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Summary 

Platelet activation and aggregation are crucial for primary hemostasis but can also result in 

occlusive thrombus formation. Agonist induced platelet activation involves different signaling 

pathways leading to the activation of phospholipases (PL) which produce second messengers. 

While the role of PLCs in platelet activation is well established, less is known about the 

relevance of PLDs. In the current study, the function and regulation of PLD in platelets was 

investigated using genetic and pharmacological approaches. 

In the first part of this thesis, adhesion, activation and aggregation of platelets from mice 

lacking PLD2 or both PLD1 and PLD2 were analyzed in vitro and in vivo. While the absence 

of PLD2 resulted in slightly reduced PLD activity in platelets, it had no detectable effect on the 

platelet function in vitro and in vivo. However, the combined deficiency of both PLD isoforms 

resulted in defective α-granule release and protection in a model of ferric chloride induced 

arteriolar thrombosis, effects that were not observed in mice lacking only one PLD isoform. 

These results revealed, for the first time, redundant roles of PLD1 and PLD2 in platelet α-

granule secretion and indicate that this may be relevant for pathological thrombus formation. 

Thus, PLD might represent a promising target for antithrombotic therapy.  

Thus, this hypothesis was tested more directly in the second part of this thesis. The effects of 

pharmacological inhibition of PLD activity on hemostasis, thrombosis and thrombo-

inflammatory brain infarction in mice were assessed. Treatment of platelets with the reversible, 

small molecule PLD inhibitor 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI) led to a specific 

blockade of PLD activity that was associated with reduced α-granule release and integrin 

activation. Mice that received FIPI at a dose of 3 mg/kg displayed reduced occlusive thrombus 

formation upon chemical injury of carotid arteries or mesenterial arterioles. Similarly, FIPI-

treated mice had smaller infarct sizes and significantly better motor and neurological function 

24 hours after transient middle cerebral artery occlusion. This protective effect was not 

associated with major intracerebral hemorrhage or prolonged tail bleeding times. Thus, 

pharmacological PLD inhibition might represent a safe therapeutic strategy to prevent arterial 

thrombosis or ischemic stroke.  

After revealing a central role for PLD in thrombo-inflammation, the regulation of PLD activity in 

platelets was analyzed in the last part of the thesis. Up to date, most studies made use of 

inhibitors potentially exerting off-target effects and consequently PLD regulation is discussed 

controversially. Therefore, PLD activity in mice genetically lacking potential modulators of PLD 

activity was determined to address these controversies. These studies revealed that PLD is 

tightly regulated during initial platelet activation. While integrin outside-in signaling and Gi 

signaling was dispensable for PLD activation, it was found that PLC dependent pathways were 

relevant for the regulation of PLD enzyme activity. 
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Zusammenfassung 

Thrombozytenaktivierung und -aggregation sowie die anschließende Thrombusbildung sind 

essentielle Prozesse während der primären Hämostase. Andererseits kann unkontrollierte 

Thrombozytenaktivierung zum Gefäßverschluss und somit zu Schlaganfall oder Herzinfarkt 

führen.  

Verschiedene Signalwege, die für die Thrombozytenaktivierung von Bedeutung sind, führen 

zur Aktivierung von Phospholipasen (PL), die daraufhin sekundäre intrazelluläre Botenstoffe 

generieren. Während die Rolle von PLCs für die Thrombozytenaktivierung bekannt ist, ist die 

Relevanz der PLDs noch ungeklärt. Die vorliegende Arbeit untersucht die Funktion und 

Regulation von PLD in der Thrombozytenaktivierung und Thrombusbildung mittels genetisch 

veränderter Mäuse. 

Im ersten Teil der Arbeit wurde die Adhäsion, Aktivierung und Aggregation von Pld2-/- und  

Pld1-/-/Pld2-/- Thrombozyten in vitro und in vivo untersucht. Es konnte gezeigt werden, dass die 

Abwesenheit von PLD2 zu einer verminderten PLD Aktivität in Thrombozyten führte. Dies hatte 

allerdings keinen erkennbaren Effekt auf die Funktion der Thrombozyten in vitro und in vivo. 

Die PLD doppel-defizienten Thrombozyten hingegen wiesen Defekte bei der Sekretion der α-

Granula auf, was zur Bildung von instabilen FeCl3-induzierten Thromben in einem in vivo 

Thrombosemodell führte. Diese Effekte waren in den einzeldefizienten Mäusen nicht 

vorhanden, was auf redundante Funktionen von PLD1 und PLD2 in diesem Prozess schließen 

lässt. Interessanterweise wurden keine hämostatischen Defekte durch die Doppeldefizienz 

hervorgerufen. Die vorliegenden Ergebnisse zeigen, dass PLD eine neue potentielle 

antithrombotische Zielstruktur darstellt. 

Diese Hypothese wurde im zweiten Teil der Arbeit weiter überprüft. Der Effekt einer PLD 

Hemmung durch den reversiblen PLD Inhibitor 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI) 

auf Hämostase und Thrombose wurde untersucht. Es konnte gezeigt werden, dass die 

Behandlung von Mäusen mit FIPI zu einer spezifischen Blockade von PLD führte, die die α-

Degranulierung und Integrinaktivierung, im ähnlichen Ausmaß wie in den doppeldefizienten 

Mäusen, beeinträchtigte. Des Weiteren zeigten Mäuse, die mit 3 mg/kg FIPI behandelt wurden, 

starke Defekte in der arteriellen Thrombusbildung in Makro- und Mikrogefäßen. FIPI vermittelte 

PLD Inhibition führte außerdem zu einem Schutz der Mäuse in einem Modell des ischämischen 

Schlaganfalls, ohne intrazerebrale Blutungen hervorzurufen. Diese Ergebnisse etablieren FIPI 

als potentiellen antithrombotischen Wirkstoff für eine effektive und sichere Behandlung von 

kardio- und zerebrovaskulären Erkrankungen. 

Da PLD eine zentrale Rolle während der Thrombusbildung hat, wurde im letzten Teil der Arbeit 

auf die Regulation von PLD während der Thrombozytenaktivierung eingegangen. Bisherige 

Studien verwendeten häufig Inhibitoren, die zu unspezifischen Effekten führen können. Daher 
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wird die Regulation von PLD in der Literatur kontrovers diskutiert. Die Untersuchung der PLD 

Aktivität in verschiedenen knockout Mauslinien stellt einen nützlichen Ansatz dar, um die 

kontrovers diskutierte PLD Regulation aufzuklären. Zu diesem Zweck wurde die PLD Aktivität 

in genetisch veränderten Mäusen, denen potentielle Regulatoren von PLD fehlen, gemessen. 

Im Zuge diesen Untersuchungen konnte gezeigt werden, dass integrinabhängige- und Gi-

vermittelte Signalwege keinen Einfluss auf die Regulation von PLD hatten, während PLC 

vermittelte Signale von Bedeutung waren.  
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1 Introduction 

1.1 Platelets 

Platelets are small, anucleated, discoid-shaped cell fragments that are released from bone 

marrow (BM) megakaryocytes (MKs). Protrusions, reaching into the sinusoidal vessels of the 

BM, are shed off by shear forces generated by the blood stream and get further fragmented 

into platelets [1]. This process is permanently maintained to balance the normal clearing of 

aged platelets by macrophages in the liver and spleen, keeping the platelet concentration at 

constant levels of 150,000-450,000/µl in humans and approximately 1,000,000/µl in mice. 

Human platelets have a lifespan of 7-10 days, whereas murine platelets circulate for 

approximately 5 days. With a diameter of 3-4 µm (1-2 µm in mice) they are the smallest cells 

in the blood. Their main function is to monitor the integrity of the vascular system. In addition 

to platelets, efficient hemostasis requires a functional coagulation system with its central 

product thrombin mediating the conversion of fibrinogen into fibrin and acting as a powerful 

platelet activator. The coagulation cascade can be initiated by tissue factor (TF), which is 

exposed upon vascular injury, or by negatively charged surfaces via the ‘contact-activation’ 

pathway (intrinsic coagulation) initiated by the activation of coagulation factor (F)XII.  

Even though the vast majority of platelets is cleared without undergoing activation, platelets 

are capable of responding rapidly to damage of endothelial layers of the vessel wall by forming 

a plug that prevents excessive blood loss. The exposure of extracellular matrix (ECM) proteins, 

such as collagens and laminins, leads to initial platelet adhesion and activation. Subsequently, 

soluble mediators are released and secreted by activated platelets leading to the activation 

and recruitment of additional platelets at the injury site facilitating thrombus formation. 

However, under pathologic conditions, such as a rupture of an atherosclerotic plaque, the 

exposure of ECM proteins upon endothelial injury can cause an uncontrolled platelet reaction. 

This can lead to thrombotic events resulting in the obstruction of blood flow, the loss of oxygen 

supply and subsequent tissue damage, as seen in myocardial infarction and ischemic stroke 

[2]. Since these pathologies are the leading causes of death and disability in the developed 

world, there is a particular demand for the development of effective and safe antithrombotic 

therapies for the prophylaxis and treatment of ischemic cardio- and cerebrovascular diseases 

[3, 4]. 

Maintaining the balance of sealing a wound on the one hand and uncontrolled thrombotic 

events on the other hand requires a tight regulation of diverse activating and inhibitory platelet 

receptors and thus a complex network of signaling pathways. 
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1.2 Platelet activation and thrombus formation 

As described above, blood platelets are responsible for maintaining the balance between 

hemostasis and thrombosis in the vascular system. The complex signaling process, which is 

involved in platelet activation and thrombus formation can be divided into three major steps: 

(1) platelet binding occurs via the interaction of platelet-receptors with exposed ECM 

constituents, thereby decelerating the platelets, (2) platelet activation encompasses the 

initiation of receptor triggered signaling cascades resulting in integrin activation and exocytosis 

of α- and dense granules and (3) firm adhesion and platelet aggregation is facilitated through 

the recruitment of further platelets into the growing thrombus and the remodeling of the platelet 

cytoskeleton leading to spreading on the reactive surface (Figure 1-1). 
 

 

Figure 1-1: Multistep model of platelet activation and subsequent thrombus formation at sites of 
vascular injury. The interaction of glycoprotein (GP)Ibα to the exposed ECM decelerates the platelet 
and enables GPVI-collagen interaction. This triggers the release of soluble mediators such as adenosine 
diphosphate (ADP) and thromboxane (TX)A2 and the shift of integrins from a low to a high affinity state. 
In parallel, locally released tissue factor (TF) induces thrombin formation enabling additional platelets to 
become activated and recruited into the growing thrombus. The forming thrombus is stabilized by firm 
platelet adhesion to the ECM via αIIbβ3-bound fibrinogen or vWF. Taken from Stegner et al., 2011 [5]. 

 

In different vascular beds, different rheological conditions are present. In laminar blood flow, 

platelets are exposed to strong hemodynamic forces close to the vessel wall. This is due to 

shear forces between distinct fluid layers that are caused by different velocities of the fluid in 

the center and the periphery of the vessel [6]. Under high wall shear rates (>1000 s-1), 

particularly present in arterioles or stenosed vessels, the interaction of the platelet receptor 

glycoprotein (GP)Ib and von Willebrand Factor (vWF), which is immobilized on exposed 

collagen, allows initial platelet tethering. This results in the deceleration of platelets enabling 

other platelet receptors to bind to the ECM [7]. Besides this function, activated GPIb can 

transduce signaling events leading to weak αIIbβ3 integrin activation. Although the underlying 

mechanisms are not fully understood proteins such as actin binding protein 14-3-3ζ, PI3K, Src 
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related tyrosine kinases, GTPase activating proteins and phospholipase (PL)D1 have been 

proposed to be important for GPIb dependent adhesion processes [6, 8]. 

Binding of the major platelet activating receptor GPVI to collagens leads to platelet activation 

downstream of the phosphorylation of the immunoreceptor tyrosine-based activation motif 

(ITAM)-bearing Fc receptor (FcR) γ chain [9]. Whereas the ITAM harbors two YXXL-motifs 

through which receptor activation is initiated, the transmembrane related C-type lectin-like 

receptor (CLEC)-2 encompasses only one YXXL-motif and is therefore a “hemITAM” receptor 

[10]. The Src family kinases Fyn and Lyn are involved in this phosphorylation step for ITAM 

signaling, while for hemITAM signaling the responsible kinases are still elusive. Subsequently, 

Syk kinase can bind to the phosphorylated ITAM motif and becomes autophosphorylated 

resulting in the phosphorylation of adaptor proteins such as linker for activated T cells (LAT), 

growth factor receptor-bound protein 2 (Grb2) and Src homology 2 domain-containing 

leukocyte phosphoprotein of 76-kDa (SLP-76). These events finally converge in the activation 

of effector molecules such as PLCγ2 or phosphoinositide 3 kinase (PI3K) [11, 12]. Activated 

PLCγ2 cleaves the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2) into 

inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 binds to the IP3 receptor on the 

membrane of the intracellular calcium (Ca2+) stores and induces the release of Ca2+ from the 

store into the cytosol. The decrease of Ca2+ level in the store is sensed by the sarcoplasmic 

membrane protein stromal interaction molecule (STIM) 1 via its EF hand domain. STIM1 

induces, in turn, the opening of the store operated Ca2+ (SOC) channel Orai1 and results in 

store operated calcium entry (SOCE) [13]. Together with Ca2+, PLCγ generated DAG binds to 

protein kinase (PK)Cs mediating a conformational change that leads to enzyme activation and 

thus to the phosphorylation of its substrates (Figure 1-3). The different PKC isoforms in 

platelets have been implicated in granule secretion, thromboxane A2 (TX)A2 synthesis and 

platelet spreading [14].  

During platelet activation, the initial signals need to be amplified in order to recruit additional 

platelets into the growing thrombus. This is achieved by the accumulation of different mediators 

that are locally produced and released once platelet adhesion is initiated. Platelet α-granules 

release, besides a plethora of other molecules, the adhesive proteins vWF and fibrinogen, 

whereas dense granules secrete the second wave mediators adenosine diphosphate (ADP), 

adenosine triphosphate (ATP), Ca2+, histamines and serotonin [15]. Thrombin is locally 

produced on the surface of activated platelets linking platelet activation to coagulation. There 

are two blood coagulation pathways, the extrinsic and the intrinsic pathway, both converging 

in thrombin formation. Upon vascular injury, exposed TF interacts with FVII, which is circulating 

in the blood stream, promoting the extrinsic pathway of blood coagulation. In parallel, 

negatively charged phosphatidylserine (PS) is exposed on the platelet surface in response to 

sustained Ca2+ signaling. This allows the assembly and activation of the prothrombinase and 
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tenase complex accelerating the clotting process [16-18]. Regarding the intrinsic pathway, 

negatively charged surfaces, such as polyphosphates or RNA, have been proposed as 

physiological initiators. This pathway includes the activation of FXII which triggers, in turn, 

sequential activation of FXI, FIX and FX becomes activated [19]. 

In murine platelets, the G-protein coupled protease activated receptors (PAR)-4 and PAR-3 

are expressed. Platelet activation by thrombin is dependent on PAR-4, whereby PAR-3 only 

acts as cofactor. In contrast to this, in humans both PAR receptors, PAR-1 and PAR3, are 

required for proper transmembrane signaling. However, in both cases, thrombin cleaves the 

receptor thereby unmasking the N-terminus which serves as ligand and transduces the signal 

[20, 21].  
 

 

Figure 1-2: Signaling pathways induced by G-protein coupled receptor (GPCR) stimulation in 
platelets. Platelet agonists such as adenosine diphosphate (ADP), thromboxane A2 (TxA2) and 
thrombin activate platelets via GPCR. The G-proteins G12/13, Gq and Gi link receptor activation to platelet 
shape change, integrin activation, aggregation and degranulation. PLC, Phospholipase C; MLC, myosin 
light chain; DAG, diacyl glycerol; CalDAG-GEF, calcium and diacyl glycerol-regulated guanine 
nucleotide exchange factor; PIP3, phosphatidylinositol-3,4,5-trisphosphate; PIP2, phosphatidylinositol-
4,5-bisphosphate; PAR, protease-activated receptor; TxA2, thromboxane A2; TP, TxA2 receptor; 
RhoGEF, Rho-specific guanine nucleotide exchange factor; PI3K, phosphoinositide-3-kinase; PIP3, 
phosphatidylinositol-3,4,5-trisphosphate; ROCK, RhoA kinase; ATP, adenosine triphosphate, cAMP, 
cyclic adenosine monophosphate. Based on Offermanns et al. [22]. Figure kindly provided by Ina 
Hagedorn. 

 

The aforementioned diffusible mediators and the locally produced thrombin have in common 

that they act on platelets through binding to receptors coupled to heterotrimeric G-proteins. 

The PAR receptors couple to the G-proteins G12/13, Gi and Gq, whereas the ADP receptors 

P2Y12 and P2Y1 signal through Gq and Gi proteins, respectively, and the TxA2 receptor (TP) 

via Gq and G12/13 activation. Upon stimulation of the different heterotrimeric G-proteins, specific 
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signaling cascades are triggered [22]. Stimulation of G12/13 coupled receptors leads to 

increased phosphorylation of myosin light chain (MLC) via RhoA kinase (ROCK) and myosin 

light chain phosphatase (MLCP) finally resulting in actomyosin contraction and shape change 

[23]. Gq signaling is crucial for the activation of PLCβ contributing to platelet aggregation and 

degranulation via PKC activation. Furthermore, Gq can also stimulate cytoskeletal changes by 

activating RhoA [24]. Upon activation of Gi type proteins, βγ complexes, which can regulate a 

variety of enzymes, most notably adenylyl cyclase (AC) and PI3K, are released [25, 26]  

(Figure 1-2). 

 

Figure 1-3: Signaling mechanisms during platelet activation. Different signaling pathways are 
induced upon platelet receptor stimulation. G-protein coupled receptors (GPCRs) transduce signals 
through different G-proteins. G12/13 activation triggers RhoA/Rho kinase dependent pathways and Gq 
activates phospholipase (PL)Cβ, while Gi/z inhibits adenylyl cyclase (AC). (hem)ITAM signaling is 
induced by the activation of glycoprotein (GP)VI or C-type lectin-like receptor (CLEC-2) receptor 
initiating a complex tyrosine phosphorylation cascade resulting in the activation of PLCγ2. Active PLCs 
generate inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG) increasing the cytosolic Ca2+ 
concentration and activating PKCs. Altogether these events lead to the activation of integrins resulting 
in platelet aggregation, secretion and shape change. PIP2, phosphatidylinositol-4,5-bisphosphate; PAR 
protease-activated receptor; TxA2, thromboxane A2; TP, TxA2 receptor; RhoGEF, Rho-specific guanine 
nucleotide exchange factor; PI3K, phosphoinositide-3-kinase; PIP3, phosphatidylinositol-3,4,5-
trisphosphate. Taken from Stegner et al., 2010 [5]. 
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Signaling events downstream of GPIb, ITAM or GPCRs result in the activation and subsequent 

accumulation of platelets into a hemostatic plug. This process is termed platelet aggregation 

and is mediated by binding of the activated (high affinity conformation) αIIbβ3 integrin to the 

ECM protein fibronectin, plasma fibrinogen or collagen-bound vWF. In resting platelets the 

inactive αIIbβ3 integrin has low affinity to its ligands. The intracellular signaling pathways 

during platelet activation lead to the functional upregulation of αIIbβ3 integrins. The shift from 

the low affinity to a high affinity state is called inside-out signaling. Other integrin-ligand 

interactions, such as α2β1 integrin - collagen, α5β1 integrin - fibronectin, α6β1 integrin - laminin 

as well as the αvβ3 integrin binding to several ECM proteins are also important to allow firm 

platelet adhesion to the ECM. Ligand-occupied integrins regulate cytoskeletal dynamics 

leading to platelet spreading and clot retraction (outside-in signaling). Although the exact 

mechanisms linking platelet stimulation to the activation of the main platelet integrin αIIbβ3 are 

incompletely understood, Ca2+-dependent diacylglycerol regulated guanine nucleotide 

exchange factor I (CalDAG-GEF1) and PKC activation have been described to be involved in 

the activation of the small GTPase Rap1. Subsequently, the effector molecule Rap1-GTP-

interacting adapter protein (RIAM) and its binding partner talin1 are recruited to the plasma 

membrane enabling talin1 to bind to the β3 integrin tail. Together with the binding of kindlin to 

the cytoplasmic tail of the β integrins, talin1 facilitates αIIbβ3 integrin activation [27]  

(Figure 1-3). 

1.3 Phospholipase D 

1.3.1 Structure and function 

PLD is an enzyme that is commonly found in bacteria, fungi, plants and animals. As a 

phosphodiesterase, it catalyzes the hydrolysis of the phospholipid phosphatidylcholine (PC) to 

choline and phosphatidic acid (PA) [28, 29]. PA can, in turn, be converted into important lipid 

effectors, namely DAG, catalyzed by lipid phosphate phosphohydrolase and lyso-PA catalyzed 

by PLA. Next to phosphatidylcholine, both phosphatidylethanolamine (PE) and 

phosphatidylinositol (PI) can serve as substrates for PLD [30, 31]. Water, normally essential 

for the hydrolytic reaction, can be substituted by primary alcohols, such as 1-butanol or ethanol, 

generating phosphatidylethanol (PtdEtOH) or phosphatidylbutanol (PtdButOH), respectively, 

at the expense of PA. This reaction, termed transphosphatidylation, is unique for PLD and can 

be used to measure the activity of the enzyme [32] (Figure 1-4).  

There are two classical mammalian PLD isoforms which are ubiquitously expressed and share 

a homology of more than 50%: PLD1 (120 kDa) and PLD2 (106 kDa) [33, 34] (Figure 1-5). 

PLD1 exists as two splice variants, whereas PLD2 exists as four splice variants [34, 35]. 
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Together with classical plant, yeast and bacterial PLD, as well as with a Yersinia murine toxin, 

a topoisomerase-DNA hydrolase, two poxvirus envelope proteins, a cardiolipin synthase, a 

phosphatidylserine synthase, a bacterial endonuclease and a helicase like protein from E. coli, 

mammalian PLDs belong to the PLD superfamily characterized by the highly conserved 

HxKx4-Dx6GSxN-motif (HKD) [36]. 

 
 

 

Figure 1-4: Enzymatic reaction of mammalian phospholipase D. In the presence of water 
phospholipase (PL) D catalyzes the hydrolysis of phosphatidylcholine (PC) to phosphatidic acid (PA) 
and choline. If a primary alcohol is present PLD generates phosphatidylethanol at the expense of PA 
which is a unique reaction for PLD termed transphosphatidylation. Modified from Kanaho et al., 2009 
[37]. 
 

The mammalian PLD family also includes non-classical PLDs, such as mitoPLD (PLD6), PLD3, 

PLD4 and PLD5. MitoPLD encodes only one HKD site and exhibits no PX and PH domains. It 

is localized to the mitochondrion and hydrolyses cardiolipin to PA participating in mitochondrial 

fission and fusion [38]. For PLD3, PLD4 and PLD5 neither canonical activity has been 

detected, nor have any substrates been identified [39-41]. 

The two classical PLD isoforms contain several conserved regions including the phox 

homology (PX) domain, the pleckstrin homology (PH) domain and the conserved PLD regions 

I-IV (Figure 1-5). The two conserved regions II and IV harbor the HKD sites that form the 

catalytic site. Two histidine residues allow the formation of a phosphoenzyme intermediate and 

the subsequent hydrolysis of the substrate phosphodiester bond [42-44]. The conserved 

regions I and III are also critical for PLD activity [43]. The PH domain is responsible for the 

localization of the protein by binding to the phosphoinositides. Furthermore, a function of the 

PH domain of PLD2 as guanine exchange factor (GEF) for the small G-protein Rac2 has been 

postulated [45, 46]. The PX domain specifically interacts with PIP3. By serving as a binding site 
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for several molecules, the PX domain is proposed to be involved in several enzymatic 

functions. This includes the regulation of the GTPase activity of dynamin, the activation of 

PLCγ1, the stimulation of PKCζ and the tyrosine kinase Syk, as well as the initiation of the 

extracellular-signal-regulated kinase (ERK)/MAPK pathway by binding to Grb2 [45, 47-52]. 

Finally, the structure of PLD1 is uniquely characterized by a loop domain of 116 amino acids 

which is suggested to have autoinhibitory functions explaining the low basal activity of PLD1 

compared to PLD2 [53]. Other parts of the enzyme are also able to bind and regulate a vast 

variety of molecules. For example, the N-terminus of PLD1 has been shown to bind and 

activate PKCα and serves as a binding site for F-actin [54]. The C-terminus is involved in the 

localization of the enzyme, enables binding to small GTPases of the Rho family and stabilizes 

the active conformation of the catalytic site of PLD1 [55].  

The classical PLD isoforms, PLD1 and PLD2, are expressed in nearly all mammalian tissues 

[56-58]. Concerning the subcellular localization of PLDs, several studies reported inconsistent 

findings. For PLD1, perinuclear expression in the ER, Golgi apparatus, late endosomes and 

on secretory vesicles has been reported, while PLD2 is rather located to the plasma 

membrane, cytosol and vesicles involved in the sorting/recycling center [59-63]. Many reports 

show that PLD1 has a low basal activity in its resting state which increases upon stimulation 

with a variety of small GTP binding proteins or PKC. In contrast, PLD2 is suggested to have a 

high basal activity that is less responsive to the aforementioned activators [64, 65]. However, 

this is still a matter of debate, since other reports also demonstrate inducible PLD2 activity e.g. 

by Rac2 [66]. The distinct subcellular distribution and regulation patterns suggest isoform 

specific functions of the PLD enzymes [66].  
 

 

Figure 1-5: Mammalian PLD isoforms. The PLD isoforms contain highly conserved regions including 
the phox homology (PX) domain, the pleckstrin homology (PH) domain and the conserved PLD regions 
I-IV harboring the HKD motifs. The loop region in PLD1 exhibits autoinhibiting functions. aa, amino 
acid residues. Modified from Cockcroft, 2001 [67]. 

   8 



Phospholipase D in platelets          Introduction 

1.3.2 Regulation of PLD enzyme activity 

As mentioned above, it has been shown that the different PLD isoforms are localized to distinct 

membrane compartments exerting specific enzymatic functions. Membranes consist of a 

unique lipid and protein composition that harbors distinct binding sites for molecules which can 

interact with PLD. For example, phosphoinositides which are enriched in specific membrane 

microdomains are important cofactors for PLD activity [68]. Translocation of PLD1 from the 

intracellular compartment to the plasma membrane upon stimulation emphasizes the 

importance of PLD localization for its function and constitutes one of the mechanisms 

regulating the proposed inducible activity of PLD1 [53]. 

A large variety of agonists including hormones, growth factors and antigens increase PLD 

activity by stimulating GPCRs or tyrosine kinase receptors. The transduction of signals by 

these receptors occurs via PLC activation, an intracellular Ca2+ increase, tyrosine 

phosphorylation cascades or small G-proteins. This implies tight and complex mechanisms 

regulating PLD activity (Figure 1-6). 

1.3.2.1 Small G-proteins and PKC 

The complex regulation of PLD is in part mediated by small GTPases of the Rho and Arf family. 

The GTPases of the Rho family regulate important cellular processes such as cytoskeletal 

rearrangements, cell cycle progression and gene expression. All members of the Rho family 

of GTPases, RhoA [69], Rac1 [70] and Cdc42 [71], have been identified as PLD1 activators. 

They bind to PLD1 in their active GTP bound state and they are able to lower the enzymatic 

activity by decreasing the Michaelis constant of PLD [72]. Additional studies revealed that the 

C3 exoenzyme of clostridium botulinum, which is an inhibitor of Rho proteins, decreases the 

activity of PLD [73]. A binding site for RhoA at the carboxyl terminus of PLD1 has been 

identified and direct RhoA interaction activates PLD [55, 74]. Others report that RhoA can also 

bind the PX domain of PLD enabling nucleotide exchange of RhoA [75]. However, indirect 

regulating mechanisms are also possible e.g. via RhoA dependent activation of 

phosphatidylinositol 4-P 5-kinase (PIP5K), that enhances, in turn, the generation of PIP2, an 

important cofactor for PLD [76]. 

PLD activity was also demonstrated to be dependent on GTPases of the Arf family. Arf proteins 

are involved in membrane trafficking and cytoskeletal organization. All six Arf family members 

have been shown to robustly increase PLD1 activity in vitro, whereas the activity of PLD2 is 

increased only mildly [58, 77]. In vivo, Arf1 and Arf6 mediate the activation of PLD1, while 

PLD2 is activated by Arf6 but not by Arf1 [78, 79]. Comparable to the Rho GTPases, PLD1 

and PLD2 activation can only be induced by the GTP-bound Arf6 protein and is dependent on 

its translocation to the membrane [80-82]. The N-terminal part of PLD is critical for the 

activation of PLD by Arf [83]. Another GTPase affecting PLD activity is RalA. However, RalA 
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only exerts its stimulatory effect by forming a complex with Rho and Arf proteins [84, 85]. 

Further, synergistic effects of Rho, Arf1 and PKCα have been reported suggesting different 

binding sites of these enzymes on PLD [86]. 

The specific PKC activator phorbol 12-myristate 13-acetate (PMA) is able to stimulate PLD in 

a large variety of different tissues and cell lines. Confirming these observations, other studies 

with PKC inhibitors showed full or partial inhibition of agonist-stimulated PLD activity [87]. In 

addition, different interactions of the two PLD enzymes with various PKC isoforms have been 

reported [86, 88-90]. Whether direct PKC dependent phosphorylation is involved in the 

activation of PLD is still discussed controversially. Many studies postulate that PKC mediated 

phosphorylation activates PLD [91-93]. In contrast, Min et al. demonstrated that in vitro PKCα 

and PKCβII dependent PLD1 phosphorylation inhibited the catalytic activity [89]. Contrary to 

the phosphorylation dependent mechanism, later reports showed that PKC can stimulate PLD 

in the absence of ATP indicating a direct phosphorylation-independent PKC-PLD interaction 

to be critical for PLD activation [88, 89, 94]. Also dual mechanisms including phosphorylation 

and protein-protein interactions were proposed [95]. 
 

 

Figure 1-6: Signaling network of PLD and PA. Phospholipase (PL) D is activated upon stimulation of 
receptor tyrosine kinases (RTK) or G-protein coupled receptors (GPCR). Signals are transduced via 
several signaling molecules including small G-proteins, protein kinase (PK) C, PLC, phosphatidylinositol 
4-phosphate 5 kinase (PIP5K) and phosphatidyl-inositol-4,5-bisphosphate (PIP2). Upon PLD activation, 
PLD itself or its product phosphatidic acid (PA) transmits the stimulus by interacting with proteins such 
as sphingosine kinase (Sphk) 1, ribosomal protein S 6 kinase (S6K), son of sevenless (Sos), PLCs, 
growth factor receptor bound protein (Grb) 2, Rac-2, mammalian target of rapamycin (mTOR), PKCs or 
PIP5Ks. Signaling pathways of PLD activation are involved in secretion, chemotaxis, cell proliferation 
and migration.  
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1.3.2.2 PIP2 and PIP5K 

Phosphoinositides have been considered to be very important for the regulation of PLD activity. 

Among others, Sciorra et al. identified PIP2 as an essential cofactor for PLD1 and PLD2 [96]. 

PIP2 binds the PH domain and another conserved sequence between motifs II and III on PLD 

[45]. This interaction is important for the stimulation of PLD enzymes, probably by promoting 

its binding to the lipid bilayer [86]. PIP2 can trigger PLD activity also indirectly, as it can be 

hydrolyzed to IP3 and DAG promoting PKC activity and an intracellular Ca2+ increase [97]. 

Furthermore, PIP5K, the kinase catalyzing the production of PIP2, is able to bind to both PLD 

isoforms enabling the recruitment of PIP5K to specific vesicular compartments [98]. 

Interestingly, integrin activation during cell adhesion has been demonstrated to be dependent 

on PLD derived PA via stimulation of PIP5K [99]. Furthermore, it has been shown that PIP5K 

promotes an increase in PLD activity by generating PIP2 in Cos7 cells [98]. PIP5K is an 

essential effector of small G-proteins that anchor the kinase to specific membrane regions. 

The subsequent localized production of PIP2 recruits and activates PLD which, in turn, 

produces PA enhancing PIP5K activity creating a stimulatory feed forward loop [100]. Taken 

together, distinct co-localizations and temporal activations, including feed forward activation 

loops, are crucial for the regulation of PLD by PIP5K and PIP2.  

1.3.2.3 Additional mechanisms of regulation 

Besides the aforementioned regulators of PLD enzymes, a plethora of additional molecules 

affecting PLD activity, including kinases, phosphatases, Ca2+, cytoskeletal proteins and 

ceramides has been proposed. 

Ca2+ has been well defined as a cofactor for plant PLD [101], while a direct regulatory control 

of Ca2+ on mammalian PLD has not been described. However, a physiological relevant 

increase of Ca2+ is already sufficient to trigger PLD activity [102, 103]. Various studies have 

shown PLD activation upon treatment with ionophores, as well as PLD inhibition upon Ca2+ 

depletion by the use of ethylene glycol tetraacetic acid (EGTA) or 1,2-bis(o-

amonophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA). Whether this is due to a direct or 

indirect effect of Ca2+ on PLD is not clear, since a variety of PLD-regulating enzymes, such as 

PKCs or tyrosine kinases, are influenced by Ca2+ as well [65]. 

Furthermore, tyrosine (Tyr) as well as serine/threonine (Ser/Thr) residues have been 

demonstrated to become phosphorylated and dephosphorylated in PLD enzymes thereby 

regulating its activity. Concerning the phosphorylation of Tyr sites, several Tyr kinases and 

phosphatases such as Fyn, Fgr, Janus kinase (JAK)3, Src kinase, CD45 and protein tyrosine 

phosphatase (PTP)1B have been shown to be involved [104-106]. Regarding Ser/Thr kinases, 

the casein kinase (CK)II, cyclin dependent protein kinase (CDK)5, ribosomal S6 kinase (S6K)2 

and 5' adenosine monophosphate-activated protein kinase (AMPK) trigger PLD activity via 

   11 



Phospholipase D in platelets          Introduction 

phosphorylation [41, 107-109]. In case of the observed activation of PLD by MAP kinases it is 

still unclear whether this is mediated via phosphorylation or protein-protein interaction [110, 

111]. Besides the regulation of PLD activity, phosphorylation also enables interactions with 

diverse proteins that can increase its lipase activity e.g. Grb2 binding upon Tyr179 and Tyr511 

phosphorylation of mammalian PLD2 [112, 113]. 

In addition, various cytoskeletal proteins can act as regulators of PLD activity. PLD binds to 

monomeric G-actin as well as to actin filaments. While G-actin has an inhibitory function on 

PLD in resting cells, F-actin binds to PLD upon cellular stimulation promoting the interaction 

with its membrane substrate [114]. Monomeric tubulin was also found in complex with PLD2 

resulting in inhibition of the enzymes lipase activity [115]. Also other proteins involved in 

cytoskeletal organization associate with PLD upon physiological stimulation [116]. While α-

actinin, synyptojanin and fodrin have been identified as negative regulators of PLD activity 

[117-120], phospho-cofilin has been shown to bind and recruit PLD to the plasma membrane 

thereby stimulating its activity [121]. 

1.3.3 Physiological functions of PLD enzymes 

To date a plethora of studies on the physiological relevance of PLD enzymes has been 

published. Mostly, these studies use biochemical or pharmaceutical approaches. Potential 

downstream targets of PLD were identified by correlation studies linking PLD activity to 

simultaneously occurring cellular events. In addition, the use of siRNAs lowering the activity of 

PLD1 or PLD2 or the inhibition of PLD activity by pharmacological agents, have been exploited. 

Pharmacological inhibition of PLD might, however, lead to off-target effects that may confound 

the interpretation of the obtained data. As an alternative, primary alcohols have been used 

frequently to induce maximal transphosphatidylation thereby inhibiting PA production [122]. 

Yet, alcohols only partially prevent PA production even at maximal applicable concentrations. 

Recently, new tools such as isoform specific knockout mice and next generation small 

molecule inhibitors have become available, that will help to clarify some of the contradictions 

found in the previously published data and, in addition, give new insights into the function of 

the PLD enzyme. While the PLD1 knockout mouse was published before I started my thesis, 

the first reports on PLD2 deficient mice were published during my work [8, 123-125]. 

1.3.3.1 Functions of PLD enzymes 

PLD activation has been associated with a wide variety of cellular events, including membrane 

trafficking, cell migration and cell survival (Figure 1-6). 

Regarding vesicle movement, PLD has been demonstrated to localize to the Golgi apparatus 

where it facilitates Arf-dependent vesicular trafficking. This includes budding of Golgi vesicles, 

transport from ER to Golgi and secretion of nascent vesicles from the trans Golgi network 
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[126]. Further, PLD generated PA has been shown to be of major importance for exocytosis, 

in particular for the last step, the fusion of vesicles with the plasma membrane. For example, 

PLD mediates the translocation of glucose transporter GLUT4 containing membrane vesicles 

to the plasma membrane in adipocytes or the release of insulin granules by pancreatic β-cells 

[127, 128]. Furthermore, it has been demonstrated that asymmetric distributed phospholipids 

modulated by PLD augments SNARE-dependent membrane fusion [129]. In this respect, the 

PA dependent recruitment of specific proteins by PA such as PIP5K, that increases the local 

PIP2 concentration, is relevant [61]. In addition, PLD has been shown to be involved in the 

endocytosis of G-protein coupled and epidermal growth factor (EGF) receptors [130, 131]. 

In case of cell migration, adhesion, spreading and membrane ruffling, PLD has been 

demonstrated to be of importance due to its involvement in cytoskeletal reorganization and F-

actin polymerization. This has been shown in various cell types including leukocytes, epithelial 

cells, cancer cells, phagocytes and fibroblasts [48, 99, 132, 133]. Proteins such as Rac2 [134], 

S6K [135], phospho-cofilin [121] and the tyrosine kinase Fer [136] have been revealed to be 

involved in these processes. For example, the interaction of PLD2 with the Wiskott Aldrich 

Syndrome protein (WASP) via Grb2 enables chemotaxis and phagocytosis. Furthermore, 

reports show that PLD acts as guanine exchange factor (GEF) for Rac2 promoting actin 

polymerization during chemotactic cell movement [66]. In addition, cell adhesion via integrin 

activation is dependent on PIP2 which is generated at the membrane upon attachment of 

PIP5K to the membrane via PLD derived PA [99]. 

In the context of cell survival, proliferation and growth, the mechanisms by which PLD 

contributes to these events are largely unclear. However, PLD or PA have been shown to 

interact with a plethora of molecules involved in these cellular processes including PIP5K [137], 

sphingosine kinase (SK)1 [138], S6K [139], son of sevenless (Sos) [140], Raf-1 [141], 

mammalian target of rapamycin (mTOR) [142], the protein tyrosine phosphatase SHP-1 [143], 

PKCs [144] and small GTP binding proteins [134, 145]. Often, different positive feedback loops 

with PIP5K, PKCs and GTPases have been postulated enabling rapid and sustained signal 

transduction in these pathways. 

In addition, PLD has been proposed to generate second messengers that are crucial for 

mitogenic signaling. There is evidence that the conversion of PLD derived PA to DAG is 

essential for the sustained DAG elevation in cells upon agonist stimulation. Whether this is 

sufficient for PKC activation is disputed [146]. PA can also be converted into Lyso-PA by PLA. 

Lyso-PA is established as lipid second messenger and might therefore account for PLD 

dependent effects [147]. 

Taken together, the large number of molecules involved in the transduction of PLD signals 

demonstrates its involvement in a variety of different cellular processes including vesicle 

trafficking, cell migration, chemotaxis, proliferation and secretion (Figure 1-6). 
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1.3.3.2 Roles of PLD in disease 

Due to the involvement of PLD in numerous cellular processes, it is important in many 

physiological as well as pathological situations. Transgenic mouse models, lacking PLD 

isoforms, specific inhibitors, siRNAs and in vivo disease models present excellent tools to gain 

new insights into the in vivo functions of PLD and into its contribution to different 

pathophysiologies. PLD has been shown to be crucial in various diseases such as cancer, 

neurodegenerative diseases, cardiovascular disorders, diabetes and infectious diseases. In 

this thesis, only some pathophysiological functions of PLD will be introduced. More details on 

previous advances on the involvement of PLD in diseases have been reviewed in [148-151].  

Roles for PLD in cancer have been postulated and increased expression of PLD has been 

observed in different types of cancer [152, 153]. Recently, Chae et al. could confirm the 

involvement of PLD1 in tumor progression with an in vivo mouse model. Pld1-/- mice showed 

reduced metastasis and less angiogenic signaling capacity. This was due to a decreased 

tumor-platelet interaction in models of melanoma as well as lung carcinoma [154]. Another 

process which is important for cancer cell survival as well as for metabolism and which has 

been linked to PLD is macroautophagy. Macroautophagy is an important process during cell 

starvation that enables a cell to recover energy and nutrients by the degradation of organelles. 

Pld1-/- mice showed decreased efficiency of autophagy due to reduced numbers of 

autophagosome departments in the liver [123]. 

Besides its potential role in cancer development, PLD was also suggested to be important in 

neurodegenerative. In Alzheimer’s disease (AD), the Aβ peptides, as main components of the 

amyloid plaques in the brains of patients, contribute to the pathogenesis of the disease. 

Oliviera et al. showed increased PLD activity levels in brains of mice in a transgenic mouse 

model of AD. The genetic ablation of PLD2 led to beneficial effects in this model, because of 

decreased Aβ peptide synaptotoxic activity [124].  

The process of inflammation involves a variety of different cell types including leukocytes, 

macrophages and fibroblasts. During inflammation, damaged tissue releases chemokines to 

attract leukocytes and macrophages [155]. In response to chemokines, these cells form 

leading edges enabling migration. In vitro, it has been extensively shown that PLD is crucial 

for the recruitment of certain proteins, such as Rac1 and Rap1, to the leading edge of a 

migrating cell. Recently, Ali et al. confirmed the significance of PLD in phagocytosis and cell 

migration in vivo. In macrophages, isolated from PLD1 and PLD2 deficient mice they were able 

to demonstrate that the lack of PLD results in impaired recruitment of Rac1 and DOCK2 leading 

to defective F-actin organization during phagocytic cup formation [134, 156]. Further, 

neutrophils lacking PLD exhibited migratory defects during acute pancreatitis [157]. However, 

Sato et al. demonstrated intact neutrophil degranulation and ROS production in Pld1-/- mice 

excluding its contribution to migration via this pathway [158]. In line with the observation of Ali 
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et al., TNF-α, a cytokine which induces the acute phase reaction during inflammation, has been 

shown to rely on PLD function in a model of peritonitis. Cytokine and chemokine production, 

vascular permeability, cell adhesion molecule expression, and neutrophil and monocyte 

infiltration into the peritoneal cavity were inhibited during peritonitis in mice where PLD1 had 

been knocked down using siRNA approach [159]. 

In accordance to its importance in inflammation, PLD was also identified to be involved in the 

pathogenesis of autoimmune diseases. It was demonstrated that Pld1-/- mice were protected 

in a model of autoimmune central nervous system inflammation which was associated to a 

defective migratory capacity of the lymphocytes (Göbel et al., Eur J Immunol, in revision).  

Vascular disorders are another field of disease PLD has been brought into context with. Cyclic-

PA, which can be generated by PLD2 dependent hydrolysis of lyso-PA, acts as antagonist of 

the peroxisome proliferator-activated receptor (PPAR)γ. PLD2 activation results in PPARγ 

dependent arterial wall thickening, pointing to the possibility of cyclic PA to serve as a 

therapeutic in hypertensive diseases [160]. Interestingly, in a genetic screen, mutations in 

PLD2 have been identified as hypertensive risk factors [161]. α1-adrenergic receptor is 

important for the regulation of blood pressure through mediating smooth muscle cell 

contraction. Wegener et al., showed that α1-adrenergic induced contractions were reduced in 

Pld1-/- mice probably through PLD1s involvement in the regulation of Cav1.2 channel activity 

[162]. 

Finally, PLD activity levels were found to be modulated upon cardiac and brain ischemia and 

PLD1 deficiency protected mice in a model of acute ischemic stroke [8, 163, 164]. Since many 

cell types are involved in the thrombo-inflammatory process of infarct development, it is unclear 

whether PLD from hematopoietic or non-hematopoietic cells contribute to this event. However, 

PLD has been shown to be of importance in thrombus formation and platelet function, 

suggesting platelet PLD to contribute to these pathologies [8, 125]. The in vivo role of PLD in 

thrombosis and hemostasis will be introduced below.  

In summary, PLD was identified to be of importance in a variety of pathological processes like 

different cancer types, diabetes, neurological disorders, inflammation as well as thrombosis. 

In the future, further studies will help to establish whether PLD inhibition might be useful as 

treatment in some of these diseases. 

1.3.4 Phospholipase D in platelets 

As already mentioned, PLD is an important regulator of cellular processes such as cytoskeletal 

rearrangement or secretion, which are crucial during platelet activation. Interestingly, already 

in 1988, PLD was found to be activated in human platelets upon stimulation with thrombin 

[165]. This finding was confirmed by further studies showing PLD activation upon platelet 
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activation with other agonists such as collagen, collagen related peptide (CRP) and the 

thromboxane mimetic U46119 [166-168]. While the platelet agonist ADP itself does not 

stimulate PLD, it exerts synergistic effects together with thrombin on PLD activity [166]. In 

contrast, synergistic effects by TxA2 were excluded since aspirin was not able to reduce PLD 

activation [169]. Vorland et al. linked PLD activity to F-actin formation and lysosomal secretion 

in platelets [170]. In the same line, other studies demonstrated the correlation of PLD activity 

to PKC dependent platelet aggregation and dense granule secretion [168, 169]. However, 

another study proposed rather Ca2+ signaling than PKC dependent mechanisms to be crucial 

for PLD related platelet activation [171]. Yet another study showed, that the Ca2+ ionophore 

A23187 induced PLD activity, whereas, extracellular Ca2+ by itself was not capable of triggering 

PLD activation [170, 171]. Removal of extracellular Ca2+ reduced, but did not abolish thrombin 

stimulated PLD activation indicating that PLD can also be stimulated independently of 

extracellular Ca2+ [170].  

By using GTPγS, a G-protein activator, G-proteins were established as upstream regulators of 

PLD activity [172]. GTPγS induced secretion was accompanied by PA production in 

permeabilized human platelets. In rabbit platelets, synergistic effects of GTPγS with Ca2+ and 

PKC were shown to induce PLD activation and subsequent secretion, whereas others also 

reported PKC independent mechanisms [167, 173]. In contrast to this, Coorssen et al. 

demonstrated that PLD activation occurs with slower kinetics than platelet degranulation and 

showed that PA on its own cannot induce secretion. Due to these findings, PLD generated PA 

was proposed to exert rather modulatory than essential roles for GTPγS induced secretion and 

PKC activation [174]. Further, protein tyrosine kinase stimulation was demonstrated to be 

involved in mechanisms leading to thrombin and GTPγS mediated PLD activity in human 

platelets [106].  

Several reports also defined a LDL- or cholesterol-dependent PLD activity in human platelets. 

PLD was shown to be important for cholesterol-initiated PLA2 activation [175-177]. 

Whether PLD activity in platelets is integrin αIIbβ3-independent or -dependent is contrarily 

discussed. While Martinson et al. reported unaltered PLD activity in the presence of the 

fibrinogen antagonist peptide RGDS, others demonstrated thrombin and high density 

lipoprotein (HDL3) stimulated PLD activity to be dependent on αIIbβ3 integrin clustering [168, 

170, 178]. Activation of Rap1, a GTPase that is essential for integrin dependent platelet 

aggregate formation, occurs in response to PAR-1 stimulation in human platelets. In this 

context, PLD has been proposed to be involved in the reinforcement of Rap1 activation through 

a positive feedback loop involving PIP5K and PI3K sustaining DAG production [179]. In 

platelets, DAG can be directly generated via PLCs as a product of PIP2 hydrolysis or via lipid 

phosphate phosphatases [180]. A biphasic production of DAG in platelets can be observed 

after thrombin stimulation whereby the second peak of DAG production seems to originate 
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from PLD [181, 182]. However, others report only a monophasic DAG production upon platelet 

stimulation [183]. A very recent study from our laboratory proposed a role for PLD in enhancing 

SOCE during platelet activation by amplifying DAG generation. By this mechanism PLD was 

suggested to contribute to DAG dependent Ca2+ entry via the canonical transient receptor 

potential cation channel (TRPC)6 [184].  

Immunoblotting and immunohistochemistry assays allowed the discrimination of the two 

isoforms confirming the presence of both, PLD1 and PLD2, in platelets. Upon platelet 

stimulation, both isoforms get translocated to the plasma membrane. Under resting conditions, 

PLD1 and PLD2 expression was detected throughout the platelet. However, while PLD1 was 

rather located to distinct granule like structures, PLD2 was found to be concentrated at the 

plasma membrane. The thrombin mediated translocation and activation of PLD1 was shown 

to be inhibited upon addition of prostaglandin E2 or forskolin potentially by mechanisms 

involving protein kinase A. This inhibition of translocation was not observed for PLD2 

demonstrating isoform-specific regulatory mechanisms [170, 185]. 

The existence of a basal PLD activity in platelets and other cell types is disputed. Martinson et 

al. were only able to detect PLD activity upon platelet stimulation, whereas Vorland et al. report 

a basal PLD activity of ~30% of total PLD response to thrombin [168, 170]. The general opinion 

states, however, that PLD2 exerts basal activity, while PLD1 is the inducible isoform [33, 186]. 

Since diverse acyl specificities of PLD in other cell types have been reported, the observed 

contradictions might be attributed to distinct PLD activity assay protocols utilizing different fatty 

acid labeling techniques [187].  

The absence of an appropriate model to elucidate the function of PLD1 and PLD2 in vivo made 

it difficult to interpret the above summarized, partially contradicting, data. However, in 2010 

our laboratory generated mice constitutively lacking PLD1 that were viable and fertile. In a first 

study, PLD1 was found to be important for αIIbβ3 integrin activation and GPIb-mediated 

platelet adhesion under high shear. The in vivo analysis of these mice established PLD1 as an 

important modulator for thrombotic processes and ischemic infarct development but not for 

hemostatic functions. These findings pointed to a possible suitability of PLD inhibition as 

effective therapeutic strategy to prevent intra-arterial occlusive thrombus formation. 

Importantly, no function for PLD1 in platelet secretion, which had been postulated beforehand, 

could be detected [8]. However, in another recent study that used a specific PLD inhibitor at 

extremely high concentrations, in wildtype and Pld1-/- platelets, PLD2 was suggested to be a 

negative regulator of platelet secretion [188]. Nevertheless, definite proof for the 

aforementioned contribution of PLD2 in platelets is missing and the relevance of PLD2 and a 

potential redundant function of both PLD isoforms for thrombosis and hemostasis remained to 

be elucidated. 
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1.3.5 Pharmacological PLD inhibition 

Many potential roles for PLD in the development of different pathologies, including cancer, 

cardiovascular and neurodegenerative diseases have been demonstrated as summarized in 

1.3.3.2. Thus, inhibition of PLD could represent a novel therapeutic approach in these 

pathologies. For decades, the studies on PLD relied on the use of non-selective inhibitors or 

n-butanol, blocking PA production. However, even though alcohols and gene silencing tools 

were helpful, it has now been demonstrated that these approaches often created off-target 

effects, making it difficult to interpret previously made conclusions using those tools [189]. 

Furthermore, the applied inhibitors were no suitable therapeutic options for blocking PLD 

activity in vivo. Therefore, several groups developed new potent small-molecule inhibitors and 

optimized their efficiencies and isoform selectivities by diversity-oriented synthesis combined 

with biochemical assays and mass spectrometric lipid profiling of cellular responses [190-192]. 

Meanwhile, the previously identified inhibitor 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI) is 

the best established PLD inhibitor being used in many functional studies [123, 156, 157, 189]. 

FIPI is a potent and reversible inhibitor of both PLD isoforms with a half-life of 5.5 hours in vivo 

and moderate bioavailability [189, 192]. Initially FIPI was identified as a PLD2 inhibitor. Su et 

al. and others have shown, however, the potency of FIPI to block both PLD isoforms with 

similar kinetics [189, 192]. Several studies confirmed its specificity and effectiveness through 

the observation of PLD-dependent phenotypes in FIPI-treated cells. For example, Nikishima 

et al. observed decreased neutrophil migration upon FIPI treatment, which was similarly seen 

in n-butanol treated cells [156]. Likewise, PLD-dependent cellular processes such as cell 

spreading and chemotaxis were found to be abolished in the presence of FIPI, validating the 

role of PLD in this process [189]. Furthermore, comparable defects in starvation-induced 

autophagy were demonstrated in FIPI treated CHO cells and Pld1-/- fibroblasts [123]. In 

addition, studies using FIPI helped in the re-evaluation of results which were obtained with 

alcohols. Sato et al. demonstrated the dispensability of PLD for fMLP induced superoxide 

generation and degranulation in neutrophils which contradicted previous findings showing PLD 

dependent superoxide production by using alcohols to inhibit PLD [158, 193]. 

Moreover, FIPI has become an essential tool for studying the physiological and pathological 

relevance of PLD in different processes. FIPI is an analog of the psychiatric drug halopemide 

[192], a dopamine receptor antagonist, that has already been evaluated in five independent 

clinical studies [194]. FIPI is two orders of magnitude more potent than halopemide for PLD2 

inhibition [192], nonetheless, halopemide is used clinically at levels that should accomplish full 

PLD inhibition [194], suggesting that PLD inhibition in humans can be achieved without overt 

toxicity. Recently, it was demonstrated that FIPI treatment prevents tumor growth and 

metastasis in mice to the same extent as genetic ablation of Pld1, again confirming the efficacy 

of the inhibitor [154]. In that study, mice received FIPI for up to 10 days with no apparent 
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toxicity. This indicates, together with the overall unaltered appearance of Pld1-/-/Pld2-/-mice, 

that absence or blockade of PLD activity is compatible with normal development and 

physiology [125, 154].  

The pharmacological inhibition of PLD in the setting of cardiovascular events, such as 

thrombotic processes and ischemic stroke, to which PLD1 has already been linked is part of 

this thesis [8, 125].  

1.4 Aim of the study 

Given the fact that platelets exert key roles in hemostasis under physiological conditions as 

well as in thrombotic events under pathological conditions, progress in elucidating platelet 

signaling pathways is essential to identify new potential targets for antithrombotic therapy. 

Therefore, one aim of this study was to determine the function of PLD2 in platelet physiology 

and thrombus formation using Pld2-/- mice. Further, the redundancy of the two isoforms in this 

setting was addressed by analyzing PLD double-deficient mice. 

Platelet inhibition is a major strategy to prevent acute ischemic cardiovascular and 

cerebrovascular events, which is, however, often associated with an increased bleeding risk. 

Since mice lacking PLD are protected from arterial thrombosis and ischemic stroke without 

affecting hemostasis, PLD may be a promising target for antithrombotic therapy. However, in 

vivo evidence in support of this concept has been lacking. Thus, another aim of this thesis was 

to elucidate the efficiency of pharmacological PLD inhibition as safe therapeutic strategy to 

prevent arterial thrombosis and ischemic stroke. The PLD inhibitor FIPI served as a prototype 

anti-PLD agent. 

In order to generate efficient antithrombotic agents, it is of great interest to understand the 

signaling network of potential targets. Therefore, different knockout mouse strains, lacking 

potential modulators of PLD, were screened regarding PLD activity during platelet activation. 
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2 Material and Methods 

2.1 Materials 

2.1.1 Chemicals and reagents 

A23187 (Calcium ionophore) Sigma (Deisenhofen, Germany) 

Acetic acid Roth (Karlsruhe, Germany)  

ADP   Sigma (Deisenhofen, Germany)  

Agarose Roth (Karlsruhe, Germany) 

Ammonium peroxodisulphate (APS) Roth (Karlsruhe, Germany) 

Apyrase Sigma (Deisenhofen, Germany) 

β-mercaptoethanol Roth (Karlsruhe, Germany) 

Bovine serum albumin (BSA) AppliChem (Darmstadt, Germany) 

Calcium chloride Roth (Karlsruhe, Germany)  

Chloroform  Roth (Karlsruhe, Germany) 

Chrono-Lume® 

(d-luciferase/luciferinreagent and ATP 

reagent) 

Probe & go (Osburg, Germany) 

Convulxin (CVX) Enzo (Lörrach, Germany)  

Disodiumhydrogenphosphate  Roth (Karlsruhe, Germany)  

Deoxynucleotidetriphosphate (dNTP) mix Fermentas (St. Leon-Rot, Germany)  

Dylight-488TM Pierce (Rockford, IL, USA) 

ECL solution GE Healthcare (Freiburg, Germany) 

Epon 812 Roth (Karlsruhe, Germany) 

Ethanol Roth (Karlsruhe, Germany)  

Ethylacetate Millipore (Schwalbach, Germany) 

Ethylenediaminetetraacetic acid (EDTA) AppliChem (Darmstadt, Germany)  

Ethyleneglycoltetraaceticacid (EGTA) Sigma (Deisenhofen, Germany) 

Fat-free dry milk AppliChem (Darmstadt, Germany) 

Fentanyl Janssen-Cilag GmbH (Neuss, Germany) 

Fibrillar type I collagen (Horm) Nycomed (Munich, Germany) 

Flumazenil  Delta Select (Dreieich, Germany) 

Fluoresceine-5-isothiocyanate (FITC)  Molecular Probes (Karlsruhe, Germany)  

5-Fluoro-2-indolyl des-chlorohalopemide 

(FIPI) 

Sigma (Deisenhofen, Germany) 
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Forene® (isoflurane)  Abott (Wiesbaden, Germany) 

GeneRuler 1kb DNA Ladder  Fermentas (St. Leon-Rot, Germany) 

Glucose Roth (Karlsruhe, Germany) 

Glycine  AppliChem (Darmstadt, Germany) 

Glutaraldehyde Roth (Karlsruhe, Germany) 

[3H] myristic acid Perkin Elmer (Rodgau, Germany) 

High molecular weight heparin Sigma (Deisenhofen, Germany) 

Horseradish peroxidase-conjugated 

streptavidin 

Dianova (Hamburg, Germany) 

Human fibrinogen Sigma (Deisenhofen, Germany) 

Igepal CA-630 Sigma (Deisenhofen, Germany) 

Immobilon-P transfer membrane Millipore (Schwalbach, Germany)  

Indomethacin Calbiochem (Bad Soden, Germany) 

Iodine Sigma (Deisenhofen, Germany) 

Iron-III-chloride hexahydrate (FeCl36H2O) Roth (Karlsruhe, Germany) 

Isooctan Millipore (Schwalbach, Germany) 

Isopropanol Roth (Karlsruhe, Germany) 

6x Loading Dye Solution   Fermentas (St. Leon-Rot, Germany) 

L-α-phosphatidic acid Sigma (Deisenhofen, Germany) 

Medetomidine (Dormitor) Pfizer (Karlsruhe, Germany) 

Methanol Roth (Karlsruhe, Germany) 

Midazolam (Dormicum) Roche (Grenzach-Wyhlen, Germany) 

Midori Green Advance Biozym Scientific GmbH (Hessisch Oldenburg, 

Germany 

Naloxon Delta Select (Dreieich, Germany) 

Nonidet P-40 (NP-40) Roche Diagnostics (Mannheim, Germany) 

PageRuler Prestained Protein Ladder Fermentas (St. Leon-Rot, Germany) 

Protease activated receptor (PAR-4) 

activating peptide 

Thermo Fisher scientific (Dreieich, Germany) 

Paraformaldehyde (PFA) Roth (Karlsruhe, Germany) 

Platelet factor (PF)4 -ELISA Ray Biotech (Norcross, GA, USA) 

Phospatidic ethanol  Enzo (Lörrach, Germany) 

Phenol/chloroform/isoamylalcohol AppliChem (Darmstadt, Germany) 

Propyleneoxide Sigma (Deisenhofen, Germany) 

Prostacyclin (PGI2) Sigma (Deisenhofen, Germany) 

Protease-Inhibitor cocktail tabs Roche Diagnostics (Mannheim, Germany) 

Proteinase K Fermentas (St.Leon-Rot, Germany) 
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Quicksafe A Zinsser Analytic (Frankfurt, Germany) 

R-phycoerythrin (PE) EUROPA (Cambridge, UK) 

Ro-318425 (PKC inhibitor)  Calbiochem (Bad Soden, Germany) 

Sodium azide   Roth (Karlsruhe, Germany) 

Sodium cacodylate Roth (Karlsruhe, Germany) 

Sodium chloride AppliChem (Darmstadt, Germany) 

Sodium hydroxide AppliChem (Darmstadt, Germany)  

Sodium orthovanadate Sigma (Deisenhofen, Germany) 

Taq polymerase buffer (10x)  Fermentas (St.Leon-Rot, Germany) 

Taq polymerase Fermentas (St.Leon-Rot, Germany) 

Tetramethylethylendiamin (TEMED) Roth (Karlsruhe, Germany) 

3,3,5,5-tetramethylbenzidine Becton Dickinson (Heidelberg, Germany) 

Thapsigargin (TG) Invitrogen (Karlsruhe, Germany) 

Thrombin Roche Diagnostics (Mannheim) 

2,3,5-triphenyltetrazolium chloride (TTC) Sigma (Deisenhofen, Germany) 

tris(hydroxymethyl)aminomethane  

 (Tris) ultra 

Roth (Karlsruhe, Germany) 

Tris/HCL Roth (Karlsruhe, Germany) 

Triton X-100  Applichem (Darmstadt, Germany) 

Trizol reagent  Invitrogen (Karlsruhe, Germany) 

Tween 20 Roth (Karlsruhe, Germany) 

U46619 (TxA2 analogue) Alexis Biochemicals (San Diego, USA) 

U-73122 (PLC Inhibitor) Sigma (Deisenhofen, Germany) 

Uranylacetate Electron Microscopical Sciences (Hatfield, 

USA) 

Vectashield hardset mounting medium Vector Laboratories (Burlingame, USA) 

Western Lightning Chemiluminescence PerkinElmer LAS (Boston, USA) 

X-gal Peqlab (Erlangen, Germany)  

  

All enzymes were obtained from Fermentas (St. Leon-Rot, Germany), Invitrogen (Karlsruhe, 

Germany) or New England Biolabs (NEB, Ipswich, MA, USA). Rhodocytin was a generous gift 

from J. Eble (University Hospital Frankfurt, Germany). Collagen related peptide (CRP) was 

generated as described previously [195]. Recombinant Annexin A5 was expressed, purified 

and fluorescently labeled in our laboratory. All other non-listed chemicals were obtained from 

AppliChem (Darmstadt, Germany), Sigma (Deisenhofen, Germany) or Roth (Karlsruhe, 

Germany). 
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2.1.2 Antibodies 

2.1.2.1 Purchased primary and secondary antibodies 

Anti-rabbit IgG–horseradish peroxidase  

(HRP) 

Dako Cytomation (Hamburg, Germany) 

 

HRP conjugated polyclonal anti-hvWF 

antibody, A0226 

Dako Cytomation (Hamburg, Germany) 

 

Polyclonal rabbit anti-hvWF, A0082 Dako Cytomation (Hamburg, Germany) 

Phalloidin-atto647N Sigma (Deisenhofen, Germany) 

Rabbit anti-PLD2 (P5993) Sigma (Deisenhofen, Germany)  

Rabbit anti-tubulin (MAB1864) Chemicon (Hofheim, Germany) 

α-tubulin antibody-Alexa 488 Invitrogen (Karlsruhe, Germany) 

2.1.2.2 Monoclonal antibodies 

Monoclonal antibodies (mAbs) were generated and modified in our laboratory. 

Antibody  Clone  Isotype  Antigen  Source/ 
description  

p0p/A 92H12 IgG2b GPIb unpublished 

p0p/B 57E12 IgG2b GPIb [196] 

p0p4 15E2 IgG2b GPIb [197] 

p0p6  56F8  IgG2b  GPIX  [197] 

DOM2  89H11  IgG2a  GPV  [197] 

ULF1  96H10  IgG2a  CD9  [197] 

JAQ1  98A3  IgG2a  GPVI  [198] 

JON6  14A3  IgG2b  αIIbβ3  unpublished  

LEN1  12C6  IgG2b  α2  [199] 

Anti-integrin β1 
chain (CD29)  

9EG7  IgG2a  β1  BD Pharmingen  

INU1  11E9  IgG1  CLEC-2  [200] 

JON/A  4H5  IgG2b  αIIbβ3  [201] 

WUG 1.9  5C8  IgG1  P-selectin  unpublished  

EDL-1  57B10  IgG2a  β3 integrin  [197] 

BAR-1 25B11 IgG1 α5 integrin [199] 
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2.1.3 Buffers 

Acid-citrate-dextrose buffer (ACD), pH 4.5 

 Trisodium citrate dehydrate  85 nM 

 Citric acid anhydrous 65 nM 

 Glucose anhydrous 110 nM 

 

Blocking solution for immunoblotting  

BSA or fat-free dry milk 5% in PBS or PBS-T  

 

Blotting buffer A for immunoblotting  

 TRIS, pH 10.4  0.3 M  

 Methanol  20%  

 

Blotting buffer B for immunoblotting  

 TRIS, pH 10.4  25 mM  

 Methanol  20%  

 

Blotting buffer C for immunoblotting  

 ε-amino-n-caproic acid, pH 7.6  4 mM  

 Methanol  20%  

 

Cacodylate buffer (electron microscopy) 

Sodium cacodylate (pH 7.2)  50 mM 

 

Chromatography eluent 

 Ethylacetate  130 ml 

 Isooctan  20 ml 

 Acetic acid (100%)  30 ml 

 Aqua bidest. 100 ml 

Mix, allow phase separation and remove lower phase 

 

Fixation buffer I (electron microscopy) 

 Sodium cacodylate, pH 7.2 0.1 M 

 Glutaraldehyde 2.5% 

 Formaldehyde 2% 
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Fixation buffer II (electron microscopy) 

 Sodium cacodylate, pH 7.2 50 mM 

 Osmium tetroxid 2% 

 

Laemmli buffer for SDS-PAGE  

 TRIS 40 mM  

 Glycine  0.95 M  

 SDS  0.5%  

 

Lysis buffer for DNA isolation  

 TRIS base  100 mM  

 EDTA 5 mM  

 NaCl  200 mM  

 SDS  0.2%  

 add Proteinase K (20 mg/ml)  100 μg/mL  

 

Phosphate buffered saline (PBS), pH 7.14  

 NaCl  137 mM (0.9%)  

 KCl 2.7 mM  

 KH2PO4  1.5 mM  

 Na2HPO4x2H2O  8 mM  

 

Immunoprecipitation (IP) Buffer  

 Tris-HCl, pH 8.0 15 mM  

 NaCl  155 mM  

 EDTA 1 mM 

 NaN3 0.005% 

 

PHEM buffer 

 PIPES 100 mM 

 HEPES 5.25 mM 

 EGTA 10 mM 

 MgCl2 20 mM 

 

SDS sample buffer, 2x  

 β-mercaptoethanol (for reducing conditions)  10%  

 TRIS buffer (1.25 M), pH 6.8  10%  
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 Glycerine  20%  

 SDS 4%  

 Bromophenolblue  0.02%  

 

Separating gel buffer  

 TRIS/HCl (pH 8.8)  1.5 M  

 add H2O  

 

Stacking gel buffer  

TRIS/HCl (pH 6.8)  0.5 M  

 

50x TAE  

 TRIS base 0.2 M  

 Acetic acid  5.7%  

 EDTA (0.5 M, pH 8)  10%  

 

TE buffer, pH 8  

 TRIS base  10 mM  

 EDTA  1 mM  

 

Tris-buffered saline (TBS), pH 7.3 

 NaCl 137 nM (0.9%) 

 Tris/HCl 20 mM 

 

Tyrodes buffer, pH 7.3  

 NaCl  137 mM (0.9%)  

 KCl  2.7 mM  

 NaHCO3  12 mM  

 NaH2PO4 0.43 mM  

 Glucose  0.1%  

 HEPES  5 mM  

 BSA  0.35%  

 CaCl2  1 mM  

 MgCl2  1 mM  

 
Washing buffer for Western blot (PBS-T)  

Tween 20  0.1% in PBS 
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2.1.4 Animals 

All animal studies were approved by the district government of Lower Franconia 

(Bezirksregierung Unterfranken). Specific pathogen free C57BL/6J mice were purchased from 

JANVIER LABS (Saint Berthevin, France). 

Pld1−/−
 mice were generated in our laboratory by Attila Braun [8]. In order to generate Pld2-/- 

mice the stem cell clone from KOMP (knockout mouse project) repository AA11 was ordered 

carrying one targeted PLD2 allele (Pld2tm1(KOMP)Vlcg), leading to a complete deletion of the Pld2 

gene. This clone was injected into mouse blastocysts and yielded chimeric mice giving 

heterozygous offspring [125]. 

Bone marrow chimeric Stim1-/- and Orai1-/- mice were generated in our laboratory as described 

before [202, 203]. Conditional knockout mice, that carried loxP-flanked genes for Grb2 [204], 

Gna13 [205], RhoA [206], Rac1 [207], Cdc42 [208], Tln1 [209] and n-cofilin [210] were 

generated by intercrossing mice with PF4-Cre mice [211] in order to obtain platelet- and 

megakaryocyte-specific knockout mice which are here referred to as Grb2-/-, G13
-/-, RhoA-/-, 

Cdc42-/-, Rac1-/- and n-cofilin-/- mice, respectively. Mice carrying the Cre recombinase under the 

PF4 promoter were from Radek Skoda (Basel, Switzerland). Mice with floxed genes for RhoA, 

Rac1 and Cdc42 were obtained from Cord Brakebusch (Copenhagen, Denmark). Mice with 

floxed genes for Grb2 were kindly provided by Lars Nitschke (Erlangen, Germany). Twf2a-/- 

mice were from Pekka Lappalainen (Helsinki, Finland). 

P110βfl/fl,PF-4 Cre mice were kindly provided by Marie-Pierre Gratacap [212]. Profilin1 mice were 

purchased from EUCOMM. Double-deficient mice were obtained by intercrossing the 

respective single knockout mice. 

Prkcb-/- (PKCβ), Prkcq-/- (PKCθ) mice were from Michael Leitges [213-215], as were the floxed 

Prkci-/- (PKCι) [216] which were intercrossed with PF4-Cre mice. 

2.1.4.1 Generation of bone marrow chimeric mice 

6 week old C57BL/6 mice were lethally irradiated with 10 Gray. The femur and tibia of 

respective donor mice were prepared and bone marrow was flushed with a 22G needle into 

prewarmed DMEM with 10% FCS and 1% penicillin/streptomycin. The bone marrow cells were 

counted in a Neubauer chamber and 4 x 106 cells in 150 µl DMEM were intravenously injected 

into recipient mice. Mice were then treated with 2 g/l neomycin for the following 6 weeks. 
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2.2 Methods 

2.2.1 Mouse genotyping 

2.2.1.1 Isolation of genomic DNA  

A small part of a mouse ear was lysed in 500 µl DNA lysis buffer overnight at 56°C under 

shaking conditions (1000 rpm). Upon addition of 500 µl phenol/chloroform, samples were 

mixed and thereafter centrifuged at 11,000 rpm for 10 min at room temperature (RT). The 

supernatant was transferred into a new tube and 400 µl isopropanol were added. Samples 

were shaken vigorously and centrifuged at 14,000 rpm for 10 min at 4°C. After washing the 

resulting pellet with 1 ml 70% ethanol, the samples were centrifuged again at 14,000 rpm for 

10 min. Finally, the pellet was left to dry and then resuspended in 50-100 µl TE buffer. 

2.2.1.2 Genotyping of Pld1-/- and Pld2-/- mice 

 

Pipeting scheme:  1 µl   DNA 

    2.5 µl   10x Taq buffer 

    2.5 µl   25 mM MgCl2 

    1 µl  10 mM dNTP 

    1 µl  10 µM fwd primer 

    1 µl  10 µM rev primer 

    0.25 µl  Taq polymerase 

    15.75 µl  H2O 

 

Primer:  

Pld1 WT allele: 

TA: 66°C 

Fwd: 5’ - TGT GCA AGT GCG TGT GGG CA - 3’ 

Rev: 5’ - ACA GGG CAC CCA CAG GAG CA - 3’ 

Product size: 283 bp 

Pld1 KO allele: 

TA: 51.4°C 

Fwd: 5’ - TTA TCG ATG AGC GTG GTG GTT ATG C - 3´ 

Rev: 5’ - GCG CGT ACA TCG GGC AAA TAA TAT - 3´ 

Product size: 650 bp 
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Pld2 WT allele: 

TA: 59°C 

Fwd: 5’ - AAG CAA CAC CAC ACA TTC CA - 3’ 

Rev: 5’ - CTT CCC GAC TCA CAG CTT TC - 3’ 

Product size: 445 bp 

Pld2 KO allele: 

TA: 55°C 

Fwd: 5’ - TCA TTC TCA GTA TTG TTT TGC C - 3’ 

Rev: 5’ - GGA GGA AGA GTG AGA TGA AG - 3’ 

Product size: 408 bp 

PCR program: 

95°C  5:00 min 

95°C   0:30 min 

TA  0:30 min       35x   

72°C  0:30-1:00 min (depending on product size) 

72°C  5:00 min 

20°C  ∞ 

2.2.1.3 Agarose gel electrophoresis 

To analyze the PCR products, 1.5% agarose gels were used. The respective amount of 

agarose was dissolved in 1x TAE buffer and boiled using a microwave. After cooling 5 µl Midori 

Green per 100 ml of agarose gel were added and the solution was poured into a tray containing 

a comb and was allowed to congeal. The tray was placed into an electrophoresis chamber 

already containing 1x TAE buffer. 20 µl of each PCR sample, diluted in 4x loading buffer, was 

loaded onto the gel, which was run at 120 V. DNA ladder was used to determine the size of 

the PCR products that were visualized by UV light. 

2.2.2 Molecular biology and biochemistry 

2.2.2.1 RNA isolation and RT PCR 

Isolated platelets of 3 mice were pooled, washed with PBS/EDTA and centrifuged. The 

resulting pellet was lysed in 250 µl IP buffer with 1% NP-40. The samples were vortexed and 

incubated on ice for 5-10 min. After addition of 1 ml TRIZOL reagent the samples were mixed 

again and incubated for another 5-10 min. Next, 250 µl chloroform were added, the samples 

were vortexed and centrifuged at 10,000 rpm for 10 min at 4°C. Subsequently, the supernatant 

was transferred to a new tube containing 1 ml isopropanol. The samples were shaken 

vigorously and incubated on ice for 30 min. In order to obtain a RNA pellet, the samples were 
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centrifuged at 14,000 rpm for 10 min at 4°C. Then, the pellet was washed with 70% ethanol. 

Finally, the supernatant was discarded, the pellet was left to dry and resolved in ~20 µl RNase 

free water. The RNA concentration was determined by absorbance readings at 260 nm, 

whereas the ratios of absorbances at 260/280 and 260/230 were used to assess purity. 

Samples with 260/280 ratios of >1.8 and 260/230 ratios of >1.9 were used to generate cDNA. 

In order to synthesize cDNA, 1 µg RNA was incubated with 1 µl oligo(dT)12-18 in a total volume 

of 11.9 µl for 10 min at 70°C. Samples were placed on ice while adding 2 μl DTT (0.1 M), 1 μl 

dNTPs (10 mM), 0.1 μl RNasin, 4 μl 5x first strand buffer and 1 μl Super Script Reverse 

Transcriptase. The total volume was adjusted to 40 µl with RNase free water. After incubating 

the samples at 42°C for 1 h, the reaction was stopped by incubation at 70°C for 10 min. 

Primer: 

Pld1 transcript 

Fwd:  5′ - A CAC AGG ATA CCA GGT GTG A - 3′ 

Rev:  5′ - T AGA CTC TAC TGA TGC TGC C - 3′ 

Pld2 transcript 

Fwd:  5’ - GTG CCA CTG TGC AGG TCT TGA GG - 3’ 

Rev:  5’ - GCA GAA TAG CCT GGA TGG AG - 3’ 

Actin transcript 

Fwd:  5’ - GTG GGC CGC TCT AGG CAC CAA - 3’ 

Rev:  5’ - CTC TTT GAT GTC ACG CAC GAT TTC - 3’ 

2.2.2.2 Preparation of tissue/platelet lysates 

50 μg of the respective tissue were homogenized in 1 ml ice cold IP buffer, containing 1% NP-

40 and protease inhibitors, by using a Miccra D1 homogenizing drive (ART Labortechnik, 

Mülheim, Germany). In order to obtain platelet lysates, isolated platelets were lysed with IP 

buffer containing 1% NP-40 and protease inhibitors at a concentration of ~0.5 x 106 

platelets(Plt)/µl. Following an incubation at 4°C on a rotor for 1 h or 20 min on ice for tissue or 

platelet lysates, respectively, the samples were centrifuged at 14,000 rpm for 30 min at 4°C. 

Supernatants were transferred into a new tube and frozen at -80°C. For Western blot analysis, 

reducing or non-reducing sample buffer was added and samples were boiled for 5 min at 95°C. 

2.2.2.3 Western blot 

In order to separate the proteins, 20 µl of the samples were loaded per lane of a 10% 

polyacrylamide gel. The gel was run at 25 mA for 1.5 h. After separation, the proteins were 

transferred onto a polyvinylidene difluoride (PVDF) membrane by semidry immunoblotting at 

a current of 65 mA per gel. Afterwards, the membrane was incubated in blocking buffer in order 

to avoid unspecific binding of the primary antibody. Subsequently, the membrane was 
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incubated with the required primary antibody overnight at 4°C. To remove the unbound 

antibody, the membrane was washed three times for 10 min with TBS-T. Then, membranes 

were incubated with the respective HRP-coupled secondary antibodies for 1 h at RT. Following 

three washing steps, the proteins were visualized by ECL. 

2.2.3 In vitro analysis of platelet function 

2.2.3.1 Platelet isolation and counting 

700 µl blood, taken from the retroorbital plexus of anesthetized mice (isofluorane) were 

transferred in a 1.5 ml reaction tube containing either 300 µl heparin in TBS (20 U/ml, pH 7.3) 

or 300 µl acid citrate dextrose (ACD). Next, the blood was centrifuged at 800 rpm (Eppendorf 

Centrifuge 5415C) for 5 min at RT. The supernatant and buffy coat were collected and again 

centrifuged at 800 rpm for 5 min. The resulting platelet rich plasma was transferred into a new 

tube and the platelets were pelleted at 2,800 rpm for 5 min. The pellet was washed twice with 

Ca2+-free Tyrode’s buffer containing 1.0 µg/ml PGI2 and 0.02 U/ml apyrase. The platelet 

concentration of each sample was determined by measuring a 1:1 dilution of the platelet 

suspension in PBS in a Sysmex counter (KX-21N, Sysmex Corp., Kobe, Japan). The pellet 

was resuspended in Tyrode’s buffer at the desired platelet concentration. For determination of 

platelet count and size, 50 µl blood was drawn from the retroorbital plexus of anesthetized 

mice using heparinized microcapillaries, diluted 1:20 in PBS and analyzed in a Sysmex cell 

counter.  

2.2.3.2 Plasma preparation 

700 µl blood was taken from the retroorbital plexus of an anesthetized mouse and transferred 

in a tube containing 300 µl heparin. The blood was centrifuged at 2,800 rpm for 5 min and the 

upper phase was transferred into a new tube. After another centrifugation at 10,000 rpm for 

5 min, the supernatant was collected. The plasma was either used directly or stored at -20°C. 

2.2.3.3 Flow cytometric analysis 

In order to determine basal glycoprotein expression levels, washed platelets (1 x 106) were 

stained for 15 min at RT with saturating amounts of fluorophore-conjugated antibodies. For 

activation studies, the platelets were activated with different agonists in the presence of 

saturating amounts of phycoerythrin (PE)-coupled JON/A and fluorescein isothiocyanate 

(FITC)-coupled α-P-selectin antibodies. Samples were incubated for 7 min at 37°C and 

additional 7 min at RT. The reaction was stopped by addition of 500 μl PBS. The samples were 

analyzed directly on a FACSCalibur (BD, Heidelberg, Germany). For a two-color staining, the 

following settings were used. 
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Detectors/Amps: 
Parameter Detector Voltage 
P1 FSC E01 
P2 SSC 380 
P3 FL1 650 
P4 FL2 580 
P5 FL3 150 

 
Threshold: 
Value Parameter 
253 FSC-H 
52 SSC-H 
52 FL1-H 
52 FL2-H 
52 FL3-H 

 
Compensation: 
Parameter Value 
FL1 2.4% of FL2 
FL2 7.0% of FL1 
FL3 0% of FL3 
FL4 0% of FL2 

2.2.3.4 Aggregation studies 

Washed platelets were adjusted to a concentration of 0.3 x 106 platelets/μl. 50 μl platelets or 

heparinized PRP (used for ADP-induced aggregation measurements) were transferred into a 

cuvette containing 110 μl Tyrode’s buffer with 2 mM Ca2+. For all measurements with washed 

platelets (except when activating platelets with thrombin) Tyrode’s buffer with 100 μg/ml human 

fibrinogen was used. To induce aggregation, agonists or reagents (100-fold concentrated) 

were added and light transmission was recorded over 10 min on an Apact-4-channel optical 

aggregation system (APACT, Hamburg, Germany). For calibration before each measurement, 

Tyrode’s buffer was set as 100% and the washed platelet suspension or PRP was set as 0% 

aggregation. 

2.2.3.5 ATP release 

For determination of ATP release, platelets were adjusted to a concentration of 0.5 x 106 plts/ml 

with Tyrode’s buffer. Then, 80 µl platelets were added to 160 µl Tyrode’s with 2 mM Ca2+ and 

incubated for 2 min at 37°C under stirring conditions with 25 µl Chrono-Lume reagent. 

Subsequently, 2.6 µl of the respective agonists (50-fold working solution) were added and the 

ATP release and light transmission were measured with a Chrono-Log 4 channel aggregation 

system (Probe & go, Osburg, Germany). Calibrations were performed as mentioned above 

(section 2.2.3.4) and an ATP standard was used to calculate the agonist-induced ATP release. 
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2.2.3.6 vWF secretion 

Platelets were adjusted to a concentration of 0.5 x 106 plts/µl and 120 µl were activated with 

the indicated agonists for 15 min at 37°C. The samples were centrifuged at 2,800 rpm for 5 min, 

the supernatant was transferred into a new reaction tube and centrifuged at 14,000 rpm for 

another 5 min. 100 µl of the supernatant were given into the first lane of an ELISA plate which 

had been coated with a rabbit anti-human vWF antibody (diluted 1:600 in 50 mM NaHCO3, pH 

9.0, 50 µl per well) overnight at 4°C, subsequently blocked with 200 µl 5% BSA in ddH20 per 

well and washed 3 times with PBS 0.1% Tween. 12 1:1 dilutions in PBS were prepared per 

sample on the ELISA plate. Platelet lysate was used as positive control. The plate was 

incubated for 2 h at 37°C. After washing the plate 3 times with PBS 0.1% Tween, the samples 

were incubated with rabbit anti-human vWF-HRP (diluted 1:3000 in PBS 0.1% Tween and 1% 

BSA, 50 µl per well) for 2 h at 37°C. After washing the plate, it was developed by incubating 

with 50 µl 3,3,5,5-tetramethylbenzidine (TMB-one substrate). The reaction was stopped by 

adding 50 µl 0.5 M H2SO4. Absorbance was measured at 650 nm using a Multiscan device 

(Thermo Scientific). 

2.2.3.7 PF4 secretion 

The samples were prepared as in section 2.2.3.6 and the assay was performed according to 

the manufacturers’ protocol (PF-4 ELISA Kit, RayBio). 

2.2.3.8 Determination of platelet filamentous (F)-actin content 

Platelets were washed and adjusted to a concentration of 15 x 105 plts/µl and diluted 1:10 in 

Tyrode’s buffer with Ca2+ to a final volume of 50 µl per sample. The samples were incubated 

for 3 min at 37°C with 5 µl of Dylight 649-conjugated anti-GPIX derivative and stimulated with 

1 U/ml thrombin for 2 min at 37°C under shaking conditions (400 rpm). Next, the platelets were 

fixed by adding 0.55% volume 10% PFA in PBS and subsequently centrifuged for 5 min at 

2800 rpm. The pellets were resuspended in 55 µl Tyrode’s with Ca2+and transferred into FACS 

tubes containing 10 µM phalloidin-FITC. After incubation for 30 min at RT in the dark, the 

reaction was stopped by adding 500 µl PBS. The samples were kept on ice and analyzed with 

a FACSCalibur. 

2.2.3.9 Clot retraction 

For clot retraction, 700 µl blood was collected with non-heparinized capillaries in a tube 

containing 70 µl sodium citrate. During platelet washing, platelet poor plasma (PPP) was 

collected and the resulting platelet pellet was adjusted to a concentration of 3 x 105 plts/µl with 

PPP. To 250 µl of this suspension 1.5 µl red blood cells and 5 µl 1 M CaCl2 were added. To 

induce clot retraction the samples were incubated at 37°C with 3 U/ml thrombin. Images were 

taken every 15 min. After 4 h the residual fluid in the tube was measured. 
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2.2.3.10 Static adhesion on ECM proteins 

2.2.3.10.1  Static adhesion on fibrinogen 

Rectangular glass coverslips (Roth, Karlsruhe, Germany) were coated with 100 µg/ml human 

fibrinogen at 4°C overnight in a humid chamber. The slides were blocked with 200 µl 3% BSA 

in PBS. Platelets were washed and adjusted to a concentration of 3 x 105 plts/µl. The platelets 

were diluted with Tyrode’s with Ca2+ and stimulated with 0.01 U/ml thrombin. Immediately 

afterwards, the samples were transferred to a fibrinogen-coated coverslip, which had 

previously been washed with Tyrode’s with Ca2+. At the respective time points, spread platelets 

were fixed by adding 300 µl of 4% PFA/PBS. The slides were analyzed by microscopy (Axiovert 

200M, Zeiss, Göttingen, Germany) at 100x magnification and representative differential 

interference contrast (DIC) images were taken. For evaluation, the numbers of platelets at 

different spreading stages were determined. 

2.2.3.10.2  Static adhesion on vWF 

Rectangular glass coverslips were coated with 200 µl/slide polyclonal rabbit-α-human vWF-

antibody (1:500 in 50 mM carbonate-bicarbonate, pH 9.6) overnight at 4°C in a humidity 

chamber. To rinse of unbound antibody, the slides were rinsed 3 times with PBS and blocked 

for 1 h in 3% BSA. Meanwhile, plasma was prepared according to section 2.2.3.2. After rinsing 

the slides thoroughly, they were incubated with 100 µl plasma for 1 h at 37°C and rinsed again 

thereafter. 30 µl (5 min) or 50 µl (15 and 30 min) platelets at a concentration of 3 x 105 plts/µl, 

were incubated with Tyrode’s with Ca2+ in the presence of 40 µg/ml integrillin for 10 min at 

37°C under stirring conditions. Subsequently the GPIb clustering was induced by addition of 

2.5 U/ml botrocetin. Immediately afterwards, the platelets were allowed to spread on a vWF-

coated slide and were fixed at the respective timepoints with 4% PFA in PBS. The slides were 

analyzed by microscopy (Axiovert 200M, Zeiss, Göttingen, Germany) at 100x magnification 

and representative images were taken. For evaluation, the platelets were sorted into different 

categories according to the number of filopodia they formed. 

2.2.3.10.3  Staining of spread platelets for confocal microscopy 

Fully spread platelets were fixed and permeabilized in PHEM buffer supplemented with 4% 

PFA and 1% NP40 for 20 min at 4°C and thereafter blocked with 5% BSA in PBS for 2 h at 

37°C. The samples were washed and stained with anti-α-tubulin Alexa F488 (clone B-5-1-2, 

Invitrogen) or phalloidin-Atto647N (Fluka) in the dark for 1 h at 37°C. Subsequently, the 

samples were mounted with Fluoroshield (Sigma-Aldrich) and left to dry at 4°C. All used 

fluorophore-conjugated secondary antibodies were purchased from Invitrogen. Samples were 

analyzed using a Leica TCS SP5 confocal microscope (Leica Microsystems). This experiment 

was performed by Simon Stritt from our laboratory. 
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2.2.3.11 Adhesion under flow conditions 

2.2.3.11.1  Flow adhesion assay on collagen 

Rectangular glass coverslips were coated with 100 µl 200 µg/ml fibrilar type I collagen (Horm) 

overnight at 37°C. On the next day, the coverslips were blocked with 300 µl 3% BSA in PBS. 

The slides were put into a transparent flow chamber with a slit depth of 50 µm. Unwanted 

bubbles were removed by perfusing the chamber with prewarmed Tyrode’s buffer. Meanwhile, 

700 µl blood from a mouse was collected in heparin (20 U/ml). The platelets were labeled with 

a Dylight-488 conjugated anti-GPIX derivative (0.2 µg/ml) for 5 min at 37°C. Subsequently the 

blood was diluted 2:1 in Tyrode’s buffer with Ca2+ and taken up into a 1 ml syringe, which was 

connected to the flow chamber and placed in the pulse-free pump. Perfusion was performed 

for 10 min (150 s-1) or 4 min under high or low shear stress equivalent to wall shear rates of 

150, 1,000 and 1,700 s-1. Platelet adhesion and thrombus growth on collagen was monitored 

using a Zeiss Axiovert 200 inverted microscope (40x objective). Images were taken every 

second using a CoolSNAP-EZ camera. After the indicated times, Tyrode’s buffer was perfused 

at the same shear rate for half of the time used for the perfusion. Subsequently, phase-contrast 

and fluorescent images were taken from at least 6 different visual fields. Analysis of the images 

was performed using Metamorph® software (Visitron, Munich, Germany). Thrombus formation 

was determined as the mean percentage of total area covered by platelets/thrombi and 

thrombus volume was expressed as mean integrated intensity per mm2. 

2.2.3.11.2  Flow adhesion assay on vWF 

Coverslips were prepared as in section 2.2.3.10.2 and perfusion of blood over vWF-coated 

slides was performed at wall shear rates of 1,000 s-1 and 1,700 s-1 as described in section 

2.2.3.11.1.. The representative images were analyzed by counting adherent platelets per 

visual field. 

2.2.3.11.3  Procoagulant activity measurements 

Flow adhesion assays were grossly performed as described above in 2.2.3.11.1. The blood 

was supplemented with 5 U/ml heparin and, after perfusion, adherent platelets were washed 

with Tyrode’s buffer containing 250 ng/ml Fluorophore-Annexin V. Next, the samples were 

washed with Tyrode’s buffer to remove the residual antibody. Subsequently, phase contrast 

and fluorescent images were taken from 10 different visual fields. 

2.2.3.12 Phospholipase D activity assay 

Platelets, at a concentration of 3 x 105 plts/µl, were labeled with 50 µCi/ml 3H-myristic acid in 

Ca2+-free Tyrode's buffer for 90 min at 37°C under shaking condition (300 rpm). For this 

purpose, the ethanol in which 3H-myristic acid was diluted, was vaporized under an air current 
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using a Pierce Reacti-Vap III evaporation unit (1.5 psi, Thermo Scientific, Schwerte, Germany). 

Subsequently, the 3H-myristic acid was resuspended with the platelet suspension. After 

incubation, the samples were centrifuged at 2,800 rpm for 5 min at RT. The supernatant was 

discarded and the pellet was resuspended in Tyrode's buffer. Next, the samples were aliquoted 

into 2 ml reaction tubes (80 µl platelet suspension/reaction). The samples were incubated with 

0.5% ethanol for 10 min at 37°C before the respective agonist/inhibitor/agent was added. The 

reaction was stopped by adding 500 µl of ice-cold methanol, vortexed briefly and put on ice 

immediately. After adding 350 µl of ddH20 and 500 µl of chloroform, the samples were vortexed 

and subsequently centrifuged at 2,600 g for 12 min at RT to ensure phase separation. The 

upper phase and interphase were removed with a vacuum pump and 300 µl of the lower phase 

were transferred into a new 1.5 ml reaction tube. Next, the samples were vaporized for ~ 10 min 

using the Pierce Reacti-Vap III evaporation unit. The samples were resuspended in 40 µl of a 

Marker Mix, containing 0.125 mg/ml PtdEtOH and 0.125 mg/ml L-α-PA in chloroform. The 

samples were then transferred onto TLC silica gel 60 (Millipore, Schwalbach, Germany) plates. 

For lipid separation the plates were put into a chromatography chamber containing eluent 

buffer. Afterwards, the silica plates were dried and transferred to an iodine-containing chamber 

to stain the phospholipids as well as the markers PtdEtOH and PA. For each sample, the silica 

plate was scratched at the heights of stained PtdEtOH and total phospholipids. The samples 

were transferred into 6 ml miniature Pony Vials (Perkin Elmer, Rodgau, Germany) and 2 ml of 

Zinsser Analytic Quicksafe A was added. To determine the decays per minute, a Tri-Carb 2910 

liquid Scintillation Analyzer (Perkin Elmer) was used applying a preset quench curve.  

2.2.4 In vivo murine models 

2.2.4.1 Determination of platelet life span 

Mice were injected intravenously with 3.5 µg of a Dylight-488 conjugated anti-GPIX Ig 

derivative. Before injection and at the indicated time points 50 µl blood was collected and the 

percentage of positive platelets were determined by flow cytometric analysis. 

2.2.4.2 Triple anesthesia 

Mice were anesthetized intraperitoneally with a combination of midazolam/ 

medetomidine/fentanyl (5/0.5/0.05 mg/kg body weight). 

2.2.4.3 FeCl3-induced thrombus formation in small mesenteric arterioles 

Four week old mice were injected with 1.5 µg of a Dylight-488 conjugated anti-GPIX Ig 

derivative, anesthetized with 450 µg/g body weight 2,2,2-tribromoethanol and the mesentery 

was exteriorized through a midline abdominal incision [217]. Arterioles were visualized with a 

Zeiss Axiovert 200 inverted microscope (10x/0.3 NA objective, Carl Zeiss) equipped with a 
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100-W HBO fluorescent lamp source, and a CoolSNAP-EZ camera (Visitron, Munich, 

Germany). Digital images were recorded once a second and analyzed off-line using Metavue 

software. Injury was induced by topical application of a 3-mm² filter paper saturated with FeCl3 

(20%). Adhesion and aggregation of fluorescently labeled platelets (Dylight-488–conjugated 

anti-GPIX Ig derivative) in arterioles were monitored for 40 min or until occurrence of complete 

occlusion which was reached when blood flow ceased for >1 min. 

2.2.4.4 FeCl3-induced thrombus formation in the carotid artery 

6 to 8 weeks old mice were anesthetized and the right carotid artery was exposed through a 

vertical midline incision in the neck. An ultrasonic flow probe (0.5PSB699; Transonic System, 

New York, USA) was placed around the vessel and thrombosis was induced by topical 

application of a 0.5 mm by 1 mm filter paper saturated with 10-15% FeCl3 for 90 s. Blood flow 

was monitored for 30 min or until full occlusion of the vessel. 

2.2.4.5 Mechanical injury of the abdominal aorta 

A longitudinal incision was used to open the abdominal cavity and expose the abdominal aorta 

of 8-12 weeks old anesthetized mice. An ultrasonic flow probe (0.5PSB699; Transonic System, 

New York, USA) was placed around the vessel and thrombosis was induced by a single firm 

compression with forceps. Blood flow was monitored for 30 min. 

2.2.4.6 Bleeding time assay 

Mice were anesthetized by intraperitoneal injection with triple anesthesia and a 2 mm segment 

of the tail tip was removed with a scalpel. Tail bleeding was monitored by gently absorbing 

blood using filter papers at 20 s intervals without making contact with the wound site. As soon 

as no blood could be observed on the paper, bleeding was determined to have ceased. 

Experiments were stopped after 20 min. 

2.2.4.7 Transient occlusion model of the middle cerebral artery 

Transient middle cerebral artery occlusion (tMCAO) model experiments were performed by 

Peter Kraft, a member of the research group of Prof. Guido Stoll (Department of Neurology, 

University of Würzburg). 8-10 weeks-old mice were conducted to the experiment according to 

previously published recommendations for research in mechanism-driven basic stroke studies 

[218]. tMCAO was induced under inhalation anesthesia (isoflurane in a 70% N2/30% O2 

mixture) using the intraluminal filament (Doccol Company) technique [219]. Briefly, the filament 

was inserted into the right common carotid artery and advanced via the internal carotid artery 

in order to occlude the basis of the middle cerebral artery (MCA). After 60 min, the filament 

was withdrawn to allow reperfusion. For measurements of ischemic brain volume, animals 

were sacrificed 24 h after induction of tMCAO, and brain sections were stained with 2% 2,3,5-

   37 



Phospholipase D in platelets                Material and Methods 

TTC. Brain infarct volumes were calculated and corrected for edema [219]. Neurological 

function and motor function were assessed by two independent and blinded investigators 24 h 

after tMCAO, as previously described [219]. The experiments were conducted according to the 

recommendations for research in experimental stroke studies [218] and the current ARRIVE 

guidelines (http://www.nc3rs.org/ARRIVE). Magnetic resonance imaging (MRI) was performed 

24 hours after transient ischemia on a 1.5 T unit (Vision; Siemens) under inhalation anesthesia. 

A custom-made dual-channel surface coil was used for all measurements (A063HACG; Rapid 

Biomedical). The MR protocol included a coronal T2-weighted sequence (slice thickness, 2 

mm) and a coronal T2-weighted gradient-echo constructed interference in steady state (CISS) 

sequence (slice thickness, 1 mm). MR images were transferred to an external workstation 

(Leonardo; Siemens) for data processing. The visual analysis of infarct morphology and the 

search for eventual intracerebral hemorrhage were performed in a blinded manner. Infarct 

volumes were calculated by planimetry of hyperintense areas on high-resolution CISS images. 

2.2.5 Transmission electron microscopy (TEM) of platelets 

Platelets were adjusted to a concentration of 3 x 108 plts/µl in Tyrode’s buffer. Resting or 

activated platelets were fixed with the equal volume of 2.5% glutaraldehyde in 0.1 M cacodylate 

buffer (pH 7.2) containing 2% sucrose and incubated for 1 h at RT. Samples were stored at 

4°C. For further processing, 1 ml cacodylate buffer was added to the sample and centrifuged 

for 5 min at 1,000 g. This washing process was repeated twice. Next, the platelets were 

resuspended in 1 ml agarose solution (2% low melting agarose in cacodylate buffer prewarmed 

to 45°C) and centrifuged again at 14,000 rpm for 5 min at 37°C. The upper agarose solution 

was discarded except residual 100 µl which were incubated directly on ice for 10 min. The 

agarose platelet pellets were taken out of the tube and cut into 1 mm3 cubes and were further 

stored in cacodylate buffer. For sample fixation, cacodylate buffer containing 1% OsO4 was 

added and the samples were incubated for 45 min at RT. Subsequently, the samples were 

washed three times with ddH2O, dehydrated in 70% (4 x 5 min), 95% (3 x 15 min) and 100% 

(3 x 15 min) ethanol and finally incubated with a 1:1 mixture of propylenoxyde and epon for 1 h 

under rotation. Samples were again incubated with epon at RT overnight and afterwards 

additional 2-3 h. Next, samples were embedded in gelatine capsules and left to dry for 48 h at 

60°C. With a Leica Ultracut microtom UCT (Leica Microsystems, Wetzlar, Germany) 50 nm 

thin sections were cut. The sections were contrasted. Finally, samples were analyzed at 120 

kV under a CN12ß BioTWIN transmission electron (FEI). Images were taken with a Megaview 

camera (Olympus SIS). This method was performed by Sebastian Dütting from our laboratory. 
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2.2.6 Statistical data analysis 

Most results are presented as means ± SD or scatter blots. Differences between two groups 

were assessed by the Welch’s test or if applicable with the Mann Whitney U test. For the stroke 

model, infarct volumes and functional data were tested for Gaussian distribution with the 

D’Agostino and Pearson omnibus normality test and then analyzed using the two-tailed 

Student’s t test. For statistical analysis, SPSS statistics 20 and Microsoft Excel were used. 

Differences between more than two groups were analyzed by one-way analysis of variance 

(ANOVA) with Dunnetts T3 as post-hoc test. P<0.05 was considered as statistically significant. 
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3 Results 

3.1 Phospholipase D2 is dispensable for platelet activation and 
thrombus formation 

Both mammalian PLD isoforms, PLD1 and PLD2, are expressed in platelets [36, 186]. In order 

to elucidate the physiological role of PLD in platelets in vivo, PLD deficient mice were 

generated. Previously, Pld1-/- mice were analyzed by Margitta Elvers and David Stegner from 

our laboratory demonstrating that PLD1 is important for GPIb dependent integrin activation 

and thrombus formation in vivo [8]. To reveal the significance of PLD2 in thrombosis and 

hemostasis, Pld2-/- mice were generated and analyzed together with David Stegner [125].  

3.1.1 Abolished PLD2 expression and decreased PLD activity in PLD2 
deficient mice 

Mice deficient for PLD2 were born in an expected mendelian ratio, developed and grew 

normally and were fertile. These findings were in line with a previous report describing Pld2-/- 

mice for the first time [124]. RT-PCR (Figure 3-1A) and Western blot analysis (Figure 3-1B) 

confirmed the absence of PLD2 in platelets and other tissues. Furthermore, RT-PCR 

demonstrated that neither Pld1 mRNA levels in Pld2-/- platelets nor Pld2 mRNA levels in  

Pld1-/- platelets were altered (Figure 3-1A), proving the absence of a compensatory mechanism 

upregulating the respective other PLD isoform on transcriptional level. In addition, PLD activity 

in platelets, assessed by detection of PtdEtOH, a non-degradable product of PLD, was 

significantly reduced in Pld2-/- mice (Figure 3-1C). Contradicting to previous reports on PLD 

activity in resting platelets, only minimal basal PLD activity levels were detected [170]. While 

common platelet agonists, such as collagen-related peptide (CRP) and thrombin induced PLD 

activation in platelets prominently, induction of PLD activity in Pld2-/- mice was reduced. These 

findings demonstrate a contribution of PLD2 to the tightly regulated basal and inducible PLD 

activity in platelets. However, when stimulating platelets with the indicated agonists for a longer 

time period, PLD activity levels of wildtype and PLD2 deficient mice were indistinguishable 

suggesting a more important role for PLD1. 
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Figure 3-1: PLD2 expression and activity in Pld2-/- platelets and tissues. (A) Analyses of Pld1 and 
Pld2 mRNA in platelets of the indicated mice by RT-PCR. Actin-mRNA served as control. (B) Western 
blot of spleen and brain lysates of mice with the indicated genotypes. Expression of α-tubulin was used 
as loading control. (C) Platelets were labeled with [3H]-myristic acid and stimulated with the indicated 
agonists. PLD activity is depicted as percentage of phosphatidylethanol (PtdEtOH) of total [3H]-labeled 
phospholipids. Data are mean ± SD of 4 mice per group. *P<0.05. (Thielmann*, Stegner* et al., J Thromb 
Haemost, 2012) 
 

In order to analyze whether the PLD2 deficiency has an effect on the hematopoietic system, 

blood cell counts were measured with a Sysmex counter. All measured blood parameters from 

Pld2-/- mice were unaltered when compared to wildtype samples suggesting that PLD2 is not 

required for blood cell production.  

 

 

Figure 3-2: Platelet count, volume and life span are unaltered in Pld2-/- mice. (A) Platelet counts 
(platelets x 103/μl) and (B) platelet volumes (femtoliters) were determined by a hematologic analyzer 
(Sysmex). (C) Platelet life span was determined by injecting DyLight 488-conjugated anti-GPIX Ig 
derivative into wildtype and Pld2-/- mice. The percentages of fluorescently labeled platelets are 
depicted. Values are mean ± SD of ≥5 mice per group.   
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Table 3-1: Absence of PLD2 does not affect platelet glycoprotein expression. Expression of 
glycoproteins on the platelet surface of wildtype and Pld2-/- mice was determined by flow cytometry. 
Diluted whole blood was labeled with FITC-conjugated antibodies for 15 min at RT and analyzed 
directly on a FACSCalibur. Results are presented as mean fluorescence intensity ± SD of ≥5 mice 
per group. Mean platelet size was determined by forward scatter characteristics. Abbreviations: HCT, 
hematocrit. (Thielmann*, Stegner* et al., J Thromb Haemost, 2012) 

 
 

To assess whether lack of PLD2 affects megakaryopoiesis and platelet formation, platelet 

count, mean platelet volume, expression of prominent platelet surface glycoproteins and 

platelet life span was analyzed. Expression of prominent glycoproteins on the platelet surface 

of Pld2-/- and wildtype platelets was comparable (Table 3-1). Platelet count and size in PLD2 

deficient mice were unaltered (Figure 3-2A, B; wt: 680.8 ± 110.0 x 103/µl, Pld2-/-: 599.0 ± 219.9 

x 103/µl; wt: 5.5 ± 0.1 fl, Pld2-/-: 5.5 ± 0.3 fl). Furthermore, analysis of platelet life span, as 

described in section 2.2.4.1., revealed that wildtype and PLD2 deficient platelets have similar 

platelet turnover rates (Figure 3-2C). Together, these results indicate that megakaryopoiesis 

and platelet formation occur independently of PLD2. 

   42 



Phospholipase D in platelets                 Results 

3.1.2 Platelet activation and degranulation is unaltered in PLD2  
deficient mice 

 

 

Figure 3-3: Absence of PLD2 has no effect on platelet activation in vitro. Flow cytometric 
analyses of (A) αIIbβ3 integrin activation (JON/A-PE) and (B) degranulation dependent P-selectin 
exposure in response to indicated agonists. Results are mean fluorescence intensities (MFI) ± SD of 
6 mice per group. Abbreviations: Rest, resting; U46, U46619; CVX, convulxin; Rhod, rhodocytin; CRP, 
collagen related peptide. (Thielmann*, Stegner* et al., J Thromb Haemost, 2012) 

 

Since PLD was suggested to be important for platelet secretion (reviewed in [170]), we 

investigated whether the reduced PLD activity in Pld2-/- mice affects platelet activation. To that 

end, α-degranulation dependent P-selectin exposure on the platelet surface and activation of 

the major integrin αIIbβ3 was measured. Upon stimulation of ITAM- and GPCR-coupled 

receptors, P-selectin exposure and αIIbβ3 integrin activation in wildtype and PLD2 deficient 

platelets were indistinguishable (Figure 3-3). In order to have a second measurement for α-

granule secretion during platelet activation, the secretion of vWF, another α-granular protein, 

was determined. VWF secretion in Pld2-/- platelets was unaltered, confirming that PLD2 has 

no role in α-granule secretion (Figure 3-4B). To rule out that PLD2 has an effect on dense 

granule secretion, ATP release was assessed and found to be comparable in wildtype and 

PLD2 deficient platelets (Figure 3-4A). Platelet aggregation is highly dependent on second 

wave mediator stimulation. Some of these second wave mediators are secreted during platelet 

degranulation [220]. In line with the unaltered degranulation, platelet aggregation upon 
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stimulation with the indicated agonists of wildtype and Pld2-/- platelets was unaltered  

(Figure 3-4C). Altogether, these results indicate that PLD2 is dispensable for initial platelet 

activation.  
 

 

Figure 3-4: Pld2-/- platelets display unaltered platelet granule secretion and aggregation.  
(A) ATP secretion after platelet stimulation with the indicated thrombin concentrations was measured 
on a Chronolog aggregometer. Results are mean of ATP (nM) ± SD of 4 mice per group.  
(B) Measurement of secreted vWF in the supernatant of resting or activated wildtype and Pld2-/- 

platelets. Data are presented as OD450 nm ± SD of 4 mice per group. (C) Washed platelets were 
stimulated with the indicated agonists and light transmission was recorded on a Born aggregometer. 
Representative aggregation traces of 3 individual experiments are depicted. Abbreviations: Rest, 
resting; U46, U46619; CRP, collagen related peptide. (Thielmann*, Stegner* et al., J Thromb 
Haemost, 2012) 

3.1.3 Pld2-/- mice show normal platelet adhesion under flow 

Our study on Pld1-/- platelets revealed a role for this enzyme downstream of the platelet 

receptor GPIb, which is difficult to assess under static conditions [8]. Therefore, flow adhesion 

assays in an ex vivo flow chamber system were performed by perfusing whole blood over a 

collagen- or vWF-coated surface at different shear rates (1,000 s-1, 1,700 s-1 and 3,400 s-1). 

Wildtype and Pld2-/- platelets rapidly bound to the collagen coated surface and formed three-

dimensional stable aggregates to the same extent and with the same kinetics (Figure 3-5A). 

Evaluation of the platelet covered surface and thrombus volume did not reveal a statistically 

significant difference between wildtype and Pld2-/- samples. These findings indicate that PLD2 

is not involved in the growth and stabilization of platelet-rich thrombi. Likewise, rolling and firm 

adhesion of single wildtype or Pld2-/- platelets on vWF, the physiological ligand of GPIb, were 

indistinguishable (Figure 3-5B). This suggests that, in contrast to PLD1, PLD2 has no impact 

on GPIb-dependent integrin activation. 
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Figure 3-5: Lack of PLD2 neither influences thrombus formation on collagen nor platelet 
adhesion on vWF. (A) Whole blood was perfused over a collagen-coated (0.2 mg/ml) surface. 
Representative images are depicted (top). Blood was perfused at the indicated perfusion rates for 
4 min and washing with Tyrode’s buffer was performed for half of the period of the perfusion time. 
Platelet surface coverage (bottom, left) and relative thrombus volume as measured by the integrated 
fluorescence intensity (IFI) per square millimeter (bottom, right) ± SD of 5 mice per group were 
measured. Bar: 50 µm. (B) Whole blood was perfused at the indicated perfusion rates over a vWF-
coated surface and then washed with Tyrode’s buffer for half of the period of the perfusion time. 
Representative images are depicted (top). Tethered platelets were counted after 100 s of blood 
perfusion (bottom, left). The number of firmly adherent platelets were counted at the end of the 
washing step (bottom, right). Bar graphs depict mean values ± SD of ≥ 4 mice per group. (Thielmann*, 
Stegner* et al., J Thromb Haemost, 2012) 

3.1.4 Spreading, clot retraction and F-actin polymerization of  
Pld2-/- platelets is unaltered  

In the literature PLD is discussed as an important mediator of cytoskeletal rearrangements [64, 

221]. Platelet integrin αIIbβ3 outside-in signaling leads to the reorganization of the cytoskeleton 

and thereby induces the formation of filopodia and lamellipodia. However, upon prestimulation 

with thrombin, PLD2 deficient platelets were able to spread on fibrinogen to the same extent 

and with similar kinetics as wildtype platelets (Figure 3-6). Another process underlying outside-

in signaling and cytoskeletal rearrangements is the αIIbβ3-mediated clot retraction. During this 

process the clot decreases in size due to forces being generated by platelets on the clot fibrin 

mesh [222]. Clot retraction in wildtype and PLD2 deficient platelet rich plasma in the presence 

of Ca2+ started at approximately 30 min upon pre-stimulation with thrombin and showed similar 
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kinetics over a time period of 2 hours. The excess fluid extruded during clot retraction was 

comparable in wildtype and PLD2 deficient platelet rich plasma (wt: 49.6 ± 10.4 %, Pld2-/-: 

60 ± 4.6 % of initial PRP volume; Figure 3-7A).  
 

 
Figure 3-6: Platelet spreading is not affected by the lack of PLD2. Washed platelets were 
stimulated with 0.01 U/ml thrombin and allowed to spread on fibrinogen (100 µg/ml). Representative 
DIC images of 3 individual experiments (right) and statistical evaluation of the percentage of spread 
platelets at different spreading stages (left). Bar 5 µm. (Thielmann*, Stegner* et al., J Thromb 
Haemost, 2012) 

 

 
Figure 3-7: Actin polymerization and dynamics in platelets are functional despite the lack of 
PLD2. (A) Clot retraction of PRP upon activation with 3.5 U/ml thrombin in the presence of 20 mM 
CaCl2 at the indicated time points. Representative images of two different experiments are depicted 
(left). Residual liquid is depicted as % of starting volume ± SD of 5 mice per group (left). (B) F-actin 
content measured by flow cytometry after incubating the platelets with phalloidin-FITC. MFI ± SD of 
4 mice per group are depicted. 

 

Moreover, F-actin levels were measured in thrombin-activated and resting platelets by using a 

flow cytometric approach. The ratio of the F-actin content in activated and resting platelets was 

unaltered in PLD2 deficient platelets (1.6 ± 0.1 vs. 1.5 ± 0.1; Figure 3-7B). Taken together, 

these results argue against a role of PLD2 in platelet outside-in signaling and the 

reorganization of the actin cytoskeleton, which is known to facilitate platelet spreading and clot 

retraction. 
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3.1.5 Normal in vivo thrombus formation and hemostasis in PLD2 
deficient mice  

Next, we analyzed the functional relevance of PLD2 deficiency in hemostasis and thrombosis 

in vivo. Thrombus formation was induced by application of 20% FeCl3 on the exteriorized 

mesenteric arterioles of wildtype and Pld2-/- mice. This resulted in fast platelet adhesion and 

the appearance of first thrombi >10 µm after 8.4 ± 1.3 min in wildtype and after 7.1 ± 1.6 min 

in Pld2-/- mice (data not shown). Irreversible vessel occlusion in PLD2 deficient mice occurred 

after 14.2 ± 4.1 min, which was comparable to the thrombus formation observed in wildtype 

animals (13.8 ± 3.4 min; Figure 3-8).  
 

 

Figure 3-8: Lack of PLD2 has no influence on thrombus formation in vivo. Thrombus formation 
in small mesenteric arterioles was induced by topical application of 20% FeCl3. In order to monitor 
thrombus formation by intravital microscopy, platelets were labeled fluorescently. Time to stable 
occlusion (A) and representative images (B) are shown. Each symbol represents one individual. 
(Thielmann*, Stegner* et al., J Thromb Haemost, 2012) 

 

To verify these results, a second model for thrombosis was utilized. Here the abdominal aorta 

was injured by firm compression with forceps and the blood flow was monitored with an 

ultrasonic perivascular Doppler flowmeter. Previously, our laboratory had shown that Pld1-/- 

mice were protected in this model [8]. However, vessel occlusion in Pld2-/- mice occurred after 

193.6 ± 128.7 s, which was comparable to the mean time of vessel occlusion of wildtype mice 

(164.1 ± 45.7 s; Figure 3-9A, B). These findings indicate that PLD2 is dispensable for in vivo 

thrombus formation in microvascular and macrovascular settings. In order to assess whether 

PLD2 has an impact on hemostasis, mice were analyzed in a tail bleeding time model. Bleeding 

times upon amputation of a small piece of the tail tip were comparable in wildtype and Pld2-/- 

mice (wt: 335.0 ± 242.3 s, Pld2-/-: 398.5 ± 282.2 s; Figure 3-9C), indicating that PLD2 is not an 

important regulator of hemostasis.  
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Figure 3-9: PLD2 is dispensable for hemostasis and for thrombus formation in vivo. (A) By tight 
compression with forceps, a mechanical injury of the abdominal aorta was induced and the blood flow 
was monitored for 30 min. Time to stable occlusion (A) and representative blood flow charts (B) are 
presented. Each symbol represents one individual. (B) Tail bleeding times of wildtype and Pld2-/- mice. 
Each symbol represents one individual. (Thielmann*, Stegner* et al., J Thromb Haemost, 2012) 

 
The development of focal cerebral infarction, which is described as a thrombo-inflammatory 

process, depends on platelets as well as on immune cells [223, 224]. Since PLD2 is not only 

expressed in platelets but also in immune cells [225-227], we wanted to study whether PLD2 

deficiency has an impact on the development of neuronal damage following transient middle 

cerebral artery occlusion (tMCAO). Therefore, a thread was advanced into the MCA in order 

to reduce cerebral blood flow and induce cerebral ischemia. To allow reperfusion, the thread 

was removed 1 h later. Infarct volumes and neurological scores were analyzed 24h after 

reperfusion. Pld2-/- mice developed infarcts comparable in size to those of wildtype mice (wt: 

99.4 ± 34.4 mm3, Pld2-/-: 100.1 ± 34.0 mm3; Figure 3-10A). Neurological deficits, as determined 

with the Bederson score, and the overall motor function and coordination, assessed by the grip 

test, were comparable in wildtype and Pld2-/- mice (Figure 3-10B,C).  

These results demonstrated that infarct development and progression upon tMCAO occurs 

independently of PLD2. 
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Figure 3-10: Infarct 
development after tMCAO in 
Pld2-/- mice is comparable to 
wildtype mice. (A) Brain infarct 
volumes of wildtype and  
Pld2-/- mice which were 
subjected to the transient 
middle cerebral artery model 
(60 min occlusion time, 24 h 
after reperfusion). Data are 
mean ± SD of 10 mice per 
group. Neurological and motor 
function was determined with 
Bederson score (B) and Grip 
test (C), respectively. Each 
symbol represents one 
individual. (Thielmann*, 
Stegner* et al., J Thromb 
Haemost, 2012)  

3.2  Redundant functions of PLD1 and PLD2 in α-granule release 

and their relevance in models of pathological thrombus 
formation 

The two PLD isoforms, PLD1 and PLD2, share a sequence homology of 50% [186] and both 

generate PA. Therefore, it is possible that the two isoforms have redundant functions in platelet 

signaling. In order to address this question, Pld2-/- mice were intercrossed with the previously 

published Pld1-/- mice. Even though, PLD had been predicted to be of importance in embryonic 

development [228, 229], Pld1-/-/Pld2-/- mice were viable and developed normally. The animals 

appeared healthy and did not show spontaneous bleeding. With regard to their behavior and 

appearance they were indistinguishable from wildtype animals. The analysis of Pld1-/-/Pld2-/- 

mice was performed in collaboration with David Stegner from our laboratory [125]. 

3.2.1 Abolished PLD activity in Pld1-/-/Pld2-/- mice  

Lack of PLD did not have an impact on peripheral blood cell counts. In addition, mean platelet 

volume, platelet count and the expression of prominent surface glycoprotein receptors (Table 

3-2) were grossly normal despite the abrogated PLD activity of PLD deficient platelets (Figure 

3-11). Only β1 integrin levels on the platelet surface were slightly altered.  
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Table 3-2: Lack of PLD1 and PLD2 has no effect on platelet glycoprotein expression. Expression 
of glycoproteins on the platelet surface of wildtype and Pld-/-/Pld2-/- mice was determined by flow 
cytometric measurements. Diluted whole blood was labeled with FITC-conjugated antibodies for 15 
min at RT and analyzed directly on a FACSCalibur. Results are presented as mean fluorescence 
intensity (MFI) ± SD of ≥ 5 mice per group. Mean platelet size was determined by forward scatter 
characteristics. Abbreviations: MPV, mean platelet volume; HCT, hematocrit. (Thielmann*, Stegner* 
et al., J Thromb Haemost, 2012) 

 

To analyze platelet turnover, life span experiments were performed. These revealed a slightly, 

but significantly decreased life span of Pld1-/-/Pld2-/- platelets (Figure 3-12A) that was also 

observed in Pld1-/- mice [8]. In order to see whether this defect was still apparent under 

conditions of thrombocytopenia, mice were intravenously injected with an anti-GPIbα antibody 

which depletes mice of platelets by an Fc-independent mechanism [197, 230]. Five days after 

anti-GPIbα injection, platelet count started to recover and was normal within 4 days. This 

process occurred with comparable kinetics in wildtype and Pld2-/- mice (Figure 3-12B) 

indicating that PLD is dispensable for platelet formation. Furthermore, analysis of hematologic 

parameters (Table 3-2) did not show any significant differences between wildtype and Pld1-/-

/Pld2-/- mice apart from slightly elevated white blood cell counts. These findings suggest that 

PLD does not contribute to platelet or other blood cell formation. 
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Figure 3-12: Normal platelet production in Pld1-/-/Pld2-/- mice. (A) Platelet life span was determined 
by injecting DyLight 488-conjugated anti-GPIX Ig derivative into wildtype and  
Pld1-/-/Pld2-/- mice. The percentages of fluorescently labeled platelets are depicted. Values are mean 
± SD of 5 mice per group. (B) Platelet depletion of wildtype and double deficient mice was induced by 
injection of anti-GPIb antibody and the platelet count was monitored at the indicated time points. 
Values are relative platelet counts in % of 5 mice per group ± SD. *P<0.05; **P<0.01. 

 

Figure 3-11: Normal platelet counts and volume in Pld1-/-/Pld2-/- mice despite abolished PLD 
activity (A) Platelets were labeled with [3H]-myristic acid and stimulated with the indicated agonists. 
PLD activity is depicted as percentage of phosphatidylethanol (PtdEtOH) of total [3H]-labeled 
phospholipids. Data are mean ± SD of 4 mice per group. *P<0.05; **P<0.01, ***P<0.005. (B,C) 
Platelet counts (platelets x 103/μl) (B) and platelet volumes (femtoliters) (C) were determined by a 
hematologic analyzer (Sysmex). Values are mean ± SD of 8 mice per group. (Thielmann*, Stegner* 
et al., J Thromb Haemost, 2012) 
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3.2.2 Impaired integrin activation and α-granule release in  

Pld1-/-/Pld2-/- mice 

Previously, PLD had been proposed to modulate secretion of α-granules and lysosomes [67, 

170]. Therefore, it was tested whether PLD is involved in agonist-induced platelet 

degranulation. Since the deficiency of PLD1 already resulted in mild defects in platelet integrin 

activation [8], the analyses were performed with wildtype, Pld1-/- and  

Pld1-/-/Pld2-/- platelets, to allow direct comparison of single and double-deficient platelets. In 

addition, the present study exclusively used mice backcrossed to C57BL/6 background. 

Platelet degranulation upon platelet stimulation with CRP or ADP/U46619 was unaltered in  

Pld1-/- and Pld1-/-/Pld2-/- mice. However, degranulation upon stimulation with intermediate 

concentrations of thrombin was significantly decreased in Pld1-/-/Pld2-/- platelets, whereas  

Pld1-/- mice showed similar P-selectin exposure as wildtype mice (Figure 3-13A). Since 

thrombin does not only bind and cleave the PAR-4 receptor, but also interacts with other 

glycoproteins such as GPV or GPIb, platelet activation studies were repeated with a specific 

PAR-4 activating peptide [231]. Comparable to the defects observed upon thrombin 

stimulation, degranulation of Pld1-/-/Pld2-/- platelets was defective when triggering platelet 

activation with intermediate concentrations of PAR-4 (Figure 3-13A). This data indicates that 

PLD is indeed mediating thrombin-triggered signaling events downstream of PAR-4. The 

secretion of other α-granular proteins, such as PF4 and vWF, was also decreased in  

Pld1-/-/Pld2-/- platelets (Figure 3-13B,C), while Pld1-/- platelets did not show significantly altered 

vWF secretion (Figure 3-13D). To analyze whether this degranulation defect is specific for α-

granules, the secretion of ATP from dense granules was measured. No differences in ATP-

release of wildtype and double deficient platelets was observed when stimulating with thrombin 

(Figure 3-13E), suggesting that PLD is not involved in dense granule secretion. In this assay 

higher thrombin concentrations than previously used were applied, since it was not possible to 

detect ATP release at lower concentrations of thrombin (data not shown). These data reveal 

redundant functions of PLD1 and PLD2 in platelet α-granule release. 

Defective α-granule release could be caused by defective α-granule biogenesis or localization. 

Therefore, transmission electron microscopy was performed in resting and activated platelets 

of wildtype, PLD1 single and double deficient mice. Upon stimulation with low concentration of 

thrombin, platelets from all genotypes started forming protrusions (Figure 3-14). Comparing α-

granule morphology and localization of all tested genotypes revealed no differences indicating 

that α-granule formation is not altered in PLD deficient platelets. 
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Figure 3-13: Pld1-/-/Pld2-/- platelets show defective α-granule release upon PAR-4 receptor 
stimulation. (A) Flow cytometric analyses of degranulation-dependent P-selectin exposure of 
wildtype, Pld1-/- and Pld1-/-/Pld2-/- platelets in response to indicated agonists. Results are mean 
fluorescence intensities (MFI) ± SD of 6 mice per group. (B) Detection of secreted PF4 in the 
supernatant of resting or activated wildtype and Pld1-/-/Pld2-/- platelets. Data are presented as OD450 nm 
± SD of 4 mice per group. (C, D) Measurement of secreted vWF in the supernatant of resting or 
activated wildtype, Pld1-/- and Pld1-/-/Pld2-/- platelets. Data are presented as OD450 nm ± SD of 4 mice 
per group. (E) ATP secretion after stimulation of wildtype and Pld1-/-/Pld2-/- platelets with the indicated 
thrombin concentration was measured on a Chronolog aggregometer. Results are mean of ATP (nM) 
± SD of 4 mice per group. Abbreviations: U46, U46619; CVX, convulxin; Rhod, rhodocytin; Rest, 
resting; CRP, collagen related peptide. *P<0.05; **P<0.01, ***P<0.005. (Thielmann*, Stegner* et al., 
J Thromb Haemost, 2012) 

 

As previously published in the report on Pld1-/- mice with mixed background, also C57/BL6  

Pld1-/- platelets exhibited decreased αIIbβ3 activation upon stimulation with low and 

intermediate thrombin concentrations independently of the genetic background (Figure 3-15A) 

[8]. Pld1-/-/Pld2-/- platelets exhibited an even more pronounced integrin defect. Again, αIIbβ3 

integrin activation was not altered when stimulating the platelets with other common platelet 

agonists. Since a subpopulation of integrins are recruited onto the platelet surface during 

platelet activation, the defective degranulation might be the reason for the reduction of active 

integrins on the surface of stimulated Pld1-/-/Pld2-/- platelets. In order to assess this, the 

abundance of total αIIbβ3 integrins on the surface of resting and activated platelets was 
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determined by flow cytometry. During stimulation of wildtype and Pld1-/- platelets significantly 

more αIIbβ3 integrins were translocated to the platelet surface than in Pld1-/-/Pld2-/- platelets 

(Figure 3-15B). These findings suggest that the additional integrin defect of Pld1-/-/Pld2-/- 

platelets is, at least in part, due to decreased degranulation which results in reduced integrin 

translocation to the plasma membrane. 

However, similar to the findings in Pld1-/- platelets, the defects in integrin activation and 

degranulation did not lead to differences in the aggregation ability of Pld1-/-/Pld2-/- platelets 

(Figure 3-15C). This is in line with reports showing that normal aggregation can occur under 

conditions of sub-optimal integrin activation [9, 232]. 
 

 

Figure 3-14: α-granule localization and abundance is unchanged in PLD deficient platelets.  
(A) Platelets were activated with low amounts of thrombin, electron microscopic images were taken 
and the number of α-granules was determined. Data is presented as mean ± SD of 4 mice per group. 
(B) Representative TEM images of wildtype or PLD-deficient platelets. Asterisks indicate α-granules, 
arrowheads indicate dense granules, bar 1 µM. (Thielmann*, Stegner* et al., J Thromb Haemost, 
2012) 
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Figure 3-15: Deficiency of PLD1 and PLD2 results in decreased integrin activation and 
mobilization without affecting platelet aggregation. (A) Flow cytometric analyses of αIIbβ3 integrin 
activation (JON/A-PE) in response to indicated agonists. Results are mean fluorescence intensities 
(MFI) ± SD of 6 mice per group. (B) Relative αIIbβ3 integrin abundance (14A3) on the platelet surface 
in response to thrombin. Results are given as relative amount of integrin surface abundance of resting 
platelets ± SD of 6 mice per group. (C) Washed platelets were stimulated with the indicated agonists 
and light transmission was recorded on a Born aggregometer. Representative aggregation traces of 
3 individual experiments are depicted. Abbreviations: U46, U46619; CVX, convulxin; Rest, resting; 
CRP, collagen related peptide. *P<0.05, **P<0.01, ***P<0.001. (Thielmann*, Stegner* et al., J Thromb 
Haemost, 2012) 

3.2.3 Combined loss of PLD1 and PLD2 has a minor impact on platelet 
spreading on fibrinogen, whereas spreading on vWF, clot retraction 
and F-actin polymerization are unaltered  

To test the ability of Pld1-/-/Pld2-/- platelets to perform shape change and to rearrange the actin 

cytoskeleton, a process mediated by integrin outside-in signaling during platelet activation, 

spreading analysis were conducted. Platelets were allowed to spread on a fibrinogen coated 

surface in the presence of thrombin. The abundance of lamellipodia and filopodia was analyzed 

after 5, 15 and 30 min. After 5 min, wildtype and Pld1-/-/Pld2-/- platelets started forming filopodia 

and lamellipodia to the same extent. However, after 15 min Pld1-/-/Pld2-/- platelets formed 
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significantly more lamellipodia than wildtype platelets indicating enhanced integrin outside-in 

signaling (wt: 17.1 ± 0.4; Pld1-/-/Pld2-/-: 42.3 ± 7.2 % of platelets in stage 4). Surprisingly, this 

effect was no longer observable after 30 min, where the proportion of fully spread platelets 

was comparable between the two groups. Furthermore, the morphology of formed lamellipodia 

and filopodia was indistinguishable between wildtype and Pld1-/-/Pld2-/- platelets (Figure 3-16). 

For a more detailed analysis of actin and tubulin distribution during platelet spreading, 

immunofluorescence stainings of fully spread platelets on fibrinogen were performed. There 

was no difference in the centrally localized actin fibers and the widely distributed tubulin coils 

detectable (Figure 3-16, right panel). These findings suggest that PLD has a minor function in 

promoting cytoskeletal organization especially during early phases of platelet spreading. 
 

 

Figure 3-16: PLD has a minor impact on platelet spreading on fibrinogen. Washed platelets were 
stimulated with 0.01 U/ml thrombin and allowed to spread on fibrinogen (200 µg/ml). Representative 
DIC images of 3 individual experiments (bottom) and statistical evaluation of the percentage of spread 
platelets at different spreading stages (top). Bar 5 µm. Spread platelets were stained with Phalloidin-
atto647N (red) and α-tubulin antibody-Alexa 488 (green) and analyzed by confocal microscopy. 
Representative images taken 30 min after spreading are depicted (right). Bar 2 µm. 

 

Clot retraction is also a process relying on integrin outside-in signaling. To analyse whether 

this was altered, clot formation was induced in PRP of wildtype and Pld1-/-/Pld2-/- mice and clot 

retraction was monitored. The clot size decreased to the same extent and with similar kinetics 

in both groups. Furthermore, the amount of residual fluid retracted from the clot was similar 
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(Figure 3-17A). Since reorganization of actin facilitates shape change and retraction of 

platelets, the F-actin assembly ability of wildtype and Pld1-/-/Pld2-/- platelets was measured. 

However, there were no significant differences (Figure 3-17B). 
 

 

Figure 3-17: Actin polymerization and dynamics are normal in PLD deficient platelets. (A) Clot 
retraction of PRP upon activation with 3.5 U/ml thrombin in the presence of 20 mM CaCl2 at the 
indicated time points. Representative images of two different experiments are depicted (right). 
Residual liquid is depicted as relative amount of starting volume ± SD of 5 mice per group (left).  
(B) F-actin content measured by flow cytometry after incubating the platelets with phalloidin-FITC. 
The ratio of mean fluorescence intensity (MFI) from activated and resting platelets ± SD of 4 mice per 
group is depicted.  

 

 

Figure 3-18: PLD is not required for spreading of platelets on vWF. Wildtype, Pld1-/- and  
Pld1-/-/Pld2-/- platelets were allowed to spread on vWF for 20 min. Representative DIC images are 
shown (top). Bar 10 µm. Lower panel shows statistical evaluation of filopodia formation according to 
the number of extensions per platelet (0, 1-3, >3) in 7 different fields. The results are mean values ± 
SD (n=5 per group). Spread platelets were stained with Phalloidin-atto647N (red) and α-tubulin 
antibody-Alexa 488 (green) and analyzed with confocal microscopy. Representative images taken 
after 30 min of spreading are depicted (right). Bar 3 µm. 

 

While spreading on fibrinogen triggers the signaling of αIIbβ3 integrins, spreading on vWF is 

caused by GPIb-triggered signaling. Previous studies have shown that GPIb-dependent 
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integrin activation is dependent on PLD1 under shear stress [8]. To test whether this is also 

the case under static conditions and whether PLD1 and PLD2 have redundant functions in 

GPIb signaling, spreading studies on immobilized vWF in the presence of the αIIbβ3 integrin 

blocking agent integrillin were performed with wildtype, Pld1-/- and Pld1-/-/Pld2-/- platelets. 

Spreading of platelets on vWF is limited to cell contraction and filopodia formation. Wildtype, 

Pld1-/- and Pld1-/-/Pld2-/- platelets efficiently extended filopodia (~60% of the platelets formed 1-

3 filopodia, Figure 3-18) which were morphologically indistinguishable. Also actin and tubulin 

distribution during spreading on vWF, which was analyzed by immunofluorescence stainings, 

did not show any differences. Taken together, these results revealed grossly normal formation 

and structure of filopodia and lamellipodia as well as unaltered actin and tubulin organization 

during spreading of Pld1-/- and Pld1-/-/Pld2-/- platelets on different immobilized substrates. 

3.2.4 No difference in procoagulant responses between wildtype and  
Pld1-/-/Pld2-/- platelets 

Upon strong platelet stimulation, the intracellular Ca2+ concentration increases and leads to 

the exposure of phosphatidylserine on the platelet surface. This process induces platelet 

procoagulant activity and promotes blood coagulation. αIIbβ3 integrins are supposed to 

contribute to the procoagulant response of platelets [233, 234]. In a previous study, using  

Pld1-/- mice with mixed background, it had already been shown that PLD1 contributes to 

procoagulant activity. This was attributed to the defective integrin activation of Pld1-/- platelets 

[8]. In order to test whether this defect is also evident in C57BL/6 Pld1-/- platelets, heparinized 

whole blood of wildtype and Pld1-/- mice was perfused over a collagen-coated surface. 

Procoagulant platelets were stained with Annexin A5 which specifically binds to 

phosphatidylserine [235]. However, in contrast to the decreased procoagulant activity 

observed in Pld1-/- mice with mixed background, collagen-induced platelet adhesion and 

procoagulant activity was not altered in platelets of Pld1-/- C57BL/6 mice (data not shown). This 

discrepancy might be explained by the absence of the defect in GPVI triggered integrin 

activation of Pld1-/- C57BL/6 platelets (Figure 3-15A). Next, it was tested whether the lack of 

both PLD isoforms alters platelet procoagulant activity. Notably, the collagen-induced 

procoagulant activity of wildtype and Pld1-/-/Pld2-/- platelets was indistinguishable indicating that 

PLD1 and PLD2 do not contribute to induction of procoagulant activity in platelets (wt: 

0.8 ± 0.2%; Pld1-/-/Pld2-/-: 0.9 ± 0.1% Annexin V labeled platelets, Figure 3-19). 
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Figure 3-19: PLD deficiency does not alter platelet procoagulant activity. Whole blood was 
perfused over a collagen-coated (0.2 mg/ml) surface at a shear rate of 1,700 s−1 for 4 min. Adherent 
platelets were stained with Alexa488–annexin V (0.25 mg/ml). Representative phase contrast, 
fluorescence images and mean relative amount of annexin V positive platelets ± SD of >5 mice per 
group is shown. 

3.2.5 Absence of both PLD isoforms protects mice from pathological 
thrombus formation and stroke without affecting tail bleeding times 

In vivo, platelet activation and thrombus formation occurs in flowing blood, where locally 

produced soluble mediators are rapidly diluted. Under these conditions, subtle defects in 

integrin activation may translate into reduced thrombus formation. It was previously shown that 

Pld1-/- mice were protected from arterial thrombosis in larger vessels, namely in the models of 

chemical injury of the carotid artery and mechanical injury of the abdominal aorta, whereas 

thrombus formation in smaller vessels, such as mesenteric arterioles, was normal [8]. 

Therefore, Pld1-/-/Pld2-/- mice were subjected to this thrombosis model to assess a potential 

redundant role of the two PLD isoforms. Upon vessel injury by topical application of FeCl3, fast 

platelet adhesion occurred and first thrombi, which were bigger than 10 µm, appeared in 

vessels of Pld1-/- mice at a similar time point as in wildtype vessels (data not shown). 

Irreversible vessel occlusion occurred after 19.4 ± 4.1 min in Pld1-/- mice and after 

20.8 ± 3.5 min in wildtype vessels (Figure 3-20A,B), indicating that PLD1 deficiency does not 

affect thrombus formation in vivo.  

However, when both PLD isoforms were lacking, initial platelet adhesion and appearance of 

first thrombi was similar in wildtype and Pld1-/-/Pld2-/- mice (wt: 7.5 ± 2.9 min, Pld1-/-/Pld2-/-: 

7.7 ± 2.9 min, data not shown), but the time to occlusive thrombus formation was more variable. 

Time to full vessel occlusion was significantly prolonged in double-deficient mice (wt: 15.5 ± 

3.9 min, Pld1-/-/Pld2-/-: 19.8 ± 7.7 min, Figure 3-20C,D). Further, the incidence of full vessel 

occlusion was significantly lower in Pld1-/-/Pld2-/- mice than in wildtype mice. While in double-

deficient mice only 12 out of 34 vessels occluded within the observation period of 40 min, in 
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34 out of 38 wildtype vessels occlusive thrombus formation occurred. These findings indicate 

that in this model of vascular injury PLD1 and PLD2 have partially redundant functions. 
 

 

Figure 3-20: Mice lacking both PLD isoforms display defective thrombus formation in vivo. 
Thrombus formation in small mesenteric arterioles was induced by topical application of 20% FeCl3. 
In order to monitor thrombus formation by intravital microscopy platelets were labeled fluorescently. 
Representative images and time to stable occlusion of vessels from wildtype and Pld1-/- mice (A, B) 
and representative images and time to stable occlusion (C, D) of vessels from wildtype and  
Pld1-/-/Pld2-/- mice are shown. Each symbol represents one individual. *P<0.05. (Thielmann*, Stegner* 
et al., J Thromb Haemost, 2012) 

 

To confirm these findings, mice were subjected to another thrombosis model. Thrombus 

formation was induced by applying FeCl3 to the carotid artery. In contrast to the mesenterial 

arterioles the carotid artery represents a macrovascular bed. 7 out of 9 vessels of  

Pld1-/-/Pld2-/- mice did not occlude, while all wildtype vessels showed occlusive thrombus 

formation within the observation period of 30 min (Figure 3-21A,B). Given the fact that PLD1 

single deficient mice are protected in this model [8] this finding does not provide any further 

information on the redundant functions of PLD1 and PLD2.  
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Figure 3-21: Pld1-/-/Pld2-/- mice show defective thrombus formation in vivo but unaltered 
hemostasis. (A) The carotid artery was injured by topical application of 15 % FeCl3 for 1.5 min and 
blood flow was monitored for 30 min. Time to stable occlusion (A) and representative blood flow charts 
(B) are presented. Each symbol represents one individual. (B) Tail bleeding times of wildtype and 
Pld1-/-/Pld2-/- mice. Each symbol represents one individual. **P<0.01. (Thielmann*, Stegner* et al., J 
Thromb Haemost, 2012) 

 

To analyze whether the combined deficiency of both PLD isoforms has an impact on infarct 

development upon MCAO, wildtype and Pld1-/-/Pld2-/- mice were subjected to the tMCAO 

model. 2,3,5-triphenyltetrazolium chloride (TTC) staining of the brains was performed 24 hours 

after reperfusion, in order to differentiate between metabolically active and inactive tissues. 

Infarct volumes of Pld1-/-/Pld2-/- mice were reduced (wt: 87.0 ± 24.8 mm³, Pld1-/-/Pld2-/-: 

51.5 ± 31.0 mm³, Figure 3-22A) leading to a better neurological outcome as assessed by the 

Bederson score (Figure 3-22B). Motoric function and coordination of infarcted mice was 

determined by the grip test demonstrating a better outcome in double-deficient mice (data not 

shown). However, this difference did not reach statistical significance. This model was also 

repeated with PLD1 deficient mice with C57BL/6 background confirming the previously 

published protection of PLD1 deficient mice with mixed background (Figure 3-22C, D) [8]. All 

in all, these findings show that PLD1 is the major isoform contributing to infarct development 

in cerebral ischemia since PLD2 deficiency did not elicit protection and Pld1-/-/Pld2-/- mice were 

not better protected than Pld1-/- mice in this model (Figure 3-10). 

The observed deficiencies in thrombus formation of Pld1-/-/Pld2-/- mice in vivo might lead to 

defective hemostasis. In order to test this, tail bleeding times were assessed. Notably, bleeding 

times of wildtype (422.9 ± 166.4 sec) and double-deficient mice (354.4 ± 150.4 sec; Figure 

3-21C) were comparable indicating that both isoforms are dispensable for normal hemostasis. 
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Figure 3-22: PLD-double deficient mice are protected from ischemic stroke.  
(A, D) Representative images of three corresponding coronal sections and brain infarct volumes of 
wildtype and Pld1-/-/Pld2-/- or C57BL/6 Pld1-/- mice which were subjected to the transient middle 
cerebral artery occlusion model. Data are mean ± SD of 10 mice per group. (B, D) Neurological 
Bederson score assessed 24 h after tMCAO. *P<0.05. (Thielmann*, Stegner* et al., J Thromb 
Haemost, 2012) 

3.2.6 Comparable to constitutive Pld1-/-/Pld2-/- mice, Pld1-/-/Pld2-/- bone 
marrow chimeric mice show impaired thrombus formation in vivo  

Since both PLD isoforms are lacking systemically in Pld1-/-/Pld2-/- mice, it is important to 

address distinct functions of blood-borne and vessel wall PLD in thrombus formation in vivo. 

For this purpose, bone marrow chimeric mice were generated by reconstituting lethally 

irradiated wildtype mice with wildtype or Pld1-/-/Pld2-/- bone marrow. These mice were 

subjected to two different thrombosis models, namely the carotid artery injury model, as a 

macrovascular thrombosis model, and the mesenteric arteriole injury model, as a 

microvascular thrombosis model. In both models thrombus formation was induced by injury of 

the vessel with FeCl3. Upon injury of the carotid artery, all vessels of animals that were 
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transplanted with wildtype bone marrow occluded, while in 4 out of 6 vessels of mice 

reconstituted with bone marrow derived from Pld1-/-/Pld2-/- mice no occlusive thrombus 

formation occurred (Figure 3-23A). Similarly, only 9 out of 16 vessels of bone marrow chimeric 

double-deficient mice occluded in the mesenteric arteriole injury model. Additionally, a 

prolonged time to vessel occlusion (25.4 ± 8.4 min) was evident in those animals when 

compared to animals reconstituted with wildtype bone marrow (18.4 ± 3.5 min, Figure 3-23B). 

In summary, bone marrow chimeric and constitutive knockout mice were protected from 

pathological thrombus formation to similar extents. Thus, blood-borne PLD is the major 

modulator of in vivo thrombus formation (Figure 3-23).  

 

Figure 3-23: Mice lacking both PLD isoforms exclusively in the blood system display defective 
thrombus formation in vivo. Bone marrow chimeric (BMC) Pld1-/-/Pld2-/- mice were generated and 
thrombus formation in vivo was analyzed. (A) Thrombus formation in the carotid artery was induced 
by topical application of 20% FeCl3. Blood flow was monitored with an ultrasonic Doppler flow probe. 
Time to stable occlusion in mice reconstituted with bone marrow derived from wildtype or  
Pld1-/-/Pld2-/- mice is depicted. Each symbol represents one individual. (B) Mesenteric arterioles were 
injured by applying FeCl3 and platelets were labeled fluorescently in order to monitor thrombus 
formation by intravital microscopy. Representative images and time to stable occlusion are shown. 
Each symbol represents one individual. *P<0.05, **P<0.01. 

3.3 Pharmacological inhibition of PLD protects mice from thrombus 
formation and stroke without impairing hemostasis  

Since the aforementioned data demonstrates that deficiency of PLD1 and PLD2 protects from 

arterial thrombosis and ischemic stroke without affecting hemostasis, PLD was suggested as 

potential target for antithrombotic therapy [125]. However, in vivo evidence in support of this 

concept has been lacking. The activity of both PLD isoforms can be blocked by using small 

molecule inhibitors [236]. FIPI was identified as a potent and reversible inhibitor of both PLD 

isoforms, with a half-life of 5.5 hours in vivo and moderate bioavailability [158, 189]. To 

investigate whether FIPI injected mice show a similar phenotype as Pld1-/-/Pld2-/- mice with 
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regard to thrombosis and hemostasis, FIPI treated platelets and mice were analyzed in 

different in vitro an in vivo platelet assays [237]. 

Other groups have already observed PLD-dependent phenotypes in FIPI treated cells and 

animals confirming its specificity and effectiveness [123, 149, 156, 157]. Long-term (10 days) 

in vivo treatment of mice did not show any overt toxicity [154]. 

3.3.1 FIPI treatment abolishes PLD activity and leads to defective integrin 
activation and α-granule release 

 

 
Figure 3-24: In vitro FIPI treatment abolishes 
PLD activity. Platelets were incubated with 
indicated concentrations of FIPI for 5 min at 37°C, 
stimulated with 0.1 U/ml thrombin for 5 min and PLD 
activity was measured. PLD activity is depicted as 
percentage of phosphatidylethanol (PtdEtOH) of 
total [3H]-labeled phospholipids. Data are mean ± 
SD of 4 mice per group. *P<0.05, ***P<0.001. 
(Stegner*, Thielmann* et al., Arterioscler Thromb 
Vasc Biol., 2013) 
 

In order to test whether the pharmacological PLD inhibition leads to similar platelet phenotypes 

as observed in Pld1-/-/Pld2-/- mice, initial experiments on FIPI treated platelets were conducted. 

To assess the lowest concentration abolishing PLD activity, a dose-response experiment by 

measuring PLD activity using an assay, detecting PLD dependent PtdEtOH production, in the 

presence of different FIPI concentrations was performed. In line with previous reports, the 

lowest FIPI concentration leading to maximal PLD inhibition was 100 nM (Figure 3-24) [189]. 

Thus, the dose of 100 nM FIPI was chosen for further experiments. To test whether 

glycoprotein expression on the platelet surface and platelet activation were affected by 

treatment with 100 nM FIPI, flow cytometric analyses were conducted. Glycoprotein 

expression of FIPI treated platelets was indistinguishable from vehicle treated platelets (Table 

3-3). Interestingly, upon platelet stimulation with an intermediate concentration of thrombin FIPI 

treated wildtype platelets exhibited similar defects in integrin activation and P-selectin 

exposure as observed in Pld1-/-/Pld2-/- platelets (Figure 3-25). To exclude potential off-target 

effects by FIPI, flow cytometric assays were also performed with FIPI treated Pld1-/-/Pld2-/- 

platelets showing no additional effects of the FIPI treatment compared to Pld1-/-/Pld2-/- platelets 

or FIPI treated wildtype platelets. As a second readout for α-granule release, vWF secretion 

was measured in vehicle and FIPI treated platelets. In line with the impaired P-selectin 

exposure, vWF secretion was reduced in FIPI treated platelets upon thrombin stimulation 

whereas CRP triggered vWF secretion was unaltered (Figure 3-25). 
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Table 3-3: FIPI treatment has no effect on platelet glycoprotein expression. Platelets were 
incubated with 100 nM FIPI for 5 min at 37°C and expression of glycoproteins on the platelet surface 
of vehicle and FIPI treated mice was determined by flow cytometric measurements. Diluted whole 
blood was labeled with FITC-coupled antibodies for 15 min at RT and analyzed directly on a 
FACSCalibur. Results are presented as mean fluorescence intensity ± SD of ≥ 5 mice per group.  

 

Taken together, these observations proved the efficiency and specificity of FIPI in platelets. 

Nevertheless, the aforementioned assays were performed administering FIPI in vitro. In order 

to test the efficiency of FIPI in vivo, animals were treated with 3 mg/kg FIPI. The dose of 3 

mg/kg (7.2 µM) was chosen with consideration of the half-life of 5.5 hours and 18.5% 

bioavailability when administered orally, in order to establish a conservative protocol keeping 

plasma levels above the lowest required inhibiting concentration of 100 nM, with twice-daily 

administration [154]. If the bioavailability of intraperitoneal delivery is higher than 18.5%, as 

expected, the trough levels of FIPI would be even higher than the required 100 nM, reaching 

plasma concentrations of up to 500 nM. Thus, ELISA and flow cytometric assays were 

repeated using 500 nM. No off-target effects were observed indicating the suitability of this 

FIPI-regiment for in vivo PLD inhibition (data not shown). As reported previously by Chen et 

al., mice receiving 3 mg/kg FIPI did not show any obvious side-effects and behaved normally 

indicating the good tolerance of FIPI treatment [154]. Together with this study, these 

calculations and findings implicate that 3 mg/kg should be sufficient to fully inhibit PLD without 

exerting obvious side-effects. 
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Figure 3-25: In vitro FIPI treatment of platelets results in specific integrin activation and α-
granule release defects. Platelets were incubated with FIPI for 5 min at 37°C. (A) Flow cytometric 
analyses of αIIbβ3 integrin activation (JON/A-PE) and degranulation dependent P-selectin exposure 
in response to thrombin of vehicle and FIPI treated platelets. Results are mean fluorescence 
intensities (MFI) ± SD of 4 mice per group. (B) Measurement of secreted vWF in the supernatant of 
vehicle and FIPI treated platelets. Data are presented as OD450nm ± SD of 4 mice per group. *P<0.05; 
**P<0.01, ***P<0.005. (Stegner*, Thielmann* et al., Arterioscler Thromb Vasc Biol., 2013) 

 

The efficiency of FIPI in vivo treatment was tested by measuring PLD activity of platelets 

isolated from FIPI treated mice. Surprisingly, PLD activity of isolated platelets was only slightly 

reduced (data not shown) and did not show ablation of PLD activity as observed after in vitro 

FIPI treatment. To analyze whether this discrepancy can be explained by the fact that FIPI is 

a reversible inhibitor and therefore its activity might recover during platelet washing, platelets 

were treated with FIPI in vitro before and after platelet washing and PLD activity was 

determined upon thrombin stimulation. Indeed, platelets treated with FIPI before platelet 

washing showed normal thrombin-triggered PLD activity, whereas PLD activity was abolished 

when platelets were treated after washing (Figure 3-26) demonstrating that platelet washing 

abolishes the effect of FIPI treatment. Therefore, it was only possible to perform the respective 

in vitro platelet assays with in vitro treated platelets. 
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Figure 3-26: In vitro FIPI treatment 
is reversible. Platelets were 
incubated with FIPI for 5 min at 37°C 
and PLD activity was measured. PLD 
activity is depicted as percentage of 
phosphatidylethanol (PtdEtOH) of 
total [3H]-labeled phospholipids. Data 
are mean ± SD of 4 mice per group. 
*P<0.05, ***P<0.001.  
 

Since aggregation assays can be performed with PRP, at least one in vitro assay was suitable 

to test in vivo treated platelets. Therefore, platelet aggregation studies of heparinized platelet-

rich plasma of vehicle- and FIPI-treated mice were performed. For this purpose, PAR-4 peptide 

had to be used to stimulate platelets instead of thrombin since heparin was still present. 

Platelets of FIPI treated mice aggregated to the same extent and with similar kinetics as 

platelets from vehicle treated mice (Figure 3-27). Since it has already been shown that Pld1-/- 

and Pld1-/-/Pld2-/- platelets aggregate normally, these findings support once more the notion 

that the treatment with 3 mg/kg FIPI does not exert obvious off-target effect [8, 125]. However, 

they do not provide evidence for the in vivo efficacy of FIPI treatment. 
 

 

 
Figure 3-27: FIPI treatment does not 
affect platelet aggregation. Platelet 
rich plasma of vehicle and FIPI treated 
mice was stimulated with the indicated 
agonists and light transmission was 
recorded on a Born aggregometer. 
Representative aggregation traces of 
3 individual experiments are depicted. 
(Stegner*, Thielmann* et al., 
Arterioscler Thromb Vasc Biol, 2013) 
 

3.3.2 FIPI treatment results in impaired thrombus formation in vivo 
without exerting obvious off-target effects 

So far, the aforementioned tests did not reveal whether the in vivo administration of FIPI inhibits 

PLD specific effects. In order to test this, mice were injected with 3 mg/kg FIPI and in vivo 

thrombus formation was analyzed by subjecting these mice to two well-established thrombosis 

models.  
   67 



Phospholipase D in platelets                 Results 

 

Figure 3-28: FIPI treatment results in impaired thrombus formation in vivo. PLD activity in 
platelets was blocked by intraperitoneal injection of 3 mg/kg FIPI 13 and 1 h before the experiment. 
Carotid arteries were topically injured with a filter paper saturated with 15% FeCl3 for 1.5 min and 
blood flow was measured. Time to stable occlusion (A) and a representative blood flow chart (B) are 
depicted. *P<0.05. (Stegner*, Thielmann* et al., Arterioscler Thromb Vasc Biol, 2013) 

 

First, the carotid artery was injured and blood flow was monitored using an ultrasonic flow 

probe. Similar to the prominent phenotypes of Pld1-/- and Pld1-/-/Pld2-/- mice in this model, only 

3 out of 9 vessels of FIPI treated mice occluded upon injury by topical application of FeCl3, 

while in control mice vessel occlusion occurred in all, but one, vessel (Figure 3-28). In a second 

model, where thrombus formation was induced in mesenteric arterioles, FIPI treatment also 

showed a protective effect. Although the time to first appearance of thrombi >10 µm was 

unaltered (vehicle: 11.5 ± 3.1 min, FIPI: 11.4 ± 3.0 min; Figure 3-29A), the time to vessel 

occlusion was significantly prolonged in FIPI treated mice (vehicle: 20.7 ± 3.9 min, FIPI: 

25.1 ± 7.7 min; Figure 3-29B). These findings demonstrate that the antithrombotic effect of 

FIPI treatment is not limited to larger vessels, which is consistent with the observations in  

Pld1-/-/Pld2-/- mice.  

In order to test whether the phenotype is due to FIPI-induced PLD inhibition, vehicle- and FIPI-

treated wildtype and Pld1-/-/Pld2-/- mice were analyzed in the mesenteric arteriole model. 

Thrombi bigger than 10 µm appeared in similar time frames in all groups (Figure 3-29C). In 

line with the previous data, all vehicle treated vessels of wildtype mice occluded after 14.2 ± 

3.8 min, whereas 4 out of 13 vessels of vehicle-treated double-deficient mice showed no 

occlusion (Figure 3-29D). In cases where vessel occlusion occurred, the time to vessel 

occlusion of vehicle-treated Pld1-/-/Pld2-/- mice was significantly prolonged (19.8 ± 6.4 min, 

Figure 3-29D). Further, FIPI-treated Pld1-/-/Pld2-/- mice exhibited occlusion times (22.2 ± 7.7 

min, Figure 3-29D) indistinguishable from vehicle-treated Pld1-/-/Pld2-/- mice. These results are 

similar to the findings in FIPI treated wildtype mice demonstrating no additional effect of FIPI 

treatment in double-deficient mice. Together, these results show that FIPI is effective in vivo 

without exerting off-target effects. 
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Figure 3-29: FIPI treatment results in impaired thrombus formation in vivo without exerting 
obvious off-target effects. PLD activity in platelets was blocked by intraperitoneal injection of 
3 mg/kg FIPI 13 and 1 h before the experiment. Thrombus formation in small mesenteric arterioles of 
vehicle and FIPI treated wildtype and Pld1-/-/Pld2-/- mice was induced by topical application of 20% 
FeCl3. First appearance of thrombi >10 µm (A, C) and time to occlusion (B, D) was assessed. 
Representative images are shown. Each symbol represents one individual. *P<0.05, **P<0.01. 
(Stegner*, Thielmann* et al., Arterioscler Thromb Vasc Biol, 2013) 

 

3.3.3 FIPI treatment protects from ischemic stroke without impairing 
hemostasis 

Since the combined deficiency of PLD1 and PLD2 leads to protection from infarct progression 

in a model of ischemic stroke we analyzed the effect of FIPI treatment on the outcome of 

thrombo-inflammatory brain infarction. Mice received 3 mg/kg FIPI prior induction of middle 

cerebral artery occlusion. The infarct volumes, which were determined 24 hours after infarction 

by 2,3,5-TTC staining, were significantly reduced (vehicle: 108.7 ± 35.4 mm3, FIPI: 

65.5 ± 19.5 mm3, Figure 3-30A). Accordingly, these mice showed better motor function and 

coordination as assessed by the grip test (Figure 3-30B) and showed less neurological deficits 

determined by the Bederson score (Figure 3-30C).  
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Figure 3-30: FIPI treatment protects mice from ischemic stroke. (A) Brain infarct volumes and 
representative images of three corresponding coronal sections of vehicle and FIPI-treated mice 
subjected to the transient middle cerebral artery model. Data are mean ± SD of 7 mice per group. 
(B,C) Grip test (B) and neurological Bederson score (C) assessed 24 h after tMCAO. *P<0.05, 
**P<0.01. (Stegner*, Thielmann* et al., Arterioscler Thromb Vasc Biol, 2013) 

 

Antithrombotic treatment can be accompanied by increased intracerebral hemorrhages [219, 

238, 239]. In order to test whether this is the case upon FIPI-treatment, infarct morphology was 

visualized by magnetic resonance imaging (MRI). Infarct volumes determined on FIPI treated 

mice were significantly smaller compared to vehicle treated animals (vehicle: 151.4 ± 20.0 

mm3, FIPI: 90.6 ± 21.8 mm3). Remarkably, there were no intracerebral hemorrhages, which 

would have been detectable as hyper-intense regions in the brain (Figure 3-31A). This 

indicates that FIPI does not affect the maintenance of intracerebral hemostasis. In line with 

this observation, tail bleeding times of FIPI treated mice were unaltered as well. In this 

experiment one set of mice also received 6 mg/kg FIPI to see whether a higher inhibitor 

concentration would exert any off-target effects influencing tail bleeding time. Due to the limited 

solubility of FIPI and a maximal tolerable concentration of the solvent DMSO, 6 mg/kg was the 

highest dose that could be delivered intraperitoneally [240]. In theory, application of 6 mg/kg 

(14.4 µM) FIPI should result in plasma concentration levels well above 1 µM, taking the 

presented half-life and bioavailability into account [154]. This is 10-fold above the 100 nM 

concentration required to completely abrogate platelet PLD activity in vitro (Figure 3-24). 

However, even a concentration as high as this did not influence tail bleeding times (Figure 

3-31B). There is no clear correlation between bleeding time and risk of clinical hemorrhages 

[241]. Nevertheless, our data argues for the suitability of pharmacological PLD inhibition as a 

safe and effective treatment for inhibition of thrombotic activity and prevention of ischemic 

stroke.  
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Figure 3-31: FIPI treatment protects from ischemic stroke without impairing hemostasis.  
(A) Representative magnetic resonance (MR) T2-weighted gradient echo images of cerebral infarcts 
at three coronal planes and corresponding brain infarct volumes at day 1 after tMCAO in control and 
FIPI-treated mice. Data are mean ± SD of 4 mice per group. (B) Tail bleeding times of vehicle and 
FIPI treated mice. *P<0.05, **P<0.01. (Stegner*, Thielmann* et al., Arterioscler Thromb Vasc Biol, 
2013) 

3.3.4 Therapeutic FIPI treatment might exert protective effects on mice 
suffering from ischemic stroke 

There is a strong demand to develop effective and safe treatments for acute stroke since 

conventional therapies for the prevention of ischemic stroke and thromboembolism using 

platelet aggregation inhibitors are associated with an increased bleeding risk [219, 238, 239, 

241]. FIPI might be suitable for the prevention of ischemic stroke without affecting hemostasis. 

However, as most patients suffering from stroke arrive in the clinics upon neurological deficits, 

it is of great importance to develop treatments that can be used therapeutically after cerebral 

vessel occlusion. 

In order to test whether FIPI also exerts therapeutic benefits in the setting of acute stroke, mice 

were treated with 3 or 6 mg/kg FIPI directly and 8 hours after tMCAO. Infarct volumes of control 

mice were 116.5 ± 26.2 mm3 which was comparable to sizes detected in brains of mice 

receiving 3 mg/kg FIPI (120.0 ± 24.6 mm3; Figure 3-32A). Mice injected with 6 mg/kg FIPI 

showed slightly reduced infarct sizes (86.9 ± 45.0 mm3), which did not reach statistical 

significance (Figure 3-32A). In line with this, the motorical and global neurological appearance 

of vehicle and 3 mg/kg FIPI treated mice were unaltered, while mice treated with 6 mg/kg had 

slightly better Bederson score values (Figure 3-32B,C). Taken together, these data indicate 

that therapeutic treatment with high dose FIPI might be suitable to protect from ischemic stroke. 

However, for the clinical application further optimization of drug delivery, potency and 

bioavailability is required.  
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Figure 3-32: Therapeutic FIPI treatment might exert protective effects in mice suffering from 
ischemic stroke. Mice were treated with 3 or 6 mg/kg FIPI after middle cerebral artery occlusion and 
8 hours later. (A) Brain infarct volumes of control and FIPI-treated mice subjected to the transient 
middle cerebral artery model. Data are mean ± SD of 7 mice per group. (B,C) Neurological Bederson 
score (B) and grip test (C) assessed 24 h after tMCAO. (Stegner*, Thielmann* et al., Arterioscler 
Thromb Vasc Biol, 2013) 

3.4 PLD activity and regulation in blood platelets  

The above described data revealed an important role for PLD in platelet α-granule secretion 

and integrin activation, indicating that PLD might be important for pathological thrombus 

formation and ischemic stroke development (chapter 3.1 and 3.2). Therefore, it is of great 

interest to elucidate the mechanisms underlying the regulation of PLD activity in platelets. It 

has already been shown that PLD is activated in response to stimulation of platelets with 

common platelet agonists [165, 167-169] and PLD has been postulated to be regulated by 

many signaling molecules which are also crucial for platelet activation [66, 97, 242]. However, 

previous studies on the regulation of PLD were conducted mainly in cell culture using inhibitors 

which might exert off-target effects [62, 243, 244]. Often, contradicting conclusions have been 

drawn from those studies, which emphasizes the need for clarification [168, 170]. Thus, 

analyzing PLD activity in different knockout mouse strains lacking potential modulators of the 

enzyme presents a unique strategy to gain firm evidence of the complex regulation of PLDs. 

There are several methods for the detection of PLD activity available. The 

transphosphatidylation assay takes advantage of the fact that PLD generates PtdEtOH instead 

of PA in the presence of EtOH. PtdEtOH, which is, in contrast to PA, a stable metabolite, can 

be detected by radioactive labeling. This widely accepted PLD activity assay was established 

in our laboratory. To check the suitability and specificity of this assay, PA and PtdEtOH levels 

were determined in resting and activated platelets in the presence and absence of EtOH. In 

thrombin activated platelets PtdEtOH levels were only detectable if EtOH was present (data 

not shown). Under these conditions, PA was only produced to a minor extent indicating the 
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high efficiency of the transphosphatidylation reaction in this setting. As already shown in Figure 

3-11A and 3-24, no PtdEtOH can be detected in PLD deficient or FIPI treated platelets 

confirming that the PtdEtOH production can be solely ascribed to PLD activity. In order to 

analyze which platelet agonists trigger PLD activity in our hands, platelets were stimulated with 

common platelet agonists and PLD activity was measured. In line with previous publications 

[165, 167-169], platelet activation with the common platelet agonists thrombin, CRP and 

U46619 increased PLD activation, whereas ADP had no such effect (Figure 3-33).  
 

 Figure 3-33: PLD activity in platelets 
is stimulated by various agonists. 
Wildtype platelets were labeled with 
[3H]-myristic acid and stimulated with 
the indicated agonists for 15 min. PLD 
activity is depicted as percentage of 
phosphatidylethanol (PtdEtOH) of total 
[3H]-labeled phospholipids. Data are 
mean ± SD of 4 mice per group. 
Abbreviations: Thr, thrombin; U46, 
U46619; Rhod, Rhodocytin. 
Concentrations: 0.1 U/ml thrombin, 
10 µg/ml CRP, 0.12 µg/ml Rhodocytin, 
3 µM U46619, 10 µM ADP, 50 µg/ml 
92H12.  

Weaker platelet agonists such as U46619 induced lower PLD activity as compared to strong 

platelet activation with CRP or thrombin (Figure 3-34). Furthermore, the level of PLD activity 

decreased with the duration of platelet stimulation (Figure 3-33). These findings confirmed that 

the assay is of sufficient sensitivity to discriminate between different PLD activity levels. Of 

note, the CLEC-2 activating snake venom toxin rhodocytin stimulated PLD activity to a lower 

extent than the GPVI agonist CRP (Figure 3-33) pointing to differential PLD regulation 

downstream the two (hem)ITAM receptors. Furthermore, in ADP stimulated platelets only 

basal PLD activity levels were detected. However, ADP is an important secondary mediator 

being released during platelet stimulation thereby maintaining sustained platelet activation. 

Therefore, ADP might exert synergistic effects with other agonists. This was analyzed by 

triggering PLD activity with different agonists in the presence of the ADP scavenger apyrase. 

For this approach and for subsequent measurements the following conditions were chosen: 

Platelet stimulation with CRP or thrombin were conducted for 2 and 15 min in order to monitor 

initial and sustained PLD activation upon stimulation with strong agonists while stimulation with 

U46619 was carried out for 15 min in order to have a setting with weak agonist stimulation. 

Independent of the used agonist, apyrase treated wildtype platelets showed slightly reduced 

PLD activity demonstrating the importance of second wave mediators to sustain platelet 

activation and therefore PLD stimulation in this setting (Figure 3-34).  
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Considering that the previous reports from our laboratory suggested the platelet receptor GPIb 

to signal upstream of PLD, PLD activity in response to GPIb signaling was analyzed. 

Crosslinking of GPIb to vWF is commonly induced by the snake venom toxin botrocetin [8, 

245, 246]. However, the interaction of GPIb to vWF is species-specific and since murine 

recombinant vWF is commercially not available, experiments need to be performed in PRP 

[247]. Unfortunately, the PLD assay cannot be performed in PRP due to excess of 

phospholipids disturbing the thin layer chromatography. Therefore, the GPIb crosslinking 

antibody 92H12 was used. 92H12 was generated in our laboratory (Nieswandt et al., 

unpublished) and triggers GPIb-dependent agglutination and thus, presumably induces the 

GPIb-signaling cascade. Nevertheless, crosslinking of GPIb did not induce PLD activity (Figure 

3-33) indicating that GPIb activation itself under static conditions is not sufficient to activate 

PLD enzymatic activity (Figure 3-33).  

Taken together, these data confirm the involvement of PLD in several platelet signaling 

pathways and propose that the enzyme is tightly regulated during platelet activation. Therefore, 

the aim of the study was to gain insights into these regulatory mechanisms by analyzing PLD 

activity in different knockout mouse strains.  
 

 

Figure 3-34: Blocking reinforcement of 
platelet activation diminishes PLD 
activity. Platelets were labeled with [3H]-
myristic acid and stimulated with the 
indicated agonists in the presence or 
absence of 2 U/ml apyrase. PLD activity is 
depicted as percentage of 
phosphatidylethanol (PtdEtOH) of total [3H]-
labeled phospholipids. Data are mean ± SD 
of 4 mice per group. Abbreviations: U46, 
U46619; CRP, collagen related peptide. 
Concentrations: 0.1 U/ml thrombin, 10 µg/ml 
CRP, 3 µM U46619. *P<0.05, **P<0.01, 
***P<0.001. 

3.4.1 The adapter molecule Grb2 as well as PI3Kβ are crucial regulators 
in GPVI-mediated PLD activation  

The adaptor protein Grb2 is a part of the LAT signalosome and is involved in the tyrosine 

kinase signaling cascade contributing significantly to PLCγ activation in platelets [242]. There 

are several possibilities how Grb2 might influence PLD activity. One option would be indirectly 

through tyrosine kinase modulation since receptor tyrosine kinase stimulation is believed to 

activate PLD and several tyrosine kinases have been shown to interact and phosphorylate 

PLD [67]. Another possibility could be the modulation of PLD enzyme activity by direct 

interaction with Grb2 at specific phosphorylated sites as proposed previously [52]. In order to 
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investigate whether Grb2 influences PLD activity in platelets, PLD activity in wildtype and  

Grb2-/- platelets was determined. PLD activity in Grb2-/- platelets was normal upon stimulation 

with agonists triggering GPCR pathways, such as thrombin and U46619. In line with the 

reduced functionality of ITAM signaling in Grb2-/- mice, PLD activity was severely reduced in 

these platelets when being activated with CRP (Figure 3-35A). These data indicate that Grb2 

contributes to PLD activity downstream of GPVI, but not downstream of GPCRs. 

 

Figure 3-35: Grb2 and PI3Kβ are important mediators of ITAM-triggered PLD activity. Platelets 
were labeled with [3H]-myristic acid and stimulated with the indicated agonists. PLD activity is depicted 
as percentage of phosphatidylethanol (PtdEtOH) of total [3H]-labeled phospholipids. Data are mean 
± SD of 4 mice per group. PLD activity of resting and activated wildtype and Grb2-/- (A) or p110β-/- (B) 
platelets. Abbreviations: U46, U46619; CRP, collagen related peptide. Concentrations: 0.1 U/ml 
thrombin, 10 µg/ml CRP, 3 µM U46619. *P<0.05, **P<0.01, ***P<0.001. 

 

PI3Kβ is important for PIP, PIP2 and PIP3 production and PKB/Akt activation downstream of 

GPCR and ITAM signaling. Furthermore, PI3Kβ is critically involved in regulating the formation 

and stability of integrin αIIbβ3 bonds in platelets [248, 249]. Mice with defective PI3Kβ do not 

have functional platelet responses and are therefore protected from pathological thrombus 

formation [212]. To reveal whether the lack of PI3Kβ and resulting differences in the 

phosphorylation status of phosphatidylinositol affects PLD activity, the PLD assay was 

performed with wildtype and p110βfl/fl,PF-4 Cre platelets. Deficiency of PI3Kβ resulted in defective 

PLD activation upon stimulation of the collagen receptor GPVI with CRP, whereas PLD 

activation downstream of GPCRs was normal (Figure 3-35B). These findings show that PI3Kβ 

is crucial for GPVI dependent PLD activation.  

3.4.2 GPCR-triggered PLD activity is presumably mainly mediated via Gq 

During thrombus growth, second wave mediators such as ADP, TxA2 and thrombin are 

required for the recruitment of additional platelets into the growing thrombus. These mediators 

signal through GPCRs which activate the G-proteins Gq, G13 and Gi/Gz. RhoA is involved in the 

signaling cascade downstream of G13 and Gq proteins regulating MLC phosphorylation and 
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thereby enabling platelet shape change. Furthermore, the activation of the proposed PLD 

activator PKC is prominent downstream of Gq stimulation [22, 250]. 
 

 

Figure 3-36: Different G-proteins are involved in the regulation of PLD activity. Platelets were 
labeled with [3H]-myristic acid and stimulated with the indicated agonists. PLD activity is depicted as 
percentage of phosphatidylethanol (PtdEtOH) of total [3H]-labeled phospholipids. Data are mean ± 
SD of 4 mice per group. PLD activity of resting and activated wildtype and G13-/ (A) or G13-/-/Gq-/- 

platelets (B). Abbreviations: U46, U46619; CRP, collagen related peptide. Concentrations: 0.1 U/ml 
thrombin, 10 µg/ml CRP, 3 µM U46619. *P<0.05, **P<0.01, ***P<0.001. 

 

Since PLD becomes activated by platelet stimulation with the GPCR agonists thrombin and 

U46619 it was analyzed which GPCR signaling pathway contributes most to PLD regulation. 

G13
-/- platelets revealed grossly normal PLD activation downstream of all tested agonists except 

slightly reduced thrombin dependent PLD activation following 2 min of stimulation. However, 

this difference was not evident upon 15 min of stimulation indicating only a weak contribution 

of G13-coupled receptor signaling to PLD activation (Figure 3-36A). To clarify the impact of Gq 

stimulation on PLD activity the Gq single knockout mice would be the appropriate model to 

study. However, at the time when the experiments were conducted, only mice with combined 

deficiency of G13 and Gq were available from collaboration partners. In contrast to the effects 

observed in G13 knockout platelets, the combined deficiency of G13 and Gq proteins led to 

abolished PLD activation upon stimulation with U46619 or thrombin, indicating that Gq proteins 

are essential to generate signals leading to PLD activation (Figure 3-36B). However, due to 

lack of measurements of Gq
-/- platelets, redundant roles of G13 and Gq cannot be excluded and 

need to be resolved in the future. 
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3.4.3 Rho GTPases contribute to the regulation of PLD activity 

Following stimulation of GPCRs several small GTPases become activated [22] and GTPases 

of the Arf and Rho family have been proposed to play major roles in PLD activation [67]. 

Therefore, it was assessed whether Rho GTPases contribute to the regulation of PLD activity 

in platelets. Rac1, a member of the Rho GTPase family, becomes activated through ITAM-, 

but also through Gq-coupled receptor stimulation in platelets [251]. It has been shown to be 

essential for ITAM-dependent PLCγ2 activation in platelets which is critical for thrombus 

formation in vivo [251]. Rac1 deficiency resulted in decreased PLD activation upon stimulation 

with the GPCR agonist U46619 and upon stimulation of GPVI indicating that ITAM and Gq 

signaling utilize Rac1 to promote PLD activation. However, thrombin triggered PLD activation 

was unaltered in Rac1 deficient mice suggesting that other molecules mediate PLD activation 

in this pathway (Figure 3-37A). Next, the impact of RhoA on PLD activity was investigated. 

Lack of RhoA, which is active in response to G13-coupled receptor signaling, led to reduced 

PLD activation upon platelet stimulation with the GPCR agonists thrombin and U46619, 

whereas PLD activity was normal upon GPVI activation with CRP (Figure 3-37B). PLD activity 

upon stimulation with U46619 was largely reduced identifying RhoA as a key player in this 

pathway. Cdc42 also belongs to the Rho family and has diverse functions in platelet activation 

[252]. Similar to RhoA and Rac1, Cdc42 has been identified as activator of PLD1 [71]. 

However, in platelets Cdc42 was established as a negative regulator of platelet secretion and 

aggregation [252]. The PLD assay of Cdc42-/- platelets revealed a tendency towards increased 

PLD activity independently of the applied agonist (Figure 3-37C). Together with the finding that 

PLD activity is to some extent dependent on second wave reinforcement of platelet activation 

(Figure 3-34), the enhanced platelet degranulation and increased ADP/ATP content of  

Cdc42-/- platelets might account for the slightly elevated PLD response of Cdc42-/- platelets 

[252].  

To analyze potential redundant functions of the GTPases, PLD activity of double deficient mice 

was measured. Surprisingly, the analysis of Cdc42-/-/RhoA-/- platelets revealed similar PLD 

activity levels as observed in Cdc42 deficient platelets. Notably, also PLD activation upon 

stimulation of GPCRs, which was diminished in RhoA-/- platelets, was unaltered (Figure 3-38A). 

This suggests, that Cdc42 exerts a role as negative regulator of PLD activity.  
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Figure 3-37: Rac1 and RhoA are activators of PLD while Cdc42 might serve as negative 
regulator of PLD regulator. Platelets were labeled with [3H]-myristic acid and stimulated with the 
indicated agonists. PLD activity is depicted as percentage of phosphatidylethanol (PtdEtOH) of total 
[3H]-labeled phospholipids. Data are mean ± SD of 4 mice per group. PLD activity of resting and 
activated wildtype and Rac1-/- (A), RhoA-/- (B) or Cdc42-/- (C) platelets. Abbreviations: U46, U46619; 
CRP, collagen related peptide. Concentrations: 0.1 U/ml thrombin, 10 µg/ml CRP, 3 µM U46619. 
*P<0.05, **P<0.01, ***P<0.001. 

 

In Rac1-/-/RhoA-/- platelets, GPVI-induced PLD activity was similarly decreased as in Rac1-/- 

platelets whereas thrombin-induced PLD activity was reduced to a greater extent when 

compared to RhoA-/- platelets (Figure 3-38B). These findings suggest redundant functions of 

the two GTPases Rac1 and RhoA in mediating PLD activation downstream of thrombin 

stimulation. 

Taken together, the findings imply that distinct as well as redundant functions of GTPases 

strongly contribute to PLD activation.  
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Figure 3-38: The GTPases have redundant as well as distinct functions in the regulation of 
PLD activity. Platelets were labeled with [3H]-myristic acid and stimulated with the indicated agonists. 
PLD activity is depicted as percentage of phosphatidylethanol (PtdEtOH) of total [3H]-labeled 
phospholipids. Data are mean ± SD of 4 mice per group. PLD activity of resting and activated wildtype 
and RhoA-/- /Cdc42-/- (A) or Rac1-/-/RhoA-/- (B) platelets. Abbreviations: U46, U46619; CRP, collagen 
related peptide. Concentrations: 0.1 U/ml thrombin, 10 µg/ml CRP, 3 µM U46619. *P<0.05, **P<0.01, 
***P<0.001. 

3.4.4 Proteins involved in actin dynamics do not influence the activity  
of PLD  

Previous reports suggested that integrin αIIbβ3 outside-in signaling is important for the 

activation of PLD in platelets [178, 185]. Platelet activation shifts integrins from a low affinity to 

a high affinity state enabling the binding of ligands. For this process, as well as for integrin 

outside-in signaling, talin1 is indispensable [209]. Outside-in signaling of αIIbβ3 integrins 

triggers various cellular processes such as spreading. This requires the rearrangement of the 

cytoskeleton, which includes a change in platelet shape from discoid to spheric [253]. Several 

proteins such as profilin1, twinfillin2 and cofilin are involved in actin remodeling and contribute 

to outside-in signaling [253-256]. Furthermore, it has been demonstrated that actin filaments 

bind to PLD and are supposed to exert bidirectional modulation of PLD activity [114]. With 

knockout animals harboring deficiencies in αIIbβ3 integrin activation or actin remodeling the 

impact of outside-in signaling on PLD activity in platelets can be assessed. Remarkably, 

n-cofilin-/-, Pfn1-/- and Twf2a-/- mice showed normal PLD activation following platelet activation 

independent of the stimulating agonist demonstrating that impaired actin dynamics do not 

influence PLD activity (Figure 3-39). Since integrin activation is still functional in n-cofilin-/-,  

Pfn-/- and Twf2a-/- mice, PLD activity of mice deficient in talin1, a direct αIIbβ3 integrin regulator, 

was measured. However, also in Tln1-/- platelets PLD activity was triggered to the same extent 

as in wildtype platelets clearly excluding integrin αIIbβ3 as important regulator of PLD 

activation (Figure 3-39D). 
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Figure 3-39: Proteins involved in platelet outside-in signaling or actin remodeling do not 
influence the activity of PLD. Platelets were labeled with [3H]-myristic acid and stimulated with the 
indicated agonists. PLD activity is depicted as percentage of phosphatidylethanol (PtdEtOH) of total 
[3H]-labeled phospholipids. Data are mean ± SD of 4 mice per group. PLD activity of resting and 
activated wildtype and n-cofilin-/-  (A), Pfn-/- (B), Twf2a-/-  (C) or Tln1 -/- (D) platelets. Abbreviations: U46, 
U46619. Concentrations: 0.1 U/ml thrombin, 10 µg/ml CRP, 3 µM U46619. *P<0.05, **P<0.01, 
***P<0.001. 

3.4.5 PKCs regulate PLD activity in platelets 

The data presented in this thesis demonstrates the upregulation of PLD activity in various 

platelet signaling pathways. Most of these pathways converge in the activation of PLCs leading 

to an increase in intracellular Ca2+ levels and DAG, an activator of PKC [257]. Platelet function 

has been shown to be distinctly regulated by the different PKC isoforms [258, 259]. It has 

already been shown that the phorbol ester PMA, a direct PKC activator, is capable of activating 

PLD and that the different PKC isoforms can bind PLD, thereby modulating its activity [67, 95]. 

Therefore, it is of great interest to elucidate the impact of PLC and the different PKC isoforms 

on PLD activity. Since not all required knockout mice were available also inhibitors had to be 

used. Notably, off-target effects of these inhibitors cannot be excluded. However, the here 

utilized inhibitors are established and were applied at recommended concentrations thereby 
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reducing non-specific effects [260]. First of all, platelets were treated with the PLC inhibitor U-

73122 and PLD activity was measured. In accordance with the general notion that PLCs are 

of relevance for the regulation of PLDs, PLD activity of U-73122 treated platelets was strongly 

decreased in all tested pathways (Figure 3-40A). However, residual PLD activity was detected 

in thrombin stimulated platelets.  
 

 
Figure 3-40: PLCs regulate PLD activity in platelets. Platelets were labeled with [3H]-myristic acid 
and stimulated with the indicated agonists. PLD activity is depicted as percentage of 
phosphatidylethanol (PtdEtOH) of total [3H]-labeled phospholipids. PLD activity of resting and 
activated vehicle and PLC Inhibitor U-73122 (5 µM) treated platelets (A), vehicle and Ro-318425 (10 
µM) treated platelets (B), platelets from wildtype mice and mice lacking PKCβ (Prkcb-/-) (C) or platelets 
from wildtype mice and mice lacking PKCθ (Prkcq-/-) (D). Data are mean ± SD of 4 mice per group. 
Abbreviations: U46, U46619; CRP, collagen related peptide. Concentrations: 0.1 U/ml thrombin, 10 
µg/ml CRP, 3 µM U46619. *P<0.05, **P<0.01, ***P<0.001. 

 

To analyze whether this defect can be ascribed to insufficient PKC activation, the effect of 

platelet treatment with the non-selective PKC inhibitor Ro-318425 on PLD activity was 

analyzed. Under these conditions, PMA induced PLD activity was totally abolished proving the 

efficacy of the inhibitor treatment (data not shown). Interestingly, U46619 triggered PLD activity 

of inhibitor treated platelets was indistinguishable from control platelets demonstrating PKC 
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independent pathways in this setting. Furthermore, in the presence of Ro-318425, early PLD 

activation upon stimulation with thrombin or CRP was reduced to basal levels whereas 

sustained platelet stimulation with these agonists triggered PLD activity to a small extent 

(Figure 3-40B). These results demonstrated a major role for PKCs in regulating PLD activity, 

but also suggested alternative PKC independent pathways to exist. To elucidate which PKC 

isoforms are responsible for the observed effects, PLD activation in mice deficient in specific 

PKC isoforms in platelets were analyzed. Platelets of Prkcb-/- and Prkcq-/- mice showed similar 

levels of PLD activity as compared to wildtype platelets excluding these isoforms as major 

regulators for PLD activity (Figure 3-40C,D). Ro-318425 treatment most prominently inhibits 

PKC isoforms α and β and PKCα has been shown to be the most important PKC isoform in 

respect to platelet functions. Together with the presented results, this indicates that the inhibitor 

mediated reduction of PLD activity might be PKCα dependent. Other PLC triggered processes 

such as Ca2+ influx might account for the residual levels of PLD activity in Ro-318425 treated 

platelets. Taken together, these findings are in line with previous publications and demonstrate 

an important, but not exclusive, role for PLCs and PKCs in the regulation of PLD. 

3.4.6 Ca2+ is required for proper PLD activation  

Activation of PLC isoforms does not only generate DAG, triggering PKC activation, but also 

results in the production of IP3 leading to the release of Ca2+ from its intracellular stores. 

Declining Ca2+ levels in the stores, in turn, result in sustained influx of extracellular Ca2+ through 

Orai channels, a process called store operated calcium entry (SOCE) [203, 261]. Since platelet 

stimulation induces Ca2+ release and PLD became activated upon stimulation with most 

common platelet agonists, Ca2+ might be a major regulator of PLD activity. To address the 

relevance of Ca2+ in PLD regulation, platelets were treated with different Ca2+ modulating 

agents and platelets of knockout mice with defects in the SOCE machinery were analyzed. 

Initially, platelets were incubated with the Ca2+ chelator EGTA and stimulated with common 

platelet agonists. EGTA mediated chelation of extracellular Ca2+ resulted in significantly 

decreased PLD activity upon stimulation with all used agonists demonstrating that Ca2+ is of 

importance for PLD activation (Figure 3-41A). However, minor PLD activity could still be 

detected in the absence of extracellular Ca2+ upon strong platelet stimulation. To exclude 

unspecific effects by EGTA, PLD activity measurements were also performed in the presence 

of EGTA and high levels of Ca2+. In this case, PLD activity between EGTA treated and control 

platelets was indistinguishable confirming the Ca2+ specific effect of EGTA (data not shown). 

To analyze the contribution of Ca2+ on PLD activity in a more direct approach, the PLD activity 

of platelets treated with Ca2+ mobilizing agents was determined. Thapsigargin (TG) increases 

the cytosolic Ca2+ concentration by inhibiting the sarco/endoplasmic reticulum Ca2+-ATPase 

(SERCA) pump leading to the release of Ca2+ from the intracellular stores [1, 262]. In line with 
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previous publications, TG induces PLD activation to a small extent (basal: 0.06 ± 0.0; TG: 

2.3 ± 0.6 % PtdEtOH of total phospholipids; Figure 3-41B). A23187, an ionophore highly 

selective for Ca2+, that can also increase cytosolic Ca2+ concentrations, confirmed that the 

release of intracellular Ca2+ was able to trigger PLD activity (basal: 0.2 ± 0.1; A23187: 1.9 ± 0.4 

% PtdEtOH of total phospholipids; Figure 3-41B). However, in both cases Ca2+ immobilization 

increased PLD activity only slightly when compared to PLD activity triggered by strong platelet 

agonists, suggesting that an additional trigger is required for proper PLD activation. 
 

 

Figure 3-41: Extracellular Ca2+ is required for proper PLD activation. Platelets were labeled with 
[3H]-myristic acid and stimulated with the indicated agonists. PLD activity is depicted as percentage 
of phosphatidylethanol (PtdEtOH) of total [3H]-labeled phospholipids. Data are mean ± SD of 4 mice 
per group. (A) PLD activity of resting and activated platelets in the absence or presence of 
extracellular Ca2+. (B) PLD activity in wildtype platelets upon treatment with the indicated ionophores 
for 10 min. Abbreviations: U46, U46619; TG, thapsigargin; CRP, collagen related peptide. 
Concentrations: 0.1 U/ml thrombin, 10 µg/ml CRP, 3 µM U46619, 5 µM TG, 10µM A23187. *P<0.05, 
**P<0.01, ***P<0.001. 

 

The influence on PLD activity on extracellular Ca2+ influx can also be analyzed using  

Orai1-/- and Stim1-/- mice, which have strongly reduced store operated calcium entry (SOCE) 

presenting a less artificial system than EGTA treatment. Remarkably, PLD activity upon 

platelet stimulation of Orai1-/- and Stim1-/- platelets was comparable to PLD activity in wildtype 

platelets except when stimulating shortly with thrombin upon which PLD activity was slightly 

reduced in Stim1-/- platelets (Figure 3-42A,B). These data show that PLD can still be activated 

despite the severe reduction of extracellular Ca2+ influx indicating that the contribution of 

intracellular Ca2+ might be more important. These findings appear to contradict the data 

obtained using EGTA. This might, however, be explained by an imbalance in the distribution 

of Ca2+ after treatment with EGTA indirectly affecting intracellular Ca2+ levels and pathways. 

Taken together, these findings demonstrate that the increase of intracellular Ca2+ levels is of 

relevance for PLD activation. 
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Figure 3-42: Only weak Ca2+ influx is required for proper PLD activation. Platelets were labeled 
with [3H]-myristic acid and stimulated with the indicated agonists. PLD activity is depicted as 
percentage of phosphatidylethanol (PtdEtOH) of total [3H]-labeled phospholipids. Data are mean ± 
SD of 4 mice per group. PLD activity of resting and activated wildtype and Stim1-/- (A) or  
Orai1-/- (B) platelets. Abbreviations: U46, U46619; CRP, collagen related peptide. Concentrations: 0.1 
U/ml thrombin, 10 µg/ml CRP, 3 µM U46619. *P<0.05, **P<0.01, ***P<0.001. 
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4 Discussion 

Platelet plug formation is essential to limit excessive blood loss at sites of vascular injury. On 

the one hand, the control of bleeding requires a dynamic interplay of coagulation pathways, 

platelet function and fibrinolysis. Dysregulation of one of these processes can lead to severe 

bleeding disorders that can often be attributed to specific gene defects such as in Glanzmann’s 

thrombasthenia or Bernard-Soulier syndrome [263]. On the other hand, uncontrolled thrombus 

formation has to be prevented since this can lead to full vessel occlusion resulting in myocardial 

infarction or ischemic stroke, which are both leading causes of death worldwide [4, 264, 265]. 

After ischemic stroke, therapeutic thrombolysis is currently the only approved treatment. This 

does, however, not assure a recovery of the tissue. So-called reperfusion injuries that occur 

frequently can lead to secondary infarction events. To avoid this, agents infering with platelet 

aggregation, such as clopidogrel or aspirin, are used on a regular basis, although its 

applicability is often limited due to increased risk of intracranial hemorrhages [239]. Recent 

studies proposed that the initial platelet adhesion and activation process by the platelet 

receptors GPIb or GPVI contribute to the pathomechanism in acute cerebral ischemia. 

Blocking these receptors protected mice in the tMCAO model without inducing intracerebral 

hemorrhages [219, 266]. However, further analysis of the tight signaling network, that underlies 

platelet activation as well as coagulation, is required to identify potentially druggable molecules 

that are critical for pathological thrombus formation and infarct development without affecting 

vascular homeostasis. 

This thesis shows that the redundant functions of PLD1 and PLD2 in platelet α-granule release 

contribute to pathological thrombus formation (Figure 4-1). By using genetic and 

pharmacological approaches, PLD blockade as strategy for antithrombotic therapy was shown 

to be effective. The PLD inhibitor FIPI was established as potential lead-structure for the 

development of antithrombotic agents. As the findings indicated a crucial role for PLD in 

thrombo-inflammatory processes, the underlying regulatory network of PLD activity was also 

analyzed and demonstrated complex regulation mechanisms of PLD enzymes during initial 

platelet activation. 

4.1 PLD2 is dispensable for platelet function in thrombosis and 
hemostasis 

The results presented in this thesis show for the first time that PLD2, in contrast to PLD1, is 

not required for appropriate platelet function, at least in the assays tested. PLD2 deficient 

animals were able to form occlusive thrombi in response to different types of injuries and 
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developed normal infarcts in a stroke model. These findings suggest that PLD2 is not a 

fundamental mediator of arterial thrombosis and thrombo-inflammatory disease (Figure 4-1). 

Similar to PLD1, PLD2 has been implicated in many elementary cellular processes such as 

cytoskeletal reorganization, secretion, cell migration and chemotaxis (Figure 1-6) [67]. Due to 

the supposed involvement of PLD in essential cellular processes, PLD was hypothesized to 

be of major importance during development as well. This, of course, could become overt in 

constitutive knockout mice. Our laboratory has already demonstrated that constitutive genetic 

PLD1 deficiency had no impact on the viability, health and fertility of these mice. In line with 

other studies [124], also PLD2 deficient mice did not display any obvious developmental 

defects, which led to the assumption that the lack of one isoform can be functionally 

compensated by the other isoform [124, 125]. In addition, it has to be considered that many 

experiments suggesting PLD as an indispensable molecule were performed using inhibitors, 

mostly primary alcohols, which clearly have off-target effects. This might have led to an over-

estimation of the significance of PLD. Thus, former results obtained with inhibitors should be 

carefully re-evaluated making use of knockout mice. 

This study and a previous publication on Pld1-/- mice from our laboratory confirmed the 

presence of both PLD isoforms in platelets and their increased activity upon platelet activation 

(Figure 3-1) [8]. Previous studies on the functions of PLD in platelets were often performed by 

linking PLD activity to simultaneously occurring cellular events. Commonly, PLD activity is 

measured by lipid labeling of PtdEtOH with radioactive fatty acids, as PtdEtOH is produced by 

PLD in the presence of ethanol at the expense of PA. However, there are also other 

approaches to quantify PLD activity by using choline production as read-out or using different 

non-radioactive techniques to label products of PLD [32]. However, it is not possible to 

discriminate between the contributions of one single PLD isoform to the overall PLD activity. 

By quantifying PLD activity in isoform-specific knockout mice, this study revealed that PLD2 

only weakly contributes to the total PLD activity in platelets. This identifies PLD1 as the major 

PLD isoform in platelets which is in line with previous reports (Figure 3-1) [8, 170]. However, 

since the PLD activity assay only measures the lipase activity, scaffold functions or other 

lipase-independent functions of the enzymes cannot be excluded. For example, it was shown 

that PLD can activate RhoA in a lipase independent manner by enabling nucleotide exchange 

[75]. A similar mechanism was proposed by Mahankali et al. identifying PLD2 as GEF for Rac2 

[267].  

The increase of PLD activity upon platelet stimulation in Pld2-/- platelets was attenuated 

compared to wildtype platelets demonstrating that PLD2 is inducible upon platelet stimulation 

(Figure 3-1). This contradicted previous reports which suggested PLD1 to be the only inducible 

PLD isoform. Due to its structure and high basal activity in vitro, PLD2 has been postulated to 

exhibit constitutive PLD activity [33, 65, 268]. Notably, the herein presented data shows that 
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the basal PLD activity in resting platelets is only very low and PLD2 deficiency does not 

decrease this basal activity, excluding this isoform as mediator of constitutive PLD activity. In 

contrast, Vorland et al. showed a basal PLD activity of 30% of thrombin response [170]. 

Although the authors also used PtdEtOH production as read-out, they used arachidonic acid 

instead of myristic acid for labeling PLD substrates which might have caused platelet activation 

via the thromboxane receptor triggering PLD activity [168]. Further, the diviating results might 

also be attributed to different acyl specificities of PLD which has been demonstrated similarly 

for PLA2 and PLC and might become apparent by labeling different fatty acids [269]. In addition, 

a report on PLD1 deficiency in platelets from Elvers et al. also showed a high basal PLD activity 

measuring choline release as read-out for PLD activity [8]. Nevertheless, others report a 

negligible constitutive PLD activity in platelets as it is shown in this thesis [168]. In general, it 

is not possible to compare the different results that were obtained with different assays under 

distinct settings directly. However, the transphosphatidylation assay used in this study is the 

most established assay. The primary advantage is the underlying PLD specific 

transphosphatidylation reaction which traps the metabolically labile PLD specific products as 

phosphatidylalcohols. In addition, the labeling with suitable radioactive tracers enables the 

measurement of PLD products in intact cells [32]. 

Despite reduction in PLD activity, platelet function of Pld2-/- mice was normal. Similar to Pld1-/- 

platelets, PLD2 deficient mice displayed unaltered platelet production, assessed by platelet 

size, count and life span. In contrast to the observed αIIbβ3 integrin defect in Pld1-/- mice,  

Pld2-/- platelets showed intact integrin activation. Since PLDs have been proposed as 

regulators of endocytosis, exocytosis and vesicle trafficking, it was speculated that PLD might 

be essential for platelet degranulation. In addition, several studies linked PLD activity to platelet 

aggregation and secretion without being able to discriminate between the contributions of the 

two isoforms. As PLD1 deficiency had no impact on platelet aggregation and secretion, it was 

postulated that PLD2 is required for these processes [8]. This notion was supported by various 

studies showing that the two PLD isoforms are distinctly regulated and localized [65, 87]. 

However, neither aggregation nor α- and dense-granule release was affected by the absence 

of PLD2 (Figure 3-4). This observation stands in stark contrast to a recent publication by Elvers 

et al. suggesting PLD2 to be a negative regulator of platelet degranulation. The authors found 

enhanced aggregation and degranulation of wildtype and Pld1-/- platelets upon FIPI treatment 

proposing a PLD2 mediated inhibition [188]. However, in that study, the authors used a very 

high concentration of FIPI which not only blocks both PLD isoforms, but probably also has 

additional off-target effects. This is critical in that particular case since the FIPI concentration 

was titrated until effects on platelet degranulation (not on PLD activity) could be observed. 

Consequently, the inhibitor concentration used by Elvers et al. was 100-times higher than that 

necessary to abrogate PLD activity [189], suggesting that this may not have been the optimal 
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approach to study PLD function. In addition, they suggest a completely opposite function for 

PLD than previously proposed by using ethanol to abrogate PLD activity. Even though data 

obtained using ethanol need to be carefully re-evaluated it is quite unlikely to identify opposing 

functions using FIPI. For example, a report by Su et al. showed comprehensively that several 

biological processes blocked by alcohol were not affected by FIPI treatment and suggested 

additional inhibitory side-effects of ethanol. However, other processes, such as cell spreading 

and chemotaxis which had been suggested to be PLD mediated, were blocked by FIPI and 

ethanol treatment similarly [158, 189].  

Comparable to the results obtained in Pld1-/- platelets and in contrast to previous suggestions 

proposing PLD as mediator in outside-in signaling, integrin signaling dependent spreading and 

clot retraction was not affected by the lack of PLD2. PLD2 mediated cytoskeletal reorganization 

in cell spreading, cell migration or phagocytosis has been demonstrated amongst others in 

Cos-7 and CHO cell in vitro and in neutrophils in vivo [157, 189]. Again, these discrepancies 

might be ascribed to differences in functional compensation of PLD2 deficiency by PLD1 or 

other PA-generating enzymes in different cell types. In addition, differences in expression, 

regulation and localization of PLD in different cellular settings are very likely.  

Ex vivo blood perfusion assays showed that PLD2 is neither essential for stable thrombus 

formation on collagen nor for firm platelet adhesion on vWF (Figure 3-5). Previously, our 

laboratory demonstrated that PLD1 is of importance for integrin activation downstream of 

GPIb-vWF interaction at high shear rates [8]. This defect was accompanied by defective 

phosphatidylserine exposure during collagen induced thrombus formation [8]. Neither GPIb 

mediated integrin activation, nor procoagulant activity was hampered in Pld2-/- platelets, 

establishing PLD1 as the dominant isoform in this respect (Figure 3-5 and data not shown). 

Since protein functions might only become obvious in analyses under in vivo conditions, that 

might also involve additional cell types or specific niches, mice constitutively lacking PLD2 

were subjected to several experimental in vivo models of thrombosis and hemostasis. In vivo 

thrombus formation and tail bleeding times were unaltered in Pld2-/- mice demonstrating the 

dispensability of PLD2 in these processes (Figure 3-8, 3-9). Taking into account that Pld2-/- 

platelets exhibited no defects in the standard in vitro assays and that arterial thrombi in these 

settings are mainly composed of platelets, these results were not surprising. The development 

of stroke, however, has recently been proposed to be a thrombo-inflammatory pathology 

involving the thrombotic activity of platelets and a strong immune cell response. Platelet 

adhesion receptors, such as GPVI and GPIb, have been proposed to mediate these events, 

but the exact mechanisms remain elusive [270]. It has been postulated that the receptors link 

thrombotic activity to inflammation e.g. by inducing secretion of immune modulators from 

platelets or by facilitating platelet-immune cell interactions [271-273]. It is tempting to speculate 

that PLD2 might play a role in these mechanisms. Furthermore, PLD2 is broadly expressed in 
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immune cells, but the role of the enzyme in the thrombo-inflammatory process of ischemic 

stroke has been unclear. However, the results in Pld2-/- mice in an experimental model of 

ischemic stroke provide evidence that neither platelet nor immune cell PLD2 is involved in the 

development of infarct after focal cerebral ischemia (Figure 3-10).  

Taken together, our results show that PLD2 was of minor relevance for platelet function and in 

vivo thrombus formation, at least under the experimental conditions used in this study. It is 

conceivable that the lack of PLD2 might fully be compensated by PLD1. In order to investigate 

redundant functions of the two PLD isoforms, Pld1-/-/Pld2-/- mice were generated. Data 

obtained with these mice are discussed in section 4.2.  

Even though PLD2 was dispensable for platelet function in our experimental settings it is 

absolutely possible that the presence of PLD2 in platelets becomes crucial under specific 

physiological or pathophysiological conditions involving additional cell types. These could, 

however, not be established with the tools used in this thesis and remain to be elucidated. 

4.2 Functional redundancy of PLD1 and PLD2 in α-granule release 

and pathological thrombus formation 

The herein presented data demonstrates that the combined deficiency of PLD1 and PLD2 

resulted in a selective defect in α-granule secretion in response to submaximal thrombin 

stimulation and thus protection in a model of arterial thrombosis which makes PLDs attractive 

targets for safe antithrombotic therapy (Figure 4-1). 

The double deficient PLD mice provided a valuable tool for the identification of redundant roles 

of the PLD enzymes. The viability of the PLD single deficient mice and the fact that PLD had 

been associated with elementary developmental functions led to the assumption that the 

absence of one PLD isoform can be compensated by the other (as discussed in section 4.1) 

[8, 28, 151]. However, this study, which is the first report on mice lacking both PLD isoforms, 

shows that these animals do not display any obvious defects demonstrating that PLD is not 

required for normal development [125]. Nevertheless, it is conceivable that the PLD derived 

lipid messenger PA might be generated by other mechanisms. This notion is strengthened by 

a report of Pettitt et al. demonstrating that butanol mediated inhibition of PLD did not alter the 

overall amount and molecular species composition of PA [274]. PA production can occur 

through different pathways. While PLD can hydrolyse phospholipids and DAG kinase 

phosphorylates DAG, de novo formation of PA is facilitated by the acylation of glycerol 3-

phosphate or dihydroxyacetone phosphate [275, 276]. The distinctly generated PAs harbor 

different fatty acid compositions and are, thus, suggested to exert distinct functions. PA derived 

from DAG kinase or PLD are thought to be relevant for signaling, while the de novo generated 
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PAs are supposed to be crucial as intermediates for membrane lipid synthesis. Their specific 

contribution, is, however, still under investigation [276]. Despite the different functions of the 

specific PA species, redundancies of PA generating enzymes is possible and might account 

for the surprising observation on the viability of Pld1-/-/Pld2-/- mice. 

Analyses of platelet function in Pld1-/-/Pld2-/- mice revealed a defect in α-granule release 

downstream of sub-maximal stimulation with thrombin, which was not observed in either single 

knockout platelet population (Figure 3-4, 3-13). Previous correlation studies already linked PLD 

activity to secretion and secretory vesicles in different cell types, including platelets [28, 106, 

170]. These did, however, propose PLD to regulate lysosomal and dense granule secretion. 

Our measurements of ATP secretion from platelet dense granules excluded a critical role of 

PLD in this process (Figure 3-13). Furthermore, the observation of reduced secretion in PLD-

deficient platelets contradicts a recently proposed model, which suggested that PLD2 is a 

negative regulator of platelet degranulation [188]. As discussed in section 4.1 this might be 

due to the use of too high inhibitor concentrations exerting off-target effects.  

The finding of the specific α-granule secretion defect in Pld1-/-/Pld2-/- platelets downstream of 

PAR-4 receptor stimulation might have complex reasons. In general, granule secretion and 

biogenesis is highly dependent on PKC [14] and PLD and PKC regulate each other via a 

positive feedback loop [277]. Mice lacking PKCα show defective α-granule release, while 

dense granules are absent [258] demonstrating that one PKC isoform has differential effects 

on the biogenesis and release of the major granule subtypes. Thus, one could speculate that 

the selective α-granule defect observed in platelets lacking PLD results from differential 

regulation of PKC isoforms. Concerning the regulatory mechanism how PLD drives granule 

release, one possible model might be that PLD, or its product PA, regulates α-granule cargo 

proteins and thereby the final steps of vesicle membrane fusion. It has been demonstrated that 

the N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNARE) syntaxin 

4 and VAMP-8 are crucial for α-granule secretion [278, 279]. In vitro studies with syntaxin 4 

vesicles demonstrated that addition of PA enhances the rate of fusion [129]. Via this 

mechanism PLD might promote the secretion of platelet α-granules. The idea that PLD is 

rather involved in the secretion process but not in granule formation or localization is supported 

by the unaltered granule morphology and abundance in Pld1-/-/Pld2-/- platelets as 

demonstrated by TEM analysis (Figure 3-14). 

Despite the fact that PLD activity was detected upon stimulation of GPCR and ITAM coupled 

receptors (Figure 3-1, 3-11), the degranulation defect was only observed upon platelet 

stimulation with intermediate concentrations of PAR-4 receptor triggering agonists. Platelet 

stimulation commonly converges in the activation of PLCs, namely PLCβ or γ, which are acting 

downstream of GPCRs or ITAM-receptors, respectively. These two isoforms have the same 

function: The hydrolysis of PIP2 to IP3 and DAG (Figure 1-3). However, there is a growing body 
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of evidence suggesting slight differences downstream of the two PLC isoforms which might 

explain the observed thrombin-specific degranulation defect of Pld1-/-/Pld2-/- platelets. First, 

DAG production via PLCs and PLDs might have distinct kinetic patterns upon the stimulation 

with the different agonists. DAG formation plays an important role for sustained αIIbβ3 

activation and platelet degranulation. Holinstat et al. proposed a model suggesting that PLD 

activity contributes to sustained DAG production via the generation of PA. This is supposed to 

be facilitated by the initial PLC mediated DAG production which leads to an increase in PIP2, 

a cofactor of PLD and to the activation of PKC [280]. Until now, this biphasic DAG production 

was only shown upon thrombin stimulation [181, 182]. Together with the finding that delayed 

DAG accumulation happens faster upon thrombin stimulation than upon collagen stimulation, 

this data supports the hypothesis that PAR-4 and ITAM signaling lead to a differential 

regulation of DAG production [281]. Thus, PAR-4 signaling might be more dependent on PLD 

mediated DAG production than ITAM signaling. Secondly, PLCβ induces a rapid and short 

Ca2+ release, whereas PLCγ activation was shown to lead to a later and sustained Ca2+ influx 

[282]. Therefore, the different Ca2+ kinetics might also influence the dependency of both 

signaling pathways on PLD. Nevertheless, stimulation with other agonists or higher thrombin 

doses resulted in degranulation of Pld1-/-/Pld2-/- platelets comparable to that observed in 

wildtype platelets (Figure 3-13), demonstrating that PLD is not strictly required for platelet 

secretion. Further studies will be required to reveal the exact mechanism how PLD contributes 

to platelet degranulation.  

In the initial report on Pld1-/- mice [8] we observed a slight defect in integrin activation upon 

submaximal platelet activation with thrombin/PAR4-activating peptide or CRP. It was 

hypothesized that PLD1 might be required for talin-binding to the β-unit of αIIbβ3-integrins 

thereby facilitating its activation. This mechanism had been previously proposed by Powner et 

al. in neutrophils where PLD1 was involved in the activation of the integrin MAC-1. The authors 

demonstrated that PLD derived PA is essential for PIP5K mediated PIP2 production that 

enhances the recruitment of talin to β1 and β2 integrins and thus, their activation [283].  

In the present study, we directly compared the αIIbβ3-integrin inside-out signaling of wildtype, 

Pld1-/- and Pld1-/-/Pld2-/- mice and did not detect any reduction in CRP-responses (Figure 3-15), 

while the defect downstream of thrombin persisted. Of note, in contrast to the initial report, for 

which we used mice of mixed background (Sv/129 x C57BL/6), for this study mice of a pure 

background (C57BL/6) were used. The different genetic background of the mice might affect 

GPVI responses to CRP, e.g. by slight alterations of GPVI surface expression levels. 

Previously, it has been demonstrated that especially CRP-responses depend to a great extent 

on GPVI expression levels [284], providing a possible explanation for this discrepancy between 

this study and our previous report [8]. Alternatively, GPVI signaling could be influenced by 

modifier genes which differ between the two mouse strains. Such a strong impact of modifiers 
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was reported to be the reason for variable in vivo results of Gp6-/- mice [285]. The procoagulant 

activity of platelets is highly dependent on αIIbβ3 and GPIb activation [286]. Since integrin 

responses in Pld1-/- platelets on mixed background were found to be more affected than in 

Pld1-/-/Pld2-/- on pure background platelets, the different background might also account for the 

defects observed in the procoagulant activities (Figure 3-19) [8]. Nevertheless, the adhesive 

defects of Pld1-/- platelets to vWF, which was assessed by perfusion assays, were also found 

in PLD double deficient mice (data not shown) [8]. In both cases, platelets were able to form 

initial adhesion on vWF but stable adhesion or incorporation of platelets in the upper layers of 

thrombi on collagen was defective. This was seen especially at high shear rates, where 

platelet-platelet interactions are no longer dependent on integrin inside-out but rather on shear 

induced biomechanical signaling cascades stabilizing αIIbβ3 integrin adhesion contacts [8, 

287]. Shear specific enhancement of platelet adhesion can occur via two distinct pathways: 

One pathway is initiated by GPIb-vWF interactions and leads to the upregulation of the binding 

affinity of αIIbβ3 integrins [288]. The exact underlying mechanism is still elusive, but responses 

such as activation of PI3K or elevation of Ca2+ have been proposed to be involved [289]. The 

other pathway involves the biomechanical adhesive function of αIIbβ3 integrins that increases 

the lifetime of platelet-platelet interactions at high shear. A recent publication by Hughan et al. 

identified a role of Dok-2 in regulating these shear induced adhesive functions [290]. The 

signaling modulator adhesion- and degranulation-promoting adapter protein (ADAP) was 

identified as a positive regulator of biomechanical outside-in signaling of αIIbβ3 integrins [291]. 

Besides the decreased adhesive capacity of αIIbβ3 integrins downstream of the GPIb-vWF 

interaction, Pld1-/- and Pld1-/-/Pld2-/- platelets might also have defects in the shear induced 

adhesion of αIIbβ3 integrins. However, this remains to be elucidated. 

The combined defects of Pld1-/-/Pld2-/- mice in GPIb mediated integrin activation and α-

degranulation resulted in the protection from experimentally induced thrombosis and stroke. 

The α-degranulation defect of Pld1-/-/Pld2-/- mice did not lead to further decrease in infarct sizes 

in the tMCAO model indicating that Pld1 dependent GPIb signaling and integrin activation are 

of higher relevance in this pathological setting (Figure 3-22). However, Pld1-/-/Pld2-/- mice 

showed decreased thrombus formation in experimentally induced thrombosis in micro- and 

macrovascular beds, whereas Pld1-/- deficiency only protected from thrombosis in larger 

vessels (Figure 3-20, 3-21). These findings indicate that the secretion defect, and not the GPIb 

dependent integrin activation defect, is the major reason for the antithrombotic effects 

observed in double deficient mice upon chemical injury of mesenteric arterioles. In vivo models 

used in this study were performed in distinct vascular beds and by inducing different types of 

injury with variable severity. All models converged, however, in the formation of platelet-rich 

occlusive thrombi. The models vary in their dependence on different cellular and molecular 

interactions during thrombus initiation and propagation. For example, under high shear, which 
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is present in the microvasculature such as mesenteric arterioles, the surface intensities of vWF 

and fibrinogen at the thrombogenic site are important in propagating stable aggregate 

formation. In addition, the requirement of the adhesive property of GPIb increases with the 

shear rate [287]. Thus, it appears likely that the reduced vWF secretion, combined with 

decreased GPIb signaling, at high shear rates might be the reason for the selective protection 

of Pld1-/-/Pld2-/- mice in microvascular thrombosis.  

Together with the previously published data on Pld1-/- mice, the observation that mice lacking 

both PLD isoforms display reduced pathological thrombosis but no obvious hemostatic defects 

indicates that PLD may represent a novel target molecule for antithrombotic therapy. In 

accordance with these findings, the blockade of the GPIbα-vWF interaction, which had been 

shown to be upstream of PLD1, was also efficient in diminishing lesion progression after 

experimentally induced stroke without provoking intracranial bleedings [219, 292]. 

Furthermore, it has been proposed recently by our laboratory, that interfering with platelet 

granule release might also be effective, yet safe, in preventing and limiting infarct progression 

in acute ischemic stroke [293, 294]. Besides these findings, the overall normal appearance of 

the double deficient mice make PLD interesting as target for antithrombotic therapy. Blockade 

of such “safe” target molecules would be of particular advantage since the risk of intracranial 

hemorrhages is the major limitation of current antithrombotic treatment.  
 

 

Figure 4-1: Functions of Phospholipase (PL)D1 and PLD2 in murine platelets. PLD1 mediates 
αIIbβ3 integrin activation upon stimulation of glycoprotein (GP)Ib by interaction with von-Willebrand 
Factor (vWF) or downstream of thrombin triggered GPCR stimulation. While Pld2-/- mice 
demonstrated no function of PLD2 in in vitro and in vivo standard platelet assays, analyses of PLD 
double deficient mice revealed redundant functions of PLD1 and PLD2 in platelet α-degranulation. 
Among other proteins α-granules contain vWF and platelet factor (PF)4. TF indicates tissue factor. 
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In conclusion, the data shows that PLD1 and PLD2 have a redundant function in platelet α-

granule secretion downstream of protease-activated receptors. Considering that current PLD 

inhibitors are isoform-selective at best, but definitively not specific, the observation that mice 

lacking both PLD isoforms display no obvious hemostatic defect is of significant interest. Thus, 

modulating with PLD activity and thereby dampening GPIb-triggered integrin activation [8] and 

platelet degranulation might be a promising and safe strategy for antithrombotic therapy 

(Figure 4-1). 

4.3 Pharmacological inhibition of PLD protects mice from thrombus 
formation and stroke without impairing hemostasis 

The findings on Pld1-/-/Pld2-/- mice suggested that PLD might serve as novel potential target 

for antithrombotic therapy. In order to analyze whether pharmacological PLD blockade is 

suitable as a treatment strategy, the characterization of an in vivo applicable PLD inhibitor with 

regard to its antithrombotic potential is of importance. However, up to date in vivo evidence in 

support of this concept has been lacking. Therefore, the efficiency of the well-established PLD 

inhibitor FIPI in blocking PLD function in vivo and its influence on thrombosis, hemostasis and 

thrombo-inflammatory events were analyzed. 

FIPI protected mice from thrombotic events and ischemic stroke without any detectable side 

effects on hemostasis (section 3.3). These findings are in agreement with the data that was 

obtained in Pld1-/-/Pld2-/- mice [8, 125] and with a previous report showing that pharmacological 

PLD inhibition in vivo phenocopies genetic Pld1 ablation in a mouse cancer model. These 

results suggest potential employment of FIPI as a cancer therapeutic [154]. Our in vitro 

analyses demonstrated that FIPI treatment specifically inhibits PLD-mediated integrin 

activation and α-granule release without affecting platelet surface glycoprotein abundance or 

aggregation ability (Figure 3-25, 3-27; Table 3-3). In addition, in vivo analysis of FIPI treated 

mice revealed a comparable protective effect in the experimental thrombosis and stroke 

models as observed in PLD double deficient mice, but did not show additive effects of FIPI 

treatment in mice lacking both PLD isoforms (Figure 3-29, 3-30). This finding strongly suggests 

a very high specificity of the inhibitor (section 3.3) and is in line with reports from several other 

groups using FIPI in different settings that also describe the absence of any off-target effects 

[154, 157, 158, 189, 295].  

Comparable to the observations in Pld1-/-/Pld2-/- mice, the antithrombotic effect upon FIPI 

treatment was evident upon chemical injury of mesenteric arterioles. This implies that the 

inhibitor sufficiently blocks both PLD isoforms since single knockout mice were not protected 

in this model (Figure 3-20) [8]. Again, in these settings the secretion defect, rather than the 

GPIb dependent integrin activation defect seemed to be causative for the antithrombotic effect 
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of FIPI-treatment (Figure 3-29). However, this was not limited to smaller vessels since the 

protective antithrombotic effect was also observed upon injury of carotid arteries (Figure 3-28). 

This is in line with the reports on Pld1-/- [8] and Pld1-/-/Pld2-/- mice (section 3.2) [125].  

Furthermore, these findings demonstrate that prophylactic FIPI treatment markedly protects 

mice from infarct progression in the setting of acute stroke. As discussed in section 4.2, the 

development of effective and safe treatments for acute stroke and secondary stroke prevention 

is of particular interest since conventional therapies with platelet aggregation inhibitors are 

associated with an increased bleeding risk. For example, platelet inhibition, e.g. by blocking 

GPIIb/IIIa, protects from arterial thrombosis but also leads to increased intracerebral 

hemorrhages in the setting of acute stroke [219, 238, 239]. The paucity of effective therapy 

makes stroke one of the leading causes of death and disability worldwide [3, 4]. Notably, FIPI 

treatment had no obvious effect on intracranial hemostasis proposing PLD inhibition as a 

promising strategy to inhibit thrombotic activity and to prevent secondary infarction [219, 265]. 

This is in line with previous findings of our group implying GPIb blockade or inhibition of platelet 

degranulation as effective and safe approaches to diminish lesion progression in ischemic 

brain tissue [219, 293, 294]. 

However, therapeutic treatment with FIPI, even at high doses, resulted only in a moderate 

protection in ischemic stroke. One may speculate that this was due to limited bioavailability of 

FIPI and, potentially, an insufficient rate of drug delivery from the i.p injection site. Further 

studies with optimized PLD inhibitors or improved drug delivery methods are required to finally 

determine the efficacy of PLD inhibition in the setting of acute stroke. Analogs of FIPI, that are 

also PLD1/PLD2 dual inhibitors, are currently being developed and may eventually provide 

more effective options for PLD inhibition in vivo [296]. A particular challenge concerning this is 

the ubiquitous expression of PLD within the body. Delivery strategies targeting specific cell 

types, e.g. by addition of targeting tags or lipid moieties, would therefore be useful. 

Nevertheless, prophylactic blockade of PLD activity may help to decrease the risk of vessel re-

occlusion after thrombolytic therapy in secondary stroke prevention.  

In summary, our study provides a proof-of-principle that blockade of PLD1 or both isoforms by 

using small molecule inhibitors constitutes a potent and safe antithrombotic approach and 

suggests that FIPI could serve as a good lead structure for drug optimization.  

4.4 Antithrombotic targets 

The above discussed parts of this thesis demonstrate that PLD may serve as a potential 

antithrombotic target as the genetic and pharmacological blockade of the enzyme reduces 

pathological thrombus formation without affecting hemostasis. This is underscored by the fact 

that PLD deficiency only led to a subtle phenotype in the standard platelet and thrombosis 
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assays. Further, genetic ablation and long term pharmacological blockade of the enzyme 

showed no obvious side-effects demonstrating that the enzyme does not play a crucial role in 

development and normal physiology. Thus, PLD is not as important in physiological settings 

as it had been postulated previously, which is, however, advantageous in regard to its use as 

safe antithrombotic target. Our group investigates the complex signaling network controlling 

platelet function in order to identify novel targets for antithrombotic therapy. This includes 

proteins involved in distinct steps of thrombus formation such as platelet -adhesion, -signaling, 

and -granule release as well as coagulation pathways (Figure 4-2). In addition to the profound 

study on the role of PLD in thrombus formation, my work during the thesis also included the in 

vivo analysis of pharmacologically treated or genetically modified mice lacking proteins which 

are important for these processes.  

Regarding platelet granule release NBEAL2 deficient mice were investigated. The Gray 

platelet syndrome (GPS) is a rare inherited bleeding disorder that is accompanied by lack of 

platelet α-granules and that has been linked to mutations in the neurobeachin-like (Nbeal)2 

gene. Mice deficient for NBEAL2 displayed the characteristics of human GPS. Subjecting 

these mice to our in vivo thrombosis models demonstrated the critical contribution of α-granule 

components in the setting of pathological thrombosis. However, NBEAL2 deficiency also led 

to indefinite bleeding of mice in the tail bleeding time model, excluding this protein as 

antithrombotic target [293].  

Furthermore, I was involved in studies on mice with genetic deficiencies in platelet signaling 

molecules. (hem)ITAM signaling is one of two major pathways leading to platelet activation 

and aggregation. Its significance in in vivo thrombus formation has been demonstrated by 

several groups, including ours. Our studies and other on mice deficient in GPVI and CLEC-2 

revealed unexpected functional redundancy of both (hem)ITAM receptors not only in 

thrombosis, but also in hemostasis, which needs to be taken into account when considering 

GPVI blockade as antithrombotic strategy [297, 298]. In addition, we were able to demonstrate 

the involvement of the tyrosine kinase Syk, as an effector of the (hem)ITAM receptors, in in 

vitro and in vivo platelet function (van Eeuwijk et al., unpublished) [299]. Other studies 

comprised the importance of the receptor-operated Ca2+ channel TRPC6 in in vivo thrombus 

formation and hemostasis. These analyses excluded TRPC6 as antithrombotic target as it did 

not contribute to thrombus development [300]. Analysis of Orai-/-/Trpc6-/- mice also excluded 

redundant functions of the two Ca2+ channels in this aspect [184].  

With regard to coagulation pathways, the contribution of the extrinsic coagulation pathway 

modulator Factor VII activating protease (FSAP) to pathological thrombus formation was 

demonstrated by analyzing Fsap-/- mice in collaboration with the group of Prof. Dr. Kanse 

Sandip (Subramaniam et al., submitted for publication).  
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Figure 4-2: Molecules involved in platelet function and blood coagulation: potential 
antithrombotic targets. Platelet signaling via the platelet receptors glycoprotein (GP)VI and C-type 
lectin-like receptor (CLEC)2 involves the activation of Syk and phospholipase (PL)D as well as the 
increase of intracellular calcium (Ca2+) via store operated Ca2+ entry (SOCE) and receptor operated 
Ca2+ entry (ROCE). Platelet activation involves secretion of dense and α-granules. For the biogenesis 
of the latter Neurobeachin like (NBEAL)2 is of importance. Strong platelet activation also leads to the 
activation of the coagulation cascade which is comprised of two pathways. These are the intrinsic 
pathway which is initiated by the activation of the coagulation factor (F)XII and the extrinsic pathway 
triggered by tissue factor (TF). FSAP, factor seven activating protease; vWF, von Willebrand factor; 
PF, platelet factor. 

 

The abovementioned findings demonstrate that experimental mouse models give defined 

answers to questions concerning the in vivo role of a specific molecule in thrombus formation. 

Thus, studies on mice are indispensable tools in order to advance the development of clinically 

relevant antithrombotic treatment strategies. The blockade of the initiator of the extrinsic 

coagulation pathway FXII, for example, has already been shown to be beneficial in terms of 

pathological thrombus formation without exerting bleeding tendencies and, thus, its 

pharmacological inhibition has been proposed as antithrombotic strategy [301-303]. In 

collaboration with CSL Behring we screened the potency of recombinant human FXII blocking 

antibodies to dampen in vivo thrombus formation (unpublished data). One of these antibodies 

has recently been shown to be effective in reducing thrombotic activity in extracorporeal 

circulation without increasing bleeding risk underscoring, that mouse model based conclusions 

are the basis for the development of safe anticoagulation for clinical application [304]. 

The obtained findings demonstrate that, besides PLD, diverse molecules are distinctly 

regulated during different steps of thrombus growth. Certain molecules are more important for 

the regulation of thrombosis than for hemostasis or vice versa suggesting that these processes 
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are not necessarily linked. In addition, the findings clearly demonstrate the importance of 

murine models in cardiovascular research for the elucidation of the regulation of key steps of 

thrombosis. Among mammalian models mice are most amenable to genetic engineering, they 

are fertile, have a short life cycle and are easy to keep. Since several in vivo thrombosis models 

and experimental models of ischemic stroke are established in mice, the mouse provides an 

excellent tool to study thrombosis, hemostasis and thrombo-inflammatory events, as well as 

the underlying complex signaling pathways. However, it has to be considered that there are 

differences in the metabolism and physiology of the different mammalian species. Therefore, 

data obtained in murine disease models cannot be extrapolated directly to human patients. 

However, analyses in mice are a crucial first step for the identification of new and safe 

antithrombotic targets in humans. 

4.5 PLD activity and regulation in blood platelets 

Our findings on the role of PLD in thrombus formation indicated that PLD inhibition might be a 

feasible therapeutic strategy. Thus, understanding how PLD activity is regulated might reveal 

novel pharmacological targets. The regulation of PLD activity has been addressed in a number 

of reports (see 1.3.2) [87].  However, these studies used overexpression of PLD, potentially 

unspecific inhibitors or in vitro correlation studies. Thus, genetically modified mice lacking 

potential modulators of PLD activity provide a valuable tool to address this question.  

The herein presented data suggests that PLD activity is tightly controlled, most probably by 

PLC enzymes, during initial platelet activation, while integrin outside-in signaling does not 

affect the enzyme activity.  
 

PLD activity in platelets in response to classical agonist 

PLD activation was found in response to common platelet agonists such as CRP, thrombin 

and U46619, while ADP did not interfere with PLD activity (Figure 3-33). In contrast, lipase 

activity was diminished in the presence of the ADP scavenger apyrase suggesting that 

secreted ADP amplifies agonist induced PLD activation (Figure 3-34). Most probably this is an 

indirect effect through enhancement of the general platelet response including an upregulation 

of PLD activators. Figure 3-33 revealed that stimulation of platelets with the CLEC-2 

stimulating toxin rhodocytin induces PLD activity, albeit to a smaller extent than observed in 

CRP treated platelets. This discrepancy might be attributed to different Src family kinase 

members active in response to stimulation of CLEC-2 and GPVI [12]. These might, in turn, also 

influence the phosphorylation and activation of PLD, as tyrosine kinases have been 

demonstrated to modulate PLD activity [104-106]. 
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Taken together, the prominent PLD activity downstream of the common platelet agonists is in 

accordance with previous reports and demonstrates the regulation of PLD within various 

platelet signaling pathways [166, 168, 170]. 

Even though PLD has been shown to regulate integrin activation downstream of GPIb, only a 

minor increase in PLD activity of platelets treated with the GPIb clustering antibody 92H12 was 

detected (Figure 3-33). However, the PLD assay does not provide suitable conditions for the 

analysis of GPIb signaling. Incubation of platelets with the 92H12 antibody led to agglutination, 

but it is well established that GPIb activation can only occur properly under shear stress, which 

cannot be applied during PLD activity measurements [247]. Further, it has not been studied, 

whether 92H12 mediated agglutination is dependent on GPIb signaling.  
 

PLD activity in platelet ITAM signaling 

In platelets lacking proteins involved in ITAM signaling, such as Grb2, PI3Kβ or Rac1, the 

reduced platelet reactivity upon stimulation of ITAM signaling, correlated with a decrease in 

PLD activity (Figure 3-35, 3-37A). Grb2 and PI3Kβ deficient platelets show reduced PLCγ 

activation, while lack of Rac1 results in abolished PLCγ activity. Thus, the observed defects 

are probably due to the decreased activity of PLCγ2 in these knockout mice, leading to 

defective activation of the PLD regulators PKC and Ca2+. This hypothesis is strengthened by 

our findings on mice treated with the PLC-inhibitor U-73122, which show ablated PLD activity 

in response to ITAM stimulation (Figure 3-40). 

Of note, PLD activity downstream of GPCRs was not affected by the lack of Grb2 or PI3Kβ. 

Therefore, previously proposed regulations by interactions of PLD with Grb2 and PIP3, the 

product of PI3K, if present in platelets at all, are probably not essential for general PLD activity 

[47, 305]. Nevertheless, these interactions might be important in lipase-independent functions 

of the enzyme. 

Taken together, our PLD activity measurements in mice lacking molecules involved in ITAM 

signaling pathways indicate that PLCγ2 is an important regulator of the enzyme activity.  
 

G-protein mediated PLD activity 

For GPCR mediated PLD activity, knockout mice lacking molecules of G-protein mediated 

signaling have been analysed (Figure 4-3). Regarding Gi mediated signaling, it was 

demonstrated that PLD mediates the activation of mTOR in the PI3K/Akt pathway [142, 306]. 

Lack of PI3Kβ did, however, not influence GPCR triggered PLD activity demonstrating that 

PLD activity is independent of Gi signaling (Figure 3-35B). This is in line with the absence of 

PLD activity in response to ADP in wildtype platelets and to GPCR agonists in G13
-/-/Gq

-/- 

platelets (Figure 3-36, 3-33). However, addressing the effect of Gi ablation on PLD activity 

using knockout mice is required to prove this hypothesis.  
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In contrast to Gi, G13 and Gq signaling pathways are involved in PLD regulation. While the 

combined deficiency of G13 and Gq coupled signaling led to abolished PLD activity in response 

to thrombin and U46619, G13 single knockout platelets exhibited only slightly reduced PLD 

activity levels upon stimulation with thrombin. This finding indicates that mainly Gq mediated 

signaling contributes to PLD activation in thrombin triggered pathways (Figure 3-36A). G13 

specifically signals via RhoA, while Gq additionally transmits signals through activation of PKC 

[22]. Thus, PLD responses might be compensated for by Gq signaling in G13 deficient platelets. 

However, to gain insights into possible redundant or non-redundant functions of the G-proteins, 

platelets of Gq single knockout mice need to be analyzed. 
 

 

Figure 4-3: PLD activation induced by G-protein coupled receptor (GPCR) stimulation in 
platelets. Upon platelet stimulation with the GPCR stimulating agonists thrombin and U46619 
phospholipase (PL)D is distinctly regulated. DAG, diacyl glycerol; PAR, protease-activated receptor; 
TP, TxA2 receptor; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; PI3K, 
phosphoinositide-3-kinase. 

 

Role of GTPases in the regulation of PLD activity 

Platelets lacking specific GTPases that are relevant for transducing signals from G-proteins to 

PLD, helped to elucidate GPCR mediated PLD regulation. Considering that RhoA can be 

activated via G13, a similar reduction in PLD activity would be expected in G13 and RhoA 

deficient platelets. However, PLD activity levels were more strongly reduced in RhoA deficient 

platelets than in G13
-/- platelets upon stimulation with thrombin as well as U46619 which 

indicates the relevance of Gq mediated RhoA activation under these conditions. Interestingly, 

U46619 triggered PLD activity was almost abolished in RhoA-/- platelets, whereas it was normal 

in G13 knockout platelets suggesting U46619 to induce PLD activation mainly via Gq and RhoA 

(Figure 3-36, 3-37B, 4-3). Since PKC inhibitor treated platelets show normal PLD activity in 

response to U46619, the Gq-RhoA-PLD pathway appears to be independent of PKC (Figure 

3-40B). Interestingly, U46619 mediated PLD activity was completely abolished in platelets 

treated with a PLC inhibitor (Figure 3-40A). Based on these findings one might hypothesize 
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that a PKC independent pathway involving RhoA and PLC exists downstream of Gq. This 

hypothesis is strengthened by reports demonstrating direct activation of PLCε and δ by RhoA 

[307, 308]. Nevertheless, it always has to be considered that the roles of PLCs and PKCs on 

PLD activity have been analyzed using inhibitors which might exert off-target effects.  

Rac1, another GTPase downstream of Gq proteins, is not as important as RhoA in GPCR 

mediated PLD activation, as the isolated loss of Rac1 only led to a PLD activity decrease of 

~50% after stimulation with U46619 (Figure 3-37A), whereas thrombin triggered PLD activity 

was unaffected. This might be explained by the fact that RhoA becomes activated downstream 

of G13 and Gq, while Rac1 is only proposed to be activated downstream of Gq in the GPCR 

signaling pathways (Figure 4-3) (Dütting et al., unpublished) [22, 309]. However, the data on 

RhoA-/-/Rac1-/- platelets imply redundant functions of the two GTPases upon platelet 

stimulation with thrombin. Under these conditions, PLD activity is stronger reduced than in the 

respective single deficient platelets (Figure 3-38A).  

Besides RhoA and Rac1, Cdc42 has been proposed as an activator of PLD [71, 87]. 

Determination of PLD activity, showed, however, a slightly increased activity in Cdc42-/- 

platelets, establishing this molecule rather as an inhibiting modulator (Figure 3-37). This 

inhibiting effect might not be direct, as an increased degranulation and ADP/ATP content of 

Cdc42-/- platelets might indirectly act on PLD activity [252]. The combined deficiency in RhoA 

and Cdc42 reversed the defective PLD activation observed in RhoA-/- platelets indicating 

counteracting functions of RhoA on Cdc42 (Figure 3-38A). In the absence of RhoA, Cdc42 

would not be inhibited and can, therefore, block PLD activity. Thus, PLD becomes activated if 

both molecules are missing. This hypothesis is strengthened by a report of Cox et al. proposing 

several cross-talk interactions between Rac1, RhoA and Cdc42 during integrin mediated cell 

migration [310]. 

Taken together, RhoA and Rac1 are activators of PLD activity, as expected, whereas for Cdc42 

this could not be confirmed.  
 

Role of PLCs in PLD enzyme regulation 

Again, PLD activity strongly correlates with platelet reactivity levels and treatment of platelets 

with a PLC-inhibitor ablated PLD activity. Therefore, it is conceivable that, again, rather the 

reduction of PLCβ activity, than the previously proposed protein-protein interactions between 

GTPases and PLD account for the observed defects. 

In summary, our data point to a role of PLCs in PLD enzyme regulation. PLC activation leads 

to Ca2+ influx and PKC activation (Figure 1-3). Concerning the involvement of PKC in PLD 

regulation, our data excludes essential roles for PKCβ and PKCθ (Figure 3-40C,D). 

Nevertheless, treatment with the broad spectrum PKC inhibitor Ro-318425 led to a strong 

reduction of PLD activity (Figure 3-40A). As PKCα has been demonstrated to be the most 
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crucial isoform during platelet stimulation, one may speculate that inhibition of this isoform 

accounts for the reduced PLD activity in the presence of the PKC inhibitor [14]. However, to 

exclude off-target effects of the inhibitor and to shed light on potential redundant functions of 

the different isoforms, PLD activity measurements in platelets from mice lacking PKCα or two 

PKC isoforms are required. 

Furthermore, Ca2+ can act synergistically in response to common platelet agonists and an 

isolated Ca2+ increase can activate PLD by itself (Figure 3-41). These findings are in line with 

the above discussed data implying PLCs as main regulators of PLD activity. PLC inhibition led 

to a more pronounced reduction of PLD activity upon stimulation with U46619 or CRP than the 

treatment of platelets with the PKC inhibitor (Figure 3-40). This is probably due to the fact that 

SOCE is still normal in the presence of the PKC inhibitor, while PLC inhibition diminishes Ca2+ 

influx and blocks PKC activation. Of note, platelets of Stim1-/- and Orai1-/- mice, both exhibiting 

defective SOCE, displayed normal PLD activity upon stimulation of ITAM and G-protein 

coupled receptors, while the chelation of extracellular Ca2+ by EGTA led to a strong reduction 

of PLD activity levels (Figure 3-41A, 3-42) [203, 217]. However, Orai1-/- as well as Stim1-/- mice 

display residual SOCE that might be sufficient to activate PLD [202, 203]. Furthermore, this 

data fits into the current model in which PLD is tightly regulated during store release and SOCE 

[184]. 

In U-73122 treated platelets, residual PLD activity was detectable upon stimulation with 

thrombin, whereas PLD activity was blocked in the other tested pathways upon PLC inhibition 

(Figure 3-40). This is conceivable as thrombin triggered PLD activation involves also PLC 

independent mechanisms e.g. via G13 (Figure 4-3). Further, this finding indicates that CRP 

induced activation of PLD is strongly dependent on PLC and subsequent PKC activation and 

Ca2+ influx. This is in line with the fact that SOCE is more important for CRP triggered induction 

of platelet signaling pathways, than for thrombin mediated platelet stimulation [202, 203].  

The contribution of platelet integrin outside-in signaling to PLD activity is still a matter of debate. 

While some groups postulated that integrin signaling leads to PLD activation, others reported 

no effects on the PLD activation status when blocking integrins [168, 185]. In support of the 

latter, PLD activity levels were normal in platelets with abolished αIIbβ3 integrin activation and 

signaling. This was demonstrated by using platelets lacking talin1. Loss of talin1 in platelets 

abrogates integrin activation and outside-in signaling, while other cellular responses such as 

degranulation and shape change are not affected [209]. In addition, our PLD activity 

measurements of platelets with defective integrin signaling such as in n-cofilin-/-, Pfn1-/- and 

Twf2a-/- platelets revealed unaltered PLD activation [209, 254] (Stritt et al., unpublished data). 

These data rule out any regulatory functions of integrin inside-out and outside-in signaling on 

PLD activation in platelets. Furthermore, neither actin remodeling defects, which are evident 
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in n-cofilin-/-, Pfn1-/- and Twf2a-/- platelets, nor the proposed interaction of PLD and 

phosphorylated n-cofilin are of relevance in the regulation of PLD activity. 

In summary, the above discussed findings indicate that PLD is tightly regulated during initial 

platelet activation by PLCs. The exact mechanism involves, however, various molecules in 

distinct platelet signaling pathways and cannot be defined by our assay. Further, previously 

proposed regulatory effects of Gi mediated signaling and integrin outside-in signaling seem not 

to be required for PLD regulation. In addition, direct protein-protein interactions appear to be 

of minor importance in the analyzed pathways. Some of these conclusions have already been 

proposed by others and are, thus, not entirely unexpected, but definite evidence has been 

lacking [65, 87].  

The application of the PLD activity assay yields a linear readout that only allows the analysis 

of upstream modulators of PLD lipase activity. Complex mechanisms including stimulatory or 

inhibiting feedback loops as well as lipase-independent functions of PLD cannot be addressed 

by this approach. However, to date, the systematic screening of genetically modified mice as 

an approach to elucidate aspects of PLD regulation has not been performed and will help to 

clarify the controversial discussions on the regulatory network underlying PLD activity.  

4.6 Concluding remarks and future plans 

The herein presented results provide new insights into the contribution of the intracellular 

signaling enzyme PLD to the complex mechanisms underlying thrombus formation. The 

current strategy to prevent ischemic cardio- and cerebrovascular diseases includes platelet 

inhibition, which is, however, often accompanied by increased bleeding risks. Therefore, it is 

of high interest to identify target proteins that drive pathological thrombus formation without 

affecting hemostasis. The analysis of genetically modified mice in experimental models of 

arterial thrombosis and thrombo-inflammatory diseases represents a powerful approach to 

identify new target structures. Notably, the data discussed here clearly showed that blocking 

phospolipase D in vivo is efficient and safe to prevent pathological thrombosis and might be a 

suitable approach for future antithrombotic therapy. This is especially based on the functional 

characterization of the PLD inhibitor FIPI which appears to be an appropriate lead structure for 

further drug optimization. Finally, the understanding of the complex regulatory network acting 

on PLD, as well as the PLD mediated processes contributing to thrombus formation are of 

great value concerning the development of new antithrombotic drugs. For future studies new 

anti-PLD drugs with improved bioavailability, efficiency and dosage need to be developed and 

characterized. Regarding the regulation of PLD, further assays with additional knockout mouse 

strains will be crucial to test conclusions that were drawn from experiments in which inhibitors 

were used and to elucidate other PLD regulating molecules. 
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Figure 4-4: Impaired podosome formation and reduced F-actin content in PLD double deficient 
bone marrow megakaryocytes spread on a collagen I matrix. (A,B,C) Wildtype and  
Pld1-/-/Pld2-/- bone marrow (BM) megakaryocytes (MKs) were allowed to spread for 180 min on a 
collagen I-coated (50 µg/ml) surface and number of podosomes (A) and the mean intensity of the F-
actin staining (B) of spread wildtype (black bars) and Pld1-/-/Pld2-/- (grey bars) MKs was quantified 
with the help of ImageJ (NIH) software. Representative images acquired with a TCS SP5 confocal 
microscope (Leica Microsystems) are shown (C). (D) 7 µm cryo sections of whole femora were probed 
with anti-CD105 (Alexa647-labeled; red), anti-GPIb (Alexa488-conjugated; green) antibodies and 
counterstained with DAPI (blue). (E) Quantification of BM MKs per visual field (294 x 221 µm) in 
histological sections. (F) Platelet recovery in mice monitored for 7 days post platelet depletion with an 
anti-GPIb antibody. Data are presented as mean ± SD of at least 100 vs. 100 MKs. *P<0.05, **P<0.01, 
***P<0.001. 

 

Another aspect, which is currently investigated in collaboration with Simon Stritt in our 

laboratory, is the role of PLD in megakaryo- and thrombocytopoiesis. Recently, Ali et al. have 

shown that macrophages from PLD1 or PLD2 deficient mice display abnormalities in actin 

dynamics leading to irregularly shaped podosomes and deficiencies in phagocytic capacities 

[157]. Besides macrophages, podosomes have also been shown to be crucial for the adhesion 

of megakaryocytes to the extracellular matrix of the bone marrow during maturation and 

migration to the vascular niche [311]. MKs in the bone marrow are in close contact with various 

extracellular matrix proteins, such as collagen I and fibronectin in the osteoblastic niche during 

maturation or collagen IV, laminin and fibrinogen in the vascular niche when forming pro-

platelets [311]. However, to date nothing is known on the functional role of PLD in MK 

podosome formation. Initial experiments showed that PLD deficient MKs spread normally on 

collagen I but displayed defective podosome formation and a severely reduced abundance of 

actin filaments (Figure 4-2A, B, C). Further studies displayed aberrant MK morphology in the 

bone marrow of Pld1-/-/Pld2-/- mice with a slightly reduced abundance of MKs in the bone 

marrow (Figure 4-2D, 4-2E). Most interestingly, despite PLDs’ contribution to collagen I 
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mediated podosome formation, platelet production upon antibody-induced thrombocytopenia 

was normal in PLD deficient mice (Figure 4-2F). In order to understand these observations 

and to analyze how these defects are compensated during platelet production, additional 

studies will be required. 
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6 Appendix 

6.1 Abbreviations 
µ micro 

aa amino acid 

AC adenylyl cyclase  

ACD acid-citrate-dextrose buffer 

AD Alzheimer’s disease  

ADAP adhesion- and degranulation-promoting adapter protein 

ADP adenosine diphosphate 

AMPK 5' adenosine monophosphate-activated protein kinase  

APS ammonium peroxodisulphate  

ARF ADP ribosylation factor 

ATP adenosine triphosphate 

BAPTA 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic 

acid  

BM bone marrow 

BMC bone marrow chimeras 

bp base pairs 

BSA bovine serum albumin 

Ca2+ calcium 

CalDAG-GEF1 diacylglycerol regulated guanine nucleotide exchange 

factor I  

CDK cyclin dependent protein kinase 

CISS constructed interference in steady state 

CK casein kinase  

CLEC-2 C-type lectin-like receptor 2 

CRP collagen-related peptide 

CVX convulxin 

DAG diacylglycerol 

DIC differential interference contrast 

DMEM Dulbecco’s modified Eagle's medium 

DMSO dimethyl sulfoxide 

dNTP deoxynucleotidetriphosphate  

Dok downstream of tyrosine kinase 

ECM extracellular matrix 
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EDTA ethylenediaminetetraacetic acid 

EGF epidermal growth factor 

EGTA ethylene glycol tetraacetic acid  

ER endoplasmic reticulum  

ERK extracellular-signal-regulated kinase 

F coagulation factor 

f.c. final concentration 

FACS fluorescence-activated cell sorting 

FcR Fc receptor 

FCS fetal calf serum 

FIPI fluoro-2-indolyl des-chlorohalopemide 

FITC fluorescein isothiocyanate 

FSAP Faktor VII activating protease  

FSC forward scatter 

GDP guanosine diphosphate 

GEF guanine exchange factor  

GEF guanine nucleotide exchange factor 

GP glycoprotein 

GPCR G protein-coupled receptors 

GPS Gray platelet syndrome 

Grb2 growth factor receptor-bound protein 2 

GTP guanosine trisphosphate 

h hour(s) 

HDL3 high density lipoprotein 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HKD HxKx4-Dx6GSxN 

HRP horseradish peroxidase 

IFI integrated fluorescent intensity  

IFN interferon 

Ig immunoglobulin 

IL interleukin 

IP immunoprecipitation 

IP3 inositol-1,4,5-trisphosphate 

ITAM immunoreceptor tyrosine-based activation motif  

JAK Janus kinase  

kDa kilo Dalton 

LAT linker for activation of T cells 
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M molar 

mAb monoclonal antibody 

MAP mitogen-activated protein 

MCA middle cerebral artery  

MFI mean fluorescence intensity 

min minute(s) 

MK megakaryocyte 

MLC myosin light chain 

MLCP myosin light chain phosphatase 

MMP metalloproteinases 

MPV mean platelet volume 

mTOR mammalian target of rapamycin 

NBEAL2 Neurobeachin like 2 

PA phosphatidic acid  

PAR protease-activated receptor 

PC phosphatidylcholine 

PCR polymerase chain reaction 

PE phosphatidylethanolamine 

PE phycoerythrin 

PF Platelet factor  

PF4 platelet factor 4 

PFA paraformaldehyde  

PGI2 prostacyclin 

PH pleckstrin homology  

PI phosphatidylinositol 

PI3K phosphoinositide-3-kinase 

PIP2 phosphatidylinositol-4,5-bisphosphate 

PIP5K phosphatidylinositol 4-phosphate 5-kinase  

PK protein kinase  

PL phospholipase  

Plt platelets 

PMA phorbol 12-myristate 13-acetate 

PPAR peroxisome proliferator-activated receptor 

PRP platelet-rich plasma 

PS phosphatidylserine 

PtdButOH phosphatidylbutanol  

PtdEtOH phosphatidylethanol 
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PTP protein tyrosine phosphatase  

PVDF polyvinylidene difluoride 

PX phox homology  

RC rhodocytin 

RhoGEF Rho-specific guanine nucleotide exchange factor 

RIAM Rap1-GTP-interacting adapter protein  

ROCK RhoA kinase  

rpm rotations per minute 

RT room temperature 

s second(s) 

S6K ribosomal S6 kinase  

SD standard deviation 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Ser  serine 

SERCA sarco/endoplasmic reticulum Ca2+-ATPase 

SH2 Src homology 2 

SK sphingosine kinase  

SLP-76 Src homology 2 domain-containing leukocyte 

phosphoprotein of 76-kDa 

SNARE N-ethylmaleimide-sensitive fusion protein attachment 

protein receptors  

SOCE store-operated calcium entry 

Sos1 son of sevenless homolog 1 

Sphk sphingosine kinase  

SSC side scatter 

STIM stromal interaction molecule 

Syk spleen tyrosine kinase 

TAE TRIS acetate EDTA 

TBS-T TRIS-buffered saline containing Tween 

TEMED tetramethylethylendiamin  

TEM  transmission electron microscopy 

TF tissue factor 

TG thapsigargin  

Thr threonine  

tMCAO transient middle cerebral artery occlusion 

TNF tumor necrosis factor 

TP TxA2 receptor 
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Treg regulatory T cell 

TRIS tris(hydroxymethyl)aminomethane 

TRPC transient receptor potential channel 

TTC 2,3,5-triphenyltetrazolium chloride 

TxA2 thromboxane  

Tyr tyrosine  

U46 U46619  

vWF von Willebrand factor 

w/o without 

WASP Wiskott Aldrich Syndrome protein  

wt wildtype 
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