorane emp24 domain trafficking protein 2	1,51	3,24E-03		
	224676_at	transmembrane emp24 protein transport domain containing 4	0,77	4,96E-03		
TMED4	224680_at	transmembrane emp24 protein transport domain containing 4	1,25	2,67E-03		
TMEM185B	219253_at	transmembrane protein 185B (pseudogene)	-1,08	4,71E-03		

hMSC-Liste der regulierten probe sets mit Genzuordnung						
Symbol	probe set ID	GeneName	logFC	adj.p.val		
TMEM30A	217743_s_at	transmembrane protein 30A	-2,21	2,12E-03		
TMEM30A	222391_at	transmembrane protein 30A	-2,65	2,12E-03		
TMEM42	226361_at	transmembrane protein 42	-1,11	2,67E-03		
TMEM9	222988_s_at	transmembrane protein 9	-0,81	7,95E-03		
TMF1	214948_s_at	TATA element modulatory factor 1	-1,51	2,21E-03		
TMTC3	226604_at	transmembrane and tetratricopeptide repeat containing 3	-0,85	3,26E-02		
TMTC3	226600_at	transmembrane and tetratricopeptide repeat containing 3	-0,85	1,07E-02		
TMX1	208097_s_at	thioredoxin-related transmembrane protein 1	1,46	2,67E-03		
TNRC18	226691_at	trinucleotide repeat containing 18	1,18	2,80E-03		
TOP1	208901_s_at	topoisomerase (DNA) I	-0,96	3,84E-03		
TOR1AIP1	216100_s_at	torsin A interacting protein 1	0,89	5,47E-03		
TOR1AIP1	212409_s_at	torsin A interacting protein 1	0,99	4,71E-03		
TP53BP2	203120_at	tumor protein p53 binding protein, 2	-0,85	6,86E-03		
TPRG1L	224871_at	tumor protein p63 regulated 1-like	-0,99	4,74E-02		
TRAF3	221571_at	TNF receptor-associated factor 3	-1,24	3,46E-03		
TRIM37	213009_s_at	tripartite motif-containing 37	-1,30	2,67E-03		
TRPV2	219282_s_at	transient receptor potential cation channel, subfamily V, member 2	-1,09	8,25E-03		
TTC19	217964_at	tetratricopeptide repeat domain 19	-0,94	4,80E-03		
TWSG1	225406_at	twisted gastrulation homolog 1 (Drosophila)	-1,24	3,34E-03		
TXNIP	201009_s_at	thioredoxin interacting protein	1,08	1,69E-02		
TXNIP	201008_s_at	thioredoxin interacting protein	1,13	9,84E-03		
UBE2I	213535_s_at	ubiquitin-conjugating enzyme E2I (UBC9 homolog, yeast)	-1,04	4,31E-03		
UBE2K	225179_at	ubiquitin-conjugating enzyme E2K (UBC1 homolog, yeast)	-1,76	2,44E-03		
UBE2L6	201649_at	ubiquitin-conjugating enzyme E2L 6	2,20	4,95E-02		
UBE2N	212751_at	ubiquitin-conjugating enzyme E2N (UBC13 homolog, yeast)	-0,79	1,44E-02		
UBE2N	201524_x_at	ubiquitin-conjugating enzyme E2N (UBC13 homolog, yeast)	-0,81	4,81E-03		
UBE2Q1	217978_s_at	ubiquitin-conjugating enzyme E2Q family member 1	-1,03	2,82E-03		
UBR1	226921_at	ubiquitin protein ligase E3 component n-recognin 1	-0,97	5,73E-03		
UBTD2	224827_at	ubiquitin domain containing 2	-1,08	4,97E-03		
UBTD2	224834_at	ubiquitin domain containing 2	-0,95	4,96E-03		
UQCR10	218190_s_at	ubiquinol-cytochrome c reductase, complex III subunit X	-1,30	2,38E-03		
USP34	212066_s_at	ubiquitin specific peptidase 34	-1,08	4,85E-03		
USP46	203870_at	ubiquitin specific peptidase 46	-1,64	2,21E-03		
VAMP3	211749_s_at	vesicle-associated membrane protein 3 (cellubrevin)	-1,64	2,67E-03		
VAMP3	201336_at	vesicle-associated membrane protein 3 (cellubrevin)	-2,31	2,21E-03		
VAPA	225198_at	VAMP (vesicle-associated membrane protein)-associated protein A, 33kDa	-1,50	2,26E-03		
VASP	202205_at	vasodilator-stimulated phosphoprotein	-1,43	2,78E-03		
VGLL3	220327_at	vestigial like 3 (Drosophila)	-1,29	2,26E-03		
VMA21	225556_at	VMA21 vacuolar H+-ATPase homolog (S. cerevisiae)	-1,68	2,21E-03		
VOPP1	208091_s_at	vesicular, overexpressed in cancer, prosurvival protein 1	-0,83	6,94E-03		
VPS54	222627_at	vacuolar protein sorting 54 homolog (S. cerevisiae)	-1,05	3,18E-03		
WDR36	226180_at	WD repeat domain 36	-0,79	4,81E-03		
WEE1	212533_at	WEE1 homolog (S. pombe)	-1,69	2,32E-03		
WIPI1	213836_s_at	WD repeat domain, phosphoinositide interacting 1	1,08	4,96E-03		
WIPI1	203827_at	WD repeat domain, phosphoinositide interacting 1	1,18	3,73E-03		
WISP2	205792_at	WNT1 inducible signaling pathway protein 2	1,49	2,10E-02		
XPR1	222581_at	xenotropic and polytropic retrovirus receptor	-0,95	5,67E-03		
YRDC	218647_s_at	yrdC domain containing (E. coli)	-0,93	4,47E-03		
YWHAZ	200640_at	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide	-0,75	1,07E-02		
ZBTB38	219221_at	zinc finger and BTB domain containing 38	-1,14	1,97E-02		
ZBTB38	225512_at	zinc finger and BTB domain containing 38	-1,13	4,31E-03		
ZBTB44	226148_at	zinc finger and BTB domain containing 44	-1,54	3,44E-03		
ZBTB47	226484_at	zinc finger and BTB domain containing 47	0,87	1,00E-02		
ZCCHC2	219062_s_at	zinc finger, CCHC domain containing 2	1,52	1,84E-02		
ZFAND6	221613_s_at	zinc finger, AN1-type domain 6	-1,68	2,34E-03		
ZMPSTE24	202939_at	zinc metallopeptidase (STE24 homolog, S. cerevisiae)	-1,21	2,67E-03		
ZZEF1	212601_at	zinc finger, ZZ-type with EF-hand domain 1	-1,28	2,21E-03		

7.2.2. Genregulationen nach Einteilung in GO-Kategorien

Tab.22 Liste der Genregulationen nach Einteilung in GO-Kategorien

Die nach Auswertung der hMSC *Microarray*-Daten erhaltenen regulierten Gene wurden einer GO-Analyse unterzogen. In der nachfolgenden Tabelle sind alle Gene in Bezug auf die jeweiligen GO-Kategorien *molecular function, biological process* und *cellular component* mit p-Werten $\leq 0,05$ aufgelistet. In den Spalten p-Wert, OR, EC, C und S sind die anhand der GO-Analyse errechneten Werte der Signifikanz (p-Wert, *p-value*), der *odds ratio* (Quotenzahl ermittelt aus Gesamtanzahl der Gene/erhaltene Anzahl an Genen), der erwarteten Anzahl (EC-*expected count*), der erhaltenen Anzahl (C-*count*) und der Gesamtanzahl (S-*size*) an regulierten Genen aufgeführt. Nachfolgend werden die in der GO-Analyse errechneten Werte durch die Gesamtanzahl der auf dem Genchip lokalisierten Gene (G) und die signifikant regulierten Gene (SG) korrigiert (Inf= Infinitely/unendlich). GO-Kategorien ohne Zuordnung signifikant regulierter Gene sind in der Tabelle nicht gelistet.

GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G			
molecular function											
protein binding	Nicht einzeln aufgeführt (238 Gene)	5,27E-08	1,62	309,07	370	7861	238	5344			
hematopoietin/interfer on-class (D200- domain) cytokine receptor signal transducer activity	SP110, STAT1, STAT2	3,33E-05	49,22	0,24	4	6	3	4			
isomerase activity	FKBP1A, FKBP5, GPI, MIF, P4HB, PTGDS, PTGIS, RPE, TPI1, PTGES, PDIA5, FKBP11, FKBP7	1,15E-04	3,40	4,91	15	125	13	103			
trans-1,2- dihydrobenzene-1,2- diol dehydrogenase activity	AKR1C1, AKR1C2, AKR1C3	2,35E-04	73,69	0,16	3	4	3	4			
growth factor binding	ACVR2A, BMPR2, OSMR	2,60E-04	3,47	4,17	13	106	3	17			
collagen binding	CD44, DPP4, PDGFA, ITGA10, NID2, ANTXR1	2,98E-04	6,40	1,34	7	34	6	31			
arylsulfatase activity	ARSB, ARSD, SULF1, ARSJ	6,25E-04	14,06	0,43	4	11	4	11			
identical protein binding	ALDOA, COL1A1, GSTM3, HSD17B10, KITLG, CLDN11, PAK2, PRNP, S100A4, ATXN1, THBS1, CLDN12, EIF2AK3, IRF9, FNBP1, HOOK3, TPRG1L, RGMB	6,76E-04	1,79	24,97	42	635	18	296			
interleukin-6 receptor binding	IL6, IL6ST, ERAP1	1,11E-03	24,56	0,24	3	6	3	6			
receptor signaling protein activity	CD44, SMAD5, IFITM1	1,51E-03	2,59	6,25	15	159	3	35			
structural constituent of bone	BGLAP, MGP	1,54E-03	Inf	0,08	2	2	2	2			
myosin V binding	RAB27A, MLPH	1,54E-03	Inf	0,08	2	2	2	2			
natural killer cell lectin-like receptor binding	MICA, MICB	1,54E-03	Inf	0,08	2	2	2	2			
3-alpha- hydroxysteroid dehydrogenase (A- specific) activity	AKR1C2, AKR1C3	1,54E-03	Inf	0,08	2	2	2	2			
indanol dehydrogenase activity	AKR1C1, AKR1C3	1,54E-03	Inf	0,08	2	2	2	2			
peptidyl-proline dioxygenase activity	EGLN1	1,88E-03	18,42	0,28	3	7	1	1			
transferase activity, transferring hexosyl groups	MGAT4B, CHPF2	2,18E-03	2,48	6,49	15	165	2	22			

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien											
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G			
molecular function											
growth factor activity	CSF1, CTGF, HBEGF, FGF7, GPI, IL6, KITLG, PDGFA, PTN, CXCL12, TGFB2, GDF5, WISP3, KGFLP2	2,68E-03	2,52	5,98	14	152	14	152			
transforming growth	BMPR2, FKBP1A	2,95E-03	8,20	0,63	4	16	2	6			
factor beta receptor activity											
catalytic activity	PAMR1	3,98E-03	1,27	192,06	222	4885	1	85			
protein homodimerization activity	ASNS, BNIP3, BNIP3L, CLCN3, CSF1, DPP4, EXT1, HMOX1, HSP90AA1, IL6ST, MGST1, PDGFA, SP100, TAP1, TGFB2, PDXK, TP53I3, TREX1, CADM1, PYCARD, NRBP1, APOBEC3G, TRIM5, S100A16	4,02E-03	1,90	13,33	24	339	24	339			
polysaccharide binding	AGL	4,04E-03	2,39	6,25	14	159	1	11			
protein-lysine 6- oxidase activity	LOXL4, LOXL3	4,51E-03	49,04	0,12	2	3	2	3			
oncostatin-M receptor activity	IL6ST, OSMR	4,51E-03	49,04	0,12	2	3	2	3			
peptide antigen- transporting ATPase activity	TAP2, TAPBP	4,51E-03	49,04	0,12	2	3	2	3			
TAP1 binding	TAP1, TAPBP	4,51E-03	49,04	0,12	2	3	2	3			
TAP2 binding	TAP1, TAPBP	4,51E-03	49,04	0,12	2	3	2	3			
glycosaminoglycan binding	EGFLAM	4,72E-03	2,44	5,70	13	145	1	11			
peptide transporter activity	TAP1, TAP2	5,90E-03	10,52	0,39	3	10	2	4			
aminopeptidase activity	ANPEP, DPP4, METAP2, LAP3, ERAP1	6,72E-03	4,73	1,22	5	31	5	29			
transferase activity, transferring glycosyl groups	AGL, B4GALT1, LFNG, UGCG, B4GALT4, B3GNT1, GALNT5, GALNT7, UGGT2, C1GALT1, GXYLT2	6,98E-03	2,00	9,48	18	241	11	147			
activin binding	ACVR2A, FKBP1A, FST	7,87E-03	9,21	0,43	3	11	3	11			
signal sequence binding	SSR3	8,30E-03	5,78	0,83	4	21	1	4			
low-density lipoprotein binding	THBS1, ANKRA2, COLEC12	8,30E-03	5,78	0,83	4	21	3	10			
receptor binding	ANGPT1, DPP4, SRI,ANGPTL2, CADM1, APOL2, WIPI1	8,40E-03	1,50	32,87	47	836	7	129			
N-acetyllactosamine synthase activity	B4GALT1, B4GALT4	8,78E-03	24,52	0,16	2	4	2	4			
NADPH:quinone reductase activity	TP53I3, CRYZL1	8,78E-03	24,52	0,16	2	4	2	4			
procollagen-proline 4- dioxygenase activity	P4HA1, P4HB	8,78E-03	24,52	0,16	2	4	2	4			
eukaryotic translation initiation factor	EIF2AK2, EIF2AK3	8,78E-03	24,52	0,16	2	4	2	4			
proteasome activator	PSME1, PSME2	8,78E-03	24,52	0,16	2	4	2	4			
ER retention sequence	KDELR3	8,78E-03	24,52	0,16	2	4	1	2			
tubulin binding	ALDOA, RABGAP1	8,79E-03	2,74	3,54	9	90	2	9			
heparin binding	CTGF, HBEGF, FGF7, PTN, CCL2, TGFBR3, THBS1, ADAMTS1, PCOLCE2, KGFLP2	1,00E-02	2,52	4,25	10	108	10	108			
proteoglycan binding	THBS1	1,02E-02	8,18	0,47	3	12	1	2			
microtubule binding	PRNP, SPAST, ARHGEF2, CDK5RAP2, MARK4, HOOK3	1,06E-02	3,14	2,44	1	62	6	55			
hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien											
---	--	-------------	-------	-------	----	-----	----	-----	--		
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G			
	molecul	lar functio	n								
insulin-like growth factor binding	CTGF, WISP3, WISP2	1,34E-02	4,92	0,94	4	24	3	17			
type 2 fibroblast growth factor receptor binding	FGF7, KGFLP2	1,43E-02	16,34	0,20	2	5	2	5			
RPTP-like protein binding	CDH2, CTNND1	1,43E-02	16,34	0,20	2	5	2	5			
metalloexopeptidase activity	ZMPSTE24, METAP2, LAP3, ERAP1	1,59E-02	3,73	1,49	5	38	4	12			
extracellular matrix structural constituent	COL1A1, COL8A2, COL15A1, FBLN1, MGP, PXDN, MFAP5	1,62E-02	2,63	3,26	8	83	7	65			
cytokine receptor binding	MIF	1,92E-02	2,01	6,80	13	173	1	10			
protein dimerization activity	BOK, PRKRIR, ATF5, CREB3L2	1,92E-02	1,54	20,96	31	533	4	82			
bile acid binding	AKR1C1, AKR1C2	2,08E-02	12,26	0,24	2	6	2	6			
receptor signaling protein serine/threonine kinase activity	TGFB2	2,78E-02	2,79	2,32	6	59	1	2			
type II transforming growth factor beta receptor binding	TGFB2, TGFBR3	2,84E-02	9,81	0,28	2	7	2	7			
translation repressor activity	CIRBP	2,84E-02	9,81	0,28	2	7	1	3			
chemoattractant activity	FGF7, MIF	2,84E-02	9,81	0,28	2	7	2	7			
SH3 domain binding	PLSCR1, TP53BP2, VASP, CCDC6, ADAM12, ADAM19, QKI, ABI2	3,51E-02	2,24	3,77	8	96	8	96			
peptidyl-prolyl cis- trans isomerase activity	FKBP1A, FKBP5, FKBP11, FKBP7	3,56E-02	3,51	1,26	4	32	4	32			
FK506 binding	FKBP1A, FKBP5	3,69E-02	8,17	0,31	2	8	2	8			
manganese ion binding	ACVR2A, BMPR2, B4GALT1, PPP1CC, B4GALT4, GALNT5, DICER1, LAP3, GALNT7, DCP2, NUDT19	3,91E-02	1,91	6,02	11	153	11	153			
lanosterol synthase activity	LSS	3,93E-02	Inf	0,04	1	1	1	1			
C-4 methylsterol oxidase activity	SC4MOL	3,93E-02	Inf	0,04	1	1	1	1			
prenylcysteine oxidase activity	PCYOX1	3,93E-02	Inf	0,04	1	1	1	1			
argininosuccinate synthase activity	ASS1	3,93E-02	Inf	0,04	1	1	1	1			
4-alpha- glucanotransferase activity	AGL	3,93E-02	Inf	0,04	1	1	1	1			
amylo-alpha-1,6- glucosidase activity	AGL	3,93E-02	Inf	0,04	1	1	1	1			
farnesyl-diphosphate farnesyltransferase activity	FDFT1	3,93E-02	Inf	0,04	1	1	1	1			
ferrochelatase activity	FECH	3,93E-02	Inf	0,04	1	1	1	1			
glucose-6-phosphate isomerase activity	GPI	3,93E-02	Inf	0,04	1	1	1	1			
homoaconitate hydratase activity	TAP2	3,93E-02	Inf	0,04	1	1	1	1			
neolactotetraosylcera mide alpha-2,3- sialyltransferase activity	ST3GAL5	3,93E-02	Inf	0,04	1	1	1	1			

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien								
GO-Kategorien	Gensymbol	p-Wert	OR	EC	C	S	SG	G
	molecul	ar functio	n					
O-phospho-L-	PSAT1	3.93E-02	Inf	0.04	1	1	1	1
serine:2-oxoglutarate				- , -				
aminotransferase								
activity								
polyribonucleotide	PNPT1	3,93E-02	Inf	0,04	1	1	1	1
nucleotidyltransferase								
ribulose phosphate 3	PDE	3 03E 02	Inf	0.04	1	1	1	1
enimerase activity	KI L	3,951-02	1111	0,04	1	1	1	1
triose-phosphate	TPI1	3.93E-02	Inf	0.04	1	1	1	1
isomerase activity		0,002 02		0,01	-	-	-	-
interleukin-11	IL6ST	3,93E-02	Inf	0,04	1	1	1	1
receptor activity								
interleukin-1, Type II	ERAP1	3,93E-02	Inf	0,04	1	1	1	1
receptor binding								
prostaglandin-I	PTGIS	3,93E-02	Inf	0,04	1	1	1	1
synthase activity	LIGGG	2.025.02	TC	0.04	1	1	1	1
ceramide	UGCG	3,93E-02	Inf	0,04	1	1	1	1
glucosyltransferase								
nvrimidine-specific	TDG	3 93E-02	Inf	0.04	1	1	1	1
mismatch base pair	100	5,751-02	IIII	0,04	1	1	1	1
DNA N-glycosylase								
activity								
carnitine O-	CROT	3,93E-02	Inf	0,04	1	1	1	1
octanoyltransferase								
activity								
pyridoxal kinase	PDXK	3,93E-02	Inf	0,04	1	1	1	1
activity	D2CNT1	2.025.02	T.C	0.04	1	1	1	1
N-acetyllactosaminide	B3GN11	3,93E-02	Inf	0,04	1	1	1	1
acetylglucosaminyltra								
nsferase activity								
chloride-transporting	PCYOX1	3,93E-02	Inf	0,04	1	1	1	1
ATPase activity		,		<i>,</i>				
7-alpha-	HSD17B10	3,93E-02	Inf	0,04	1	1	1	1
hydroxysteroid								
dehydrogenase								
activity	01.017.4.5	2.025.02	TC	0.04	1	1	1	1
stalic acid	SLC17A5	3,93E-02	Inf	0,04	1	1	1	1
transmemorane								
mannose	M6PR	3 93E-02	Inf	0.04	1	1	1	1
transmembrane		5,751-02	IIII	0,04	1	1	1	1
transporter activity								
glycoprotein-N-	C1GALT1	3,93E-02	Inf	0,04	1	1	1	1
acetylgalactosamine								
3-beta-								
galactosyltransferase								
activity	H 12D A 1	2.025.02	T.C	0.04	1	1	1	1
interleukin-13	IL13RAI	3,93E-02	Inf	0,04	1	1	1	1
glutaminyl-pentide	OPCT	3.03E-02	Inf	0.04	1	1	1	1
cvclotransferase		3,751-02		0,04	1	1	1	1
activity								
strictosidine synthase	C20orf3	3,93E-02	Inf	0,04	1	1	1	1
activity								
acetoacetyl-CoA	HSD17B10	3,93E-02	Inf	0,04	1	1	1	1
reductase activity								
U-plasminogen	PLAUR	3,93E-02	Inf	0,04	1	1	1	1
activator receptor								
activity								

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	molecul	ar functio	n						
inorganic diphosphate transmembrane transporter activity	ANKH	3,93E-02	Inf	0,04	1	1	1	1	
arsenate reductase (thioredoxin) activity	TMX1	3,93E-02	Inf	0,04	1	1	1	1	
ribonuclease T2 activity	RNASET2	3,93E-02	Inf	0,04	1	1	1	1	
poly(G) RNA binding	ATXN1	3,93E-02	Inf	0,04	1	1	1	1	
rRNA primary transcript binding	PTRF	3,93E-02	Inf	0,04	1	1	1	1	
ADP-specific glucokinase activity	ADPGK	3,93E-02	Inf	0,04	1	1	1	1	
3-hydroxy-2- methylbutyryl-CoA dehydrogenase activity	HSD17B10	3,93E-02	Inf	0,04	1	1	1	1	
prostaglandin-F synthase activity	AKR1C3	3,93E-02	Inf	0,04	1	1	1	1	
lactosylceramide alpha-2,3- sialyltransferase activity	ST3GAL5	3,93E-02	Inf	0,04	1	1	1	1	
glycerophosphoinosit ol glycerophosphodieste rase activity	GDE1	3,93E-02	Inf	0,04	1	1	1	1	
fibroblast growth factor 2 binding	THBS1	3,93E-02	Inf	0,04	1	1	1	1	
phenylpyruvate tautomerase activity	MIF	3,93E-02	Inf	0,04	1	1	1	1	
fibrinogen binding	THBS1	3,93E-02	Inf	0,04	1	1	1	1	
transforming growth factor beta receptor activity, type III	TGFBR3	3,93E-02	Inf	0,04	1	1	1	1	
SSU rRNA binding	CIRBP	3,93E-02	Inf	0,04	1	1	1	1	
copper ion binding	SLC31A2, PRNP, MOXD1, STEAP1, LOXL4, LOXL3	3,94E-02	2,54	2,52	6	64	6	62	
specific transcriptional repressor activity	PURB, TCF7L2, UBE2I, NACC2	4,32E-02	3,27	1,34	4	34	4	34	
protein disulfide isomerase activity	P4HB, PDIA5	4,62E-02	7,00	0,35	2	9	2	9	
1-acylglycerol-3- phosphate O- acyltransferase activity	AGPAT5, LCLAT1	4,62E-02	7,00	0,35	2	9	2	9	
structural constituent of epidermis	KRTAP1-3, KRTAP1-1	4,62E-02	7,00	0,35	2	9	2	9	
cytoskeletal protein binding	B4GALT1	4,67E-02	1,45	19,19	27	488	1	38	
enzyme binding	HMOX1, PAWR, PLAUR, UBE2I, LUC7L2	4,80E-02	1,44	20,09	28	511	5	88	
calmodulin binding	ATP2B1, CAMK2D, CNN1, DAPK1, MYLK, MYO1D, MYO5A, RGS4, CAMTA1, MARCKSL1	4,95E-02	1,90	5,50	10	140	10	140	

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	biologia	cal proces	5						
response to nutrient	ARSB, COL1A1, IL6ST, MGP, TNFRSF11B, STAT1, TFRC, VLDLR, STC2	5,70E-07	4,40	5,03	19	124	9	60	
interspecies interaction between organisms	Nicht einzeln aufgeführt (31 Gene)	1,59E-06	2,84	12,13	31	299	31	272	
response to virus	CLU, IFI16, PLSCR1, EIF2AK2, CXCL12, STAT1, STAT2, TRIM25, XPR1, ISG15, TRIM22, IRF9, APOBEC3G, TRIM5	5,67E-06	3,69	5,84	19	144	14	109	
ossification	CTGF, EXT1, IBSP, MGP, TWSG1	6,14E-06	3,52	6,41	20	158	5	46	
anatomical structure morphogenesis	CST6, KRT18	7,43E-06	1,78	49,91	81	1230	2	91	
regulation of ossification	CSF1, PTGER4	8,80E-06	5,05	3,04	13	75	2	9	
anti-apoptosis	BNIP3, CLU, DAPK1, IFI6, HSPA5, MYD88, PRNP, CCL2, TCF7L2, THBS1, TNFAIP3, YWHAZ, TNFRSF10D, HTATIP2, ATF5, CIAPIN1, TMX1, AMIGO2	1,10E-05	2,97	8,97	24	221	18	169	
response to biotic stimulus	IFITM1, IFITM3, IFITM2	1,18E-05	2,43	15,34	34	378	3	11	
blood vessel development	COL1A1, CRKL, TCF7L2, PPAP2B	1,41E-05	2,66	11,57	28	285	4	37	
ER-nuclear signaling	CRIPAK	3,10E-05	7,98	1,30	8	32	1	3	
immune response	CMKLR1, IFI6, HLA-B, MICB, PSMB8, PSMB9, PTGER4, CXCL12, TAP1, TAP2, TAPBP, TGFBR3, THBS1, PXDN, SEMA7A, TRIM22, IFITM3, IFITM2, CADM1, ERAP1	5,06E-05	1,93	28,08	50	692	20	362	
regulation of apoptosis	BOK, GAS1, TRAF3, GDF5, HTATIP2, PYCARD	5,26E-05	1,85	32,71	56	806	6	110	
skeletal system development	BGLAP, CMKLR1, COL12A1, EXT1, HOXA10, TNFRSF11B, SHOX2, CLEC3B, EIF2AK3, ANKH	9,33E-05	2,29	14,20	30	350	10	106	
endoplasmic reticulum unfolded protein response	AMFR, CCND1, HSPA5, EIF2AK2, EIF2AK3, ERO1L	1,03E-04	10,24	0,81	6	20	6	18	
response to stress	MKNK2, PRKRIR, MAP4K4, PDIA5, DUSP10, TMX1, FAM129A	1,29E-04	1,56	67,65	97	1667	7	99	
angiogenesis	ANGPT1, ANPEP, COL8A2, COL15A1, CTGF, GPI, PDGFA, PLAU, TGFB2, DICER1, ERAP1, C1GALT1	1,51E-04	2,74	7,99	20	197	12	105	
negative regulation of apoptosis	ASNS, BNIP3L, CD44, IL6, KRT18, MIF, SOX4	1,54E-04	2,22	14,61	30	360	7	108	
negative regulation of programmed cell death	AMIGO2	1,96E-04	2,18	14,81	30	365	1	6	
blood vessel morphogenesis	CDH2	2,32E-04	2,45	10,19	23	251	1	7	
response to endoplasmic reticulum stress	FAM129A	2,42E-04	6,69	1,30	7	32	1	6	
prostaglandin metabolic process	AKR1C2, AKR1C3, PTGES	2,43E-04	8,43	0,93	6	23	3	8	

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	biologi	cal proces	5						
multicellular organismal development	Nicht einzeln aufgeführt (34 Gene)	3,95E-04	1,41	112,61	145	2775	34	847	
positive regulation of signal transduction	PTPN11	3,98E-04	2,22	12,62	26	311	1	8	
biomineral formation	IBSP	5,03E-04	4,40	2,35	9	58	1	17	
regulation of immune response	FKBP1A	6,07E-04	2,43	8,89	20	219	1	14	
cell death	BNIP3, CLU, EIF4G2, HMOX1, ATXN1, SPAST, TGFB2, TREX1, SPG21	6,09E-04	1,59	45,86	68	1130	9	114	
monocyte chemotaxis	IL6, CCL2	6,25E-04	35,66	0,20	3	5	2	4	
heart trabecula formation	FKBP1A, TGFBR3, ADAMTS1	6,25E-04	35,66	0,20	3	5	3	5	
regulation of cell proliferation	BMPR2, PLAU, ARHGEF2, TXNIP, KCTD11	6,47E-04	1,72	30,44	49	750	5	62	
extracellular matrix organization	COL8A2, B4GALT1, IBSP, TNFRSF11B, PXDN, SERAC1, EGFLAM	6,53E-04	3,31	4,02	12	99	7	58	
death		6,70E-04	1,58	46,02	68	1134	0	7	
cell proliferation	CRIP1, CSRP2, IFI16, INSIG1, LIPA, KITLG, MIF, SERPINF1, TCF7L2, PDXK, TMX1	6,71E-04	1,60	42,69	64	1052	11	249	
cell adhesion	Nicht einzeln aufgeführt (35 Gene)	7,06E-04	1,71	30,56	49	753	35	486	
response to unfolded protein	HSP90AA1, EIF2AK3, DNAJB6, CREB3L2	8,31E-04	4,07	2,52	9	62	4	49	
protein kinase cascade	DAPK1, GNA12, MKNK2, HMOX1, TGFBR3, MAP4K4	8,58E-04	1,84	21,43	37	528	6	91	
protein homooligomerization	ANGPT1, AKR1C1, HMOX1, PRNP, SPAST, EIF2AK3, COLEC12, NACC2	1,01E-03	3,34	3,65	11	90	8	58	
reproductive developmental process	CSF1	1,02E-03	2,27	9,94	21	245	1	1	
response to stimulus	HMOX1, HMCN1, WDR36	1,10E-03	1,36	123,57	154	3045	3	265	
cell differentiation	ANGPT1, ANPEP, RHOB, COL15A1, CSF1, CSRP2, CTGF, DBN1, DUSP6, EFNB2, GNA12, MEF2C, MGP, SLIT3, SPAST, SEMA7A, NRP2, HTATIP2, CCDC85B, CADM1, BZW2, RNF114, C1GALT1, TWSG1, KCTD11, SLFN5	1,17E-03	1,46	66,79	91	1646	26	454	
antigen processing and presentation of endogenous peptide antigen via MHC class I	TAP2, TAPBP, ERAP1	1,21E-03	23,77	0,24	3	6	3	6	
Leydig cell differentiation	CCND1, HSD17B10, MGST1	1,21E-03	23,77	0,24	3	6	3	6	
antigen processing and presentation	HLA-B, MICA, MICB, PSMB9	1,24E-03	4,25	2,15	8	53	4	29	
response to wounding	CLU, CTGF, SLC1A3, ABHD2	1,24E-03	1,78	22,64	38	558	4	38	
positive regulation of cellular protein metabolic process	CSF1	1,24E-03	2,28	9,41	20	232	1	11	
wound healing	KLF6, FGF7, PDGFA, TGFB2, KGFLP2	1,25E-03	2,40	8,08	18	199	5	40	
response to organic substance	CYP1B1, PDGFA, TFRC	1,32E-03	1,69	28,24	45	696	3	32	
bone mineralization	PTN, EIF2AK3	1,37E-03	4,78	1,70	7	42	2	12	
tissue development	TWSG1	1,37E-03	1,71	26,70	43	658	1	10	

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	biologi	cal proces	5						
regulation of osteoblast different.	FZD1	1,58E-03	4,64	1,74	7	43	1	5	
osteoblast differentiation	BGLAP, COL1A1	1,63E-03	3,65	2,76	9	68	2	20	
prenylated protein catabolic process	ZMPSTE24, PCYOX1	1,64E-03	Inf	0,08	2	2	2	2	
response to vitamin B3	ANGPT1, CCL2	1,64E-03	Inf	0,08	2	2	2	2	
I-kappaB kinase/NF- kappaB cascade	STAT1, NKIRAS2	1,70E-03	2,56	6,33	15	156	2	25	
acute inflammatory response	B4GALT1	1,72E-03	3,10	3,90	11	96	1	6	
programmed cell death	GAS1, TOP1	1,98E-03	1,54	42,04	61	1036	2	4	
response to magnesium ion	CCND1, TNFRSF11B, THBS1	2,06E-03	17,83	0,28	3	7	3	7	
epithelial cell proliferation	COL8A2, LGR4	2,21E-03	3,47	2,88	9	71	2	7	
response to hypoxia	ANGPT1, BNIP3, CAMK2D, DPP4, HMOX1, PDGFA, PLAU, CCL2, TFRC, TGFB2, THBS1, VLDLR, EGLN1	2,23E-03	2,69	5,23	13	129	13	128	
positive regulation of programmed cell death	MARK4	2,40E-03	1,84	17,29	30	426	1	3	
positive regulation of osteoblast differentiation	ACVR2A, BMPR2, IL6, IL6ST, SMAD5	2,42E-03	6,27	0,97	5	24	5	24	
smooth muscle cell migration	PLAU	2,56E-03	8,65	0,61	4	15	1	3	
heparan sulfate proteoglycan metabolic process	SULF1	2,56E-03	8,65	0,61	4	15	1	3	
positive regulation of I-kappaB kinase/NF- kappaB cascade	LPAR1, FKBP1A, HMOX1, MAP3K3, MYD88, UBE2N, VAPA, NDFIP2, TNFRSF19, NDFIP1, TMED4	2,59E-03	2,93	4,10	11	101	11	101	
cellular component movement	ACTB, AMFR, CD9, PLAUR, ABI2, CERCAM	3,16E-03	1,69	23,09	37	569	6	99	
protein oligomerization	AMFR	3,30E-03	2,37	6,78	15	167	1	25	
antigen processing and presentation of peptide antigen via MHC class I	HLA-B	3,31E-03	7,93	0,65	4	16	1	9	
defense response to virus	BNIP3, BNIP3L, IL6, MICA	3,45E-03	4,62	1,50	6	37	4	19	
cell migration	CD44, CDH2, CTGF, TGFBR3, ABI2, PARP9, CTHRC1	3,56E-03	1,85	15,46	27	381	7	48	
apoptosis	DAP, MEF2C, TNFRSF11B, PAK2, THBS1, TNFAIP3, TP53BP2, TNFRSF10D, ARHGEF2, NET1, PHLDA1, SULF1, ITGB3BP, CADM1, ARHGEF3, XAF1, TNFRSF19, CIAPIN1	4,03E-03	1,50	41,68	59	1027	18	391	
positive regulation of apoptosis	IGFBP3, PAWR, SOX4, TXNIP	4,13E-03	1,78	17,17	29	423	4	83	
regulation of protein metabolic process	UBE2K, UBE2I, UBE2N, UBE2L6, UBE2Q1	4,13E-03	1,69	21,87	35	539	5	44	
negative regulation of peptidase activity	CSTA	4,19E-03	7,32	0,69	4	17	1	4	
hair follicle morphog.	FGF7, TGFB2, FST, KGFLP2	4,19E-03	7,32	0,69	4	17	4	17	

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
0	hiologi	cal proces	5					•	
positive regulation of protein binding	FKBP1A, TCF7L2, EIF2AK3	4,65E-03	11,88	0,37	3	9	3	8	
defense response	HLA-B, TAP1, ANKRD1	4,72E-03	1,62	25,28	39	623	3	65	
neutrophil apoptosis	IL6	4,80E-03	47,46	0,12	2	3	1	2	
virus-infected cell apoptosis	EIF2AK2, EIF2AK3	4,80E-03	47,46	0,12	2	3	2	3	
bioluminescence	NID2, HMCN1	4,80E-03	47,46	0,12	2	3	2	3	
pyridoxine biosynthetic process	PDXK, PSAT1	4,80E-03	47,46	0,12	2	3	2	3	
cellular response to glucose starvation	ASNS, HSPA5	4,80E-03	47,46	0,12	2	3	2	3	
vitamin B6 metabolic process	PDXK	4,80E-03	47,46	0,12	2	3	1	1	
cardiac epith. to mesench. transition	TGFB2, TGFBR3	4,80E-03	47,46	0,12	2	3	2	3	
regulation of cellular component movement	B4GALT1	4,87E-03	2,20	7,75	16	191	1	2	
innate immune	C1R, CLU, CD55, IL1R1, MIF,	5,38E-03	2,24	7,14	15	176	9	92	
response	MYD88, TRIM25, APOBEC3G, COLEC12	- ,	7	- 7			-		
positive regulation of protein ubiquitination	FKBP1A, NDFIP2, NDFIP1	5,42E-03	2,99	3,29	9	81	3	14	
positive regulation of cell proliferation	CCND1, CAMK2D, CLU, CSF1, DPP4, ID4, IL6ST, NRAS, PTN, PURA, SOX4, TGFB2, OSMR, DNAIA2 MARCKSL1 NACC2	5,76E-03	1,77	16,03	27	395	16	236	
leukocyte migration	B4GALT1. PODXL	6.07E-03	3.18	2.76	8	68	2	16	
positive regulation of	IL6	6,44E-03	10,18	0,41	3	10	1	6	
regulation of bone	BGLAP, MGP, ANKH	6,64E-03	4,76	1,22	5	30	3	6	
pancreas development	TCF7L2	7.65E-03	4.58	1.26	5	31	1	15	
glycoprotein biosynthetic process	B4GALT1	7,70E-03	2,21	6,74	14	166	1	4	
epidermis development	CST6, CTGF, FGF7, KRT17, KRT34, UGCG	8,10E-03	2,19	6,78	14	167	6	75	
positive regulation of acute inflammatory response	IL6, IL6ST, OSMR	8,59E-03	8,91	0,45	3	11	3	6	
BMP signaling pathway	BMPR2, SMAD5, TGFBR3, FST, RGMB	8,73E-03	3,27	2,35	7	58	5	32	
iron ion homeostasis	HMOX1	8,78E-03	4,41	1,30	5	32	1	4	
response to progesterone stimulus	CCL2, TGFB2, THBS1, TXNIP	9,26E-03	5,60	0,85	4	21	4	21	
myoblast cell fate commitment	TCF7L2	9,34E-03	23,73	0,16	2	4	1	2	
negative regulation of astrocyte	ID4, ATF5	9,34E-03	23,73	0,16	2	4	2	4	
positive regulation of hair follicle	FST	9,34E-03	23,73	0,16	2	4	1	3	
cytokine-mediated	KLF6, STAT1	1,08E-02	2,85	3,04	8	75	2	40	
positive regulation of	CIRBP, IL6, THBS1, FAM129A	1,10E-02	5,29	0,89	4	22	4	16	
regulation of smooth	PDGFA	1,11E-02	7,92	0,49	3	12	1	2	
heparan sulfate proteoglycan biosynthetic process	NDST1	1,11E-02	7,92	0,49	3	12	1	3	
reg. of activin receptor sig. pathway	FKBP1A	1,11E-02	7,92	0,49	3	12	1	4	

hMS	SC-Liste der Genregulatione	n nach Ein	teilung	in GO-K	ategor	rien		
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G
0	biologia	cal proces	s					
positive regulation of peptidyl-serine	CD44, IL6, MIF	1,11E-02	7,92	0,49	3	12	3	11
glycolysis	ALDOA, GPI, HK2, PGK1, TPI1, ADPGK	1,14E-02	3,49	1,91	6	47	6	35
response to mechanical stimulus	COL1A1, MGP, CCL2, STAT1, TXNIP	1,14E-02	3,49	1,91	6	47	5	30
positive regulation of immune response	TGFB2	1,22E-02	2,23	5,72	12	141	1	4
female gonad development	FST	1,24E-02	3,04	2,52	7	62	1	9
neg. reg. of epithelial cell proliferation	CDKN2B, GAS1, TGFB2, TGFBR3	1,28E-02	5,01	0,93	4	23	4	22
transforming growth factor beta receptor signaling pathway	SMAD5, PDGFA, CCL2, TGFB2, TGFBR3, GDF5	1,31E-02	2,56	3,77	9	93	6	46
positive regulation of cell migration	CSF1, PDGFA	1,31E-02	2,56	3,77	9	93	2	54
induction of apoptosis	BNIP3, BNIP3L, BOK, STAT1, TP53BP2, TRAF3, HTATIP2, PHLDA1, PYCARD, TNFRSF19	1,33E-02	1,75	13,19	22	325	10	157
hemostasis	GPI	1,35E-02	2,29	5,11	11	126	1	7
response to iron ion	CCND1, TFRC	1,40E-02	7,13	0,53	3	13	2	10
negative regulation of caspase activity	IFI6, HSPA5, DNAJB6	1,40E-02	7,13	0,53	3	13	3	13
platelet activation	CD9, IL6, PLSCR1	1,44E-02	3,84	1,46	5	36	3	25
organ morphogenesis	CRKL, CSRP2, EFNB2, NDST1, LFNG, PDGFA, SLIT3	1,45E-02	1,55	22,16	33	546	7	113
cell activation	PDGFA	1,48E-02	1,68	14,89	24	367	1	5
lysosomal transport	ARSB	1,49E-02	4,76	0,97	4	24	1	4
intramembranous ossification	COL1A1, CTSK	1,51E-02	15,82	0,20	2	5	2	5
healing during inflammatory response	CD44, HMOX1	1,51E-02	15,82	0,20	2	5	2	2
negative regulation of survival gene product	BNIP3, BNIP3L	1,51E-02	15,82	0,20	2	5	2	5
regulation of myelination	CDH2	1,51E-02	15,82	0,20	2	5	1	1
ISG15-protein	UBE2L6, ISG15	1,51E-02	15,82	0,20	2	5	2	5
protein refolding	FKBP1A, HSP90AA1	1.51E-02	15.82	0.20	2	5	2	5
negative regulation of DNA damage response, signal transduction by p53 class mediator	CD44, MIF	1,51E-02	15,82	0,20	2	5	2	5
positive regulation of keratinocyte migration	HBEGF, FGF7	1,51E-02	15,82	0,20	2	5	2	5
protein transport	ARF3, ARF5, RHOB, COL1A1, RAB27A, STXBP3, TAP1, NUPL1, NUTF2, TMED2, KDELR3, RAB31, SEC61A1, VPS54, SNX14, RAB22A, SEH1L, SNX25, HOOK3, SNX18, CHMP4B, RAB12	1,57E-02	1,44	34,13	47	841	22	388
hair follicle development	PDGFA	1,61E-02	3,72	1,50	5	37	1	11
lung development	CTGF, FGF7, LIPA, MGP, DICER1, KGFLP2	1,68E-02	2,61	3,29	8	81	6	57
reg of angiogenesis	HMOX1, IL6, WARS, HTATIP2	1,72E-02	2,83	2,68	7	66	4	17

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	biologi	cal proces	s	•		•			
endosome	RAB22A, HOOK3	1,73E-02	6,48	0,57	3	14	2	12	
organization		1 725 02	6.40	0.57	2	1.4	2	14	
endosome to	RHOB, M6PR, HOOK3	1,73E-02	6,48	0,57	3	14	3	14	
homeostasis of	CSF1, LIPA, VPS54	1,73E-02	6,48	0,57	3	14	3	14	
number of cells within		,	,	,					
a tissue									
response to inorganic	COL1A1, PDGFA, SLC1A3,	1,78E-02	1,92	8,20	15	202	4	16	
response to estrogen	ANGPT1, ARSB, CCND1.	1.79E-02	2.41	3.98	9	98	7	45	
stimulus	GSTM3, HMOX1, TNFRSF11B,	-,	_,	-,					
	CRIPAK								
regulation of translat.	ACO1, MKNK2, QKI, RBM8A	1,85E-02	2,17	5,36	11	132	4	57	
positive regulation of	MIF, THBS1	1,90E-02	2,39	4,02	9	99	2	10	
positive regulation of	TGFB2	1.99E-02	3.50	1.58	5	39	1	12	
protein secretion		-,	-,	-,	-		-		
reg. of cell migration	NEXN	2,03E-02	1,99	6,86	13	169	1	28	
prostaglandin	MIF, PTGDS, PTGIS	2,10E-02	5,94	0,61	3	15	3	11	
endocrine pancreas		2 10E-02	5.9/	0.61	3	15	3	15	
development	CLU, ILO, EIFZAKS	2,10E-02	5,94	0,01	5	15	3	15	
proteolysis	ANPEP, C1R, CPE, CTSK,	2,18E-02	1,37	42,73	56	1053	21	417	
	CTSO, DPP4, PLAU, LGMN,								
	TFRC, UBE2N, ADAM12,								
	ADAM19, ADAM151, ZMPSTE24 METAP2 OPCT								
	PAMR1, FBXO3, PYCARD,								
	LAP3, ERAP1								
cellular iron ion	ACO1, TFRC, NDFIP1	2,24E-02	4,13	1,10	4	27	3	25	
homeostasis	CSDD2	2.24E.02	4.12	1.10	4	27	1	12	
differentiation	CSKP2	2,24E-02	4,15	1,10	4	21	1	15	
sterol metabolic	LIPA, LSS	2,27E-02	2,31	4,14	9	102	2	3	
process									
blood coagulation	GNA12, PLAU, PLAUR,	2,40E-02	2,17	4,87	10	120	4	63	
leukocyte activation	KAB2/A TMX1	2/3E-02	1.66	13 10	21	325	1	5	
response to vitamin A	CD44	2,43E-02 2.67E-02	3.22	1.70	5	42	1	9	
lipid biosynthetic	UGCG	2,67E-02	1,62	14,12	22	348	1	21	
process									
odontogenesis	BGLAP, CSF1, TGFB2	2,74E-02	2,80	2,31	6	57	3	15	
inflammatory	NDST1, IL6, LIPA, MIF, MND88, CCL2, NMI	2,75E-02	1,62	14,16	22	349	1	214	
cell-matrix adhesion	CD44, CTGF, ITGB8, ITGA10.	2.82E-02	2.21	4.30	9	106	7	66	
	ITGBL1, NID2, EPDR1	_,	_,	.,					
cell chemotaxis		2,92E-02	3,13	1,74	5	43	0	4	
protein complex	KPNA3, MGP, TAP2, TAPBP,	2,93E-02	1,48	21,71	31	535	6	101	
assembly	MAGII, VAMP3 MID1 TRIM27 TNEAIR2	2.05E.02	1.46	22.41	22	577	17	264	
dependent protein	UBE2N. TRIM25. ENC1.	2,95E-02	1,40	23,41	55	511	1/	304	
catabolic process	UBE2L6, ISG15, TRIM22,								
	RBCK1, FBXO3, ASB1,								
	UBE2Q1, HECW2, TRIM5,								
polysaccharide	NDST1	2.95E-02	2.75	2.35	6	58	1	1	
biosynthetic process		2,751 02	2,75	2,35	0	50	1	1	
regulation of protein	CDH2	2,98E-02	2,01	5,76	11	142	1	18	
localization	mana			0.05					
ganglioside metabolic	ITGB8	3,01E-02	9,49	0,28	2	7	1	2	
process	KDELR2, KDELR3	3.01E-02	9,49	0.28	2	7	2	7	
ER lumen	·, ,	2,012 02	- ,	-,				·	

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	biologia	cal proces	5						
negative chemotaxis	PDGFA, NRP2	3,01E-02	9,49	0,28	2	7	2	5	
positive regulation of	ACVR2A, CCND1, FAM129A	3,13E-02	2,30	3,69	8	91	3	23	
protein amino acid									
sphingolipid	SPTLC2	3.18E-02	3.66	1.22	4	30	1	8	
biosynthetic process		5,102 02	3,00	1,22		50	-	0	
positive regulation of	ANGPT1, HMOX1, IL6, IL6ST	3,18E-02	3,66	1,22	4	30	4	30	
anti-apoptosis		2.015.00	1.07	22.07	4.5	0.27	1.4	220	
lipid metabolic	CLU, AKRIC2, ECHSI, HSD17B10_INSIG1_PTPN11	3,21E-02	1,37	33,97	45	837	14	220	
process	VLDLR, PPAP2B, BTN3A1,								
	ACOT7, APOL2, GDE1, CROT,								
	SGMS2		2.1.5			100		100	
cell cycle arrest	CDKN2B, EIF4G2, GAS1,	3,30E-02	2,15	4,42	9	109	8	102	
	CUL5. SESN1								
fat cell differentiation	CCND1, TCF7L2, ERAP1	3,42E-02	2,65	2,43	6	60	3	24	
glutamine metabolic	ASNS, CTPS	3,44E-02	4,75	0,73	3	18	2	15	
process							_		
fatty acid biosynthetic	PTGDS, PTGIS, SC4MOL, TPI1,	3,50E-02	2,24	3,77	8	93	5	46	
JAK-STAT cascade	IL6ST, CCL2, STAT2, NMI	3.67E-02	2.60	2.48	6	61	4	19	
negative regulation of	SP100, TGFBR3	3,67E-02	2,60	2,48	6	61	2	5	
cellular component		, ,	,	ŕ					
movement					_				
immune response-	MICB	3,77E-02	2,90	1,87	5	46	1	1	
receptor signaling									
pathway									
axon ensheathment	CLDN11	3,77E-02	2,90	1,87	5	46	1	3	
neutrophil mediated	IL6	3,91E-02	7,91	0,32	2	8	1	4	
immunity	EGE7 KGELP2	3.91E-02	7.91	0.32	2	8	2	8	
homeostasis		5,711-02	7,71	0,52	2	0	2	0	
regulation of protein	PTPN11	3,91E-02	7,91	0,32	2	8	1	2	
export from nucleus							-		
proteolysis involved	PSMB8, PSMB9	3,92E-02	1,42	24,84	34	612	2	23	
catabolic process									
chemotaxis	CMKLR1, PLAU, PLAUR,	3,95E-02	1,85	6,78	12	167	6	120	
	CCL2, CXCL12, RALBP1								
mesenchymal cell	FGF7	3,97E-02	4,45	0,77	3	19	1	2	
proliferation	THBS1	4.06E_02	Inf	0.04	1	1	1	1	
antigen processing	TIDST	4,001-02	1111	0,04	1	1	1	1	
and presentation of									
peptide or									
polysaccharide									
class II									
negative regulation of	THBS1	4,06E-02	Inf	0,04	1	1	1	1	
dendritic cell antigen									
processing and									
dTTP biosynthetic	TBPL1	4.06E-02	Inf	0.04	1	1	1	1	
process		1,001-02		0,0-1	1	1	1	1	
glutamine catabolic	GLS	4,06E-02	Inf	0,04	1	1	1	1	
process									
adult somatic muscle	IFRD1	4,06E-02	Inf	0,04	1	1	1	1	
gamma-aminobutvric	SLC1A3	4.06E-02	Inf	0.04	1	1	1	1	
acid biosynthetic		.,002 02		5,51	⁻	-	-		
process									

hMS	SC-Liste der Genregulatione	n nach Ein	teilung	in GO-Ka	ategor	ien		
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G
	biologi	cal process	5					
neg. reg. of alkaline phosphatase activity	TGFB2	4,06E-02	Inf	0,04	1	1	1	1
negative regulation of nitric oxide mediated	THBS1	4,06E-02	Inf	0,04	1	1	1	1
signal transduction negative regulation of cGMP-mediated signaling	THBS1	4,06E-02	Inf	0,04	1	1	1	1
negative regulation of plasminogen activation	THBS1	4,06E-02	Inf	0,04	1	1	1	1
positive regulation of macrophage chemotaxis	THBS1	4,06E-02	Inf	0,04	1	1	1	1
sialic acid transport	SLC17A5	4,06E-02	Inf	0,04	1	1	1	1
mannose transport snoRNA metabolic process	M6PR FBL	4,06E-02 4,06E-02	Inf Inf	0,04 0,04	1	1	1	1
fatty acid elongation	ELOVL6	4,06E-02	Inf	0,04	1	1	1	1
paranodal junction assembly	CD9	4,06E-02	Inf	0,04	1	1	1	1
auditory behavior	SLC1A3	4,06E-02	Inf	0,04	1	1	1	1
response to follicle- stimulating hormone stimulus	TGFBR3	4,06E-02	Inf	0,04	1	1	1	1
negative regulation of protein homooligomerization	CLU	4,06E-02	Inf	0,04	1	1	1	1
positive regulation of neutrophil apoptosis	CD44	4,06E-02	Inf	0,04	1	1	1	1
regulation of histone ubiquitination	UBE2N	4,06E-02	Inf	0,04	1	1	1	1
beta-amyloid formation	FKBP1A	4,06E-02	Inf	0,04	1	1	1	1
response to type I interferon	SP100	4,06E-02	Inf	0,04	1	1	1	1
response to luteinizing hormone stimulus	TGFBR3	4,06E-02	Inf	0,04	1	1	1	1
post-embryonic hindlimb morphogenesis	GDF5	4,06E-02	Inf	0,04	1	1	1	1
neg. reg. of odontogenesis of dentine-containing tooth	TNFRSF11B	4,06E-02	Inf	0,04	1	1	1	1
pyridoxal phosphate biosynthetic process	PDXK	4,06E-02	Inf	0,04	1	1	1	1
neg. reg. of mast cell degranulation	HMOX1	4,06E-02	Inf	0,04	1	1	1	1
cytotoxic T cell degranulation	RAB27A	4,06E-02	Inf	0,04	1	1	1	1
natural killer cell degranulation	RAB27A	4,06E-02	Inf	0,04	1	1	1	1
engulfment of apoptotic cell	THBS1	4,06E-02	Inf	0,04	1	1	1	1
FasL biosyn. process	PHLDA1	4,06E-02	Inf	0,04	1	1	1	1
farnesyl diphosphate metabolic process	FDFT1	4,06E-02	Inf	0,04	1	1	1	1
neg. reg. of membrane potential	BNIP3	4,06E-02	Inf	0,04	1	1	1	1

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien									
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G	
	biologie	cal process	5						
neg. reg. of calcium ion-dependent exocytosis	STXBP3	4,06E-02	Inf	0,04	1	1	1	1	
vesicle targeting, trans-Golgi to endosome	WIPI1	4,06E-02	Inf	0,04	1	1	1	1	
peptide antigen stabilization	ТАРВР	4,06E-02	Inf	0,04	1	1	1	1	
microtubule severing	SPAST	4,06E-02	Inf	0,04	1	1	1	1	
attachment of spindle microtubules to kinetochore during mitosis	SEHIL	4,06E-02	Inf	0,04	1	1	1	1	
negative regulation of cortisol secretion	PTPN11	4,06E-02	Inf	0,04	1	1	1	1	
negative regulation of elastin biosynthetic process	HBEGF	4,06E-02	Inf	0,04	1	1	1	1	
Golgi localization	HOOK3	4,06E-02	Inf	0,04	1	1	1	1	
positive regulation of catagen	TGFB2	4,06E-02	Inf	0,04	1	1	1	1	
regulation of acrosome reaction	B4GALT1	4,06E-02	Inf	0,04	1	1	1	1	
positive regulation of apoptosis involved in mammary gland involution	B4GALT1	4,06E-02	Inf	0,04	1	1	1	1	
neg. reg. of growth hormone secretion	PTPN11	4,06E-02	Inf	0,04	1	1	1	1	
definitive erythrocyte differentiation	TGFBR3	4,06E-02	Inf	0,04	1	1	1	1	
reg. of protein folding in endoplasmic reticulum	HSPA5	4,06E-02	Inf	0,04	1	1	1	1	
glucagon secretion	IL6	4,06E-02	Inf	0,04	1	1	1	1	
chemokine-mediated signaling pathway	CCL2	4,06E-02	Inf	0,04	1	1	1	1	
interleukin-27- mediated signaling pathway	IL6ST	4,06E-02	Inf	0,04	1	1	1	1	
pos. reg. of monocyte chemotaxis	CXCL12	4,06E-02	Inf	0,04	1	1	1	1	
pos. reg. of peptidyl- tyrosine phosphorylation	CD44, FGF7, IL6, MIF	4,08E-02	2,83	1,91	5	47	4	33	
negative regulation of cell proliferation	B4GALT1, HMOX1, IL6, PAWR, PRKRIR, WARS, CUL5, IFITM1, WISP2, ADAMTS1, PTGES, CHERP, SESN1	4,12E-02	1,56	13,96	21	344	13	252	
protein metabolic process	LAP3	4,29E-02	1,20	118,17	135	2912	1	8	
response to retinoic acid	MEST, MICB, PDGFA, TFRC	4,33E-02	3,28	1,34	4	33	4	33	
response to cytokine stimulus	CDKN2B, IL6ST, STAT1, OSMR	4,34E-02	2,28	3,25	7	80	4	43	
protein catabolic process	UBR1	4,44E-02	1,39	25,97	35	640	1	21	
heterophilic cell-cell adhesion	CDH2, CADM1, AMIGO2	4,53E-02	4,19	0,81	3	20	3	20	
cytoskeleton organization	SGCB, ABI2	4,57E-02	1,46	19,15	27	472	2	51	
humoral immune response	GPI, IL6, CCL2	4,59E-02	2,25	3,29	7	81	3	34	
•	·		•	•	•	•			

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien								
GO-Kategorien	Gensymbol	p-Wert	OR	EC	C	S	SG	G
ŭ	biologie	cal process	5			•		
response to	ERO1L	4,85E-02	2,22	3,33	7	82	1	3
temperature stimulus	CADMI	4 005 02	6.70	0.27	2	0	1	2
T cell mediated	САДМІ	4,90E-02	6,78	0,37	2	9	1	2
ER overload response	HSPA5, EIF2AK3	4,90E-02	6,78	0,37	2	9	2	8
monocyte	IFI16	4,90E-02	6,78	0,37	2	9	1	5
differentiation		4.005.02	670	0.27	2	0	2	2
gamma-delta T cell	MICA, MICB	4,90E-02	6,78	0,37	2	9	2	2
macrophage	CCL2	4,90E-02	6,78	0,37	2	9	1	7
chemotaxis								
	cellular	componen	ıt					
cytoplasm	Nicht einzeln aufgeführt	9,13E-09	1,62	280,23	347	7127	195	4296
endonlasmic	(195 Gene) Nicht einzeln aufgeführt	1 19E-08	2.22	36.76	73	935	65	852
reticulum	(65 Gene)	1,172-00	2,22	50,70	15	755	05	052
endomembrane	VAPA, ARL6IP1, NRBP1,	1,51E-06	1,82	53,28	88	1355	4	75
system	SNX18							
extracellular region	Nicht einzeln aufgeführt (95	1,54E-05	1,63	70,58	105	1795	95	1662
melanosome	CALU, HSPA5, HSP90AA1.	4.78E-05	4.20	3.54	13	90	13	83
	LAMP1, P4HB, SERPINF1,	.,	.,	-,				
	RAB27A, RAN, SLC2A1, TFRC,							
andonlasmia	YWHAZ, TRPV2, SYTL2	6 27E 05	1 29	2.15	10	80	11	74
reticulum lumen	TAP2 PDIA5 CFRCAM	0,37E-05	4,38	3,15	12	80	11	74
Tetteurum fumen	FKBP7, ERAP1, UGGT2, RCN3							
endoplasmic	Nicht einzeln aufgeführt	9,69E-05	2,00	22,02	41	560	36	493
reticulum membrane	(36 Gene)	1.005.04	2.24	12.04	20	220		
extracellular matrix MHC class I poptide	CD44, TGFB2, THBS1, SERACI	1,08E-04	2,34	12,94	28	329	4	24
loading complex		2,351-04	75,07	0,10	5	-	1	2
membrane	Nicht einzeln aufgeführt	3,71E-04	1,34	253,85	294	6456	161	3500
	(161 Gene)	4.415.04	5.05	1.05	0	15	-	20
ER-Golgi	ANPEP, HSPA5, P4HB, TMED2, UGGT2 RGMB	4,41E-04	5,07	1,85	8	47	6	30
compartment								
proteinaceous	COL12A1, HAPLN1, CTGF,	9,18E-04	2,15	11,91	24	303	15	210
extracellular matrix	FBLN1, EFEMP1, FMOD,							
	LGALS3BP, MATN2, MGP, TNERSELLB PYDN MEAP5							
	GPC6. CRTAP. CTHRC1							
TAP complex	TAP1, TAP2	1,54E-03	Inf	0,08	2	2	2	2
lamellipodium	CDH2, CTNND1, DPP4, ABI2,	2,17E-03	3,47	2,87	9	73	7	66
1.4	SWAP70, NRBP1, SSH1	2 77E 02	2.00	2.54	10	00	2	20
Golgi apparatus	MoPK, LGMN, KAB2/A Nicht einzeln aufgeführt	2,77E-03	3,09	3,54	50	90 853	3 48	29 788
Ooigi apparatus	(48 Gene)	5,012-05	1,57	55,54	50	055	40	788
vesicle	SRI, VAPA	3,34E-03	1,64	26,34	41	670	2	13
extracellular space	Nicht einzeln aufgeführt	4,02E-03	1,64	25,01	39	636	36	605
Sac61 translocon	(36 Gene)	4.51E.02	40.02	0.12	2	2	2	2
complex	SSK5, AKLOIPI	4,51E-05	49,05	0,12	2	3	2	3
IL-6 receptor complex	IL6, IL6ST	4,51E-03	49,03	0,12	2	3	2	3
oncostatin-M receptor	IL6ST, OSMR	4,51E-03	49,03	0,12	2	3	2	3
complex		4 515 00	40.02	0.12				
proteasome activator	PSME1, PSME2	4,51E-03	49,03	0,12	2	5	2	5
inhibin-betaglycan-	ACVR2A, TGFBR3	4,51E-03	49.03	0,12	2	3	2	3
ActRII complex	, , , , , , , , , , , , , , , , , , , ,	,	.,	- , - =				-
L	1	1	1	1	1	1	1	

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien								
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G
cellular component								
cell surface	BMPR2, CLCN3, DPP4, HBEGF, HSPA5, M6PR, MICA, MIF, P4HB, PDGFA, PLAUR, SLC1A3, WISP2, PGRMC1, SULF1, C20orf3	5,40E-03	1,91	12,15	22	309	16	180
membrane-bounded vesicle	BGLAP, IBSP	5,43E-03	1,62	24,65	38	627	2	9
integral to endoplasmic reticulum membrane	AMFR, EXT1, HSPA5, SSR3, SEC61A1, ELOVL6	7,13E-03	3,89	1,73	6	44	6	37
exocytic vesicle	RAB27A, SYTL2	8,78E-03	24,51	0,16	2	4	2	4
Golgi apparatus part		1,21E-02	1,60	20,21	31	514	0	2
inclusion body	AGL	1,29E-02	7,36	0,51	3	13	1	5
membrane fraction	RHOB, SCARB2, CINND1, DPP4, GBAS, HLA-B, HMOX1, LAMP1, NRAS, RYK, SLC1A3, SLC2A1, SLIT3, UGCG, VLDLR, CUL5, NRP2, SLC16A3, PTGES, ZMPSTE24, CKAP4, ITGB3BP, SLC17A5, ERO1L, SYTL2, ANKRA2, YRDC, TMX1	1,33E-02	1,48	29,49	42	750	28	461
filopodium membrane	VASP, ANTXR1	1,43E-02	16,34	0,20	2	5	2	5
lysosome	ARSB, ARSD, CTSK, LIPA, LGMN, RAB27A, FNBP1, PCYOX1, EPDR1, VMA21	1,50E-02	1,96	8,02	15	204	10	120
rough endoplasmic reticulum	ARSB, PTGDS	1,55E-02	4,68	0,98	4	25	2	11
basement membrane	COL8A2, COL15A1, ADAMTS1, NID2, NTN4, HMCN1, EGFLAM	1,84E-02	2,78	2,71	7	69	7	53
late endosome membrane	RHOB, CLCN3, STARD3NL, CHMP4B, TMEM9	2,04E-02	3,01	2,16	6	55	5	50
Golgi membrane	CLCN3, EXT1, NDST1, LFNG, NRAS, TAPBP, TMF1, ST3GAL5, STX6, ZMPSTE24, TMED2, B3GNT1, GALNT5, MGAT4B, GOLGA7, FAM198B, GALNT7, NDFIP2, NDFIP1, GLIPR2, SGMS2, RAB12	2,04E-02	1,60	16,95	26	431	22	340
DNA replication factor A complex	PURA, PURB	2,08E-02	12,26	0,24	2	6	2	6
filopodium	CDC42, ABI2	2,58E-02	3,93	1,14	4	29	2	24
cytoplasmic membrane-bounded vesicle	FLG, TFRC, FNBP1, SLC17A5	2,58E-02	1,47	23,98	34	610	4	78
microsome	CYP1B1, FDFT1, HMOX1, LSS, MGST1, P4HB, SSR3, TAPBP, VAMP3, PTGES, PGRMC1, TMED2, ERO1L, RDH10, PTRF	2,65E-02	1,82	8,61	15	219	15	217
cornified envelope	CST6, CSTA, FLG	2,73E-02	5,26	0,67	3	17	3	17
intrinsic to membrane	MYD88	2,73E-02	1,19	183,27	205	4661	1	6
lamellipodium membrane	VASP, ANTXR1	2,84E-02	9,80	0,28	2	7	2	7
proteasome complex	PSMD10, PSME1, PSME2, UBR1	3,00E-02	2,73	2,36	6	60	4	40
cytoplasmic vesicle	CLCN3, ADAMTS1, TMED2, PHLDA1, WIPI1, TPRG1L, VMA21	3,24E-02	1,43	25,28	35	643	7	216
integral to membrane	Nicht einzeln aufgeführt (148 Gene)	3,32E-02	1,18	179,34	200	4561	148	3458
vesicle lumen	ANPEP	3,36E-02	3,00	1,81	5	46	1	2

hMSC-Liste der Genregulationen nach Einteilung in GO-Kategorien								
GO-Kategorien	Gensymbol	p-Wert	OR	EC	С	S	SG	G
	cellular	compone	nt					-
perinuclear region of	ARF3, ARF5, CLU, CSF1,	3,59E-02	1,65	11,32	18	288	18	284
cytoplasm	HSPA5, KRT18, TRIM37,							
	PAK2, PTGDS, SPAST, TFRC,							
	TP53BP2, VAPA, DNAJB6,							
	STX6, CHERP, NDFIP2,							
	NDFIP1							
MLL5-L complex	ACTB, PPP1CC	3,69E-02	8,17	0,31	2	8	2	8
collagen type XV	COL15A1	3,93E-02	Inf	0,04	1	1	1	1
collagen type XII	COL12A1	3,93E-02	Inf	0,04	1	1	1	1
interleukin-13	IL13RA1	3,93E-02	Inf	0,04	1	1	1	1
receptor complex								
caspase complex	HSPA5	3,93E-02	Inf	0,04	1	1	1	1
glycocalyx	B4GALT1	3,93E-02	Inf	0,04	1	1	1	1
isoamylase complex	AGL	3,93E-02	Inf	0,04	1	1	1	1
extracellular vesicular	ALDOA	3,93E-02	Inf	0,04	1	1	1	1
exosome								
ciliary neurotrophic	IL6ST	3,93E-02	Inf	0,04	1	1	1	1
factor receptor								
complex	DDD/	0.000	TC	0.04				
invadopodium	DPP4	3,93E-02	Inf	0,04	1	1	1	1
membrane		4.005.00	0.14	2.02	0	100		
cell-substrate	NEXN	4,32E-02	2,14	3,93	8	100	1	2
adherens junction	CD44 D4CALT1 SLC1A2	4.25E.02	1.72	0.41	1.4	214	7	05
basolateral plasma	CD44, B4GALTI, SLCIAS,	4,55E-02	1,75	8,41	14	214	/	95
memorane	SLC2AI, SIADPS, SLC4A7,							
	KDNA2 IDO5 DAN NUDI 1	4 49E 02	2.46	2.60	6	66	5	56
nuclear pore	NUTF2	4,46E-02	2,40	2,00	0	00	5	30
stress granule	CIRBP, LSM14A	4,63E-02	7,00	0,35	2	9	2	9
fibril	SLC1A3	4,63E-02	7,00	0,35	2	9	1	4
MHC class I protein	HLA-B, MICA, MICB	4,75E-02	4,09	0,83	3	21	3	21
complex								

7.2.3. Zuordnung regulierter Gene zu Signalwegen nach KEGG

Tab. 23 Genzuordnung zu Signalwegen nach KEGG

Alle in der *Microarray*-Analyse regulierten Gene wurden, über eine Verknüpfung mit der Datenbank KEGG, Signalwegen zugeteilt. Nachfolgend sind alle 10 überrepräsentierten Signalwege mit einem p-Wert≤0,05 angegeben. Die einzelnen Gene sind unter ihrer Gensymbolbezeichnung in Verbindung mit dem jeweiligen Signalweg gelistet. Neben dem p-Wert sind die Werte OR (*odds* ratio, Quotenzahl), EC (*expected count*, erwartete Anzahl), C (*count*, tatsächliche Anzahl), S (*size*, Gesamtanzahl), G (*gene*, Anzahl der gespotteten Gene) und SG (*significant gene*, Anzahl der signifikant regulierten Gene) in Bezug auf den Signalweg aufgeführt.

Signalweg	Gensymbol	p-Wert	OR	EC	С	S	SG	G
Renal cell	CDC42, CRKL, NRAS, PAK2, PTPN11,	5,16E-03	3,07	3,30	9	69	9	69
carcinoma	SLC2A1, TGFB2, AKT3, EGLN1							
Steroid	FDFT1, LIPA, LSS, SC4MOL	7,41E-03	6,22	0,81	4	17	4	17
biosynthesis								
Antigen	HLA-B, HSPA5, HSP90AA1, LGMN,	1,06E-02	2,70	3,68	9	77	9	77
processing and	PSME1, PSME2, TAP1, TAP2, TAPBP							
presentation								
Hematopoietic	ANPEP, CD9, CD44, CSF1, CD55, IL1R1,	1,68E-02	2,48	3,97	9	83	9	83
cell lineage	IL6, KITLG, TFRC							
TGF-beta	ACVR2A, BMPR2, CDKN2B, ID4, SMAD5,	1,81E-02	2,45	4,02	9	84	9	84
signaling	TGFB2, THBS1, GDF5, FST							
pathway								
Vitamin B6	PDXK, PSAT1	2,07E-02	13,4	0,24	2	5	2	5
metabolism								
Keratan sulfate	B4GALT1, B4GALT4, B3GNT1	3,21E-02	5,03	0,72	3	15	3	15
biosynthesis								

hMSC-Genzuordnung zu Signalwegen nach KEGG								
Signalweg	Gensymbol	p-Wert	OR	EC	С	S	SG	G
Metabolism of xenobiotics by cytochrome P450	CYP1B1, AKR1C1, AKR1C2, GSTM3, MGST1, AKR1C3	4,59E-02	2,48	2,63	6	55	6	55
Focal adhesion	ACTB, CCND1, CDC42, COL1A1, CRKL, IBSP, ITGB8, MYLK, PAK2, PDGFA, PPP1CC, THBS1, VASP, ITGA10, AKT3	4,68E-02	1,70	9,37	15	196	15	196
Thyroid cancer	CCND1, NRAS, TCF7L2, CCDC6	4,73E-02	3,22	1,39	4	29	4	29
Renal cell carcinoma	CDC42, CRKL, NRAS, PAK2, PTPN11, SLC2A1, TGFB2, AKT3, EGLN1	5,16E-03	3,07	3,30	9	69	9	69

7.3. Abkürzungsverzeichnis	
AMP	Ampicillin
APS	Ammoniumperoxodisulfat
BPD	Bronchopulmonale Dysplasie
bp	Basenpaar
BSA	Bovines(Rinder) Serumalbumin
CCN	<u>C</u> YR61 <u>C</u> TGF <u>N</u> OV
cDNA	complementary DNA
COPD	chronisch obstruktive Lungenerkrankung
CTGF	Connective tissue growth factor, Protein
ctgf	Connective tissue growth factor, Gen
CŸR61	Cystein rich protein 61, Protein
cyr61	Cystein rich protein 61, Gen
ddATP	Dideoxyadenosintriphoshat
ddCTP	Dideoxycytidintriphoshat
ddGTP	Dideoxyguanosintriphoshat
ddTTP	Dideoxythymidintriphoshat
ddNTPs	Dideoxyribonukleosidtriphosphate
DMSO	Dimethylsulfoxid
DNA	Desoxyribonucleic acid
DTT	Dithiothreitol
ECGS	Endothelial Cell Growth Supplement
E coli	Escherichia coli
EDTA	Ethylendiamintetraessigsäure
et al	et alia (und andere)
FCS	Fetales Kälberserum
GFP	grün fluoreszierendes Protein
HFK293T	human embryonic kidney cells
hMSC	human mesenchymal stem cells
HPMEC_ST1 6R	human pulmonary microvasculare endothelial cells
HRD	Horseradish perovidase (Meerettich Perovidase)
kh	kilo Base
ku kd baw kDa	kilo Dalton
	Laminar Flow Box
	Lammar Flow Dox
U I.P. Madium	ullits Lycogony Proth Modium
LD-Medium M	Lysogeny brout medium
	IIICIO RINA Nambushistana susrangasad
	nephroblastoma overexpressed
UD DDC	Dhave bet heffered eating
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
RI-PCK	Reverse Transkriptase PCR
PMSF	Phenylmethylsulfonylfluorid
PVDF	Polyvinylidenfluorid
REN	Restriktionsendonukleasen
RNA	Ribonukleinsäure
rpm	round per minute
RT	Raumtemperatur
SDS	Sodiumdodecylsulfat
SEM	Standard error of the mean (Standardfehler)
SF21	Spodoptera trugiperda
shRNA	short hairpin RNA
siRNA	small interfering RNA
TEMED	N, N, N', N'Tetramethylethylendiamin
WISP 1-3	WNT inducible-signaling pathway proteins 1-3

7.4. Publikationen und Kongressbeiträge

Publikation

Laug, **Roderich**, Markus Fehrholz, Norbert Schütze, Boris W. Kramer, Vera Krump-Konvalinkova, Christian P. Speer, und Steffen Kunzmann. "IFN- γ and TNF- α synergize to inhibit CTGF expression in human lung endothelial cells". PLoS ONE 7, Nr. 9 (September 20, 2012). doi:10.1371/journal.pone.0045430

Posterpräsentationen

R. Laug, S. Jatzke, V. Monz, F. Jakob, S. Kunzmann, N. Schütze. "Rekombinante Expression, Aufreinigung und Funktionsaufklärung von CYR61 und CTGF in Lungenendothel- und mesenchymalen Stammzellen". Harztagung der CCN-Arbeitsgruppen, 2009.

R. Laug, S. Jatzke, V. Monz, B. Obermayer-Pietsch, N. Schütze. "Expression, purification and functional testing of recombinant CYR61/CCN1 and CTGF/CCN2". ASBMR 31th Annual Meeting 2009, Denver, USA

R. Laug, V. Zehe, S. Kunzmann, N. Schütze. "Funktion von CTGF in Lungenendothelzellen und mesenchymalen Stammzellen". Osteologietagung 2011, Fürth

Kongressvortrag

Roderich Laug, Susanne Jatzke, Viola Monz, Steffen Kunzmann, Norbert Schütze. "Function of connective tissue growth factor in human pulmonary microvascular endothelial and human mesenchymal stem cells". CCN-Meeting 2010, Newcastle, Nordirland

R. Laug, V. Monz, S. Kunzmann, N. Schütze. "Expression, Aufreinigung und Funktionsaufklärung von rCYR61/CCN1 und rCTGF/CCN2". Osteologietagung 2010, Berlin

7.5. Danksagung

Diese Arbeit wurde in der Orthopädischen Klinik König-Ludwig-Haus im wissenschaftlichen Labor des Orthopädischen Zentrums für muskuloskelettale Forschung angefertigt. Auf diesem Wege möchte ich mich bei allen Wegbegleitern bedanken, welche mich so tatkräftig in dieser Zeit unterstützt haben.

Mein besonderer Dank gilt meinem Betreuer und gleichzeitig auch dem Leiter des wissenschaftlichen Labors Prof. Dr. Norbert Schütze, der mir die Möglichkeit gab eine solche Arbeit anfertigen zu können. Vielen Dank für die stets hilfreichen Diskussionen und die Unterstützung diese Arbeit auch auf nationalen und internationalen Kongressen präsentieren zu dürfen.

Des Weiteren möchte ich Frau Prof. Dr. Högger für die Übernahme der externen pharmazeutischen Zweitbegutachtung danken. Vielen Dank auch für die Möglichkeit meine Arbeit in zahlreichen Vorträgen ihrem Fachbereich vorstellen zu dürfen.

Vielen Dank auch an Prof Dr. Franz Jakob, dem Leiter des Orthopädischen Zentrums für muskuloskelettale Forschung, für stets hilfreiche Diskussionen in den wöchentlichen Seminaren.

Ebenfalls möchte ich mich bei PD Dr. Steffen Kunzmann und Barbara Ottensmeier für die angenehme und freundschaftliche Zusammenarbeit über die Jahre bedanken.

Ein Dank geht auch an PD Dr. Ludger Klein-Hitpass und sein Team für die Hybridisierung der *Microarray*-Proben.

Danken möchte ich dem Laborteam des wissenschaftlichen Labors und des Osteologiezentrums für den stets angenehmen und aufgeschlossenen Kontakt und jegliche Hilfe zu allen Fragen der Arbeitsabläufe im Labor.

Dr. Katrin Schlegelmilch, Susanne Wiesner und Viola Zehe möchte ich besonders danken, welche mir über den gesamten Zeitraum eine sehr große Hilfe waren und mir vor allem zu Beginn meiner Arbeit mit Rat und Tat zur Seite standen.

Auch danke ich Dr. Katrin Schlegelmilch und Dr. Alexander Keller für die ausdauernde Unterstützung und vielfache Hilfe bei der Auswertung der nicht enden wollenden *Microarray*-Daten.

Gisela und Jürgen - Danke für eure immerwährende Unterstützung während der turbulenten Zeit und die vielen Freiräume die ihr mir geschaffen habt.

Meinen Eltern möchte ich von ganzem Herzen für einfach alles danken. Ihr habt mich schon immer in jeder Lebensphase unterstützt und fest an mich geglaubt.

Meiner Linda danke ich von größtem Herzen. Du warst immer für mich da und hast die Entscheidung nach Würzburg zu gehen mitgetragen. Ohne Dich wäre ein solcher Schritt nie möglich gewesen. Für immer!

Meinen Töchtern Luzie und Rosa, danke für die schönen Momente ohne Arbeit.