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Chapter 1

Introduction

The area of network science is an interdisciplinary academic field. The study of intercon-

nected networks, random and small-world networks appears in a wide variety of research

fields, for instance in the study of social networks, sensor networks, economics and clearly

multi-agent coordination and control - just to name some. Two main reasons exist for the

increasing interest [42]:

(i) Particularly in biological and material sciences, it has become fundamental to get a

deeper understanding of how inter-agent interactions affect the collective function-

ality of systems that evolve from networks.

(ii) Networked engineering systems which resemble their natural counterparts in terms

of their functional and operational complexity can be synthesized due to the tech-

nological advances of the past years.

Clearly, being able to control natural or technological systems requires our ultimate un-

derstanding of them. Control theory provides mathematical tools for steering dynamical

systems towards a desired state through the appropriate input manipulation. However,

there is still a general framework missing for the controllability of networks of systems.

We would like to understand how a network of interacting dynamical systems will behave

collectively, given their individual dynamics and the network’s coupling architecture.

The interested reader can find a dense overview of developments in the field of networks

in [43, 51]. Moreover, focusing on graph theoretic methods for the analysis and synthesis

of dynamic multi-agent networks Mesbahi and Egerstedt provide in [42] an introduction

to the analysis and design of dynamic multi-agent networks.

1



2 Chapter 1. Introduction

Controllability of networks

One of the most important and basic problems in control theory is finding necessary

and sufficient conditions for deciding when a system is controllable. Roughly speaking,

controllability of a system refers to its property of being able to be driven from any initial

state to any desired final state within finite time by using an appropriate control function

[31]. For linear systems of the form

ẋ = Ax+Bu(t)

with A ∈ Rn×n, B ∈ Rn×m and u(t) ∈ Rm for all t this is possible if and only if the

controllability matrix

C =

(
B AB A2B . . . An−1B

)
has full rank, i.e. rankC = n. This is called Kalman’s controllability rank condition [40].

Today, the study of controllability of linear systems is well established and the emphasis is

more on broadening the theory to nonlinear control problems. Nonlinear control systems

are either systems, where the underlying dynamics are nonlinear, or the systems are forced

by controls which are applied in a non-additive way. In general, a nonlinear control system

can be written as

ẋ = f(x, u(t)),

where f is a differentiable vector field and u(t) is the control function. A particular

subclass is given by bilinear control systems which have the form

ẋ = (A+ u(t)B)x

with matrices A and B in Rn×n. In general, controllability of a nonlinear control system is

not trivial to check. Therefore, a weaker version of controllability was introduced, which is

denoted by accessibility [24, 52]. It describes the system’s property of being able to reach

an open set of the state space from a given initial state. There is a Lie algebraic rank

condition to decide if the system is accessible [44]. If this Lie algebraic rank condition is

not satisfied, all trajectories must remain in a lower dimensional submanifold of the state

space. For bilinear systems, the Lie algebraic rank condition states that accessibility of

the control system is equivalent to whether the Lie algebra generated by the coefficient

matrices A and B is big enough [52].

To define a network of N interconnected systems we fix for a set of N agents an inter-

connection structure given by a directed graph Γ with edge set E. The time-invariant

dynamics of the set of agents can be described as a nonlinear dynamical system

ẋ = f(x, v(t))

y = g(x),
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where the vector x = (x1, . . . , xN )> captures the state of a system of N nodes. The

differentiable vector field f describes the network’s dynamics when no interconnection

exists and hence, all agents are controlled independently from the others. Clearly,

f(x, v(t)) = (f1(x1, v1(t)), . . . , fN (xN , vn(t)))> ,

where fi(xi, vi(t)) are the dynamics of the i-th agent and g(x) = (g1(x1), . . . , gN (xN )) is

the collective output. Dependent on the interconnection structure, we now fix an inter-

agent interaction strategy. An intuitive approach is to use the output of an agent as a

control input via the interconnections for the other agents. This inter-agent interaction

structure is known as output feedback. The resulting dynamical system has the form

ẋ = f (x, g(x)) .

This is illustrated in Figure 1.1.

ẋ1 = f1(x1, g2(x2) + g3(x3))

y1 = g1(x1)

ẋ2 = f2(x2, 0)

y2 = g2(x2)

ẋ3 = f3(x3, (t)g2(x2))

y3 = g3(x3)

g2(x2)

g2(x2)

g3(x3)

Figure 1.1: Network of interconnected systems under output feedback

Apparently, the dynamical system of the network is not a control system anymore since

we prescribed fixed control inputs. Therefore, we introduce controls by assuming the

interconnection strength to be controllable. Hence, we can steer the strength of the

communication between agents. To do so, we include scalar-valued control functions

uij(t) to steer the output feedback. The network control system can then be written as

ẋ = f (x, u(t)g(x)) .
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This is illustrated in Figure 1.2. Now, the control function u(t) is matrix-valued and

depends on the interconnection structure of the network.

ẋ1 = f1(x1, u12(t)g2(x2) +

u13(t)g3(x3))

y1 = g1(x1)

ẋ2 = f2(x2, 0)

y2 = g2(x2)

ẋ3 = f3(x3, u32(t)g2(x2))

y3 = g3(x3)

u12(t)g2(x2)

u32(t)g2(x2)

u13(t)g3(x3)

Figure 1.2: Network of interconnected systems under controllable output feedback

The characteristics of networks of interconnected systems are affected by the following

factors [39]:

(i) the inter-agent interconnection architecture, which is represented by the underlying

graph;

(ii) the dynamical rules, which describe the time-dependent interactions between the

agents;

(iii) the dynamical rules, which describe the dynamics of the agents.

Clearly, each of these factors contributes to the network’s accessibility or, respectively,

controllability. In this thesis, we are particularly interested in which interconnection

architecture assures accessibility of the overall network system. The center of our interest

are networks with linear agent’s dynamics. The overall control system of the network is

then bilinear and hence, the question for accessibility and controllability is not trivial.

We develop accessibility conditions in terms of the interconnection structure, i.e. we ask

for the graph structure which guarantees the network to be accessible. However, the

interconnection structure of the network is assumed to be static. Thus, we only study the

influence of factor (i) on accessibility of the network control system.

The study of networks which consist of agents with nonlinear dynamics is beyond the

scope of this work.
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Certainly, this work is not the first to study controllability of networks. There exists even

work on network controllability in the direction of studying the network architecture.

For example in [39], the controllability of networks was studied with regard to driver

nodes, i.e. nodes which can offer full control over the network. The authors are in

particular interested in finding the minimum number of driver nodes. In contrast to this

work, the network control system is linear. Another approach was made by Tanner [53]

to study the network architecture. In this work, the author establishes necessary and

sufficient conditions for a group of interconnected systems via nearest neighbor rules to

be controllable by one of them acting as a leader. The underlying graphs of the networks

are not directed and the nodes are not equal. But these are just two examples from the

wide variety of research done on network controllability.

Problem Statement

Let the network system be composed of N controllable and observable linear subsystems,

each represented in the following form

ẋi = Aixi +Bivi(t)

yi = Cixi,

where xi ∈ Rn is the state vector of the i-th node system, vi(t) is the control input and y

is the output. Let the triples (Ai, Bi, Ci) be all of the same size and fixed. Furthermore,

we suppose that the interconnections of the network is given in terms of a directed graph

Γ with edge set E. According to the interconnection structure of the network, we apply

time-dependent output feedback of the form

vi(t) =
∑

(j,i)∈E

uij(t)Cjxj ,

where the sum is over all nodes j such that there exists an interconnection from j to i.

The resulting control system of node i is of the form

ẋi = Aixi +Bi

 ∑
(i,j)∈E

uij(t)Cjxj


and the overall control system of the complete network can be described by

ẋ = (A+ BU(t)C)x. (1.1)
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where

A :=


A1

. . .

AN

 , B :=


B1

. . .

BN

 and C :=


C1

. . .

CN

 .

The matrix valued control function U(t) reflects the interconnection structure of the

network and we assume for the sake of simplicity that it is piecewise constant. Therefore,

it can be considered as a controlled adjacency matrix and written as

U(t) =
∑

(i,j)∈E

uijEij ,

where Eij = (ekl)kl is a matrix with eij = 1 and 0 else. The arising control system is

bilinear. Considering the bilinear control system (1.1) we now study the question which

network architecture ensures accessibility or, respectively, controllability.



Chapter 1. Introduction 7

Accessibility of Bilinear Interconnected Systems

The subject of this thesis is to generalize Brockett’s results from [5, 6, 7] to networks of

linear systems, where output feedback is applied according to the interconnection structure

of the network. To do so, we start with a brief overview on control of bilinear systems

and state known accessibility and controllability conditions in Chapter 2. In Chapter 3

we present the entire proofs of Brockett’s results from [5, 6, 7].

In Chapter 4 and 5 we tackle the problem stated before. We examine the bilinear control

system of the network of the form

ẋ = (A+ BU(t)C)x (1.2)

where the vector x(t) = (x1(t), . . . , xN (t))> represents the state of the system of N nodes

at time t. Here, the matrix-valued control function U(t) reflects the interconnection

structure of the network. We distinguish between the case, when all interconnections are

independently controllable (Chapter 4) and thus, U(t) has the structure of a controlled

adjacency matrix of the underlying graph, and the case, when linear dependencies between

the interconnections are allowed (Chapter 5) and thus, U(t) varies through a subspace of

RN×N .

In detail, this thesis is structured as follows:

Chapter 2 - Preliminaries

We give a brief overview on the control of bilinear systems on Lie groups of the form

ẋ = (A+ u(t)B)x,

where u(t) is a scalar-valued function. To do so, we recall the basic concepts of bilinear

control systems and give the definitions of accessibility and controllability. Additionally,

we introduce the related notion of bilinear control systems on homogeneous spaces.

Exploiting that accessibility of bilinear control systems is equivalent to that the coefficient

matrices A and B generate a certain linear Lie algebra, we state some known necessary

and sufficient conditions on A and B to generate the special linear Lie algebra and,

respectively, the general linear Lie algebra.

Since the stated results from the literature assume the eigenvalues of B to be real, we

proof a further result, which does not need the assumption that the eigenvalues of B are

real. Concluding, we present a reformulation of the known accessibility and controllability

results for sets of matrices. This we use throughout this thesis.
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Chapter 3 - System Lie Algebras of Linear Feedback Systems

In [5], [6] and [7] Brockett studied the behavior of real single-input, single-output systems

(SISO systems) of the form

ẋ = Ax+ u(t)b

y = cx

with A ∈ Rn×n, b ∈ Rn and c ∈ R1×n under time-dependent feedback. Assuming that

the inital linear control system is controllable and observable he examined the system Lie

algebra of the resulting output feedback systems

ẋ = (A+ u(t)bc)x

and showed that there are only four possibilities up to conjugation for the system Lie

algebra depending on the symmetry properties of the transfer function

g(s) = c(sI −A)−1b.

In [5] he proved this by determining the dimension of the Lie algebra as a vector space.

Moreover in [7], he used techniques from Galois theory and related the study of the

generated Lie algebra of A and bc to the study of the polynomial det(sI−A−ubc). Since

the proof of the mentioned result in [7] seems to capture only a special case, we close the

small gaps and present the entire proof in Section 3.1 and 3.2.

Furthermore in [6], Brockett allowed A and bc to be complex matrices and considered

the real generated Lie algebra, where he showed that in this particular case 11 different

conjugation types of Lie algebras can occur. The proof in [6] is, as the author describes

it, a sketch of proof and the result has a minor defect. Therefore, we present the correct

result and the entire proof in Section 3.3.

Concluding in Section 3.4, we give the analogous results for multiple-input, multiple-

output systems (MIMO system) of the form

ẋ = (A+BU(t)C)x

with A ∈ Rn×n, B ∈ Rn×p and C ∈ Rp×n in case the triple (A,B,C) is controllable

and observable. First, we consider control by output feedback, i.e. we regard the matrix

valued control function U(t) to take its values in the vector space of matrices Rp×p. The

result was proven in [5]. Second, we consider control by restricted output feedback, i.e.

we assume the control function to be of the form U(t) = u(t)K with K ∈ Rp×p being a

fixed matrix and u(t) being a scalar valued control function. In this setting we can adapt

the results from the SISO case for the class of cyclic matrices.
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Chapter 4 - Bilinear Control of Networks by Interconnections

We start with networks of single-input, single-output systems (SISO systems) and assume

that the interconnections of the network are all independently controllable. Hence, the

control function U(t) of the bilinear control system

ẋ = (A+ BU(t)C)x

is precisely the controlled adjacency matrix of the graph which represents the intercon-

nection structure of the network. To study the associated system Lie algebra we first give

some basic definitions and results on graphs and relate the graph structure to the struc-

ture of its adjacency matrix. To simplify our examinations we restrict our investigations

to graphs without self-loops.

The main result of this chapter, Theorem 4.6, gives necessary and sufficient conditions

for the control system (1.2) to be accessible in terms of the connectivity of the underlying

graph. We use that the accessibility of bilinear control systems is equivalent to that the

by the coefficient matrices generated system Lie algebra is big enough. When the net-

work consists of at least 3 nodes we compute the system Lie algebra in case every node

is reachable by a path from every other node. This connectivity property is called strong

connectedness. An example for a strongly connected graph is shown in Figure 1.3.

1

2

3

4

Figure 1.3: Example for a strongly connected graph Γ

In this context we prove one controllability result for system (1.2) in case the matrix

A is skew-symmetric (Corollary 4.13). Networks with two nodes are not captured by

these proofs. Thus, we give results for this particular case under additional assumption

either on the graph structure or on the dynamics of the node systems. We show that the

additionally made assumptions are not necessary by an example and pose the conjecture

that Theorem 4.6 still holds true for networks with two nodes.

In Section 4.4 we classify the system Lie algebra of networks when the underlying graph

is not strongly connected. Preliminary, we study the connection between the Lie algebra

generated by all possible values of the controlled adjacency matrix and the existence

of directed paths between nodes (Lemma 4.18). In case a network is disconnected the

bilinear control system is never accessible and the system Lie algebra is conjugated to the

direct sum of the system Lie algebras of the connected components. Therefore, we can
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restrict our considerations to connected networks and clarify the structure of the system

Lie algebra from a not strongly connected network.

For homogeneous networks, i.e. networks where all node systems are equal, the control

system simplifies to

ẋ = (IN ⊗A+ U(t)⊗ bc)x

and we can generalize Brockett’s result on real system Lie algebras in case the node

dynamics are complex. Here, contrary to the preceding chapter, we resort to Brockett’s

result to compute the network’s system Lie algebra.

In the chapter’s last section we show exemplarily how to adapt the ideas of the preceding

sections to networks of multi-input, multi-output systems (MIMO systems). We derive

results for the system Lie algebra on networks of MIMO systems both under output

feedback and under restricted output feedback.

Chapter 5 - Bilinear Control of Networks restricted by Subspaces

Contrary to Chapter 4, we allow for linear dependencies between interconnections, self-

loops and multiple edges. In terms of the control function U(t) of system (1.2) this means

that it is allowed to vary through a subspace of RN×N . Preliminary, we formulate the

main result of Chapter 4 in terms of subspaces.

The new setting demands that we distinguish between homogeneous and heterogeneous

networks. Intuitively, we consider the Lie algebra generated by the subspace through

which the control function varies. We obtain that, if this generated Lie algebra equals the

general linear Lie algebra, accessibility of (1.2) is guaranteed for homogeneous networks.

Using results of Chapter 2 on generators of Lie algebras, we derive explicit requirements

on the subspace to assure accessibility of the bilinear control system.

By tackling the case of heterogeneous networks we obtain that, in contrast to Chapter

4, the node systems have an influence on the system Lie algebra of (1.2). We introduce

the notion of a T -Lie algebra, which is closely related to a Lie algebra. Instead of the Lie

bracket, a T -Lie algebra is closed under the commutator

[A,B]T := ATB −BTA

for all matrices A, B of the generated Lie algebra, where T is a diagonal matrix. The

matrix T depends on all node’s dynamics. Substituting Lie algebra through T -Lie algebra

we can now adapt the results for homogeneous networks to heterogeneous networks and

derive sufficient accessibility conditions.

The last section is dedicated to study networks with a particular interconnection structure.

This we do by investigating controllability properties of bilinear control systems defined by

classes of Toeplitz matrices. To start we introduce the class of circulant matrices for which

the inverse eigenvalue problem is solved, i.e. it is known that for every set of eigenvalues
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there exists a corresponding circulant matrix. For instance, the bug problem asks for the

behavior of N identical acting agents which pursue each other. Here, the interconnection

matrix would be of circulant type. Inspired by the bug problem we consider in the

last section control systems with circulant coefficient matrices. Since circulant matrices

commute, bilinear systems with circulant coefficient matrices cannot be accessible and

hence are never controllable. This leads us to the more general class of pseudo-circulant

matrices, which have similar properties like circulant matrices but do not commute. Using

results from Chapter 2 we compute the Lie algebra of pseudo-circulant matrices, which

coincides with the general linear Lie algebra. This implies accessibility and controllability

of the associated driftless bilinear control system. Since pseudo-circulant matrices are

a special case of Toeplitz matrices we can immediately transfer the results to Toeplitz

matrices and the associated bilinear control systems. When we restrict ourselves to unitary

pseudo-circulant matrices we obtain similar results since the Lie algebra generated by all

unitary pseudo-circulant matrices is the unitary Lie algebra.

As a by-product we deduce that every complex invertible matrix is the finite product of

invertible Toeplitz matrices. Moreover, every complex unitary matrix is shown to be a

finite product of complex unitary Toeplitz matrices.

Applying these results to networks we deduce that homogeneous networks with a certain

Toeplitz interconnection structure are accessible.

We mention that the results of Section 5.4 are published in [45].





Chapter 2

Preliminaries

In this chapter, we give an overview of the basic definitions and results on bilinear control

system with the main focus on accessibility and controllability of bilinear systems. In

Section 2.1 we define what we mean by bilinear systems on matrix Lie groups and present

the definitions of accessibility and controllability for this particular case. Furthermore, we

explain the connection to bilinear control systems on manifolds. The remaining chapter

is devoted to give an overview of known accessibility and controllability conditions for

bilinear systems.

2.1 Bilinear systems on Lie groups and homogeneous spaces

For the sake of simplicity we assume that G is a connected matrix Lie group, i.e. a

connected Lie group of the group GLn(K) of real (K = R) or complex (K = C) invertible

n × n matrices. Let L(G) denote its Lie algebra. Clearly, this is a Lie subalgebra of

gln(K) = Kn×n with Lie bracket [A,B] := AB −BA. The basic definitions and examples

for Lie groups and Lie algebras can be found in Appendix A.

A bilinear control system on a matrix Lie group G is defined by

Ẋ =

(
A+

m∑
i=1

ui(t)Bi

)
X, X ∈ G (2.1)

where the constant matrices A and B1, . . . , Bm ∈ L(G) are given. The controls u1, . . . ,

um ∈ U are piecewise constant functions with values in K. The term AX is called the

drift term of (2.1) and the matrices B1, . . . , Bm are called the control directions. In this

thesis, we only consider bilinear systems where the control set U is not restricted, i.e. the

controls can take arbitrary values in R and C, respectively. For the sake of simplicity,

we assume that the set U contains at least all piecewise constant control functions. The

13
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control system (2.1) is called right-invariant since the vector fields AX and BiX are right-

invariant. For more details on right-invariant vector fields see [28].

A trajectory of the bilinear system (2.1) on G is a continuous curve X(t) in G defined on

an interval [a, b] ⊂ R such that there exists a partition a = t0 < t1 < . . . < tn = b where

the restriction of X(t) to each open interval (ti−1, ti) is differentiable and Ẋ(t) = AiX(t)

for t ∈ (ti−1, ti) for all i = 1, . . . , n. Here, Ai is the linear combination of A,B1, . . . , Bm

corresponding to the control u ∈ Km, which is constant for t ∈ (ti−1, ti). For any T ≥ 0

and any X ∈ G the reachable set at time T of the bilinear system (2.1) from the point X0

is the set RT (X0) of all points X ∈ G, which can be reached from X0 in exactly T units

of time, i.e.

RT (X0) :=
{
X(T )

∣∣ X(·) is a trajectory of (2.1), X(0) = X0

}
.

The reachable set of system (2.1) from a point X0 ∈ G is the set R(X0) of all terminal

points X(T ) with T ≥ 0 of all trajectories of (2.1) starting at X0, i.e.

R(X0) :=
{
X(T )

∣∣ X(·) is a trajectory of (2.1), X(0) = X0, T ≥ 0
}

=
⋃
T≥0

RT (X0).

The right invariance of (2.1) implies R(X0) = R(I)X0 and it is easily seen that S := R(I)

defines a subsemigroup of G, which we refer to as the system semigroup associated to the

bilinear system (2.1). Moreover, the smallest subgroup G of G that contains S is called

the system group of (2.1) and

G =
〈

exp

(
t(A+

m∑
i=1

uiBi)

) ∣∣∣ u ∈ U, t ∈ R〉
holds. Here, 〈A,B〉 denotes the smallest group which contains the matrices A and B.

Clearly, we get

S =
〈

exp

(
t(A+

m∑
i=1

uiBi)

) ∣∣∣ u ∈ U, t ≥ 0
〉
.

Associated to the system group we define the system Lie algebra g of (2.1) as the smallest

Lie subalgebra of L(G) containing A and B1, . . . , Bm, i.e.

g := {A,B1, . . . , Bm}LA.

A system (2.1) is called accessible at a point X ∈ G if the reachable setR(X) has nonempty

interior in G. The system (2.1) is called accessible on G if it is accessible for every X ∈ G.

For bilinear systems on Lie groups it is equivalent that the system semigroup has an

interior point in G.

A bilinear system (2.1) is called controllable on G if, given any pair of points X0, X1 ∈ G,

the point X1 can be reached from X0 along a trajectory of (2.1) for a non-negative time,



Chapter 2. Preliminaries 15

i.e.

X1 ∈ R(X0) for any X0, X1 ∈ G.

This condition is equivalent to R(X) = G for all X ∈ G.

Now, let M be a connected smooth manifold and θ : G ×M → M, (X, p) 7→ X · p be a

smooth group action of G on M .

Definition 2.1. A Lie group G acts on a manifold M if there exists an analytic smooth

mapping θ : G×M →M that fulfills the following conditions:

(i) θ(X2X1, x) = θ(X2, θ(X1, p)) for any X1, X2 ∈ G and any p ∈M ;

(ii) θ(e, p) = p for any p ∈M .

The map θ is then called the group action of G on M and the set θ(p) := {θ(X, p)
∣∣X ∈ G}

is called the orbit of p. A Lie group G acts transitively on a manifold M if θ(p) = M

holds for any p ∈M . A homogeneous space of a Lie group G is a manifold which admits a

transitive action of G. For example, the euclidean space Rn\{0} is a homogeneous space

of GL+
n (R) or SLn(R). Via the Lie group action θ, the one-parameter group exp(tA(u))

of (2.1) on G with A(u) := A0 +
∑m

i=1 uiBi naturally induces a flow p0 7→ exp(tA(u)) · p0

on M . Then θ induces a bilinear control system on M of the form

ṗ = D1θ(I, p)

(
A+

m∑
i=1

ui(t)Bi

)
=

(
A+

m∑
i=1

ui(t)Bi

)
p, p ∈M (2.2)

where D1θ denotes the tangent map of θ with respect to the first component. Conversely,

system (2.1) is called the group lift of system (2.2). One has the following relation between

solutions of (2.1) and (2.2).

Lemma 2.2 ([16]). Let u : [0, T ] → U be any piecewise constant control and let X :

[0, T ] → G be the corresponding unique solution of (2.1). Then p(t) := θ(X(t), p0) is a

solution of (2.2). Moreover, any trajectory of (2.2) with piecewise constant controls can

by obtained in this way.

By the Lie group action θ we get for the reachable sets of (2.2)

R(p0) = S · p0

for p0 ∈M . The definition of accessibility and controllability can be immediately assigned

to systems of the form (2.2): System (2.2) is called accessible if all reachable sets have

non-empty interior and controllable if all reachable sets coincide with the entire state

space.
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Theorem 2.3 ([16]). Let G be the system group of system (2.1) and M a connected

smooth manifold. Then the following statements are equivalent:

(i) The induced system (2.2) on M is accessible.

(ii) The group G acts transitively on M .

In the sequel we concentrate on induced bilinear systems on the manifold Rn \ {0} of the

form

ẋ =

(
A+

m∑
i=1

ui(t)Bi

)
x, x ∈ Rn \ {0}. (2.3)

One has the following accessibility criterion for bilinear systems on Rn \ {0}.

Theorem 2.4 ([3, 36]). A bilinear system (2.3) on Rn \ {0} is accessible if and only if

its system Lie algebra {A,B1, . . . , Bm}LA is conjugated to one of the following types:

(1) so(n)⊕ R if n ≥ 2.

(2) su(n/2)⊕ eiαR or su(n/2)⊕ C if n is even and n ≥ 3.

(3) sp(n/4)⊕ eiαR, sp(n/4)⊕ C or sp(n/4)⊕H if n = 4k.

(4) g2 ⊕ R if n = 7.

(5) spin(7)⊕ R if n = 8.

(6) spin(9)⊕ R if n = 16.

(7) sl(n,R) or gl(n,R) if n ≥ 2.

(8) sl(n/2,C), sl(n/2,C)⊕ eiβR or gl(n/2,C) if n = 2k.

(9) sl(n/4,H), sl(n/4,H)⊕ eiβR or sl(n/4,H)⊕ C if n = 4k.

(10) sl(n/4,H)⊕ sp(1) or sl(n/4,H)⊕H if n = 4k.

(11) sp(n/2,R) or sp(n/2,R)⊕ R if n is even and n ≥ 3.

(12) sp(n/4,C), sp(n/4,C)⊕ eiβR or sp(n/4,C)⊕ C if n = 4k.

(13) spin(9, 1,R) or spin(9, 1,R)⊕ R if n = 16.

Here, α and β have to satisfy α ∈ (−π
2 ,

π
2 ), β ∈ [−π

2 ,
π
2 ].

A sufficient criterion for controllability of system (2.2) is the following.
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Theorem 2.5 ([29]). If a right invariant system

Ẋ =

(
A+

m∑
i=1

uiBi

)
X, X ∈ G

is controllable on a linear group G that acts transitively on Rn\{0}, then the bilinear

system

ẋ =

(
A+

m∑
i=1

uiBi

)
x, x ∈ Rn\{0} (2.4)

is controllable on Rn\{0}.

2.2 Controllability and accessibility conditions for bilinear

systems

The most fundamental characterization for accessibility of a bilinear system was found by

Jurdjevic and Sussmann in 1972.

Theorem 2.6 ([52]). A bilinear system of the form

Ẋ =

(
A+

m∑
i=1

ui(t)Bi

)
X, X ∈ G (2.5)

is accessible if and only if

{A,B1, . . . , Bm}LA = L(G).

In general, Theorem 2.6 is only a necessary condition for controllability. But in some

cases the condition is sufficient.

Theorem 2.7 ([30]). A necessary condition for the control system (2.5) to be controllable

is that G is connected and {A,B1, . . . , Bm}LA = L(G). If G is compact or if A = 0, the

condition is also sufficient.

Since the condition of Theorem 2.6 is not sufficient for controllability, we have to add

another assumption for the general case.

Theorem 2.8 ([28]). The system (2.5) is controllable if and only if

(i) R(I) = G is a group and

(ii) {A,B1, . . . , Bm}LA = L(G).

A sufficient condition to guarantee condition (i) is the following.
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Theorem 2.9 ([30]). Let

Ẋ =

(
A+

m∑
i=1

uiBi

)
X

be a right-invariant control system on the Lie group G, which is accessible. If there exists

a constant control u and a sequence of positive numbers {tn} with tn ≥ ε > 0 for some

ε > 0, with the property that limx(t) exists and belongs to S̄, where x(t) is the associated

trajectory to u with x(0) = I, then R(I) = G.

Here, S denotes the Lie group associated to the Lie algebra {B1, . . . , Bm}LA and the

closure is taken relative to the system group G.

We have characterized accessibility of bilinear control systems both on Lie groups and on

manifolds by checking if the coefficient matrices of the bilinear system generate the whole

system Lie algebra. Since computing the Lie algebra can be very time-consuming we now

present necessary and sufficient conditions on the coefficient matrices A,B1, . . . , Bm to

generate the Lie algebra sln(R) or gln(R).

First, we need the following two definitions.

Definition 2.10. A matrix A ∈ Cn×n is called permutation-reducible if there exists a

permutation matrix P such that

PAP> =

A1 A2

0 A3

 ,

where A3 is a r×r square matrix with 0 < r < n. A n×n matrix A is called permutation-

irreducible if it is not permutation-reducible.

For a permutation-irreducible matrix we have the following result. The matrix Eij denotes

the single-entry matrix with entry 1 at (i, j) and all other entries zero.

Theorem 2.11. Let A = A0 +
∑

i 6=j aijEij ∈ Cn×n be permutation-irreducible with A0

diagonal matrix and aij ∈ C. Then

{Eij
∣∣ aij 6= 0}LA = sln(R).

Proof. This is Theorem 2 of [47] since sln(R) is the normal real form of sln(C) (cf. p. 353

[23]).

Definition 2.12. A matrix A ∈ Cn×n is called strongly regular if the eigenvalues λ1, . . . ,

λn ∈ C of A are distinct and satisfy

λi − λj 6= λk − λl

for all pairs of distinct indices (i, j) 6= (k, l) with i 6= j, k 6= l.
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2.2.1 Controllability and accessibility conditions for bilinear systems on

SLn(R) and GLn(R)

Due to Theorem 2.3 accessibility of bilinear systems on the homogeneous space Rn\{0}
is equivalent to the existence of a transitive action of the system group on the manifold.

Controllability of (2.2) follows from the existence of a transitive action of the system

group on the manifold and that the group lift is controllable due to Theorem 2.8. Hence,

the following results can be immediately assigned to systems of the form (2.3) on Rn\{0}.

We distinguish between real bilinear system with drift term

Ẋ = AX + uBX (2.6)

and real bilinear systems without drift term

Ẋ = uAX + vBX, (2.7)

where u, v ∈ R and A,B ∈ Rn×n, i.e. we consider bilinear control systems with either

one or two controls in the following. Bilinear systems without drift term are often called

homogeneous systems in the literature. From Theorem 2.7 it follows that accessibility of

system (2.6) is equivalent to controllability of system (2.7).

One of the first results on A and B was proven by Jurdjevic and Kupka.

Theorem 2.13 ([29]). Assume that trA = trB = 0 and B is a strongly regular matrix

in diagonal form. If A satisfies

(i) aij 6= 0 for all 1 ≤ i, j ≤ n such that |i− j| = 1 and

(ii) a1n · an1 < 0.

Then the system

Ẋ = (A+ uB)X

is controllable on SLn(R).

Since the matrix Lie algebra gln(R) can be written as gln(R) = sln(R) ⊕ RI, we can

write a matrix B with trB =: β 6= 0 as B = B0 + βI, where trB0 = 0 and thus

B0 ∈ sln(R). Further, we have [A,B] = [A,B0] for every matrix A ∈ gln(R). Hence, the

subalgebra k := {A, [A,B]}LA, which is closed under taking the commutator with B, is

an ideal in {A,B0}LA. Suppose, A and B0 satisfy the conditions of Theorem 2.13. Then

{A,B0}LA = sln(R) and since sln(R) is simple we derive k = sln(R). Thus, the Lie algebra

{A,B}LA differs only by multiples of the identity from the Lie algebra {A,B0}LA since

trB 6= 0. In case B0 is strongly regular, it immediately follows that B is strongly regular,
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too, since for the characteristic polynomial it holds χB(λ) = χB0(λ− β) and therefore all

eigenvalues are just shifted by β.

Therefore, Theorem 2.13 yields a controllability result for control systems on GL+
n (R).

Corollary 2.14 ([29]). Assume that the diagonal matrix B is strongly regular with trB 6=
0. If A satisfies conditions (i) and (ii) of Theorem 2.13, then system

Ẋ = (A+ uB)X

is controllable on GL+
n (R).

In case we consider homogeneous control systems of the form (2.7) less assumptions are

necessary to obtain controllability.

Theorem 2.15 ([29]). Assume that trA = trB = 0 and B is a strongly regular diagonal

matrix. If A satisfies aij 6= 0 for all i, j with |i− j| = 1 then system

Ẋ = (uA+ vB)X

is controllable on SLn(R).

In [18] Gauthier and Bornard assumed that B ∈ Rn×n is a diagonal matrix, which is

strongly regular. Then they obtained necessary and sufficient conditions for A such that

system (2.6) is controllable on SLn(R), which are more general than the conditions of

Theorem 2.13.

Theorem 2.16 ([18]). Suppose trB = trA = 0, B is a strongly regular diagonal matrix

and the entries of the matrix A satisfy a1n · an1 > 0. Then system

Ẋ = (A+ uB)X

is controllable on SLn(R) if and only if A is permutation-irreducible.

Again, for the driftless control system less assumptions are sufficient.

Theorem 2.17 ([18]). Suppose trB = trA = 0 and B is a strongly regular diagonal

matrix. Then system

Ẋ = (uA+ vB)X

is controllable on SLn(R) if and only if A is permutation-irreducible.

With Theorem 2.8 the following is an immediate consequence from Theorem 2.17.

Corollary 2.18. Suppose trA = trB = 0 and B is a strongly regular diagonal matrix.

Then, the system Lie algebra

{A,B}LA = sln(R)
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if and only if A is permutation-irreducible.

The assumption that the matrix B is in diagonal form puts a restriction on the eigenvalues

of B since all have to be real. We prove a more general result which allows the eigenvalues

of B to be complex.

Theorem 2.19. Let A,B ∈ Rn×n with B strongly regular. If there exists a matrix

S ∈ GLn(C) such that

(i) SAS−1 is permutation-irreducible and

(ii) SBS−1 is a diagonal matrix,

then the real system Lie algebra {A,B}LA is either equal to sln(R) or equal to gln(R).

Proof. Let SAS−1 = A0 +
∑

i,j aijEij with A0 diagonal and aij ∈ C. Since B is strongly

regular, SBS−1 is strongly regular as well and therefore

spanR{aijEij
∣∣ i 6= j} ⊆ spanR{SAS−1, adSBS−1(SAS−1), . . . , adkSBS−1(SAS−1)}

for some k ∈ N. Clearly,

spanR S
−1{aijEij

∣∣ i 6= j}S

⊆ spanR S
−1{SAS−1, adSBS−1(SAS−1), . . . , adkSBS−1(SAS−1)}S

= spanR{A, adB(A), . . . , adkB(A)} ⊆ gln(R).

Hence, the real subspaces spanR{aijS−1EijS} are subspaces of Rn×n for i 6= j and have

real dimension 1 if aij 6= 0. By Theorem 2.11 we get

{Eij
∣∣ aij 6= 0}LA = sln(R)

since SAS−1 is permutation-irreducible. Therefore,

dimR{aijEij
∣∣ i 6= j}LA ≥ n2 − 1

and hence,

dimR{aijS−1EijS
∣∣ i 6= j}LA ≥ n2 − 1.

But this implies

sln(R) ⊆ {aijS−1EijS
∣∣ i 6= j}LA ⊆ {A,B}LA

and the result follows.
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In the sequel of this work we will use the following reformulation of Theorem 2.19.

Theorem 2.20. Suppose that the real matrices A1, . . . , Ad satisfy the following conditions:

(i) there exist u1, . . . , ud ∈ R such that
∑d

j=1 ujAj is strongly regular;

(ii) A1, . . . , Ad possess no non-trivial common invariant subspace V ⊂ Cn.

Then the real system Lie algebra {A1, . . . , Ad}LA is either equal to sln(R) or equal to

gln(R).

We need the following lemma for the proof.

Lemma 2.21. Let the matrices A1, . . . , Ad possess no non-trivial common invariant sub-

space V ⊂ Cn. Then there exists a linear combination

A :=
d∑
i=1

uiAi,

with u1, . . . , ud ∈ C such that A is permutation-irreducible.

Proof. Let P be the set of all n × n permutation matrices. Clearly, |P| = n! holds. For

Pk ∈ P we consider the mappings Bk : Rd → Rn×n defined by

(
u1, . . . , ud

)
7→ Pk

 d∑
j=1

ujAj

P>k

and for 1 ≤ i, j ≤ n the mappings lij : Rn×n → R defined by

a11 a12 a1n

a21
. . .

...
. . .

an1 . . . . . . ann


7→ aij .

Now, examine for 1 ≤ r ≤ n− 1 and 1 ≤ k ≤ n! the subspaces of Rd

Kerr,k :=
⋂

i=n−r+1,...,n,
j=1,...,n−r

Ker lij(Bk(·)).

Clearly, we have dim Kerr,k < d since A1, . . . , Ad possess no non-trivial common invariant

subspace V ⊂ Cn. Hence,
n−1⋃
r=1

n!⋃
k=1

Kerr,k 6= Rd
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as a finite union of hyperplanes cannot be the whole vector space. Hence, there exists a

linear combination of A1, . . . , Ad, which is permutation-irreducible.

We now give the proof of Theorem 2.20.

Proof. Let u1, . . . , ud ∈ R as in (i) and let S ∈ GLn(C) such that

B := S

 d∑
j=1

ujAj

S−1

is diagonal with diagonal entries λ1, . . . , λn. Now, we choose A to be a linear combination

of SA1S
−1, . . . , SAdS

−1 such that A is permutation-irreducible. By Lemma 2.21 such a

linear combination exists. With Theorem 2.19 it is shown that the Lie algebra generated

by A and B equals sln(R) or gln(R). This proves the result.

2.2.2 Controllability and accessibility conditions for bilinear systems on

SLn(C) and GLn(C)

Complex systems can be regarded as real systems with twice the number of controls and

coefficient matrices since we can write every complex matrices uniquely as the sum of a

matrix with only real entries and a matrix with only pure imaginary entries. Clearly, we

have

gln(C) = gln(R)⊕ igln(R),

where i =
√
−1 and we can transfer all results on real systems of section 2.2.1 to complex

bilinear systems of the form

ẋ = (A+ uB)X, (2.8)

where u ∈ C and X is in GLn(C). The same applies to systems on Cn \ {0} or SLn(C).

Theorem 2.22. Let B be a diagonal matrix, which is strongly regular. Let A be a

permutation-irreducible matrix. Then system (2.8) is accessible

(i) on SLn(C) if and only if trA = trB = 0;

(ii) on GLn(C) else.

The proof works in the same manner as in the real case (cf. [18]).

With the remarks from the beginning of this section, we obtain the complex version of

Theorem 2.20 from Theorem 2.22. Clearly, Theorem 2.19 still holds true for complex

matrices A,B ∈ Cn×n when we consider the complex Lie algebra {A,B}CLA.
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Theorem 2.23. Suppose that complex matrices A1, . . . , Ad satisfy

(i) there exist u1, . . . , ud ∈ C such that
∑d

j=1 ujAj is strongly regular.

(ii) A1, . . . , Ad possess no non-trivial common invariant subspace V ⊂ Cn.

Then the complex system Lie algebra {A1, . . . , Ad}CLA is either equal to sln(C) or equal to

gln(C).

2.2.3 Controllability and accessibility conditions for bilinear systems on

general matrix Lie groups

Since we want to present a similar result to Theorem 2.20 for the real Lie algebras sun(C)

and un(C), we examine bilinear control systems on general matrix Lie groups. In [47] Silva

Leite and Crouch are concerned with the study of controllability of bilinear system which

evolve on certain semisimple Lie groups G. For the definitions of the terms (fundamental)

roots, Weyl basis and Cartan subalgebra we refer the reader to [23].

Again, Silva Leite and Crouch distinguish in [47] between systems of the form

Ẋ = (uA+ vB)X, X ∈ G, (2.9)

and

ẋ = (A+ uB)X, X ∈ G, (2.10)

with u, v ∈ R where G is a connected matrix Lie group G ⊂ GLn(R) and A,B are elements

of the corresponding matrix Lie algebra L(G). Now, let L(G) be a semisimple Lie algebra

over C, h a Cartan subalgebra of L(G) and ϕ the set of nonzero roots of L(G) with respect

to h. Every semisimple Lie algebra over C contains a Cartan subalgebra (Theorem III

4.1. [23]) and all Cartan subalgebras are isomorphic (Theorem II.2.15. [32]). Hence, we

can assume without loss of generality that all the matrices in h are diagonal. For each

a ∈ ϕ there exists a unique Hα ∈ h with 〈H,Hα〉 = α(H) for all H ∈ h, where 〈·, ·〉 is the

Killing form of L(G) (cf. Appendix A). With

hR :=
∑
α∈ϕ

RHα

we get h = hR ⊕ ihR where i =
√
−1.

For each α ∈ ϕ there exists an element Eα ∈ L(G) such that 〈Eα, E−α〉 = 1. Let ∆ denote

the set of fundamental roots. Let the set

{Hα, α ∈ ∆} ∪ {Eα, α ∈ Φ}
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be a Weyl basis of L(G) (corresponding to h) with structure constants

[Eα, E−α] =Hα,

[H,Eα] =α(H)Eα ∀H ∈ h

[Eα, Eβ] =

 0, if α+ β 6∈ ϕ

Nα,βEα+β, if α+ β ∈ ϕ,

where Nα,β = −N−α,−β are constants. The subspace

L =
∑
α∈ϕ

RHα ⊕
∑
α∈ϕ

REα (2.11)

is a normal real form of L(G), which is unique up to isomorphism (Theorem IX 5.10 [23])

and it can be described in terms of the Weyl basis (cf. (2.11)). For the definition of a

normal real form see Chapter IX.5 [23]. Define

hR :=
∑
α∈ϕ

RHα. (2.12)

Since the sum of (2.11) is direct every A ∈ L admits a unique decomposition of the form

A = A0 +
∑
α∈ϕa

kαEα, (2.13)

where ϕa ⊂ ϕ, ka ∈ R\{0} and A0 ∈ hR. The subset ϕa ⊂ ϕ is chosen in the way such that

kα 6= 0 in (2.13) for all α ∈ ϕa. The notion of strongly regular matrices (cf. Definition

2.12) can be extended to elements of general Lie algebras.

Definition 2.24. An element B ∈ h is called strongly regular if

(i) B is regular, i.e. the elements α(B) are nonzero for all α ∈ ϕ;

(ii) every nonzero eigenvalue of adB(·) is simple.

Leite and Crouch introduced the notion of A-strong regularity in [47].

Definition 2.25. Given A ∈ L with A 6∈ hR and B ∈ hR, then the element B is called

A-strongly regular if the elements α(B), α ∈ ϕa are nonzero and distinct.

The distinction between strongly regular and A-strongly regular is that an element B ∈ hR

is called A-strongly regular if only the elements α(B) are nonzero and distinct for all roots

α ∈ ϕa. Hence, every strongly regular element B ∈ hR is A-strongly regular.

With the notion of an A-strongly regular element Silva Leite and Crouch weaken the

assumptions of Corollary 2.18 for certain systems and replace it by one depending on the

other generator A.
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Theorem 2.26 ([47]). Let A = A0 +
∑

α∈ϕa
kαEα ∈ L and B ∈ hR be A-strongly regular.

Then the real Lie algebra {A,B}LA = L if and only if A is permutation-irreducible.

The Lie algebra L is defined by (2.11) and hR is defined by (2.12). Note that in this

setting the claim B ∈ hR implies that B is diagonal. Silva-Leite and Crouch broaden the

results of Gauthier and Bornard in [47] to normal forms of classical complex Lie algebras.

Corollary 2.27. Let L be a normal real form of any complex Lie algebra of type An,Bn, Cn
or Dn, A = A0 +

∑
α∈ϕa

kαEα ∈ L and B ∈ hR be A-strongly regular. Then system (2.9)

is controllable if and only if A is permutation-irreducible.

This result immediately follows from Theorem 2.26 since for driftless systems (2.9) con-

trollability is equivalent to {A,B}LA = L(G) and that the classical Lie algebras have a

normal real form since they are semisimple. For the definitions of the classical Lie algebras

of type An,Bn, Cn or Dn see [32].

For systems of the form (2.10) they were able to prove the following condition.

Theorem 2.28 ([47]). Let L be a normal real form of a complex simple Lie algebra of type

An or Dn. Let A = A0 +
∑

α∈ϕa
kαEα satisfy 〈ksEs, k−sE−s〉 < 0 for s = sup{α : α ∈ ϕ}

and B ∈ hR be A-strongly regular. Then system (2.10) is controllable if and only if A is

permutation-irreducible.

Here, 〈·, ·〉 is the Killing form of L(G).

Silva Leite extended in [46] the results to real forms of classical semisimple Lie algebras,

which are compact. Every classical Lie algebra L(G) over C contains a compact real form

(Theorem III 6.3 of [23]), which is unique up to isomorphisms. In terms of the Weyl basis

the compact real form can be written as

L =
∑
α∈ϕ

R(iHα)⊕
∑
α∈ϕ

RXα ⊕
∑
α∈ϕ

RYα, (2.14)

where Xα = Eα−E−α and Yα = i(Eα+E−α). For the definition of a compact real form see

Chapter III.6. of [23]. Since Cartan subalgebras are isomorphic the sum
∑

α∈ϕR(iHα) =

ihR is a Cartan subalgebra of L, too.

Theorem 2.29 ([47]). Let L be a compact real form of any classical Lie algebra L(G)

over C, h a Cartan subalgebra of L(G), ϕ the set of nonzero roots of L(G) with respect to

h. If

A = A0 +
∑
α∈ϕr

eαXα +
∑
a∈ϕc

fαYα ∈ L

(A0 ∈ ih, eα, fα ∈ Rn\{0}) is permutation-irreducible, then

{Xα, Yα, α ∈ ϕa = ϕr ∪ ϕc}LA = L. (2.15)
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Here, ϕr and ϕc are defined such that eα 6= 0 for α ∈ ϕr and fα 6= 0 for α ∈ ϕc.

Since sun(C) is the compact real form of sln(C) we can reformulate Theorem 2.29 similar

to Theorem 2.20 to the following theorem.

Theorem 2.30. Suppose that the skew-Hermitian matrices A1, . . . , Ad satisfy

(i) there exist u1, . . . , ud ∈ R such that
∑d

j=1 ujAj is strongly regular;

(ii) A1, . . . , Ad possess no non-trivial common invariant subspace V ⊂ Cn.

Then the real system Lie algebra {A1, . . . , Ad}LA is either equal to sun(C) or equal to

un(C).

We demand that the linear combination
∑d

j=1 ujAj is strongly regular in the sense of

Definition 2.12.





Chapter 3

System Lie Algebras of Linear

Feedback Systems

System Lie algebras of control systems are important for the study in many areas. For

instance, the controllability of linear feedback systems of the form

ẋ = (A+ u(t)bc)x,

where A is a n × n matrix, c and b are row and column vectors, respectively, and u is a

real-valued control function, depends in a crucial way on the Lie algebra generated by the

matrices A and bc. Here, A and bc can be either real or complex. The generated matrix Lie

algebra depends - up to a conjugation - only on the transfer function g(s) = c(sI −A)−1b

of the control system in case the triple (A, b, c) is controllable and observable. Therefore,

it is essential for understanding controllability of the control system above to get an idea

which transfer function corresponds to which Lie algebra.

In [5] Brockett studied the behavior of a single-input single-output linear system (SISO

system) under feedback and showed that there are only four possibilities for the resulting

system Lie algebra up to conjugation. In [7] Brockett proved the same result with tech-

niques of Galois theory. Moreover, in [6] Brockett allowed A and bc to be complex and

considered the real Lie algebra {A, bc}LA, where he showed that in this particular case 11

types of Lie algebras can occur. Since the proof of the mentioned results of [7] has small

gaps, in [6] the result has a small defect and the proof is, as the author describes, only a

sketch of proof, we give the complete proofs in this chapter.

Chapter 3 is organized as follows: In Section 3.1 we discuss basic properties of real linear

feedback systems. Subsequently, we show in Section 3.2 that we can use the results from

Appendix B on irreducible polynomials to determine the system Lie algebra of SISO

feedback systems. In 3.3 we consider the generated real system Lie algebra for the case

29
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that the SISO system has complex coefficient matrices. Concluding, we extend the results

to MIMO systems (multiple-input, multiple-output) in Section 3.4.

3.1 Real linear feedback systems

In this section we deal with linear feedback systems of the form

ẋ = (Ax+ u(t)bc)x

with A ∈ Rn×n, b ∈ Rn and c ∈ R1×n and u a real valued control function, which is

piecewise constant. We relate these systems to the results of Appendix B.

Definition 3.1. An n-dimensional triple (A, b, c) with A ∈ Rn×n, b ∈ Rn and c ∈ R1×n

is called controllable and observable if (A, b) is controllable and (A, c) is observable.

Here, the pair (A, b) is called controllable if

rank

(
b Ab . . . An−1b

)
= n

and the pair (A, c) is called observable if

rank



c

cA

. . .

cAn−1


= n.

For the sequel of the chapter, we assume that the triple (A, b, c) is in the so called controller

form (cf. [49])

A =



0 1 0 . . . 0

0 0 1 . . . 0

...
. . .

. . . . . .
...

−q0 −q1 −q2 . . . −qn−1


, b =



0

0

...

0

1


and c =

(
p0 p1 . . . pn−1

)
. (3.1)

The following theorem allows us to limit our investigations to systems of this form (3.1).
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Theorem 3.2 ([49]). Every controllable system (A, b) ∈ Rn×n × Rn is similar to

(A?, b?) :=





0 1

0 0
. . .

... 1

−q0 −q1 · · · −qn−1


,



0

...

0

1




with det(sI −A) = sn +

∑n−1
i=0 qis

i.

For all values of q0, . . . , qn−1 we see that (A, b) as in (3.1) is controllable. Let p0, . . . , pn−1

be such that (A, c) is observable. The state-space isomorphism theorem ([49]) yields in case

(A′, b′, c′) is another controllable and observable triple with c′(sI−A′)−1b′ = c(sI−A)−1b,

then there exists a nonsingular matrix P such that A = PA′P−1, b′ = Pb and c′ = cP−1.

Hence, the transfer function determines the Lie algebra {A, bc}LA up to conjugation.

For the transfer function g(s) = c(sI − A)−1b of a controllable and observable triple

(A, b, c) we get

g(s) =
p(s)

q(s)
,

where q(s) = sn + qn−1s
n−1 + qn−2s

n−2 + . . . + q0 and p(s) = pn−1s
n−1 + . . . + p0 with

qn−1, . . . , q0 and pn−1, . . . , p0 defined in the controller form (3.1). The characteristic poly-

nomial of A+ ubc is given by

det(sI −A+ ubc) = q(s) + up(s),

where q and p are defined as above.

Definition 3.3. The relative degree α of a transfer function

g(s) =
p(s)

q(s)

is defined as the difference α := n−m with n := deg q(s) and m := deg p(s).

Let p(s) ∈ F [s] be a monic polynomial of the form

p(s) = sn + pn−1s
n−1 + . . .+ p0,

where F denotes a field of characteristic 0 and denote all roots of p(s) by si for 1 ≤ i ≤ n
counted with multiplicity. Dependent on p(s) we define the two following polynomials

[p(s)](r) :=
∏

1≤i1<i2<...<ir≤n
(s− (si1 + si2 + . . .+ sir))
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and

ad[p(s)] :=
∏

1≤i,j≤n
(s− (si − sj)) .

Properties of the polynomials [p(s)](r) and ad[p(s)] can be found in Appendix B.

Remark 3.4. When q(s) +up(s) = q(−s) +up(−s) holds for all u ∈ R, we derive that q(s)

and p(s) have to be even. Hence, g(s) = p(s)/q(s) is an even function as well. In general,

the converse is not true: If p(s), q(s) are odd polynomials, then g(s) is clearly an even

function in s. But, by Lemma B.6, we know that if [q(s) + up(s)](2) has repeated roots,

it follows that q(s + σ/2) + up(s + σ/2) is an even polynomial, too. Therefore, the case

q(s) + up(s) = −q(−s+ α)− up(−s+ α) cannot occur for any α ∈ R. Consequently, for

our setting applies that

g(s) =
p(s)

q(s)
= g(−s)

is equivalent to q(s) + up(s) = q(−s) + up(−s).

Note that it is equivalent to consider the equation

g(s) = g(−s+ α1) (3.2)

for one α1 ∈ R or the equation

g(s+ α2) = g(−s+ α2) (3.3)

for one α2 ∈ R: Shift s in (3.2) to s+α1/2, then we obtain equality (3.3) with α2 = α1/2.

Remark 3.5. Since we only consider triples (A, b, c) which are controllable and observable,

we derive from (A, c) being observable that either q0 or p0 or both in (3.1) have to be

unequal zero. As

det(A+ ubc) = q(0) + up(0) = q0 + up0,

the matrix A+ ubc is invertible for all u ∈ R with maximum one exception.

Let F (u) denote a field of rational functions in u over F with F = R or F = C and let

F (u)[s] denote the polynomial in s having coefficients in F (u). The monic polynomial

det(sI −A+ ubc) = q(s) + up(s)

belongs to F (u)[s].

Now, we apply the results from Appendix B. We start with some well-known results

on controllable and observable triples (A, b, c), which we use without comment in what

follows.
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Lemma 3.6 ([13]). Let (A, b, c) be an n-dimensional triple such that

det(sI −A+ ubc) = q(s) + up(s).

Then (A, b, c) is controllable and observable if and only if p(s) and q(s) are coprime.

Lemma 3.7 ([8]). Let (A, b, c) be an n-dimensional triple and p(s) and q(s) coprime.

Then (A, b, c) is controllable and observable if and only if A and bc act irreducibly on Rn.

We prove an interesting result for the multiplicity of the eigenvalues of the matrix A+ubc.

Lemma 3.8. Let (A, b, c) be controllable and observable. Then the matrix A + ubc is

diagonalizable for almost all u ∈ R.

Proof. The characteristic polynomial of A+ ubc is of the form

χA+ubc(s) = q(s) + up(s) = sn + qn−1s
n−1 + . . .+ qo + u(pn−1s

n−1 + . . .+ p0).

Due to the controllability and observability of (A, b, c), the polynomials p(s) and q(s) are

coprime as elements of F [s]. Assume that χA+ubc(s) has a multiple root s0. Hence,

q(s0) + up(s0) = 0 (3.4)

and q′(s0) + up′(s0) = 0. (3.5)

Because of the coprimeness of p and q, s0 cannot be a zero of p(s) or q(s). Therefore, we

can solve (3.4) for u and insert it in (3.5). We get

q(s0)p′(s0)− q′(s0)p(s0) = 0.

The degree of the polynomial q(s0)p′(s0) − q′(s0)p(s0) is smaller or equal than 2n − 2

and so there are maximal 2n − 2 possible values for s0 and hence for u = − q(s0)
p(s0) . Thus,

χA+ubc(s) has for almost all values of u distinct zeros and the matrix A+ubc is for almost

all values of u diagonalizable.

An important but simple property of controllable and observable triples is the following,

whereof we will make extensive use in the subsequent chapters. It is a direct consequence

of (A, b, c) being controllable and observable. The proof is obvious.

Lemma 3.9. Let (A, b, c) be controllable and observable. Then there exists an integer

i ∈ {0, . . . , n− 1} such that

cAib 6= 0.

The smallest integer m ≥ 0 with this property equals the relative degree of the trans-

fer function g(s) = c(sI − A)−1b of the controllable and observable triple (A, b, c) (cf.

Definition 3.3) and is denoted by m∗ in the sequel.
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Lemma 3.10. Let (A, b, c) be controllable and observable. Then the following statements

hold:

(i) if A is invertible, then (A,Ab) is controllable;

(ii) (A+ ubc, b) is controllable for generic u ∈ R;

(iii) (A+ ubc, (A+ ubc)b) is controllable for generic u ∈ R;

(iv) if cb = 0, then (A+ ubc,Ab) is controllable for generic u ∈ R.

Proof. Let A be invertible. Then we get

dim span{b, Ab, . . . , An−1b} = dimA span{b, Ab, . . . , An−1b}

= dim span{Ab,A2b, . . . , Anb} = n.

This proves (i). Clearly, (A, b) being controllable is defined as

rank

(
b Ab . . . An−1b

)
= n

and therefore, det

(
b Ab . . . An−1b

)
6= 0. The mapping ϕ : R→ R defined by

u 7→ det

(
b (A+ ubc)b . . . (A+ ubc)n−1b

)
is a polynomial in u ∈ R with maximum degree (n− 1)!. Apparently, ϕ 6≡ 0 as ϕ(0) 6= 0.

Using the fundamental theorem of algebra ϕ has maximum (n − 1)! zeros in R. Hence,

ϕ(u) 6= 0 for generic u ∈ R and (A+ ubc, b) is controllable for generic u ∈ R. This proves

(ii). Since A+ubc is invertible for almost all u ∈ R (Remark 3.5), statement (iii) directly

follows with (i) from (ii). For cb = 0 we derive

(A+ ubc, (A+ ubc)b) = (A+ ubc,Ab).

This proves the result.

The dual version holds as well.

Lemma 3.11. Let (A, b, c) be controllable and observable. Then the following statements

hold:

(i) if A is invertible, then (A, cA) is observable;

(ii) (A+ ubc, c) is observable for generic u ∈ R;
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(iii) (A+ ubc, c(A+ ubc)) is observable for generic u ∈ R;

(iv) if cb = 0, then (A+ ubc, cA) is observable for generic u ∈ R.

3.2 Lie algebras of real SISO feedback systems

This section is devoted to determine the system Lie algebra of control systems of the form

ẋ = (A+ u(t)bc)x.

We denote by {A, bc}LA the real Lie algebra generated by A and bc. It is conspicuous that

the system Lie algebras depends in a crucial way on if the relative degree of the transfer

function

g(s) =
∞∑
i=0

(
cAib

)
s−i−1

is even or odd. Later in this section we show that in case the relative degree is at least

1, i.e. cb = 0, we can limit our observations to Lie algebras {A, bc}LA with cb = 0 and

cAb 6= 0, i.e. relative degree 1.

In case cb 6= 0 the system Lie algebra is easy to compute as the following theorem shows.

Theorem 3.12. Let (A, b, c) be a controllable and observable triple with cb 6= 0. Then,

{A, bc}LA = gln(R).

We first prove a lemma which provides us with a necessary and sufficient condition for

the Lie algebra {A, bc}LA to be gln(R).

Lemma 3.13. Let (A, b, c) be controllable and observable. Then

{A, bc}LA = gln(R)

if and only if AibcAj ∈ {A, bc}LA for i, j = 0, . . . , n− 1.

Proof. Let AibcAj ∈ {A, bc}LA for i, j = 0, . . . , n − 1. Since (A, b, c) is controllable and

observable, b, Ab, . . . , An−1b is a basis of Rn and c, cA, . . . , cAn−1 is a basis of R1×n. Hence,

there exist linear combinations of b, Ab, . . . , An−1b for the unit vectors e1, . . . , en ∈ Rn and

of c, cA, . . . , cAn−1 for the transposed unit vectors e>1 , . . . , e
>
n ∈ R1×n, respectively. With

eie
>
j = Eij we derive

Eij ∈ span{AkbcAl
∣∣ k, l = 0, . . . , n− 1}.
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for all i, j = 1, . . . , n. Since {Eij
∣∣ i, j = 1, . . . , n} constitutes a basis of gln(R) we get

gln(R) ⊂ {A, bc}LA and consequently gln(R) = {A, bc}LA holds.

The other direction is obvious.

We now give the proof for Theorem 3.12.

Proof. We proof by induction on i+ j that all matrices of the form AibcAj are elements

of the Lie algebra {A, bc}LA for all i, j ∈ N. It is clear that A0bcA0 = bc ∈ {A, bc}LA.

We assume that AibcAj ∈ {A, bc}LA for i+ j ≤ p− 1. Then, we have a closer look at all

elements AibcAj with i + j = p − 1. By taking the commutator with A we obtain the p

linearly independent equations

[AibcAp−1−i, A] = AibcAp−i −Ai+1bcAp−1−i (3.6)

for i = 0, . . . , p− 1. Summing up all equations we get

p−1∑
i=0

[AibcAp−1−i, A] = bcAp −Apbc ∈ {A, bc}LA. (3.7)

Hence, from

[Apbc+ (−1)pbcAp, bc] = (cb)Apbc+ (−1)p(cApb)bc− (cApb)bc− (−1)p(cb)bcAp

we get

Apbc+ bcAp ∈ {A, bc}LA

due to cb 6= 0. Together with (3.7) it follows Apbc, bcAp ∈ {A, bc}LA and successively, with

(3.6) we obtain that all AibcAj with i+ j = p are elements of the Lie algebra {A, bc}LA.

With Lemma 3.13 we obtain

{A, bc}LA = gln(R).

Now, we assume cb = 0 for the sequel of this section.

In the following we show that under the assumption cb = 0, it is sufficient to consider Lie

algebras {A, bc}LA with relative degree 1 and cA2b = 0: Firstly, it is always sufficient to

assume that the transfer function satisfies cAm
∗
b 6= 0 and cAm

∗+1b = 0, where m∗ is the

relative degree of (A, b, c). If cAm
∗+1b 6= 0, we can consider the Lie algebra

g′ := {A− αI, bc}LA
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with α := cAm∗+1b
(m∗+1)cAm∗b

. Clearly, we get

g ⊆ g′ + RI

and

g′ ⊆ g + RI.

Therefore, the so generated Lie algebra g′ only differs by multiples of the identity matrix

I from {A, bc}LA. But we have

c

(
A− cAm

∗+1b

(m∗ + 1)cAm∗b
I

)k
b =

k∑
i=0

(
k

i

)
(−αI)k−i cAib = 0

for all 0 ≤ k ≤ m∗ − 1 and

c

(
A− cAm

∗+1b

(m∗ + 1)cAm∗b
I

)m∗
b = cAm

∗
b.

Further, we obtain

c

(
A− cAm

∗+1b

cAm∗b
I

)m∗+1

b =c

(
m∗+1∑
i=0

(
m∗ + 1

i

)
Am

∗+1−i (−αI)i
)
b

=cAm
∗+1b+ (m∗ + 1)

(
− cAm

∗+1b

(m∗ + 1)cAm∗b

)
cAm

∗
b = 0.

Hence, we can assume cAm
∗+1b = 0 in the next two lemmas. We have to distinguish

between whether the first nonzero coefficient cAm
∗
b occurs for m∗ even or m∗ odd. We

start with a lemma for the case that m∗ is even.

Lemma 3.14. Let m∗ be even. If cAib = 0 for i = 0, 1, . . . ,m∗ − 1, cAm
∗
b = β and

cAm
∗+1b = 0, then

[Abc− bcA, adm
∗

A (bc)] = β(m∗ + 1)(Abc+ bcA).

In particular, the matrix AibcAj is an element of {A, bc}LA for i+ j = 0, 1, . . . ,m∗ − 1.

Note that we can expand adm
∗+1

A (bc) as

adm
∗+1

A (bc) =

m∗+1∑
i=0

(−1)i
(
m∗ + 1

i

)
Am

∗+1−ibcAi. (3.8)

Proof. Let cAm
∗
b 6= 0. Then we obtain with (3.8) and cAm

∗+1b = 0 that

[Abc− bcA, adm
∗

A (bc)]
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=

m∗∑
i=0

(−1)i
(
m∗

i

)
(Abc− bcA)Am

∗−ibcAi −
m∗∑
i=0

(−1)i
(
m∗

i

)
Am

∗−ibcAi(Abc− bcA)

=(cAm
∗
b)Abc− (−1)(cAm

∗
b)m∗bcA− (−1)m

∗−1m∗(cAm
∗
b)Abc+ (−1)m

∗
(cAm

∗
b)bcA

=(cAm
∗
b)(m∗ + 1)(Abc+ bcA)

is an element of {A, bc}LA. With [A, bc] = Abc− bcA ∈ {A, bc}LA we get

Abc, bcA ∈ {A, bc}LA.

A similar calculation shows that[
adA(Abc), adm

∗
A (bc)

]
=

(
1−

(
m∗

2

))
βA2bc− (cAm

∗+2b)bc

is an element of {A, bc}LA, too. Inductively, we obtain by calculating the commutators

[adA(Akbc), adm
∗

A (bc)]

successively for k = 0, . . . ,m∗−2 that all elements of the form Ak+1bc are elements of the

Lie algebra {A, bc}LA. With the k − 1 matrices

[A,AibcAj ] = Ai+1bcAj −AibcAj+1

for all 0 ≤ i, j ≤ n− 1 with i+ j = k − 1 all k matrices of the form AibcAj are elements

of {A, bc}LA. Hence, it inductively follows that AibcAj ∈ {A, bc}LA for i+ j ≤ m∗ − 1 in

case m∗ is even.

If cb = 0, it is crucial for the Lie algebra if m∗ is odd or even and a similar statement to

Lemma 3.14 cannot be proven for m∗ being odd.

Lemma 3.15. Let m∗ be odd. If cAib = 0 for i = 0, 1, . . . ,m∗ − 1, cAm
∗
b = β and

cAm
∗+1b = 0, then

[Abc− bcA, adm
∗+1

A (bc)] =

− (m∗ + 1)m∗

2
β[A, [A, bc]]− (m∗ + 1)(m∗ + 2)βAbcA− 2(cAm

∗+2b)bc.

In particular, the matrix AibcAi is an element of {A, bc}LA for i = 0, 1, . . . , (m∗ − 1)/2.

Proof. Let cAm
∗
b 6= 0. Then we obtain with (3.8) and cAm

∗+1b = 0 that

[Abc−bcA, adm
∗+1

A (bc)]

=
m∗+1∑
i=0

(−1)i
(
m∗ + 1

i

)
AbcAm

∗+1−ibcAi −
m∗+1∑
i=0

(−1)i
(
m∗ + 1

i

)
bcAAm

∗+1−ibcAi
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−
m∗+1∑
i=0

(−1)i
(
m∗ + 1

i

)
Am

∗+1−ibcAiAbc+

m∗+1∑
i=0

(−1)i
(
m∗ + 1

i

)
Am

∗+1−ibcAibcA

=

(
m∗ + 1

0

)
(cAm

∗+1b)Abc−
(
m∗ + 1

1

)
βAbcA−

(
m∗ + 1

0

)
(cAm

∗+2b)bc

+

(
m∗ + 1

1

)
(cAm

∗+1b)bcA−
(
m∗ + 1

2

)
βbcA2 − (−1)m

∗−1

(
m∗ + 1

m∗ − 1

)
βA2bc

− (−1)m
∗
(
m∗ + 1

m∗

)
(cAm

∗+1b)Abc− (−1)m
∗+1

(
m∗ + 1

m∗ + 1

)
(cAm

∗+2b)bc

+ (−1)m
∗
(
m∗ + 1

m∗

)
βAbcA+ (−1)m

∗+1

(
m∗ + 1

m∗ + 1

)
(cAm

∗+1b)bcA.

This simplifies to

=[1− (−1)m
∗
(m∗ + 1)](cAm

∗+1b)Abc+ [(m∗ + 1) + (−1)m
∗+1](cAm

∗+1b)bcA

+ [−1 + (−1)m
∗
](m∗ + 1)βAbcA−

(
m∗ + 1

2

)
β(bcA2 + (−1)m

∗−1A2bc)

+
(
−1− (−1)m

∗+1
)

(cAm
∗+2b)bc.

Since m∗ is odd and cAm
∗+1b = 0, we obtain

=− (m∗ + 1)m∗

2
β[A, [A, bc]]− (m∗ + 1)(m∗ + 2)βAbcA− 2(cAm

∗+2b)bc.

Thus, if β 6= 0, then AbcA is an element of the Lie algebra {A, bc}LA. A lengthy calculation

using that m∗ is odd and cAm
∗+1b = 0 shows

[adA(AbcA), adm
∗−1

A (AbcA)] =

−m∗(m∗ − 1)β ad2
A(AbcA)− (2m∗ + 2)(m∗ − 1)βA2bcA2 − 2(cAm

∗+2b)AbcA.

Inductively, we obtain that AibcAi is an element of the Lie algebra {A, bc}LA for i =

0, 1, . . . , (m∗ − 1)/2.

We now show that it is sufficient to consider transfer functions with relative degree 1:

First, let m∗ be odd and suppose m∗ = 3. Then we obtain from Lemma 3.15 that AbcA ∈
{A, bc}LA. If A+ubc is nonsingular, as it is for all u with maximum one exception (Remark

3.5), then there exist some u ∈ R such that {A+ ubc,AbcA}LA acts irreducibly (Lemma

3.7, 3.10 and 3.11). Clearly, {A + ubc,AbcA}LA ⊂ {A, bc}LA and for the associated

transfer function ĝ of {A+ ubc,AbcA}LA due to Lemma 3.15 we obtain

ĝ(s) =

∞∑
i=0

(
cA(A+ ubc)iAb

)
s−i−1.

Clearly, we get cA(A + ubc)0Ab = cA2b = 0 since m∗ = 3 and cA(A + ubc)1Ab =

cA3b + u(cAb)2 = cA3b 6= 0. Hence, the first coefficient of the transfer function ĝ(s)
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equals zero and the second one is unequal zero.

Inductively, we deduce the same by considering the Lie algebra generated by AibcAi and

A+ ubc with i = m∗−1
2 for m∗ = 5, 7, . . ..

Second, let m∗ be even and suppose m∗ = 2. Then we obtain from Lemma 3.14 that

Abc ∈ {A, bc}LA. If A+ubc is nonsingular, as it is for all u with only one exception, then

there exist values for u ∈ R such that {A+ubc,Abc}LA acts irreducibly (Lemma 3.7, 3.10

and 3.11). Furthermore, {A + ubc,Abc}LA ⊂ {A, bc}LA and for the associated transfer

function ĝ of {A+ ubc,Abc}LA we obtain

ĝ(s) =

∞∑
i=0

(
c(A+ ubc)iAb

)
s−i−1.

Clearly, c(A + ubc)0Ab = cAb = 0 and c(A + ubc)1Ab = cA2b + u(cb)(cAb) = cA2b 6= 0.

Inductively, we deduce the same by considering the Lie algebra generated by Aibc and

A+ ubc with i = m∗ − 1 for m∗ = 4, 6, . . ..

In this manner and by using Lemma 3.15 and Lemma 3.14 inductively, we can limit our

investigations to transfer functions with cb = 0 and cAb 6= 0.

The following lemma relates the dimension of the subspace span{adiA+ubc(bc)
∣∣ i ∈ N} to

the number of nonzero distinct eigenvalues of the operator adA+ubc(·).

Lemma 3.16. Let (A, b, c) be a controllable and observable triple. The maximum over

u ∈ R of the dimension of the subspace

span{adiA+ubc(bc)
∣∣ i ∈ N}

equals the number of distinct nonzero eigenvalues of adA+ubc(·).

For the sake of completeness we give Brockett’s proof from [7] in Appendix C.

Due to Lemma B.6 and Lemma B.8 we know that we have to distinguish between g(s) =

g(−s + α) for some α ∈ R or g(s) 6= g(−s + α) for any α ∈ R. We give some equivalent

statements for the triple (A, b, c) in case g(s) = g(−s+ α).

Lemma 3.17. Let (A, b, c) be controllable and observable and g(s) = c(sI −A)−1b. Then

the following statements are equivalent for one α ∈ R:

(i) gα(s) := g(s+ α) satisfies gα(s) = gα(−s);

(ii) A − αI, b, c are Hamiltonian, i.e. J(A − αI) is symmetric and cJ = b> for a

nondegenerate skew-form J ;

(iii) A− αI, bc ∈ spn/2(J) for some nondegenerate skew-form J ;

(iv) {A− αI, bc}LA is isomorphic to a subalgebra of spn/2(R).
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The Lie algebra spn/2(J) is defined by

spn/2(J) :=
{
X ∈ Rn×n

∣∣ X>J + JX = 0
}
,

where J = −J> is nondegenerate.

Proof. The equivalence between (i) and (ii) follows from Theorem 1 of [8] and the argu-

mentation from (ii) to (iii) follows immediately.

We show (iii) ⇒ (ii): From A − αI, bc ∈ spn/2(J) we get bcJ = J>c>b> and hence,

b(cJ) = (J>c>)b>. It follows (cJ)> = τb for τ ∈ R\{0}. With S := λI we obtain from

the state-space isomorphism theorem that SAS−1, Sb = λb and cS−1 = 1
λc is another

realization. Then, τλb = 1
λ(cJ)> and therefore, τλ2b = (cJ)>. This yields τλ2 = ±1. In

case τλ2 = 1 choose the same J as in statement (iii). In case τλ2 = −1 the nondegenerate

skew-form Ĵ := −J does it. The same works for A − αI and hence, (A − αI, b, c) are

Hamiltonian.

The equivalence between (iv) and one of the other statements follows immediately with

Corollary 8.25, [1].

Lemma 3.18. Let Sn = {X ∈ spn/2(R)
∣∣ diagX = 0}. Then,

span
{

[X,Y ]
∣∣ X,Y ∈ Sn} = spn/2(R) for n ≥ 2.

Here, diagX = 0 means that diagonal of the matrix X vanishes.

Proof. Every matrix X ∈ Sn has the form

X =

A B

C −A>

 ,

where B,C are symmetric matrices and the diagonal entries of A are all zero. Hence, we

obtain for X,Y ∈ Sn

[X,Y ] =


A B

C −A>

 ,

D E

F −D>




=

 [A,D] +BF − EC AE + EA> − (DB + (DB)>)

CD +D>C − (FA+ (FA)>) − ([A,D] +BF − EC)>

 .
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The diagonal of the commutator [X,Y ] does not vanish, since B, F , E and C are only

assumed to be symmetric. With A = Eik and D = Ekj we get [A,D] = Eij and thus,H 0

0 −H>

 ∈ span
{

[X,Y ]
∣∣ X,Y ∈ Sn}

for every H ∈ Rn×n. With A = Eij and E = I one can easily see that every symmetric

matrix with vanishing diagonal can be written as AE +EA>. The same holds for CD +

D>C. Computing AE+EA> for A = Eij and E = Eij+Eji yields all symmetric matrices

with non vanishing diagonal. The result follows.

The complex analog holds as well.

Lemma 3.19. Let SCn = {X ∈ spn/2(C)
∣∣ diagX = 0}. Then,

span
{

[X,Y ]
∣∣ X,Y ∈ SCn} = spn/2(C) for n ≥ 2.

Before we determine the real generated Lie algebra, we examine the complex generated

Lie algebra {A, bc}LA in case the transfer function satisfies g(s) = g(−s + α) for one

α ∈ R.

Lemma 3.20. Let (A, b, c) be controllable and observable with trA = cb = 0 and g(s) =

c(sI −A)−1b satisfy

g(−s) = g(s+ α)

for one α ∈ R. Then

SCn ⊂ spanC{adiA+ubc(bc)
∣∣ i ∈ N0}

for some u ∈ R. Here, SCn ⊂ spanC{adiA+ubc(bc)
∣∣ i ∈ N0} is in the sense, that SCn is

conjugated to a subspace of spanC{adiA+ubc(bc)
∣∣ i ∈ N0}.

Proof. For almost all u ∈ R the matrix A + ubc is diagonalizable (Lemma 3.8). Let

Q ∈ GLn(C) denote the matrix, such that

Q(A+ ubc)Q−1

is a diagonal matrix. Clearly, we have

Q
{

adiA+ubc(bc), i ∈ N
}
Q−1 =

{
adiQ(A+ubc)Q−1(QbcQ−1), i ∈ N

}
=: Q.

With Lemma B.8 we get

dimCQ =
n2

2
= dimC

{
adiA+ubc(bc), i ∈ N

}
.
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Since Q(A+ubc)Q−1 is diagonal, we get for every X ∈ Q that diagX = 0, i.e. all diagonal

entries vanish. Due to the dimension of Q we conclude

SCn ⊂ Q.

Since spn/2(C) = {SCn }LA we get spn/2(C) = {Q}LA. Hence,

Q−1spn/2(C)Q =
{

adiA+ubc(bc), i ∈ N
}

and the result follows.

Theorem 3.21. Let (A, b, c) be controllable and observable with trA = cb = 0 and let

g(s) = c(sI −A)−1b satisfy g(s) = g(−s). Then

{A, bc}CLA ∼= spn/2(C).

Proof. This results with Lemma 3.19 from Lemma 3.20.

Now, we determine the real generated Lie algebra {A, bc}LA in case the transfer function

satisfies g(s) = g(−s+ α) for one α ∈ R.

Theorem 3.22. Let (A, b, c) be controllable and observable with trA = cb = 0 and let

g(s) = c(sI −A)−1b satisfy g(s) = g(−s). Then

{A, bc}LA ∼= spn/2(R).

Proof. Due to Lemma 3.8 the matrix A+ ubc is diagonalizable for almost all u ∈ R. Let

Q ∈ GLn(C) such that the matrix

Q(A+ ubc)Q−1

is diagonal. Denote

spanR

{
adiQ(A+ubc)Q−1(QbcQ−1), i ∈ N

}
=: QR.

From Lemma B.8 we get

dimRQR =
n2

2
.

Clearly, QR is a split real form of Q := spanC

{
adiQ(A+ubc)Q−1(QbcQ−1), i ∈ N

}
and due

to Lemma 3.21 we have {Q}LA = spn/2(C). Due to Theorem IX.5.10. [23] all split real

forms are isomorphic. Hence,

{QR}LA ∼= spn/2(R)

and the result follows.
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Now, we consider the case g(s) 6= g(−s + α) for any α ∈ R and state the analogs for

Lemma 3.19, Lemma 3.20, Theorem 3.21 and Theorem 3.22.

Lemma 3.23. Let Vn = {X ∈ Rn×n | diagX = 0}. Then

span
{

[X,Y ]
∣∣ X,Y ∈ Vn} = sln(R) for n ≥ 3.

Again, diagX = 0 means that all diagonal entries of the matrix X are 0.

Proof. The matrices X = Eij and Y = Ekl are elements of Vn for i 6= j, k 6= l and satisfy

[X,Y ] =


Eii − Ejj , k = j, i = l

Eil, k = j, i 6= l

0, k 6= j, i 6= l.

This completes the proof.

Clearly, the complex analog holds too.

Lemma 3.24. Let V Cn = {X ∈ Cn×n | diagX = 0}. Then

spanC

{
[X,Y ]

∣∣ X,Y ∈ V Cn } = sln(C) for n ≥ 3.

Before we determine the real generated Lie algebra, we examine the complex generated

Lie algebra {A, bc}LA in case the transfer function satisfies g(s) 6= g(−s + α) for any

α ∈ R.

Lemma 3.25. Let (A, b, c) be controllable and observable and g(s) = c(sI−A)−1b satisfy

g(−s) 6= g(s+ α)

for any α ∈ R. Then

V Cn ⊂ spanC{adiA+ubc(bc)
∣∣ i ∈ N0}

for some u ∈ R. Here, V Cn ⊂ spanC{adiA+ubc(bc)
∣∣ i ∈ N0} is in the sense, that V Cn is

conjugated to a subspace of spanC{adiA+ubc(bc)
∣∣ i ∈ N0}.

Proof. For almost all u ∈ R the matrix A + ubc is diagonalizable (Lemma 3.8). Let

Q ∈ GLn(C) denote the matrix, such that

Q(A+ ubc)Q−1



Chapter 3. System Lie Algebras of Linear Feedback Systems 45

is a diagonal matrix. Clearly, we have

Q
{

adiA+ubc(bc), i ∈ N
}
Q−1 =

{
adiQ(A+ubc)Q−1(QbcQ−1), i ∈ N

}
=: Q.

With Lemma B.8 we get

dimCQ = n2 − n = dimC
{

adiA+ubc(bc), i ∈ N
}
.

Since Q(A+ubc)Q−1 is diagonal, we get for every X ∈ Q that diagX = 0, i.e. all diagonal

entries vanish. Due to the dimension of Q we conclude

V Cn ⊂ Q

and the result follows.

Theorem 3.26. Let (A, b, c) be controllable and observable and let g(s) = c(sI − A)−1b

satisfy g(s) 6= g(−s+ α) for any α ∈ R. Then

sln(C) ⊂ {A, bc}CLA.

Proof. Since {V Cn }LA = sln(C) we get sln(C) ⊂ {Q}LA and and the result follows.

Now, we prove the second main result of this section.

Theorem 3.27. Let (A, b, c) be controllable and observable and let g(s) = c(sI − A)−1b

satisfy

g(−s) 6= g(s+ α)

for all α ∈ R. Then

sln(R) ⊂ {A, bc}LA.

Proof. Due to Lemma 3.8 the matrix A+ ubc is diagonalizable for almost all u ∈ R. Let

Q ∈ GLn(C) such that the matrix

Q(A+ ubc)Q−1

is diagonal. Denote

spanR

{
adiQ(A+ubc)Q−1(QbcQ−1), i ∈ N

}
=: QR.

From Lemma B.8 we get

dimRQR = n2 − n.

Clearly, QR is a split real form of Q := spanC

{
adiQ(A+ubc)Q−1(QbcQ−1), i ∈ N

}
and due

to Lemma 3.26 we have {Q}LA = sln(C). Due to Theorem IX.5.10. [23] all split real
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forms are isomorphic. Hence,

{QR}LA = sln(R)

and the result follows.

We summarize the results on system Lie algebras of linear feedback systems in one theo-

rem.

Theorem 3.28. Let (A, b, c) be controllable and observable, g(s) = c(sI − A)−1b. Then

the system Lie algebra g = {A, bc}LA of

ẋ = (A+ u(t)bc)x

satisfies:

(i) g ∼= spn/2(R) if and only if g(s) = g(−s);

(ii) g ∼= spn/2(R)⊕ RI if and only if g(s+ α) = g(−s+ α) with α 6= 0 suitable;

(iii) g = sln(R) if and only if g(s+ α) 6= g(−s+ α) for all α and cb = trA = 0;

(iv) g = gln(R) else.

Here, g ∼= spn/2(R) means that the Lie algebras g and spn/2(R) are conjugated.

Proof. In case cb 6= 0 we immediately obtain g(s) 6= g(−s+ α) for any α ∈ R and hence,

we can apply Theorem 3.12. With the previous remarks we can limit our observations to

the case, where the characteristic polynomial of A+ ubc has the form

q(s) + up(s) = sn + qn−1s
n−1 + . . .+ q0 + u

(
pn−2s

n−2 + . . .+ p0

)
.

Here, q(s) and p(s) are coprime and pn−2 6= 0. For qn−1 = 0 this is Theorem 3.22 and

Theorem 3.27. In case qn−1 6= 0, consider the Lie algebra{
A− qn−1

n
I, bc

}
LA

.

Then, tr
(
A− qn−1

n I
)

= 0 and the Lie algebra {A, bc}LA only differs by adding multiples

of the identity matrix I to the Lie algebra {A− qn−1

n I, bc}LA. The result follows.

From Theorem 3.28 we deduce immediately with Theorem 2.4 the following corollary.

Corollary 3.29. Let (A, b, c) be controllable and observable. Then the bilinear control

system

ẋ = (A+ u(t)bc)x

is accessible on Rn \ {0}.
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We obtain the same result if we allow A and bc to be complex and consider {A, bc}LA as

a complex Lie algebra since

spn/2(C) = spn/2(R)⊕ ispn/2(R)

and

sln(C) = sln(R)⊕ isln(R).

Corollary 3.30. Let (A, b, c) be controllable and observable, g(s) = c(sI − A)−1b. Then

the complex system Lie algebra g of

ẋ = (A+ u(t)bc)x

satisfies:

(i) g ∼= spn/2(C) if and only if g(s) = g(−s);

(ii) g ∼= spn/2(C)⊕ CI if and only if g(s+ α) = g(−s+ α) for some α ∈ C \ {0};

(iii) g = sln(C) if and only if g(s+ α) 6= g(−s+ α) for all α ∈ C and cb = trA = 0;

(iv) g = gln(C) else.

3.3 Real Lie algebras of complex SISO feedback systems

In this section we allow A and bc to be complex and consider {A, bc}LA as a real Lie

algebra. In [6] Brockett classified all possible Lie algebras of linear feedback systems.

Before we state the result, we need some introductory definitions and results.

Definition 3.31. The Cauchy index of a rational function g(s) is the number of jumps

of the function g(s) from −∞ to +∞ minus the number of jumps of the function g(s)

from +∞ to −∞ for s ∈ R.

Let g(s) =
∑∞

i=0

(
cAib

)
s−i−1. Then the Cauchy index of g(s) equals the signature of the

Hankelmatrix 

cb cAb cA2b

cAb cA2b

cA2b
. . .

cA2nb


(Theorem I.9.4 [34]).
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In the following, g∗(s) denotes the function which results from taking the complex conju-

gate of the coefficients of g(s), i.e.

g∗(s) = g(s) = c(sI −A)−1b

and i =
√
−1.

The complex analog to Lemma 3.17 is the following.

Theorem 3.32. Let (A, b, c) be a controllable and observable triple with transfer function

g(s) = c(sI −A)−1b. Then A and bc leave invariant a non-degenerate Hermitian form Q

if and only if g(s) = g∗(−s) holds for s ∈ C.

Proof. Suppose that g(s) = g∗(−s), then for s ∈ C holds

c(sI −A)−1b = c(−sI −A)−1b

= −c(sI +A)−1b

= −b>(sI − (−A>))−1c>.

Clearly, the triple (−A>, c>,−b>) is controllable and observable, too. Then, due to the

state-space isomorphism theorem, there exists a nonsingular matrix P such that

PAP−1 = −A>,

P b = c>,

−b>P = c.

By simple calculation including taking the conjugate transpose of the equations above we

obtain

(P )>A(P>)−1 = −A>,

b>P> = c,

−P>b = c>.

Hence, P and −P> satisfy the same set of equations. Since the solution of these equations

for P is unique (Remark 6.5.10 [49]), we see P = −P> and thus, the matrices A and bc

leave invariant the skew-Hermitian form P . When A and bc leave the skew-Hermitian

form P invariant, they leave the Hermitian form iP invariant and the other way round.

Clearly, iP is Hermitian. With Q := iP the proof of the first claim is completed.

Now, let us assume that

A>Q+QA = (bc)>Q+Qbc = 0
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for a Hermitian form Q. Then, we obtain for s ∈ R

g(s) = c(sI −A)−1b

= c(sI +Q−1A>Q)−1b

= cQ−1(sI +A>)−1Qb

= −cQ−1(−sI −A>)−1Qb

= b>(−sI −A>)−1c> = g∗(−s).

For the penultimate equality we used (bc)> = −QbcQ−1 and thus

b>(−sI −A>)−1c> = −cQ−1(−sI −A>)−1Qb.

This proves the converse.

We now present the correct version of Brockett’s result on Lie algebras from [7]. The

corrected defect will be explained in Example 3.35.

Theorem 3.33. Let (A, b, c) be a controllable and observable triple with transfer function

g(s) = c(sI − A)−1b. Then the real Lie algebra {A, bc}LA generated by A and bc is

isomorphic to

(1) spn/2(R) if g(s) = g∗(s) = g(−s);

(2) spn/2(R)⊕ αRI if g(s) = g∗(s) = g(−s+ α) for some α ∈ R\{0};

(3) sln(R) if g(s) = g∗(s) 6= g(−s+ α) for any α ∈ R;

trA = cb = 0;

(4) gln(R) if g(s) = g∗(s) and none of the above;

(5) su(µ, ν) if g(s) = g∗(−s) 6= g(−s) ; for h(s) = g(is),

µ− ν = Cauchy index of h(t);

(6) u(µ, ν) if g(s) = g∗(−s+ iα) 6= g(−s+ iα) for some α ∈ R\{0}

and h(s) = g(is) with µ− ν the Cauchy index of h(t);

(7) spn/2(C) if g(s) = g(−s) and none of the above;

(8) spn/2(C)⊕ αRI if g(s) = g(−s+ α) and none of the above;

(9) sln(C) if none of the above and trA = cb = 0;

(10) sln(C)⊕ αRI if none of the above and trA and cb are linearly depen-

dent over R and {trA, cb} 6= {0}; with α ∈ C suitable;

(11) gln(C) if none of the above.
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The definitions of the Lie algebras of cases (1)− (11) can be found in Appendix A.

The cases (1)-(4) are exactly Theorem 3.28 since the condition g(s) = g∗(s) implies that

all coefficients of

g(s) =
∞∑
i=0

(cAib)s−i−1

are real.

Now, we proof cases (5) and (6).

Theorem 3.34. Let (A, b, c) be controllable and observable and g(s) = c(sI−A)−1b be the

transfer function. If for g(s) holds either g(s) = g∗(−s) 6= g(−s) or g(s) = g∗(−s+ iα) 6=
g(−s+ iα) for some α ∈ R\{0}, then the real generated Lie algebra {A, bc}LA is su(µ, ν)

or u(µ, ν), respectively. The number µ−ν is the Cauchy index of h(t), where h(t) := g(it).

Proof. From Theorem 3.32 we get that A and bc leave invariant an Hermitian form if and

only if g(s) = g∗(−s) for s ∈ R. From Corollary 3.30 we know that, since g(s) 6= g(−s)
and g(s) 6= g(−s + α) for α ∈ R, the complex Lie algebra {A, bc}CLA is at least n2 − 1

dimensional over R. Because u(µ, ν) has dimension n2 this is the maximum dimension.

Thus, {A, bc}LA is either su(µ, ν) or u(µ, ν).

Now, we compute the signature of the Hermitian form Q. Let h(s) := g(is). From

g(s) = g∗(−s) we obtain for h(s) and s ∈ R that

h(s) = g(is) = g∗(−is) = g(is) = h(s) = h∗(s).

Therefore, the rational function h takes only real values for s ∈ R, i.e. h(R) ⊆ R. Since

g(s) =
∑∞

i=0(cAib)s−i−1 we get

h(s) =
∞∑
j=0

i−j−1(cAjb)s−j−1

and i−j−1(cAjb) ∈ R for all j ∈ N0. With c = b∗Q we conclude

i−(k+l)−1cAkAlb = i−(k+l)−1b∗QAkAlb

= −ib∗((−iA)∗)kQ(−iA)lb.

From the proof of Theorem 3.32 we know that a matrix A leaves invariant a Hermitian

form Q if and only if it leaves invariant a skew-Hermitian form, which is given by iQ.

Hence, we obtain with c = b∗(iQ) that

i−(k+l)−1cAkAlb = i−(k+l)−1b∗(iQ)AkAlb

= −ib∗((−iA)∗)k(iQ)(−iA)lb

= b∗((−iA)∗)kQ(−iA)lb.
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Thus,

(b,−iAb, . . . , (−i)n−1An−1b)∗Q(b, iAb, . . . , (−i)n−1An−1b)

=



−icb −cAb icA2b

−cAb icA2b

icA2b
. . .

(−i)2n−2cA2nb


=: H2n.

Hence, the Hankelmatrix H2n and the Hermitian matrix Q have the same signature and

this is equal to the Cauchy index of h(s) (Theorem I.9.4, [34]). This completes the

proof.

In [6] Brockett suggests that one gets the parameters µ and ν of the Lie algebras su(µ, ν)

and u(µ, ν) from cases (5) and (6) by calculating the Cauchy index of the function h(t),

which is supposed to be defined by h(s2) := g(s)/s. This implies that the function g(s)/s

is even in s, but this does not result from the condition g(s) = g∗(−s) 6= g(−s) as the

following examples shows.

Example 3.35. Choose the Hermitian form as

Q =


1

1

−1

 ,

which has signature 1, and the triple (A, b, c) as

A =


i 2 2i

−2 i 2

−2i 2 −2i

 , b =


i

0

i

 and c =

(
1 0 −1

)
.

A short calculation shows that A and bc leave Q invariant. Then (A, b, c) is controllable

and observable since

b =


i

0

i

 , Ab =


−3

0

4

 and A2b =


5i

14

−2i


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are linearly independent and

c =

(
1 0 −1

)
, cA =

(
3i 0 4i

)
and cA2 =

(
5 14i 2

)
,

too. Considering trA = 0 = tr bc, the real Lie algebra generated by A and bc is supposed

to be su(2, 1) due to Theorem 3.33. With the subsequent Theorem 3.32 we obtain that,

since A and bc leave invariant the Hermitian form Q, for the transfer function g(s) it

holds g(s) = g∗(−s) for s ∈ C. But for the coefficients of g(s) we obtain

cb =0

cAb =− 7

cA2b =7i

cA3b =− 7

...

Hence, g(s)
s cannot be an even function in s and so the parameters µ and ν have to be

obtained in a different manner. We show that it is by calculating the Cauchy index of the

function h(s) := g(is) in Theorem 3.34.

To conclude the proof of Theorem 3.33, we now proof the cases (7)− (11):

Theorem 3.36. Let (A, b, c) be controllable and observable and g(s) = c(sI −A)−1b. Let

the transfer function g(s) do not satisfy any condition from Theorem 3.28 or Theorem

3.34. Then

(i) if g(s) = g(−s) 6= g∗(s), then g = spn/2(C).

(ii) if g(s) = g(−s+ α) with α ∈ C\{R, iR}, then g = spn/2(C)⊕ α{I}.

(iii) if none of the above and trA = cb = 0, then g = sln(C).

(iv) if none of the above, trA and cb are linear dependent over R and {trA, cb} 6= {0},
then g = sln(C)⊕ αRI for some α ∈ C \ {0}.

(v) if none of the above, then g = gln(C).

Proof. Clearly, we obtain from Corollary 3.30 that the Lie algebra g is contained in the

algebras of cases (i)−(v). Now we show that the real Lie algebra {A, bc}LA is the complete

Lie algebra. We know from Theorem 3.28 that for the transfer function g(s) the equality

g(s) 6= g∗(s) holds. Therefore, there exists a natural number l ∈ N with cAlb ∈ C\R.

Denote the minimal l with this property as l∗.
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First, let l∗ be odd. Then consider

[adl
∗
A(bc), bc] =

l∗∑
i=0

(−1)i
(
l∗

i

)
Al
∗−ibcAibc−

l∗∑
i=0

(−1)i
(
l∗

i

)
bcAl

∗−ibcAi

=
l∗∑
i=0

(−1)i
(
l∗

i

)
(cAib)Al

∗−ibc−
l∗∑
i=0

(−1)i
(
l∗

i

)
(cAl

∗−ib)bcAi

A lengthy calculation shows that

[adl
∗
A(bc), bc] = α

[[[
adl
∗−1
A (bc), bc

]
, A

]
, bc

]
+ βbc+ γ[A, bc]− 2(cAl

∗
b)bc,

where α, β, γ ∈ R. It follows that

(cAl
∗
b)bc ∈ g.

Second, let l∗ be even. Then, consider

[adl
∗−1
A (bc), Abc− bcA] =

l∗−1∑
i=0

(−1)i
(
l∗ − 1

i

)
Al
∗−1−ibcAi(Abc− bcA)−

l∗−1∑
i=0

(−1)i
(
l∗ − 1

i

)
(Abc− bcA)Al

∗−1−ibcAi.

Another tedious calculation yields

[adl
∗−1
A (bc), Abc− bcA] = −[[adl

∗−1
A (bc), bc], A]− 2(cAl

∗
b)bc,

which shows

−2(cAl
∗
b)bc ∈ g.

In both cases there exists an α ∈ C\R such that bc and αbc are in the real generated

Lie algebra {A, bc}LA and are linearly independent over the real numbers. Hence, we can

generate an ideal k in {A, bc}LA with real codimension not exceeding 1. Since spn/2(C)

and sln(C) are simple Lie algebras the result follows.

Taking Theorem 3.28, Theorem 3.34 and Theorem 3.36 we obtain the complete proof of

Theorem 3.33.

3.4 Lie algebras of MIMO feedback systems

Since we have only considered SISO systems in the previous sections of this chapter, we

now draw our attention to multiple-input multiple-output (MIMO) systems.
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Definition 3.37. A triple (A,B,C) with A ∈ Rn×n, B ∈ Rn×p and C ∈ Rp×n is called

controllable and observable if

rank

(
B AB . . . An−1B

)
= n

and

rank



C

CA

...

CAn−1


= n,

i.e. (A,B) is controllable and (A,C) is observable.

Note that, in contrast to Definition 3.1, this definition does not exclude the case A = 0

per se.

In [5] Brockett presents one result on the system Lie algebras of MIMO systems where he

uses the following lemma as the main tool to relate MIMO systems to SISO systems.

Lemma 3.38 ([4]). Let (A,B,C) ∈ Rn×n×Rn×p×Rp×n be a controllable and observable

triple. Then there exist vectors b ∈ Rn, c ∈ R1×n and a matrix K ∈ Rp×p such that

(A+BKC,Bb, cC) ∈ Rn×n × Rn×1 × R1×n

is controllable and observable.

Remark 3.39. From the proof of Lemma 3.38 one can easily see that in case the matrix

A is cyclic the matrix K can be chosen as K = 0.

Control by Output Feedback

There are two possibilities to generalize a SISO system to a MIMO system. In [5] Brockett

suggests

ẋ = (A+BU(t)C)x (3.9)

as the appropriate multivariable analog of (3), where U(t) is a rectangular matrix of

appropriate dimension and takes all values in Rp×p. Then the system Lie algebra is

defined by {
A,BUC

∣∣ U ∈ Rp×p}
LA

, (3.10)

which is the smallest Lie algebra consisting of A and BUC for all real U of appropriate

dimension. For this setting Brockett proved the following result.
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Theorem 3.40. Let (A,B,C) be a controllable and observable triple and suppose that

G(s) = C(sI − A)−1B is of rk G ≥ 2 for some s. Then the system Lie algebra g of the

output-feedback control system

ẋ = (A+BU(t)C)x

satisfies:

(i) g = sln(R) if and only if CB = 0 and trA = 0.

(ii) g = gln(R) else.

The proof can be found in Appendix C.

With Theorem 2.4 we deduce from Theorem 3.40 the following.

Corollary 3.41. Let (A,B,C) be a controllable and observable triple. Then the output-

feedback control system with full feedback control

ẋ = (A+BU(t)C)x

is accessible on Rn \ {0}.

Control by restricted Output feedback

Another possibility for a MIMO analog is

ẋ = (A+ u(t)BKC)x, (3.11)

where K is a constant matrix. Clearly, the system Lie algebra is one dimensional in case

A = 0 and two dimensional if A and BKC commute. In this case, we can only give a

result for A being cyclic.

Corollary 3.42. Let (A,B,C) be a controllable and observable triple and A be cyclic.

Then there exists a matrix K of appropriate dimension such that the system Lie algebra

g of the output-feedback control system

ẋ = (A+ u(t)BKC)x

satisfies g ∈ {spn/2(R), spn/2(R)⊕ RI, sln(R), gln(R)}.

Proof. From Remark 3.39 we know that for a controllable and observable triple (A,B,C)

with A being cyclic there exist vectors b ∈ Rn and c ∈ R1×n such that (A,Bb, cC) is
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controllable and observable. Now, we can choose K = bc and consider the bilinear control

system

ẋ = (A+ uBbcC)x.

With Theorem 3.28 the result follows.

Again, with Theorem 2.4 we deduce an accessibility condition for MIMO systems.

Corollary 3.43. Let (A,B,C) be a controllable and observable triple and A be cyclic.

Then there exists a matrix K of appropriate dimension such that the output-feedback

control system with feedback strength control

ẋ = (A+ u(t)BKC)x

is accessible on Rn \ {0}.



Chapter 4

Bilinear Control of Networks by

Interconnections

Feedback control systems wherein the control loops are closed through an underlying

network are denoted as network control systems [48]. For instance, these networks can

be considered as multi-agent systems, where the vertices of a graph given by the network

represent the agents and the edges represent the inter-agent communication links. Clearly,

the structure of the underlying graph plays a central role in representing the information

flow between the agents and in analyzing the system’s accessibility. In applications where

the coupling structure of a network is not fixed apriori and can be therefore considered as a

control parameter the problem occurs whether one can steer a given initial formation of the

network to a desired final formation by switching or tuning the interconnections suitably.

This chapter aims to develop a graph-based framework for the analysis of accessibility

properties of networked control systems.

In contrast to Chapter 5 we assume that there exist no linear dependencies between the

interconnections, i.e. all interconnections are assumed to be independently controllable.

The structure of this chapter is as follows: In Section 4.1 we give some basics and intro-

ductory results on graph theory and in Section 4.2 we describe the problem setting for

networks of SISO systems. We derive the bilinear system which arises from the network

of SISO systems by applying output feedback based on the interconnections of the under-

lying graph and regarding the interconnection strength as independently controllable. In

the subsequent section, Section 4.3, we compute the system Lie algebra of a network of

SISO systems with controllable interconnections for networks with three or more vertices

in case the underlying graph is strongly connected. By using that accessibility of bilinear

systems is dependent on the system Lie algebra we deduce a necessary and sufficient con-

dition for this particular type of networks to be accessible in terms of the graph structure.

By proving some special cases for networks with two vertices, we back up the conjecture

57
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that we can apply the same results. In Section 4.4 we examine the case when the under-

lying graph is not strongly connected and hence does not satisfy the requirements for the

developed accessibility conditions. We show how the system Lie algebra is structured.

Until now, all results are given for heterogeneous networks of real SISO systems.

Section 4.5 gives one further result on homogeneous networks, i.e. networks, where the

SISO systems on all vertices are equal. Here, we allow the matrices of the SISO systems

to be complex but only allow for real controls and compute the real generated system

Lie algebra. Again we have to make the constraint that the number of vertices has to be

greater than two. In Section 4.6 we adapt the setting to networks of MIMO systems and

show how to use the proof ideas of the preceding sections exemplarily.

4.1 Graph basics

In this section we first recall some basic notions from graph theory. We refer the interested

reader to [19, 27].

A graph Γ = (E, V ) is the pair of a finite set of vertices V and a set E of edges, which

consists of distinct, unordered pairs of vertices. A directed graph Γ = (E, V ) is a graph with

a set of ordered edges E. In this thesis, we only consider directed graphs. Additionally,

we always take V = {1, 2, . . . , N} as given and assume in this chapter that the graph Γ is

simple, i.e. it has no parallel edges and no self-loops. A self-loop is an edge connecting a

vertex to itself. The associated adjacency matrix γ of a graph Γ is defined by

(γ)ij :=

 1 if (i, j) ∈ E

0 else.

(4.1)

It is clear that the adjacency matrix of an unordered graph is symmetric, but the adjacency

matrix of a directed graph is in general not symmetric. An undirected graph Γ is connected

if there exists a path in Γ between any pair of distinct vertices. Here, a path i0i1 . . . iS

in Γ from vertex i to vertex j is a finite sequence of vertices such that (ik−1, ik) ∈ E for

k = 1, . . . , S, i0 = i and iS = j or i0 = j and iS = i. A directed path i0i1 . . . iS from vertex

i to vertex j is a finite sequence of vertices such that (ik−1, ik) ∈ E for k = 1, . . . , S,

i0 = i and iS = j. Two vertices i and j of a directed graph Γ = (E, V ) are called strongly

connected if there exists a directed path in Γ from i to vertex j and one from j to i.

Clearly, this constitutes an equivalence relation on the vertices. As such, it partitions

V into disjoint sets, called the strongly connected components, which correspond to the

maximal strongly connected subgraphs. A crucial definition for the sequel of this chapter

is the notion of a strongly connected graph.

Definition 4.1. A directed graph Γ = (E, V ) is called strongly connected if every pair of

vertices (i, j) is strongly connected.
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1

2

3

4

Figure 4.1: Example for a strongly connected graph Γ

A directed graph Γ = (E, V ) is called weakly connected if the underlying undirected graph

is connected but Γ is not strongly connected.

1

2

3

4

Figure 4.2: Example for a weakly connected graph Γ

The weakly connected components of a directed graph are the maximal weakly connected

subgraphs. The weakly and strongly connected components define unique partitions on

the vertices. A graph is called disconnected if it has more than one weakly connected

component.

1

2

3

4

Figure 4.3: Example for a disconnected graph Γ with 2 strongly connected components

Definition 4.2. A vertex j of a directed graph is called isolated if the strongly connected

component, which contains j, only consists of j itself.

The following theorem provides us with a normal form for the adjacency matrix γ of a

graph Γ, the so-called Frobenius normal form (Theorem 3.2.4. [11]).
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Theorem 4.3. Let A be a matrix of order n. Then there exists a permutation matrix P

of order n and an integer t ≥ 1 such that

PAP> =



A11 A12 . . . A1t

0 A22 . . . A2t

...
. . .

...

0 . . . 0 Att


(4.2)

where A11, A22, . . . , Att are permutation-irreducible square matrices. The matrices Aii are

uniquely determined to within simultaneous permutation of their lines, but their ordering

in (4.2) is not necessarily unique.

A matrix A is permutations-reducible, if there exists a permutation matrix P such that

PAP> =

A1 A2

0 A3

 ,

where A3 is a r × r square matrix with 0 < r < n. It is called permutation-irreducible if

it is not permutation-reducible (cf. Definition 2.10).

The following is a well-known result (Theorem 2.7 [2]) relating the structure of a graph

to the structure of its adjacency matrix.

Theorem 4.4. Let Γ = (E, V ) be a directed graph with N vertices and γ its adjacency

matrix. Then

i) Γ is strongly connected if and only if γ is permutation-irreducible.

ii) Γ is disconnected if and only if there exists a permutation matrix P such that PγP>

has block diagonal structure, i.e.

PγP> =


A1

. . .

Ak

 ,

with Ai ∈ RNi×Ni and N =
∑k

i=1Ni.

iii) Γ is disconnected and consists only of strongly connected components which are not

connected among each other if and only if there exists a permutation matrix P
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such that PγP> has block diagonal structure and the matrices on the diagonal are

permutation-irreducible, i.e.

PγP> =


A1

. . .

Ak


with Ai ∈ RNi×Ni permutation-irreducible for all i = 1, . . . , k and N =

∑k
i=1Ni.

4.2 Networks of SISO systems

We consider networks of N not necessarily identical interconnected linear SISO systems.

Let the state of each vertex i ∈ {1, . . . , N} be an n-dimensional vector xi in Rn. Then

the dynamics of every single linear SISO system in this network can be described by

ẋi = Aixi + bivi,

yi = cixi,

where each triple (Ai, bi, ci) at vertex i is an n-dimensional triple with Ai ∈ Rn×n, bi ∈ Rn

and ci ∈ R1×n. To investigate a heterogeneous network of linear systems, we fix an

interconnection structure given by the adjacency matrix γ of a graph Γ = (E, V ). Based

on the interconnections of Γ we apply output feedback of the form

vi =
∑

(j,i)∈E

cjxj .

Then the dynamics of every single linear system under output feedback can be described

by

ẋi = Aixi + bi
∑

(j,i)∈E

cjxj

for all 1 ≤ i ≤ N . Now, we regard the interconnection strength to be controllable and

obtain the control system of every single node as

ẋi = Aixi +
∑

(j,i)∈E

uij(t)bicjxj ,

where uij are real valued control functions. Then the dynamics of the network forms a

bilinear control system of the form

ẋ = (A+ Bγ(u)C)x. (4.3)
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Since we assumed that there do not exist linear dependencies between the interconnections

of Γ, the so-called controlled adjacency matrix γ(u) of the graph Γ is given by

γ(u) :=
∑

(i,j)∈E

uijEij , (4.4)

where Eij denotes the matrix with one 1 at the entry (i, j) and zero elsewhere. This

means that we allow the controls of the bilinear control system (4.3) to vary through all

linear combinations of the set of matrices

{Eij
∣∣(i, j) ∈ E}.

The coefficient matrices of (4.3) are given by

A :=


A1

. . .

AN

 , B :=


b1

. . .

bN

 and C :=


c1

. . .

cN

 , (4.5)

where A ∈ RnN×nN , B ∈ RnN×N and C ∈ RN×Nn. When all triples (Ai, bi, ci) are equal

for all 1 ≤ i ≤ N , the network is called homogeneous. Then, the bilinear system simplifies

to

ẋ = (I ⊗A+ γ(u)⊗ bc)x.

Otherwise the network is called heterogeneous.

Since we want to deduce accessibility conditions for systems of the form (4.3), we are

interested in computing the associated system Lie algebra. The real controls uij in (4.4)

can take on every real values and thus one control uij can be 1 while the other controls

are zero. Therefore the system Lie algebra of (4.3) is the Lie algebra generated by the

matrices A and Eij ⊗ bicj for all (i, j) ∈ E. Here, the symbol ⊗ denotes the matrix

Kronecker product, which is a bilinear map

⊗ : RN×N × Rn×n → RnN×nN

defined by

(A,B) 7→ A⊗B :=


a11B . . . a1nB

...
...

an1B . . . annB

 ,
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where

A =


a11 . . . a1n

...
...

an1 . . . ann

 .

The commutator of A =
∑N

k=1Ell ⊗Al and Eij ⊗ bicj for any (i, j) ∈ E yields

[A, Eij ⊗ bicj ] =
N∑
l=1

[Ell ⊗Al, Eij ⊗ bicj ] = Eij ⊗ (Aibicj − bicjAj) .

Iteratively, we deduce

admA (Eij ⊗ bicj) = Eij ⊗

 m∑
p=0

(−1)p
(
m

p

)
Am−pi bicjA

p
j

 . (4.6)

For later purpose, we define the abbreviation

admAi,Aj
(bicj) :=

m∑
p=0

(−1)p
(
m

p

)
Am−pi bicjA

p
j (4.7)

and therefore, we can write equation (4.6) as

admA (Eij ⊗ bicj) = Eij ⊗ admAi,Aj
(bicj).

The operator adAi,Aj can be defined for arbitrary matrices X ∈ Rn×n by

adAi,Aj (X) = AiX −XAj .

It is a special case of the Sylvester operator

X 7→ AX +XB.

Denote by σ(A) := {λ ∈ C
∣∣ Ker(A− λI) 6= {0}} the spectrum of a matrix A. Let

REλ(A) :=
{
v ∈ Rn

∣∣ (A− λI)kv = 0 for k ∈ N
}

be the generalized right eigenspace associated to the eigenvalue λ of A and

LEλ(A) :=
{
v ∈ Rn

∣∣ v>(A− λI)k = 0 for k ∈ N
}

the generalized left eigenspace associated to the eigenvalue λ of A.
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We state some properties of the operator adAi,Aj (·) in the following theorem.

Theorem 4.5. Let adAi,Aj : Rn×n → Rn×n be defined by X 7→ AiX − XAj. Then the

operator adAi,Aj has the following properties.

(i) The spectrum of the Sylvester operator adAi,Aj is

σ
(
adAi,Aj

)
=
{
λ− µ

∣∣ λ ∈ σ(Ai), µ ∈ σ(Aj)
}
.

(ii) The spectrum of the iterated Sylvester operator adkAi,Aj
is

σ
(

adkAi,Aj

)
=
{

(λ− µ)k
∣∣ λ ∈ σ(Ai), µ ∈ σ(Aj)

}
.

(iii) The Sylvester operator adAi,Aj is nonsingular if and only if σ(Ai) ∩ σ(Aj) = ∅.

(iv) The generalized kernel of adAi,Aj is given by⋃
k≥1

Ker
(

adkAi,Aj

)
:= span

{
viv
>
j

∣∣ vi ∈ REλ(Ai), vj ∈ LEλ(Aj) for λ ∈ C
}
,

i.e. it is the subspace generated by all rank-one matrices of the form viv
>
j , where

vi ∈ REλ(Ai) and vj ∈ LEλ(Aj).

The proof of Theorem 4.5 can be found in [50].

4.3 Strongly connected networks

By assuming that all interconnections are independently controllable, we want to derive

accessibility conditions for the bilinear control system (4.3) in terms of the graph structure.

For this purpose, we compute the system Lie algebra in case the graph Γ = (V,E) is

strongly connected and has N > 2 vertices. We show that it is a necessary and sufficient

condition for the underlying directed graph to be strongly connected in order to obtain

accessibility of the bilinear control system (4.3). Later in this section, we draw our

attention to the case N = 2. In case the network only consists of one vertex, we need a

self-loop in order to obtain a control system. This leads us to control systems of the form

ẋ = (A+ u(t)bc)x,

which are addressed by Theorem 3.28.
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The main result of this section is the following theorem.

Theorem 4.6. Let (Ai, bi, ci) be controllable and observable for all 1 ≤ i ≤ N with N > 2

and

γ(u) :=
∑

(i,j)∈E

uijEij

be the controlled adjacency matrix of a strongly connected graph Γ = (E, V ) with N

vertices. Then the system Lie algebra G of

ẋ = (A+ Bγ(u)C)x

is either slnN (R) or glnN (R). In particular, G = glnN (R) if and only if trA 6= 0.

For the proof we need the following technical lemmas.

Lemma 4.7. Let 1 ≤ i, j, k ≤ N be fixed and let the triples (Ai, bi, ci), (Aj , bj , cj) and

(Ak, bk, ck) be controllable and observable. Then the real vector space generated by elements

of the form

X = admAi,Aj
(bicj) · advAj ,Ak

(bjck)

with m, v ∈ N0 is Rn×n, i.e.

span

X =

m∑
p=0

v∑
q=0

(−1)p+q
(
m

p

)(
v

q

)
(cjA

p+v−q
j bj)A

m−p
i bickA

q
k

∣∣ m, v ∈ N0

 = Rn×n.

Proof. Let 1 ≤ i, j, k ≤ N be fixed and

M := span

X =
m∑
p=0

v∑
q=0

(−1)p+q
(
m

p

)(
v

q

)
(cjA

p+v−q
j bj)A

m−p
i bickA

q
k

∣∣ m, v ∈ N0

 .

In case Api bickA
q
k ∈ M holds for all p, q ∈ N0, we can apply a similar result to Lemma

3.13 and the result follows immediately.

Due to the controllability and observability of (Aj , bj , cj) there exists an integer m ∈ N
such that cjA

m
j bj 6= 0. Denote the minimal integer with this property by m?. First, we

consider

adm
?

Ai,Aj
(bicj) · ad0

Aj ,Ak
(bjck) =

m?∑
p=0

(−1)p
(
m?

p

)
(cjA

p
jbj)A

m?−p
i bick

= (−1)m
?
(cjA

m?

j bj)bick.

Therefore, bick ∈M . Now, let l ∈ N be fixed. Then we obtain for h = 0 the element

adm
?+l−0

Ai,Aj
(bicj) · ad0

Aj ,Ak
(bjck) =

m?+l∑
p=0

(−1)p
(
m? + l

p

)
(cjA

p
jbj)A

m?+l−p
i bick
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and for h = 1 the element

adm
?+l−1

Ai,Aj
(bicj) · ad1

Aj ,Ak
(bjck) =

m?+l∑
p=0

(−1)p
(
m? + l − 1

p

)
(cjA

p
jbj)A

m?+l−1−p
i bick

+
m?+l∑
p=0

(−1)p
(
m? + l − 1

p

)
(cjA

p
jbj)A

m?+l−2−p
i bickAk

as elements of M . Under the assumption that Api bick and Aqi bickAk are elements of M

for p = 0, . . . , l − 1 and q = 0, . . . , l − 2, we get that Alibick and Al−1
i bickAk are elements

of M . In doing so for all h = 0, . . . , l, we obtain Al−qi bickA
q
k ∈ M for every q = 0, . . . , l.

Hence, we can state as a induction hypothesis that ApjbjckA
q
k ∈ M for all p + q ≤ l. We

now show for all l ∈ N, if Api bickA
q
k ∈ M for all p + q ≤ l, then Api bickA

q
k ∈ M for all

p+ q ≤ l + 1. For this purpose, consider for 0 ≤ h ≤ l + 1 the element

adm
?+l+1−h

Ai,Aj
(bicj) · adhAj ,Ak

(bjck) =

m?+l+1−h∑
p=0

h∑
q=0

(−1)p+q
(
m? + l + 1− h

p

)(
h

q

)
(cjA

p+h−q
j bj)A

m?+l+1−h−p
i bickA

q
k.

Then

(cjA
m?

j bj)

h∑
q=0

(
m? + l + 1− h

h− q

)(
h

q

)
Al+1−q
i bickA

q
k ∈M

for all 0 ≤ h ≤ l+1. Hence, Al−pi bickA
p
k ∈M and the result follows from Lemma 3.13.

Lemma 4.8. Let G ⊂ glnN (R) be a Lie subalgebra. If and only if Eij ⊗Rn×n ⊂ G for all

i 6= j, i, j = 1, . . . , N , then

slnN (R) ⊆ G.

Proof. For i 6= j and k 6= m we have

[Eij ⊗ Ekl, Eji ⊗ Elm] = Eii ⊗ Ekm ∈ G.

Then the if-direction is an immediate consequence from Lemma 3.23.

The other direction is trivial.

An obvious lemma is the following, which we do not prove.

Lemma 4.9. Let G ⊆ glnN (R) be a real Lie algebra with slnN (R) ⊆ G. Then either

G = slnN (R) or G = glnN (R).

Now, we give the proof for Theorem 4.6.
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Proof. For (i, j) ∈ E we obtain Eij ⊗ bicj ∈ G and consequently, Eij ⊗ adkAi,Aj
(bicj) ∈ G

for all k ∈ N. Let (i, k) 6∈ E. Due to the strong connectedness of Γ we find a directed

path on Γ from i to k. Without loss of generality, we us assume that the path consists of

two edges, i.e. it exists a vertex j such that (i, j) and (j, k) ∈ E. Thus,

[Eij ⊗ bicj , Ejk ⊗ bjck] = (cjbj)Eik ⊗ bick ∈ G.

In case cjbj = 0, due to the controllability and observability of (Ai, bi, ci), there exists an

integer m ∈ N such that cjA
m
j bj 6= 0. Denote the minimal m with this property by m?.

Then

[Eij ⊗ bicj , Ejk ⊗ adm
?

Aj ,Ak
(bjck)] =Eik ⊗

m?∑
p=0

(−1)p
(
m?

p

)
bicjA

m?−p
i bickA

p
k

=(cjA
m?

j bj)Eik ⊗ bick ∈ G.

So, Eij ⊗ adkAi,Aj
(bicj) ∈ G for all i 6= j and all k ∈ N. From

[Eij ⊗X,Ejk ⊗ Y ] = Eik ⊗XY

we obtain with Lemma 4.7 that Eik ⊗ Rn×n ⊂ G. Hence, the result follows from Lemma

4.8.

Remark 4.10. The requirement that (Ai, bi, ci) has to be controllable and observable for all

i = 1, . . . , N is necessary to obtain G = slnN (R) or G = glnN (R) as system Lie algebra.

To see this we assume that there is one i such that (Ai, bi, ci) is not controllable and

observable. Hence, either det(bi, Aibi, . . . , A
n−1
i bi) = 0 or det(ci, ciAi, . . . , ciA

n−1
i ) = 0

holds. Without loss of generality assume det(bi, Aibi, . . . , A
n−1
i bi) = 0 and denote the

rank of bi, Aibi, . . . , A
n−1
i bi by r � n. To get G = slnN (R) or G = glnN (R) it is necessary

to have Eij⊗Rn×n ⊂ G for all i 6= j (Lemma 4.8). We can easily see that from Eij⊗X ∈ G

it immediately follows that

X ∈ span{Api bicjA
q
j

∣∣ p, q ∈ N0}.

But the set span{Api bicjA
q
j , p, q ∈ N0} has dimension r ·n � n2 for all j 6= i since (Ai, bi, ci)

is not controllable and observable. Thus, Eij ⊗ Rn×n * G for all j 6= i and therefore,

slnN (R) * G.

The analog follows in case det(ci, ciAi, . . . , ciA
n−1
i ) = 0.

We deduce the following theorem as a consequence of Theorem 4.6.

Theorem 4.11. Let N > 2, Γ = (E, V ) be a simple directed graph with N vertices and the

triples (Ai, bi, ci) be controllable and observable for all i = 1, . . . , N . Then the controlled
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network

ẋ = (A+ Bγ(u)C)x (4.8)

is accessible on RnN\{0} if and only if Γ is strongly connected.

Proof. The if-direction follows from Theorem 4.6 and Theorem 2.3. For the other direction

let the graph Γ be not strongly connected. Then, due to Theorem 4.4, its adjacency matrix

γ is permutation-reducible and we can find a permutation matrix P ∈ GL(N,R) such that

P−1γP =

d1 d2

0 d3

 , (4.9)

where d3 is a r × r matrix, 0 < r < N . Hence, we obtain

(P−1 ⊗ In)(BγC)(P ⊗ In) = B

d1 d2

0 d3

 C. (4.10)

Clearly, a permutation matrix of the form P ⊗ In leaves A =
∑N

i=1Eii ⊗ Ai in its block

diagonal form. Hence, A and Bγ(u)C are conjugated to matrices of the form (4.10). But

the set of all matrices of the form (4.10) constitutes a Lie subalgebra G? such that the

group generated by exp(G?) does not have an interior point. Hence, system (4.8) is not

accessible.

Since a homogeneous network is a special case of an heterogeneous network, we derive the

result for homogeneous networks as a special case of Theorem 4.6.

Corollary 4.12. Let (A, b, c) be controllable and observable, N > 2 and

γ(u) :=
∑

(i,j)∈E

uijEij

be the controlled adjacency matrix of a strongly connected simple graph Γ = (E, V ) with

N vertices. Then the system Lie algebra of the controlled network

ẋ = (IN ⊗A+ γ(u)⊗ bc)x

is either slnN (R) or glnN (R). In particular, G = glnN (R) is and only if trA 6= 0.

As an example, we state the following controllability result.

Corollary 4.13. Let N > 2, Γ = (E, V ) be a simple directed graph with N vertices,

which is strongly connected and the triples (Ai, bi, ci) are controllable and observable with
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Ai skew-symmetric for all i = 1, . . . , N . Then the controlled network

ẋ = (A+ Bγ(u)C)x

is controllable on RnN\{0}.

Proof. With Theorem 4.6 we have slnN (R) ⊂ G. Now, choose the constant control u = 0.

Then for the trajectory x(t) of the system

ẋ = Ax

with x(0) = I we get x(t) ∈ SO(nN) since A is skew-symmetric. Hence, x(t) is either

periodic or almost periodic. Hence, we can find a sequence of positive numbers {tn}, such

that the limit limx(tn) exists. W.l.o.g., we can assume lim tn = ∞. Hence, there exists

a subsequence {tnk
} with tnk+1

− tnk
> k. Now, consider the sequence τk := tnk+1

− tnk
.

Then, limx(τk) = I and therefore limx(τk) belongs to any subgroup of the system group

G. Now, we can apply Theorem 2.9 and the result follows from Theorem 2.8.

Since in the proof of Theorem 4.6 we need the graph Γ to consist of three or more vertices

to show that slnN (R) ⊂ G, we have to make an additional assumption, to prove a similar

result for a graph with only two vertices. In the sequel, let m?
i denote the smallest integer

mi with ciA
mi
i bi 6= 0.

Theorem 4.14. Let N = 2, the triples (A1, b1, c1) and (A2, b2, c2) be controllable and

observable and Γ = (E, V ) be a strongly connected simple graph with two vertices. Suppose

that m?
1 6= m?

2. Then the system Lie algebra G of

ẋ = (A+ Bγ(u)C)x. (4.11)

is either sl2n(R) or gl2n(R). In particular, G = gl2n(R) if and only if trA 6= 0.

Proof. Since Γ is strongly connected, we have E12⊗admA1,A2
(b1c2), E21⊗admA2,A1

(b2c1) ∈ G

for all m ∈ N0. Without loss of generality, let m?
1 = min{m?

1,m
?
2}. Particularly, we get

c2A
m
2 c2 = 0 for 0 ≤ m < m?

1 and therefore

[E12 ⊗ b1c2, E21 ⊗ ad
m?

1
A2,A1

(b2c1)]

= E11 ⊗
m?

1∑
j=0

(−1)j
(
m?

1

j

)
b1c2A

m?
1−j

2 b2c1A
j
1 − E22 ⊗

m?
1∑

j=0

(−1)j
(
m?

1

j

)
A
m?

1−j
2 b2c1A

j
1b1c2

= E11 ⊗
m?

1∑
j=0

(−1)j
(
m?

1

j

)(
c2A

m?
1−j

2 b2

)
b1c1A

j
1 − E22 ⊗

m?
1∑

j=0

(−1)j
(
m?

1

j

)(
c1A

j
1b1

)
A
m?

1−j
2 b2c2

= (c1A
m?

1
1 b1)E22 ⊗ b2c2 ∈ G.
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As c1A
m?

1
1 b1 6= 0, we obtain E22 ⊗ admA2

(b2c2) ∈ G for all m ∈ N0. With

[E22 ⊗ adkAi
(bici), Eij ⊗ adlAi,Aj

(bicj)] =(−1)iEij ⊗
(

adkAi
(bici) · adlAi,Aj

(bicj)
)

=(−1)iEij ⊗
(

adkAi,Ai
(bici) · adlAi,Aj

(bicj)
)

for all k, l ∈ N0 we deduce Eij ⊗ Rn×n ⊂ G for i 6= j from Lemma 4.7. Then the result

follows by Lemma 4.8.

Since we assumed m?
1 6= m?

2 the case of a homogeneous network with (A1, b1, c1) =

(A2, b2, c2) is excluded in Theorem 4.14. We give another result with a graph theoretical

assumption, where we can determine the system Lie algebra of (4.11).

Theorem 4.15. Let (A1, b1, c1) and (A2, b2, c2) be controllable and observable and let

Γ = (E, V ) be a strongly connected graph with N = 2 vertices and at least one self-loop.

Then the system Lie algebra G of

ẋ = (A+ Bγ(u)C)x.

is either sl2n(R) or gl2n(R). In particular, G = gl2n(R) if and only if either trA 6= 0 or

cibi 6= 0, where at vertex i is a self-loop.

Proof. Without loss of generality, let vertex 1 have the self-loop. Then E11⊗admA1
(b1c1) ∈

G and the remaining part follows as in the proof of Theorem 4.14.

The following example shows that the assumptions of Theorem 4.14 and Theorem 4.15

are not necessary.

Example 4.16. Let Γ be a strongly connected simple graph with 2 vertices. Then the

controlled adjacency matrix of Γ is given by

γ(u) =

 0 u12

u21 0

 .

We determine the system Lie algebra for a homogeneous network with the controllable and

observable triple

A =

1 1

1 0

 , b =

1

0

 and c =

(
1 0

)
.
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Thus, we compute the Lie algebra G generated by the three matricesA 0

0 A

 ,

0 bc

0 0

 and

 0 0

bc 0

 .

One sees easily that Eij ⊗ adA(bc) and Eij ⊗ ad2
A(bc) ∈ G for i 6= j, at which

adA(bc) =

0 −1

1 0

 and ad2
A(bc) =

 2 −1

−1 −2

 .

Since [E12 ⊗ bc, E21 ⊗ bc] = (cb)(E11 − E22)⊗ bc we have with Eij ⊗X ∈ G that

Eij ⊗ (bcX +Xbc) ∈ G.

This yields

[(E11 − E22)⊗ bc, E12 ⊗ ad2
A(bc)] = E12 ⊗

 4 −1

−1 0

 .

Hence, E12 ⊗R2×2 ⊂ G and analogously E21 ⊗R2×2 ⊂ G. With Lemma 4.8 and trA 6= 0

we obtain

G = gl4(R).

4.4 Weakly connected networks

Theorem 4.14 and Theorem 4.15 suggest the conjecture that the main result (Theorem

4.6) from Section 4.3 can be transferred to the case N = 2. Example 4.16 shows that

there exist examples, which support this conjecture. For the sake of simplicity, we assume

for the sequel of Section 4.4 that Theorem 4.6 remains true for N = 2.

Conjecture 4.17. Theorem 4.6 remains true for N = 2.

In case this conjecture turns out to be not true, all theorems of this section need the

additional assumption that the strongly connected components should consist of three or

more vertices.

The following lemma gives the connection between the graph structure of Γ and the

generated Lie algebra

{Ekl
∣∣ (k, l) ∈ E}LA.
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Lemma 4.18. Let Γ = (E, V ) be a directed simple graph. Then there exists a directed

path in the graph Γ from vertex i to vertex j if and only if

Eij ∈ {Ekl
∣∣ (k, l) ∈ E}LA.

This lemma states that Eij can be written as a Lie monomial on {Ekl
∣∣ (k, l) ∈ E}LA if

and only if there exists a directed path from vertex i to vertex j.

Proof. First, let there exists a directed path from vertex i to j. Then there exists a

sequence of vertices

(i, i1), (i1, i2), . . . , (im, j) ∈ E

and it follows for the associated sequence of matrices that

Eii1 , Ei1i2 , . . . , Eimj ∈ {Ekl
∣∣(k, l) ∈ E}.

With

[Eii1 , [Ei1i2 , [. . . , Eimj ]]] = Eij

we obtain Eij ∈ {Ekl
∣∣(k, l) ∈ E}LA.

Second, let us assume that Eij ∈ {Ekl
∣∣(k, l) ∈ E}LA. Then we have either Eij ∈

{Ekl
∣∣(k, l) ∈ E}, i.e. there exists a vertex (i, j) = (k, l) on Γ, or Eij is a finite linear com-

bination of Lie monomials on {Ekl
∣∣(k, l) ∈ E}. Using the Jacobi-identity (cf. Definition

A.1) we can show that

[[Eij , Ejk], [Ekl, Elm]] = [Eij , [Ejk, [Ekl, Elm]]]

for all Eij , Ejk, Ekl, Elm. Therefore, we can inductively assume that the Lie monomial for

Eij is of the form

Eij = [Ek1k2 , [Ek3k4 , [. . . , Ekl−1kl ]]] (4.12)

with Ekiki+1
∈ {Ekl

∣∣(k, l) ∈ E}. From [Eij , Ekl] 6= 0 it follows that j = k or l = i and

then [Eij , Ekl] = Eij if j = k and [Eij , Ekl] = −Ekj if l = i. So, in both cases there

exists a directed path on Γ from i to j and we obtain for (4.12) that k2i+1 = k2i for all

1 ≤ i ≤ b l2c since Eij 6= 0. Now, we get inductively if Eij is a finite linear combination of

Lie monomials on {Ekl
∣∣(k, l) ∈ E}, there exists a finite sequence of matrices

Eii1 , Ei1i2 , . . . , Eikj ∈ {Ekl
∣∣(k, l) ∈ E}LA

such that [Eii1 , [Ei1i2 , [. . . , Eikj ]]] = Eij . It follows that there exists a path on Γ from

vertex i to j. Hence, the result follows.

If a directed graph is disconnected, its adjacency matrix has (up to a vertex permutation)

block diagonal structure (Theorem 4.4). Since products of block diagonal matrices are
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again block diagonal matrices, the Lie algebra generated by matrices of block diagonal

form consists only of matrices of this particular form. Therefore, the generated system

Lie algebra is a proper subalgebra of glnN (R) unequal slnN (R).

Theorem 4.19. Let (Ai, bi, ci) be controllable and observable for 1 ≤ i ≤ N and Γ =

(E, V ) be a directed graph with N vertices. Then if the directed graph Γ is disconnected,

the controlled network

ẋ = (A+ Bγ(u)C)x (4.13)

is never accessible on RnN\{0}. The system Lie algebra G of (4.13) is the direct sum of

the system Lie algebras of the weakly connected components, i.e. the system Lie algebra

G is a subalgebra of

glN1,...,Nk
(R) :=


glnN1

(R)

. . .

glnNk
(R)

 . (4.14)

Here, Ni denotes the number of vertices in the i-th weakly connected component and∑k
i=1Ni = N .

Proof. Let C1, . . . , Ck denote the weakly connected components of the graph Γ. Because

the network is disconnected, we get from Theorem 4.4 (ii) that the adjacency matrix γ is

similar to a block-diagonal matrix

PγP> =


D1

. . .

Dk

 . (4.15)

Here, Di denotes the Ni × Ni adjacency matrix of the connected component Ci, which

consist of Ni vertices. Note that all Di do not need to have the same size, but N =∑k
i=1Ni. Clearly, the structure (4.15) is preserved under the commutator (since products

of block diagonal matrices are again block diagonal matrices) and therefore all matrices

of the Lie algebra

{A,Bγ(u)C}LA

are of the form 
D̃1

. . .

D̃k

 , (4.16)
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where D̃i is a nNi × nNi matrix. But the set of all matrices of the form (4.16) is closed

under taking the commutator and thus constitutes a Lie subalgebra G? such that the

associated system Lie group does not have an interior point. Hence, system (4.13) is not

accessible on Rn×n \ {0}.

The notation (4.14) refers to the set of matrices which have the form
X1

. . .

Xk


with Xi ∈ glnNi

(R). Clearly, this set constitutes a Lie algebra.

The following is a direct consequence from Theorem 4.4, Theorem 4.6 and Theorem 4.19.

Corollary 4.20. Let (Ai, bi, ci) be controllable and observable with trAi = 0 for 1 ≤ i ≤ N
and let Γ = (E, V ) be a directed graph with N vertices, which decomposes into k strongly

connected components. Then the system Lie algebra G of

ẋ = (A+ Bγ(u)C)x

is conjugated by a permutation to

slN1,...,Nk
(R) :=


slnN1(R)

. . .

slnNk
(R)

 . (4.17)

Here, Ni denotes the number of vertices in the i-th strongly connected component and∑k
i=1Ni = N .

In the remaining chapter we concentrate on weakly connected graphs to classify the system

Lie algebras of networks. Since the system Lie algebra decomposes into the direct sum of

the system Lie algebras of the weakly connected components, this is sufficient to classify

the system Lie algebra.

4.4.1 Networks of strongly connected components

Since we can classify with Theorem 4.6 the system Lie algebra in case the underlying

graph is strongly connected, our first step to obtain results on weakly connected graphs

is to limit ourselves to networks which are weakly connected but not strongly connected
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and consist only of strongly connected components.

First, we consider the case, where Γ has two strongly connected components.

Theorem 4.21. Let Γ be a weakly connected simple graph, which consists of two strongly

connected components C1 and C2 with number of vertices N1 and N2, respectively, and let

(Ai, bi, ci) be controllable and observable with trAi = 0 for 1 ≤ i ≤ N . Then the system

Lie algebra G of

ẋ = (A+ Bγ(u)C)x (4.18)

is conjugated by a permutation toslnN1(R) RnN1×nN2

0 slnN2(R)


with N = N1 +N2.

In case trA 6= 0 there exists at least one triple (Ai, bi, ci) with trAi 6= 0. W.l.o.g. let

i ∈ C1 and
∑N1

j=1 trAj 6= 0. Then the system Lie algebra is conjugated by a permutation

to glnN1
(R) RnN1×nN2

0 slnN2(R)

 .

We give the proof of Theorem 4.21.

Proof. By Theorem 4.4 we can assume w.l.o.g. that the matrix γ(u) is of the formB1 D

0 B2

 , (4.19)

where B1 ∈ RN1×N1 , B2 ∈ RN2×N2 , D ∈ RN1×N2 . With Conjecture 4.17 we can apply

Theorem 4.4 to each strongly connected component, since the underlying directed graph

of a strongly connected component is strongly connected. Therefore, due to the strong

connectedness of the components C1 and C2, B1 and B2 are permutation-irreducible and

D 6= 0 due to the connectedness of Γ. Applying Theorem 4.6 to the strongly connected

components C1 and C2, i.e. toB1 0

0 0

 and

0 0

0 B2

 ,
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we obtain slnN1(R) 0

0 slnN2(R)

 ⊆ G. (4.20)

Due to the connectedness of Γ we find a directed path from vertex i to vertex j if and

only if they are either in the same strongly connected component or i < j since we assume

that the adjacency matrix of Γ is of the form (4.19).

Let i < j be not in the same strongly connected component. Then there exists a directed

path from vertex i to vertex j in the graph Γ. We obtain for the entries γkl of the adjacency

matrix γ that

γik1 6= 0, γk1k2 6= 0, . . . , γkm−1km 6= 0, γkmj 6= 0

holds. For i 6= k, k 6= j regarding

[Eik ⊗ bick, Ekj ⊗ bkcj ] = Eij ⊗ bickbkcj = ckbk(Eij ⊗ bicj)

we have

Eij ⊗ bicj ∈ G for all i < j

if ckbk 6= 0. In case ckbk = 0 we can show that Eij⊗ bicj is an element of G with the same

construction as in the proof of Theorem 4.6, i.e. with ckA
m?

k bk 6= 0 and m? minimal we

obtain

[Eik ⊗ bick, Ekj ⊗ adm
?

Ak,Aj
(bkcj)] =

(
ckA

m?

k bk

)
Eij ⊗ bicj ∈ G.

It follows Eij ⊗ adkAi,Aj
(bicj) ∈ G for all k ∈ N0 and now, with Lemma 4.7, we obtain

Eij ⊗ Rn×n ⊂ G for all i < j.

Hence, slnN1(R) RnN1×nN2

0 slnN2(R)

 ⊆ G (4.21)

and with trA1 = trA2 = 0 we obtain equality in (4.21).

We can adapt Theorem 4.21 to a weakly connected graph Γ with finitely many strongly

connected components Ci, 1 ≤ i ≤ k.

Theorem 4.22. Let Γ = (E, V ) be a weakly connected simple graph, which consists of

k strongly connected components Cj with number of vertices Nj and let (Ai, bi, ci) be

controllable and observable with trAi = 0 for all 1 ≤ i ≤ N . Then the system Lie algebra

G of

ẋ = (A+ Bγ(u)C)x (4.22)



Chapter 4. Bilinear Control of Networks by Interconnections 77

is conjugated by a permutation to

slnN1(R) M12 M13 . . . M1k

0 slnN2(R) M23 . . . M2k

0 0
. . .

0 slnNk−1
(R) Mk−1k

0 0 . . . 0 slnNk
(R)


(4.23)

with N =
∑k

j=1Nj, where Mij = RnNi×nNj if there exists a directed path on Γ from Ci

to Cj and Mij = {0} else.

Proof. By Theorem 4.3 we can assume that γ is in the Frobenius normal form

γ =



B1 D12 · · · D1k

B2
. . .

...

. . . Dk−1k

Bk


and since Γ consists only of strongly connected components the matrices Bi are permu-

tation irreducible for 1 ≤ i ≤ k. From the weak connectedness of γ we know that not all

Dij = 0. By Corollary 4.20 we deduce

slN1,...,Nk
(R) ⊂ G.

Then applying Theorem 4.21 to each pair of strongly connected components Ci and Cj ,

where a directed path exists from component Ci to Cj , yields

. . .

slnNi(R) RnNi×nNj

. . .

slnNj (R)

. . .


⊂ G,

where all parts which are left blank are equal to zero. With Lemma 4.18 we obtain

Mkl = {0} Then the result follows.
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Remark 4.23. The Lie algebra (4.23) can be written as

G = slN1,...,Nk
(R)⊕

(
N ⊗ Rn×n

)
,

where slN1,...,Nk
(R) is defined as in (4.17), N is a subspace of strictly upper triangular

N ×N matrices and N ⊗Rn×n is the subspace generated by matrices of the form N ⊗X
with N ∈ N and X ∈ Rn×n. From this representation we observe that in case the

graph Γ has a self-loop at vertex i and the system Lie algebra g = {Ai, bici}LA is either

spn/2(R)⊕ RI or gln(R) the result only differs by glnNj
(R) instead of slnNj (R) in (4.17),

where Cj is the strongly connected component, which contains the vertex i.

4.4.2 Networks with isolated vertices

Now, we investigate networks in which isolated vertices can appear (Definition 4.2). Again,

we discuss systems of the form

ẋ = (A+ Bγ(u)C)x,

where (Ai, bi, ci) is controllable and observable and

γ(u) :=
∑

(i,j)∈E

uijEij

is the controlled adjacency matrix of the graph Γ = (E, V ).

Now, we classify all occurring system Lie algebras if the network is weakly connected but

not strongly connected.

Theorem 4.24. Let (Ai, bi, ci) be a controllable and observable triple for 1 ≤ i ≤ N ,

Γ = (V,E) be a weakly connected simple graph and

γ(u) :=
∑

(i,j)∈E

uijEij

the controlled adjacency matrix of Γ. Denote by J the set of isolated vertices in Γ. Then

the system Lie algebra G of

ẋ = (A+ Bγ(u)C)x.

fulfills the following conditions:

a) For i 6= j it holds

(i) Eij ⊗ Rn×n ⊂ G if

– vertex i lies in a connected component;
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– there exists a directed path from i to j with more than one edge.

(ii) Eij ⊗ span{adkAi,Aj
(bicj), k ∈ N0} ⊂ G if i, j ∈ J and there exists no directed

path from i to j on Γ with more than one edge.

(iii) Eij ⊗X 6∈ G for all X ∈ Rn×n else.

b) (i) Eii ⊗X −Ejj ⊗ Y ∈ G for all matrices X,Y ∈ Rn×n with trX = trY if i and

j are strongly connected;

(ii) In case trA 6= 0 the set

R
N∑
j=1

Ejj ⊗Aj ⊂ G

is an additional Lie subalgebra.

The next three figures show how edges between the vertices i and j should be in order to

satisfy (i)-(iii) of condition a).

i j

i j k

ji

Figure 4.4: Condition a) (i)

i j

Figure 4.5: Condition a) (ii)

i j

Figure 4.6: Condition a) (iii)

Proof. Let there exist a directed path from vertex i to vertex j in the graph Γ, i.e. there

exists a sequence of edges (i0, i1), (i1, i2), . . . , (im, im+1) ∈ E with i = i0 and j = im+1.

Hence, we obtain

Eik−1,ik ⊗ bik−1
cik ∈ G
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for k = 1, . . .m+ 1. Regarding for i 6= k, k 6= j

[Eik ⊗ bick, Ekj ⊗ bkcj ] = Eij ⊗ bickbkcj = ckbk(Eij ⊗ bicj)

we obtain inductively that

Eij ⊗ bicj ∈ G for all i < j

if ckbk 6= 0. In case ckbk = 0, we can show that Eij ⊗ bicj is an element of G with the

same construction as in the proof of Theorem 4.6, i.e. with ckA
m?

k bk 6= 0 and m? minimal

we obtain

[Eik ⊗ bick, Ekj ⊗ adm
?

Ak,Aj
(bkcj)] =

(
ckA

m?

k bk

)
Eij ⊗ bicj ∈ G.

It follows Eij ⊗ adkAi,Aj
(bicj) ∈ G for all k ∈ N0 if there is a directed path from i to j.

Now, we start with proving a). Let i 6= j. If vertex i lies in a connected component,

we know from Theorem 4.6 that there exists a vertex k with i 6= k and j 6= k such that

Ekk ⊗ Y − Eii ⊗X ∈ G for all X,Y ∈ Rn×n with trX = trY . Therefore, we get[
(Ekk − Eii)⊗ adlAi

(bici), Eij ⊗ adkAi,Aj
(bicj)}

]
= Eij ⊗ adlAi

(bici) · adkAi,Aj
(bicj) ∈ G

for all k, l ∈ N0. With Lemma 4.7 we derive

Eij ⊗ Rn×n ⊂ G

and the statement follows. Now, let there exist a directed path from i to j with more than

one edge. W.l.o.g. we assume that the path consists of two edges, i.e. (i, k), (k, j) ∈ E.

Then with the ideas from above, we know for all l ∈ N that

Eik ⊗ adlAi,Ak
(bick), Ekj ⊗ adlAk,Aj

(bkcj) ∈ G.

But then[
Eik ⊗ adlAi,Ak

(bick), Ekj ⊗ admAk,Aj
(bkcj)

]
= Eij ⊗ adlAi,Ak

(bick) · admAk,Aj
(bkcj)

and with Lemma 4.7 we obtain Eij ⊗ Rn×n ⊂ G. Now, statement a)(i) is proven.

To prove a)(iii), we suppose there does not exist a path from i to j. From Lemma 4.18

we get Eij 6∈ {Ekl, (k, l) ∈ E}LA. Therefore, Eij ⊗X 6∈ G for all X ∈ Rn×n\{0}.
Hence, the remaining case is if there only exists a path from i to j with one vertex. Then

a)(ii) follows from the comments from the beginning of the proof.

Now, we prove b). If i and j are connected, we know from a)(i) that

Eij ⊗ Rn×n, Eji ⊗ Rn×n ⊂ G.
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By taking the commutator

[Eij ⊗ Ekl, Eji ⊗ Epq] = Eii ⊗ EklEpq − Ejj ⊗ EpqEkl

we deduce that a basis for the subspace

{Eii ⊗X − Ejj ⊗ Y
∣∣ X,Y ∈ Rn×n, trX = trY }

is a subset of G and the statement follows. Clearly, statement b)(ii) holds. Hence, the

result is proven.

4.5 Control of homogeneous networks

In this section we consider the case, where all (Ai, bi, ci) are equal and hence the network

is homogeneous. The control system of a homogeneous network can be simplified to

ẋ = (IN ⊗A+ γ(u)⊗ bc)x (4.24)

and, as before, we denote by G its real generated system Lie algebra. Since we know from

Theorem 3.28 and Theorem 3.33 the explicit structure of the Lie algebra g = {A, bc}LA,

we can exploit the properties of the “small“ Lie algebra g in the homogeneous case to

compute the network Lie algebra.

Similar to Theorem 3.33 we want to determine the associated system Lie algebra of (4.24)

if A and bc are not necessarily real but we only allow for real controls. Since we now deal

with complex matrices, the real generated Lie algebra G is a Lie subalgebra of glnN (C).

Lemma 4.7 cannot be adapted to the new setting to determine the Lie algebra: In case

for one of the triples (Ai, bi, ci), (Aj , bj , cj) or (Ak, bk, ck) either Al 6∈ Rn×n or blcl 6∈ Rn×n

holds, Lemma 4.7 only yields that the real vector space

spanR

X =

m∑
p=0

v∑
q=0

(−1)p+q
(
m

p

)(
v

q

)
(cjA

p+v−q
j bj)A

m−p
i bickA

q
k

∣∣ m, v ∈ N0


has at least real dimension n2. Therefore, besides the case when A and bc are real matrices,

we need the following lemma.

Lemma 4.25. The real vector space generated by elements of the set su(p, q) · su(p.q) is

glp+q(C), i.e.

spanR{A ·B
∣∣ A,B ∈ su(p, q)} = glp+q(C).

Proof. Let

M := spanR{A ·B
∣∣ A,B ∈ su(p, q)}.
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We show that the real canonical basis {Eij , iEij
∣∣ 1 ≤ i, j ≤ p+ q} of glp+q(C) is a subset

of M. All matrices X ∈ su(p, q) have the form

X =

 A B

B̄T C

 ,

with A ∈ Rp×p, C ∈ Rq×q quadratic, skew-Hermitian matrices with trA = − trC and

B ∈ Rp×q. Products of two matrices X,Y ∈ su(p, q) are of the form

X · Y =

 A B

B̄T C


 D E

ĒT F

 =

 AD +BĒT AE +BF

B̄TD + CĒT B̄TE + CF

 . (4.25)

Consider A = Eij −Eji and D = Ekl−Elk and all other matrices equal to zero. Then for

i 6= j, k 6= l, i 6= l and j = k we obtain

(Eij − Eji)(Ekl − Elk) = Eil

and therefore all matrices of the formEil 0

0 0

 ∈M. (4.26)

With A = i(Eij + Eji) and D = Ekl − Elk for i 6= j, k 6= l and all other matrices equal

to zero we obtain the matrices (4.26) multiplied by i as an element of M. By choosing

C = Eij − Eji and F = Ekl − Elk and all other matrices equal to zero, we obtain for

i 6= j, k 6= l and i 6= l 0 0

0 Eil

 ∈M. (4.27)

Again, C = i(Eij + Eji) and F = Ekl − Elk for i 6= j, k 6= l and all other matrices equal

to zero gives us the pure imaginary multiples of (4.27) as elements of M. Now, choosing

A = Eij − Eji, E = Ejj , i 6= j, and all other matrices equal to zero gives us0 Eij

0 0

 ∈M (4.28)
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and with C = Eij − Eji, E = Ejj and the other matrices equal to zero 0 0

Eij 0

 ∈M. (4.29)

By choosing A = Eij − Eji, E = iEjj , i 6= j, and the other matrices equal to zero, and

C = Eij − Eji, E = −iEjj and the other matrices equal to zero, respectively, we get the

pure imaginary multiples of (4.28) and (4.29) as elements of M. For all Eii and iEii on

the diagonal part consider for i 6= j A = Eij − Eji, E = Eji and C = Eij − Eji, E = Eji

or for the pure imaginary multiples E = iEji.

Then the real canonical basis {Eij , iEij
∣∣ 1 ≤ i, j ≤ p + q} of glp+q(C) is a subset of M

and the result follows.

Lemma 4.26. Let g be one of the following Lie algebras

su(p, q), u(p, q), spn/2(C), spn/2(C)⊕ RI, sln(C), sln(C)⊕ RI, gln(C)

and let k be a Lie subalgebra of g with codimension at most one, which is an ideal in g.

Then k is one of the following Lie algebras

su(p, q), u(p, q), spn/2(C), spn/2(C)⊕ RI, sln(C), sln(C)⊕ RI, gln(C).

Proof. Let g = su(p, q), g = spn/2(C) or g = sln(C). Then k = g due to the simplicity of

g and the statement follows.

Let g = u(p, q), g = spn/2(C) ⊕ RI, g = sln(C) ⊕ RI or g = gln(C). Then g is reductive

and a reductive Lie algebra can be written as

g = g0 ⊕ Zg

with g0 = [g, g] semisimple and Zg Abelian (Corollary I.1.56 [32]). In our cases we can

draw the conclusion that g0 is simple and the real dimension of Zg is 1 or 2. Hence, the

codimension of g0 in g is 1 or 2. Therefore, [k, g] ⊂ [g, g] = g0 implies g0 ⊂ k as g0 is

simple and k has only codimension 1 in g. But we have g0 = su(p, q), g0 = spn/2(C) or

g0 = sln(C) and thus, the result follows.

The complex analog of Lemma 4.9 is the following.

Lemma 4.27. Let G be a real Lie subalgebra of glnN (C). If Eij ⊗ Cn×n ⊂ G for all

i 6= j, i, j = 1, . . . , N , then G = slnN (C), G = slnN (C) ⊕ αRI with α 6= 0 suitable or

G = glnN (C).

Now, we can state the main result of the section.



84 Chapter 4. Bilinear Control of Networks by Interconnections

Theorem 4.28. Let (A, b, c) ∈ Cn×n × Cn × C1×n be controllable and observable, N > 2

and

γ(u) :=
∑

(i,j)∈E

uijEij

be the controlled adjacency matrix of the strongly connected graph Γ = (E, V ) with N

vertices. Then the real system Lie algebra of the homogeneous controlled network

ẋ = (IN ⊗A+ γ(u)⊗ bc)x

is slnN (R), glnN (R), slnN (C) or slnN (C)⊕ αRI with α = N · trA.

Proof. In case A, bc ∈ Rn×n this is Theorem 4.6. So let either A ∈ Cn×n\Rn×n or

bc ∈ Cn×n\Rn×n. Due to the strong connectedness of Γ we obtain, similar as in the proof

of Theorem 4.6 that

Eij ⊗ bc ∈ G

for i 6= j and immediately,

Eij ⊗ adlA(bc) ∈ G for i 6= j and all l ∈ N.

Since (A, b, c) is controllable and observable there exists an integer m ∈ N with cAmb 6= 0.

Denote by m? the minimal integer with this property. Then with

[Eik ⊗ adm
?

A (bc), Eki ⊗ bc] = (cAm
?
b)(Eii − Ekk)⊗ bc

(for details see the proof of Theorem 4.6) we obtain by

[Eij ⊗X, (Eii + Ejj − 2Ekk)⊗ bc] = (Eij − Eij)⊗ [X, bc]

all commutators of the form Eij ⊗ [X, bc] for Eij ⊗X ∈ G. Hence,

Eij ⊗ k ⊂ G,

where k := {adkA(bc), k ∈ N0}LA is the real Lie algebra generated by all adkA(bc). Addi-

tionally, k is an ideal in g = {A, bc}LA. Due to Theorem 3.33 and since we assumed that

either A ∈ Cn×n\Rn×n or bc ∈ Cn×n\Rn×n the Lie algebra g is, up to isomorphisms, one

of the following

su(p, q), u(p, q), spn/2(C), spn/2(C)⊕ RI, sln(C), sln(C)⊕ RI, gln(C).

By Lemma 4.26 we deduce that k is, up to isomorphisms, again one of the following

su(p, q), u(p, q), spn/2(C), spn/2(C)⊕ RI, sln(C), sln(C)⊕ RI, gln(C).
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In case g = su(p, q) or g = u(p, q) it follows with Lemma 4.25∑
i 6=j

Eij ⊗ gln(C) ⊂ G.

Now, let g be any other Lie algebra of (4.5). Then either spn/2(C) ⊆ g or sln(C) ⊆ g

holds. With

spn/2(C) = spn/2(R)⊕ ispn/2(R)

and

sln(C) = sln(R)⊕ isln(R)

we can now apply Lemma 4.7. Therefore,

spanR{[Eik ⊗ g, Ekj ⊗ g]} = Eij ⊗ gln(R)

and

spanR{[Eik ⊗ g, Ekj ⊗ ig]} = Eij ⊗ igln(R)

for i 6= j. Thus, Eij ⊗ gln(C) ⊂ G. With a complex analog of Lemma 4.8 we obtain for

the system Lie algebra of (4.28)

slnN (C) ⊆ G.

With Lemma 4.27 we derive G = slnN (C), G = slnN (C) ⊕ αRI with α suitable or G =

glnN (C). But it is not possible to get G = glnN (C) as Remark 4.29 explains. The result

follows.

Remark 4.29. As long as we assume that Γ is a simple directed graph and has therefore no

self-loops there does not exist any example for a heterogeneous network of SISO systems

such that the system Lie algebra is glnN (C). This can be understood by the following

argumentation: We can write G = glnN (C) as the real vector space

G = slnN (C)⊕ αRI ⊕ βRI

with α, β ∈ C\{0} and α/β 6∈ R. Now, we can easily see that, in order to obtain glnN (C)

as Lie algebra, we need two matrices A,B ∈ G such that trA is not a real multiple of trB.

But, since Γ has no self-loops, the matrix Bγ(u)C has always trace zero for all possible

controls and A is the only possibility for a matrix in G with trace unequal zero.

With Theorem 4.28 we obtain similar to Corollary 4.11 the following.

Corollary 4.30. Let (A, b, c) be controllable and observable and either A ∈ Cn×n\Rn×n

or bc ∈ Cn×n\Rn×n. Let

γ(u) :=
∑

(i,j)∈E

uijEij
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be the controlled adjacency matrix of a simple directed graph Γ = (E, V ) with N > 2

vertices. Then the homogeneous controlled network

ẋ = (IN ⊗A+ γ(u)⊗ bc)x

is accessible on CnN\{0} if and only if Γ is strongly connected.

4.6 Networks of MIMO systems

In this section we transfer the results we developed for heterogeneous networks of SISO

systems to heterogeneous networks of MIMO (multiple-input multiple-output) systems.

As already stated in Section 3.4 there are two possibilities to extend the results on SISO

systems to MIMO systems. Similar to (3.9) and (3.11) we now introduce the heterogeneous

MIMO networks of output feedback type.

As an example, we prove that the system Lie algebra of a network of MIMO systems

is either slnN (R) or glnN (R). For both versions of feedback we reduce the problem to

rank one matrices by using Lemma 3.38, i.e. we trace back a network of MIMO systems

to a network of SISO systems. With these ideas of proof, we can transfer all results on

networks of SISO systems immediately to networks of MIMO systems.

Control by Output Feedback

We start with the network analog of (3.9): Again, the linear system of every vertex i can

be described by

ẋi = Aixi +Bivi,

yi = Cixi,

where Ai ∈ Rn×n, Bi ∈ Rn×p and Ci ∈ Rp×n. Applying output feedback of the form

vi =
∑

(j,i)∈E

Cjxj ,

the dynamics of an interconnected heterogeneous network with graph Γ = (V,E) under

output feedback can be described for every vertex i = 1, . . . , N by

ẋi = Aixi +Bi
∑

(j,i)∈E

Cjxj .
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Now, we regard the interconnection strength to be controllable and obtain the control

system of every single node as

ẋi = Aixi +Bi
∑

(j,i)∈E

Uij(t)Cjxj ,

where the feedback matrices Uij are assumed to take every value in Rp×p. For the whole

network, we obtain the bilinear control system

ẋ = (A+ Bγ(U)C)x,

where the adjacency matrix γ is defined in (4.1) and

γ(U) :=
∑

(i,j)∈E

Eij ⊗ Uij(t). (4.30)

Similar to the preceding sections we use the notation

A :=


A1

. . .

AN

 , B :=


B1

. . .

BN

 and C :=


C1

. . .

CN

 ,

where A ∈ RnN×nN , B ∈ RnN×pN and C ∈ RpN×nN .

Now, we can state the MIMO analog for Theorem 4.6.

Theorem 4.31. Let (Ai, Bi, Ci) be controllable and observable for all 1 ≤ i ≤ N with

N > 2. Let Γ = (E, V ) be a strongly connected graph with N vertices and

γ(U) :=
∑

(i,j)∈E

Eij ⊗ Uij(t)

the controlled adjacency matrix of the simple directed graph Γ. Then the system Lie algebra

G of

ẋ = (A+ Bγ(U)C)x

is either slnN (R) or glnN (R).

Proof. With Lemma 3.38 there exists for every controllable and observable triple

(Ai, Bi, Ci) a matrix Ki and vectors gi and hi such that (Ai + BiKiCi, Bigi, hiCi) is a

controllable and observable triple. Hence, bi := Bigi and ci := hiCi are cyclic vectors of
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Ai +BiKiCi. It would now be sufficient to show that the matrix
A1 +B1K1C1

. . .

AN +BNKNCN


is an element of G to transfer the proof ideas of the SISO case. But since we excluded

self-loops that is not possible. Therefore, we show that

Eij ⊗ adkAi+BiKiCi,Aj+BjKjCj
(bicj)

is an element of G for all i 6= j. The operator adkAi+BiKiCi,Aj+BjKjCj
(·) is defined by (cf.

(4.7))

adkAi+BiKiCi,Aj+BjKjCj
(bicj) :=

k∑
p=0

(−1)p
(
k

p

)
(Ai +BiKiCi)

k−pbicj(Aj +BjKjCj)
p.

First, by choosing Uij = gihj we obtain for all i 6= j

Eij ⊗ bicj ∈ G

due to the strong connectedness of Γ (cf. the proof of Theorem 4.6). Taking commutators

of the form adkA(Eij ⊗ bicj) it follows that

Eij ⊗ adkAi,Aj
(bicj) ∈ G.

Since

adAi+BiKiCi,Aj+BjKjCj (H) = adAi,Aj (H) + adBiKiCi,BjKjCj (H)

for every H ∈ Rn×n it is now left to show that

Eij ⊗ adBiKiCi,BjKjCj (bicj) ∈ G.

To do so, we notice that the matrix BiKiCi can be written as a sum of rank 1 matrices

BiKiCi =
∑
k,l

kiklBiEklCi =
∑
k,l

kiklb
i
kc
i
l, (4.31)

where kikl denotes the entries of Ki, b
i
k denotes the k-th column of Bi and cil denotes the

l-th row of Ci. As BiEpqCj = bipc
j
q, we consider the commutators for i 6= k, j 6= k

[Eik ⊗ bipckq , Eki ⊗ bkpciq] = (ckqb
k
p)Eii ⊗ bipciq − (ciqb

i
p)Ekk ⊗ bkpckq
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and

[Ejk ⊗ bjpckq , Ekj ⊗ bkpcjq] = (ckqb
k
p)Ejj ⊗ bjpcjq − (cjpb

j
q)Ekk ⊗ bkpckq .

In case ckqb
k
p = 0 for some p, q, k a similar construction with adm

?

Ak,Aj
(bkpc

j
q) as in the proof

of Theorem 4.6 works. Thus, we deduce that the matrix

. . .

Ai +BiKiCi

. . .

Aj +BjKjCj

. . .


∈ G,

where the other diagonal entries are Al except for l = k. Taking commutators we obtain

Eij ⊗ adlAi+BiKiCi,Aj+BjKjCj
(bicj) ∈ G

holds for all i 6= j, l ∈ N0. The desired result follows and we can apply Lemma 4.7 to

[Eik ⊗ adkAi+BiKiCi,Ak+BkKkCk
(bick), Ekj ⊗ adkAk+BkKkCk,Aj+BjKjCj

(bkcj)]

= Eij ⊗ adkAi+BiKiCi,Ak+BkKkCk
(bick) · adkAk+BkKkCk,Aj+BjKjCj

(bkcj).

Thus,

Eij ⊗ Rn×n ⊂ G

and with Lemma 4.8 we obtain

slnN (R) ⊂ G.

Now, the statement results from Lemma 4.9.

As a consequence, the proof of Theorem 4.11 can be transferred immediately to the MIMO

case.

Theorem 4.32. Let N > 2, Γ = (E, V ) be a directed simple graph with N vertices and

(Ai, Bi, Ci) be controllable and observable for 1 ≤ i ≤ N . Then the controlled network

ẋ = (A+ Bγ(U)C)x

is accessible on RnN\{0} if and only if Γ is strongly connected.



90 Chapter 4. Bilinear Control of Networks by Interconnections

Control by restricted Output Feedback

For the network analog of (3.11) we only have to regard (4.30) as

γ(u) :=
∑

(i,j)∈E

uij (Eij ⊗Kij) ,

where the matrices Kij are fixed and the controls uij take real values. Then the resulting

bilinear control system is

ẋ = (A+ Bγ(u)C)x. (4.32)

With an additional assumption, we can prove the following:

Theorem 4.33. Let Ai be cyclic and (Ai, Bi, Ci) be controllable and observable for all

1 ≤ i ≤ N with N > 2. Let Γ = (E, V ) be a strongly connected simple graph with N

vertices. Then there exists a set of matrices Kij for (i, j) ∈ Γ such that the system Lie

algebra G of

ẋ = (A+ Bγ(u)C)x

is either slnN (R) or glnN (R).

Proof. Since Ai is cyclic by assumption there exist vectors gi and hi by Lemma 3.38 and

Remark 3.39 such that (Ai, Bigi, hiCi) is a controllable and observable triple. When we

choose Kij := gihj the result follows from Theorem 4.6.

Again, we deduce as a consequence a condition for the bilinear system (4.32) to be acces-

sible.

Theorem 4.34. Let N > 2, Γ = (E, V ) be a directed simple graph with N vertices

and (Ai, Bi, Ci) be controllable and observable for 1 ≤ i ≤ N . Let Ai be cyclic for all

1 ≤ i ≤ N . Then there exists a set of matrices Kij for (i, j) ∈ Γ such that the controlled

network

ẋ = (A+ Bγ(u)C)x

is accessible on RNn\{0} if and only if Γ is strongly connected.



Chapter 5

Bilinear Control of Networks

restricted by Subspaces

In Chapter 4, we allowed the interconnections of the network to be independently con-

trollable. This implies that controls of our bilinear system vary through a vector space

spanned by certain matrices of the form Eij for some 1 ≤ i, j ≤ N . In the present chapter,

we generalize the setting by allowing linear dependencies between the interconnections.

Hence, the controls of the occurring bilinear system vary through a subspace S, which is

not necessarily generated by matrices of the form Eij .

In Section 5.1 we give a formulation for the slightly different setting and present a refor-

mulation of the main result of Chapter 4 (Theorem 4.6) in terms of subspaces. In Section

5.2 we consider homogeneous networks and obtain sufficient conditions for accessibility.

Different from Chapter 4 we cannot immediately transfer the results from homogeneous

to heterogeneous networks since the generated Lie algebra depends in a crucial way on

the scalars ciA
k
i bi for all 1 ≤ i ≤ N and k ∈ N0. Therefore, in Section 5.3 we develop

accessibility conditions for the more general case of heterogeneous networks.

Exemplarily, we study the controllability properties of networks whose interconnection

patterns are defined by Toeplitz matrices in Section 5.4.

5.1 The setting

Again, we consider networks of SISO systems and derive the bilinear control system

ẋ = (A+ Bγ(u)C)x. (5.1)

91
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In Chapter 4 we allowed the controls of the bilinear system to vary through the linear

combinations of the adjacency matrix

γ(u) =
∑

(i,j)∈E

uijEij .

Now, we examine the same type of bilinear control systems but allow for linear dependen-

cies in the interconnection structure. This has the consequence that the controls can vary

through a finitely generated subspace S ⊂ RN×N , i.e. we can write the control matrix as

γS(u) =

m∑
i=1

uiLi

if S = span{L1, . . . , Lm}.

Let S ⊂ RN×N be a subspace which is finitely generated, i.e.

S = span
{
L1, . . . , Lm

∣∣ Li ∈ RN×N} .
Then we denote

γS(u) :=
m∑
i=1

uiLi (5.2)

as the control matrix of the subspace S. Without loss of generality we can assume that

the matrices Li are linearly independent and thus form a basis of S. Similar to Chapter

4, we now consider the bilinear control systems

ẋ = (A+ BγS(u)C)x, (5.3)

where A, B and C are defined in (4.5) and γS(u) is defined in (5.2). We develop conditions

on the subspace S ⊂ RN×N such that the system Lie algebra G of the control system (5.3)

is either G = slnN (R) or G = glnN (R) and hence, system (5.3) is accessible on RnN\{0}.
We define the subspace

BSC := span {BLiC | i = 1, . . . ,m} ,

which simplifies for the special case of homogeneous networks to

S ⊗ bc := span{Li ⊗ bc | i = 1, . . . ,m}.

In this new setting we can reformulate Theorem 4.6.



Chapter 5. Bilinear Control of Networks restricted by Subspaces 93

Theorem 5.1. Let (Ai, bi, ci) be controllable and observable for 1 ≤ i ≤ N with N > 2.

Let S := span{L1, . . . , Lm} be a subspace of RN×N with Li ∈ {Ekl | 1 ≤ k, l ≤ N} and

γS(u) :=
m∑
i=1

uiLi

be the control matrix of the subspace S. If S contains an element L ∈ S, which is

permutation-irreducible, the Lie algebra G of the bilinear system

ẋ = (A+ BγS(u)C)x

is slnN (R) or glnN (R).

5.2 Homogeneous networks

First, we consider the easier case of homogeneous networks. The bilinear control system

(5.3) simplifies to

ẋ = (I ⊗A+ γS(u)⊗ bc)x

and the system Lie algebra is the Lie algebra generated by the matrices I ⊗A and L⊗ bc
for all L ∈ S. We obtain the following result.

Theorem 5.2. Let (A, b, c) be controllable and observable, S := span{L1, . . . Lm} ⊂
RN×N be a finitely generated subspace of matrices with N > 2 and let

γS(u) :=
m∑
i=1

uiLi

be the control matrix of the subspace S. If

slN (R) ⊆ {L1, . . . , Lm}LA,

then the Lie algebra G of the bilinear control system

ẋ = (I ⊗A+ γS(u)⊗ bc)x

is slnN (R) or glnN (R).

Proof. Let S ⊂ RN×N be a subspace of N ×N matrices with

slN (R) ⊆ {L1, . . . , Lm}LA.

We consider

[Li ⊗ bc, Lj ⊗ bc] = (cb)[Li, Lj ]⊗ bc
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and in case cb = 0 we have

[Li ⊗ bc, Lj ⊗ adm
?

A (bc)] = (cAm
?
b)[Li, Lj ]⊗ bc,

where m? denotes the smallest integer m such that cAmb 6= 0 (cf. the proof of Theorem

4.6). Thus, for all L ∈ {L1, . . . , Lm}LA it follows L ⊗ bc ∈ G. By assumption the Lie

algebra generated by L1, . . . , Lm contains slN (R) and we deduce

Eij ⊗ bc ∈ G

for i 6= j. Clearly, we get

adkI⊗A (L⊗ bc) = L⊗ adkA(bc) ∈ G

for every k ∈ N0. Since N > 2, we can apply Lemma 4.7 to[
Eih ⊗ adkA(bc), Ehj ⊗ adlA(bc)

]
= Eij ⊗ adkA(bc) · adlA(bc)

for k, l ∈ N0, i 6= h, h 6= j, i 6= j and obtain Eij ⊗ Rn×n ⊂ G. According to Lemma 4.8, it

yields

slnN (R) ⊂ G

and the result follows from Lemma 4.9.

Thus, we can reduce the problem of finding a subspace S such that the system Lie algebra

of (5.3) is either slnN (R) or glnN (R) to the problem of finding generators of slN (R) or

glN (R), respectively. In Chapter 2 we already stated existing results for this problem.

The next corollary is an immediate application of those results.

Corollary 5.3. Let (A, b, c) be controllable and observable and let S be a finitely generated

subspace of N ×N matrices with N > 2, which satisfies the following conditions:

i) there exists a matrix L ∈ S, which is strongly regular;

ii) there exists a matrix K ∈ S such that L and K do not possess a common nontrivial

subspace.

Then the Lie algebra G generated by I ⊗A and S ⊗ bc is either slnN (R) or glnN (R).

Proof. Since there exists an element L ∈ S, which is strongly regular, and another element

K ∈ S such that L and K do not possess a common invariant subspace, we can apply

Theorem 2.20 and deduce

slN (R) ⊆ {K,L}LA.

Then the result follows with Theorem 5.2.
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With Theorem 2.6 and 2.3 we deduce sufficient conditions on the subspace S ⊂ RN×N

for accessibility.

Corollary 5.4. Let (A, b, c) be controllable and observable, S := span{L1, . . . , Lm} be a

subspace of N ×N matrices with N > 2 and

γS(u) :=

m∑
i=1

uiLi.

If slN (R) ⊂ {L1, . . . , Lm}LA then the system

ẋ = (I ⊗A+ γS(u)⊗ bc)x

is accessible on RnN\{0}.

Remark 5.5. As we will see in Section 5.4, the smallest Lie algebra generated by the vector

space of Toeplitz matrices of order N is the Lie algebra glN (R). Hence, networks where

the agents are connected by a certain Toeplitz structure are accessible.

As we can see in the next example, it is not necessary for the generated Lie algebra

{L1, . . . , Lm}LA to contain slN (R).

Example 5.6. Let (A, b, c) be a controllable and observable n-dimensional triple with

g(s) 6= g(−s+ α) for all α ∈ R and n > 2 and let A be a diagonal matrix. Define

M := span{adkA(bc)}∞k=1

and, since A is a diagonal matrix, all elements of M have only zero entries on the diag-

onal. With

dimM = n2 − n

(Lemma B.6 and Lemma 3.16) we get Eij ∈M for i 6= j. Now, let

S := span {E12 − E21, E32 − E23} ⊂ R3×3

and we consider the Lie algebra G generated by I ⊗A and S ⊗ bc. One can easily see that

{S}LA = so3.

Therefore, we cannot apply Theorem 5.2. Since

[L⊗ Eij ,K ⊗ Ejk] = LK ⊗ Eik (5.4)

for i 6= k and K,L ∈ S, we examine the vector space V generated by products of elements

of S, i.e.

V := span
{
L ·K

∣∣K,L ∈ S} .
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For example, (E12 − E21)(E23 − E32) = E13 and (E23 − E32)(E12 − E21) = E31. With

E31(E12−E21) = E32 and E13(E23−E32) = E12 it immediately follows that E23 and E21

can be represented by linear combinations of products of S. Hence,

V3 ⊂ V,

where V3 is defined as in Lemma 3.23. Since

{V}LA ⊂ V

we obtain with Lemma 3.23 that sl3(R) ⊂ V. Concerning (5.4) we obtain Eij ⊗ Ekl ∈ G

for all i 6= j and k 6= l, i.e.

Eij ⊗M ⊂ G

and therefore, we obtain with Lemma 4.8 that

slnN (R) ⊂ G.

Further Remark

In consideration of Theorem 2.17 the actual setting leads to a pole assignment problem.

Apparently, assuming that the matrix A is strongly regular and analyze the conditions

under which the subspace BSC contains a permutation-irreducible matrix requires too

many constraints on the triples (Ai, bi, ci).

Another ansatz would be to find a strongly regular matrix of the form

A+ c · BLC (5.5)

with c ∈ R \ {0}. The following theorem would give us necessary and sufficient conditions

on the Lie algebra {BLC
∣∣ L ∈ S}LA such that we can guarantee the existence of a strongly

regular element of the form (5.5).

Theorem 5.7 ([14]). Given a complex Lie algebra L ⊂ gln(C). Then the mapping

χA : L → Cn, L 7→ det(sI −A− L) = sn − σn−1s
n−1 + . . .+ (−1)nσ0

is onto for all matrices A ∈ Cn×n if and only if the following conditions are satisfied

(i) rankL = n;

(ii) there exists a matrix B ∈ L with distinct eigenvalues.

Clearly, the surjectivity of the characteristic polynomial det(sI − A − L) implies the

existence of a strongly regular element of the form A+ L with A fixed and L ∈ L.
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For subspaces the next theorem states necessary and sufficient conditions, but it only

holds true for generic matrices A.

Theorem 5.8 ([55]). Let L := {BKC
∣∣ B,C fixed, K arbitrary } ⊂ Cn×n be a linear

subspace. Necessary and sufficient conditions for the image of the mapping

χA : L → Cn, L 7→ det(sI −A− L) = sn − σn−1s
n−1 + . . .+ (−1)nσ0

to contain an open dense set of polynomials for the generic A are

(i) dimL ≥ n;

(ii) L 6⊂ sln(C).

Since the proofs of Theorem 5.7 and 5.8 use the Dominant Morphism Theorem, which

is not true over R, and Theorem 5.7 only holds true for generic matrices A ∈ Cn×n, we

cannot apply those results to our setting.

5.3 Heterogeneous networks

Let S := span{L1, . . . , Lm} be a subspace of N × N matrices. We cannot transfer the

results from homogeneous networks to heterogeneous networks since the Lie algebra{
A,BLiC

∣∣ i = 1, . . . ,m
}
LA

depends in a crucial way on the constants ciA
k
i bi for k ∈ N0 and 1 ≤ i ≤ N . To

figure out the influence of the subspace S on the Lie algebra
{
A,BLiC

∣∣ i = 1, . . . ,m
}
LA

let us consider commutators of elements BLC,BKC ∈
{
A,BLiC

∣∣ i = 1, . . . ,m
}
LA

with

K,L ∈ S. We get

[BLC,BKC] = BLCBKC − BKCBLC (5.6)

= B (LTK −KTL) C,

where T := CB = diag(c1b1, . . . , cNbN ). In general, cibi 6= cjbj and if we assume slN (R) ⊂
{S}LA it might not yield slnN (R) ⊂

{
A,BLC

∣∣ L ∈ S}
LA

as the following example shows.

Example 5.9. Let

S = span


2 0

0 1

 ,

0 1

1 0


 ,

(A1, b1c1) =


0 1

0 0

 ,

0

1

(2 2

)



98 Chapter 5. Bilinear Control of Networks restricted by Subspaces

and

(A2, b2c2) =


0 1

0 0

 ,

0

1

(1 1

) .

Clearly, (A1, b1, c1) and (A2, b2, c2) are controllable and observable. The smallest Lie

algebra which contains S is gl2(R) due to Theorem 2.20. But for the Lie algebra generated

by A and BSC holds sl4(R) 6⊆ G: SinceB
2 0

0 1

 C,B
0 1

1 0

 C
 = 0

and the number of linearly independent matrices in the set {adkAi,Aj
(bicj), k ∈ N0} is 3

since ad3
Ai,Aj

(bicj) = 0 for i 6= j. Therefore, the Lie algebra G is a subset from the vector

space

V := span

A, adkA

B
2 0

0 1

 C
 , adkA

B
0 1

1 0

 C
 , k = 0, 1, 2.

 .

Since V has dimension 7, we get that sl4(R) 6⊂ G.

On the other hand, there might exist subspaces S with slN (R) 6⊂ {S}LA, where slnN (R) ⊂
{A,BSC}LA holds. This can be seen by the following example.

Example 5.10. Let

S = span


1 0

0 1

 ,

0 1

1 0


 ,

(A1, b1c1) =


0 1

0 0

 ,

0

1

(2 2

)
and

(A2, b2c2) =


0 1

0 0

 ,

0

1

(1 1

) .

Clearly, (A1, b1, c1) and (A2, b2, c2) are controllable and observable. The smallest Lie

algebra, which contains S is S itself, hence 2-dimensional and sl2(R) 6⊂ S. But the Lie
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algebra generated by A and BSC is gl4(R): SinceB
1 0

0 1

 C,B
0 1

1 0

 C
 = B

 0 1

−1 0

 C
we have E12 ⊗ b1c2 and E21 ⊗ b2c1 as elements in G. Then

adA1,A2(b1c2) =

 1 1

−1 −1

 and ad2
A1,A2

(b1c2) =

0 1

0 0

 .

With [[
E12 ⊗ ad2

A1,A2
(b1c2), E21 ⊗ b2c1

]
, E12 ⊗ b1c2

]
= E12 ⊗

2 2

0 2


we get E12⊗R2×2 ⊂ G. A similar calculation shows E21⊗R2×2 ⊂ G. Completing this to

a Lie algebra yields

G = gl4(R).

With an additional assumption on the controllable and observable triples we can adapt

Theorem 5.2 to heterogeneous networks.

Theorem 5.11. Let (Ai, bi, ci) be controllable and observable for 1 ≤ i ≤ N with N > 2

and let cibi = cjbj 6= 0 hold true for all 1 ≤ i, j ≤ N . If

slN (R) ⊆ {L1, . . . , Lm}LA

holds for S := span{L1, . . . , Lm} ⊂ RN×N , the Lie algebra G generated by A and BSC is

either slnN (R) or glnN (R).

Proof. As slN (R) ⊆ {L1, . . . , Lm}LA we get

Eij ∈ {L1, . . . , Lm}LA

for all i 6= j. Now, we show that Eij ⊗ bicj ∈ G for all i 6= j. Since all c := cibi are equal

we obtain with CB = cIN that

[BLC,BKC] = c · B[L,K]C.

Therefore, we get from L ∈ {L1, . . . , Lk}LA that BLC ∈ G, i.e. Eij⊗bicj ∈ G for all i 6= j.

Taking iteratively commutators with A we derive

adkA(Eij ⊗ bicj) = Eij ⊗ adkAi,Aj
(bicj) ∈ G
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for k ∈ N0. As

[Eik ⊗ adpAi,Ak
(bick), Ekj ⊗ adqAk,Aj

(bkcj)] = Eij ⊗ adpAi,Ak
bick) · adqAk,Aj

(bkcj) ∈ G

Lemma 4.7 implies Eij ⊗ Rn×n ⊂ G. Completing this to a Lie algebra yields

slnN (R) ⊆ G

and with Lemma 4.9 the result follows.

Similar to Corollary 5.3 we obtain from Theorem 2.20 the following.

Corollary 5.12. Let (Ai, bi, ci) be controllable and observable for 1 ≤ i ≤ N with N > 2

and let cibi = cjbj 6= 0 for all 1 ≤ i, j ≤ N . Then the Lie algebra G generated by A and

BSC is either slnN (R) or glnN (R) if S satisfies the following two conditions:

i) there exists at least one element L ∈ S, which is strongly regular

ii) there exists one element K ∈ S such that L and K do not possess a common

nontrivial subspace.

Clearly, Theorem 5.11 and Corollary 5.3 hold true as well when ciA
m?

i
i bi = cjA

m?
j

j bj 6= 0

for all i, j and all m?
i are equal, where m?

i is the minimal integer mi with ciA
mi
i bi 6= 0.

From (5.6) we get the idea that in case of heterogeneous networks the system Lie algebra

is closed under the commutator

[BLC,BKC] = B(LTK −KTL)C

with T = CB. We define by

[L,K]T := LTK −KTL.

the T -commutator and denote by {L1, . . . , Lk}T−LA the smallest subspace of RN×N , which

is closed under the T -commutator. Hence, if the subspace {L1, . . . , Lk}T−LA contains

slnN (R), it is sufficient to derive slnN (R) ⊂ G. This is the following result.

Theorem 5.13. Let (Ai, bi, ci) be controllable and observable for 1 ≤ i ≤ N with N > 2

for all 1 ≤ i, j ≤ N . If

slN (R) ⊆ {L1, . . . , Lm}T−LA

holds for S := span{L1, . . . , Lm} ⊂ RN×N , the Lie algebra G generated by A and BSC is

either slnN (R) or glnN (R).

Proof. The proof works analogously to the proof of Theorem 5.2.
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The conditions of Theorem 5.13 are not necessary. Since

[K,L]T = KTL− LTK = [K,TL] + [T, L]K

we can give explicit conditions on the subspace S in case [T, L] = 0.

Theorem 5.14. Let (Ai, bi, ci) be an n-dimensional controllable and observable triple for

1 ≤ i ≤ N and N > 2. Let S be a finitely generated subspace of RN×N , which satisfies

the following conditions:

(i) there exists a matrix L ∈ S such that [L, T ] = 0 and LT is strongly regular, where

T = CB;

(ii) there exists a matrix K ∈ S such that LT and K do not possess a common nontrivial

subspace.

Then the Lie algebra G generated by A and BSC is either slnN (R) or glnN (R).

A necessary requirement for the existence of a matrix L ∈ RN×N , which satisfies condition

(i) from Theorem 5.14 is that the matrix CB has the eigenvalue 0 at most with simple

multiplicity.

Proof. Let L,K ∈ S be the matrices, which satisfy condition (i) and (ii). Then

[BKC,BLC] =BKCBLC − BLCBKC

=BKTLC − BLTKC

=BKTLC − BTLKC

=B [K,TL] C

due to the assumption [L, T ] = 0. Taking the commutator with BLC iteratively it yields

adiBLC(BKC) = B adiTL(K)C.

Since TL is strongly regular, we can assume without loss of generality that TL is diagonal.

Hence,

Eij ⊗ bicj ∈ span{B adiTL(K)C
∣∣ i ∈ N0}

in case kij 6= 0. As LT is assumed to be diagonal, K = (kij) is permutation-irreducible

since K and L are assumed to posses no common nontrivial subspace. Then we obtain

with Theorem 4.4 and Lemma 4.18 that

Eij ⊗ bicj ∈ {A,BSC}LA
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for all i 6= j. Then with adkA(Eij ⊗ bicj) = Eij ⊗ adAi,Aj (bicj) and Lemma 4.7 we obtain

Eij ⊗ Rn×n ⊂ G.

With Lemma 4.9 the result follows.

Thus, we get sufficient conditions for the bilinear control system (5.3) to be accessible.

Corollary 5.15. Let (Ai, bi, ci) be controllable and observable for 1 ≤ i ≤ N with N > 2.

Let S := span{L1, . . . , Lm} be a subspace of N ×N matrices and

γS(u) :=

m∑
i=1

uiLi

the control matrix of the subspace S. If slN (R) ⊂ {S}T−LA, then the bilinear control

system

ẋ = (A+ BγS(u)C)x (5.7)

is accessible on RnN\{0}.

In case CB = 0 Theorem 5.14 can immediately transferred to the more general case: Let

(Ai, bi, ci) be a n-dimensional controllable and observable triple for 1 ≤ i ≤ N with N > 2

and let m? be the smallest integer m such that CAmB 6= 0. Then system (5.7) is accessible

on RnN\{0} if S contains the following two elements:

(i) there exists a matrix L ∈ S such that [L, T ] = 0 and LT is strongly regular, where

T = CAm∗B;

(ii) there exists a matrix K ∈ S such that L and K do not possess a common nontrivial

subspace.

5.4 Bilinear Control of Toeplitz Formations

Networks of linear dynamical systems with special interconnection structures are impor-

tant in many application areas of control systems. We mention e.g. the analysis of cyclic

pursuit strategies via circulant matrices in formation control of multi-agent systems [41];

the analysis of polygonal approximations of the Euclidean curve shortening flow in image

processing via discrete-time circulant systems [12], the work of [9] on discretizing partial

differential equations via associated algebras of Toeplitz matrices and, e.g., Turings work

on morphogenesis [54] that involves the analysis of circulant linear systems. Recent work

by Hamilton and Broucke [22] proposes general classes of structured linear systems, de-

fined by circulant matrices, pseudo-circulant matrices, Toeplitz matrices or block versions.
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In all this prior work, the interconnection parameters are not regarded as control parame-

ters and thus bear no direct influence on the controllability properties of the system. The

situation changes if one intentionally allows for switches in some of the interconnections

and therefore considers these interconnection parameters then as control variables. We

refer to [10, 38] for some early work in this direction. Results on circulant matrices can

be found in [15, 35].

Section 5.4.1 summarizes basic facts on circulant, pseudo-circulant and Toeplitz matrices.

For circulant interconnection patterns it is easily seen and probably well-known, that the

bilinear system is never controllable. The situation changes if one extends the Abelian

class of circulant matrices to the non-Abelian set of pseudo-circulants. Section 5.4.2 con-

tains the main controllability results. Thus, if one extends to the class of pseudo-circulant

matrices, we show that the system becomes controllable. This implies controllability of

the bilinear system for arbitrary Toeplitz interconnections, as well as for certain mixed

“Circulant+Toeplitz” type of interconnections (Section 5.4.3).

We also deduce some pure Linear Algebra results that seem to be of independent interest.

For example we show that every invertible matrix can be presented as a finite product of

Toeplitz or pseudo-circulant matrices. Similarly, it is shown that every complex unitary

matrix is a finite product of unitary Toeplitz or unitary Hankel matrices. It is an open

problem to find good bounds on the number of factors.

We mention that the results of Section 5.4 are published in [45].

5.4.1 Basic definitions and properties

In this section we give the basic definitions of Toeplitz, circulant and pseudo-circulant

matrices and establish their main properties which we need for the sequel of this chapter.

We start with the most general type of matrices.

Definition 5.16. A complex Toeplitz matrix of order n is of the form

T =



a0 a1 · · · an−2 an−1

a−1 a0 a1 · · · an−2

...
. . .

. . .
. . .

...

a−(n−2) · · · a−1 a0 a1

a−(n−1) a−(n−2) · · · a−1 a0


,

where a−(n−1), . . . , a−1, a0, . . . , an−1 are 2n−1 arbitrary complex numbers, i.e. the entries

of a Toeplitz matrix T satisfy the relation

aij = a(i+1)(j+1), for i, j = 1, 2, . . . , n− 1.
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That is to say, Toeplitz matrices are constant along all diagonals parallel to the principal

diagonal. From the definition it follows immediately that Toeplitz matrices of order n

form a linear subspace Toe(n) of Cn×n of dimension 2n− 1. Define

T1 :=



0 1 0

...
. . .

. . .

...
. . . 1

0 · · · · · · 0


and T−1 :=



0 · · · · · · 0

1
. . .

...

...
. . .

...

0 · · · 1 0


.

Clearly, the matrices Tk := (T1)k with k = 0, ..., n − 1 and T−k := (T−1)k with k =

1, ..., n − 1 form a basis of Toe(n). A type of matrices closely related to the Toeplitz

matrices are Hankel matrices.

Definition 5.17. A complex Hankel matrix of order n is of the form

an−1 an−2 · · · a1 a0

an−2 an−3 an−4 · · · a−1

... . .
.

. .
.

. .
. ...

a1 . .
.

a−(n−4) a−(n−3) a−(n−2)

a0 a−1 · · · a−(n−2) a−(n−1)


,

where a1−n, . . . , a−1, a0, . . . , an−1 are 2n− 1 arbitrary complex numbers.

Remark 5.18. From the definitions we derive that most of the results about Toeplitz

matrices can be applied to Hankel matrices, too, as every Toeplitz matrix T can be

written as a product T = HJ , where H,J are Hankel matrices and

J =


0 1

...

1 0

 .

We continue with a brief summary of the main properties of circulant matrices. For this

purpose, we follow closely [15] and start with the definition.
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Definition 5.19. A complex circulant matrix C of order n is a special Toeplitz matrices

of the form

C = Circ(c0, ..., cn−1) =



c0 c1 · · · cn−2 cn−1

cn−1 c0 c1 · · · cn−2

...
. . .

. . .
. . .

...

c2 · · · cn−1 c0 c1

c1 c2 · · · cn−1 c0


with ci ∈ C.

It is clear from the definition that each circulant matrix is completely determined by its

first row or its first column. The structure of a circulant matrix is preserved under scalar

multiplication and addition of other circulant matrices. Thus, the set of complex circulant

matrices forms an n-dimensional subspace of Cn×n.

Let us now consider the permutation matrix

S = Circ(0, 1, 0, . . . , 0) =



0 1 0 . . . 0

0 0 1 . . . 0

...
. . .

0 1

1 0 . . . . . . 0


, (5.8)

which is a special circulant. Then, S2 = Circ(0, 0, 1, 0, . . . , 0) and inductively we see that

Sn = I. As a consequence, every circulant matrix C can be written as a polynomial in

S with degree at most n − 1, i.e. for every circulant matrix C there exists a polynomial

pC ∈ R[z] with deg pC < n such that C = pC(S), where

pC(z) :=
n−1∑
j=0

cjz
j

denotes the generating polynomial of C. Apparently, the polynomial pC is uniquely

determined by the first row of C. This holds either for the set of real or the set of complex

circulant matrices. The polynomial pC is called the representer of C. The permutation
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matrix S can be diagonalized by the Fourier matrix

Φ =
1√
n



1 1 1 . . . 1

1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2n−2

...

1 ωn−1 ω2n−2 . . . ω(n−1)2


,

where ω = e2πi/n denotes a primitive n−th root of unity. Note, that Φ is both unitary

and symmetric. Due to the representation of a circulant matrix as a polynomial in S we

deduce the following important result.

Theorem 5.20. All circulant matrices are simultaneously diagonalizable by the Fourier

matrix.

Direct consequences are that matrix multiplication of circulant matrices is Abelian and

that every circulant matrices has the same set of orthonormal eigenvectors. Let

Ω := diag(1, ω, . . . , ωn−1). (5.9)

A straightforward computation shows S = ΦΩΦ∗. Therefore, we deduce the eigenvalue

decomposition of circulants as

C = pC(S) = Φ diag(pC(1), pC(ω), . . . , pC(ωn−1))Φ∗. (5.10)

We obtain the following identity for the relationship between the coefficients of the rep-

resenter pC and the eigenvalues of C:

pC(1)

pC(ω)

...

pC(ωn−1)


= Φ



c0

c1

...

cn−1


. (5.11)

The eigenvalues of C are given by the values of the polynomial pC at the n−th roots of

unity. Conversely, let λ1, . . . , λn denote arbitrary complex numbers. Then

p(z) =

n−1∑
j=0

cjz
j :=

n∑
k=1

λk
∏
l 6=k

z − ωl

ωk − ωl
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is the unique polynomial of degree strictly less than n that interpolates λj at ωj , j =

1, . . . , n. Therefore, C = Φ diag(λ1, . . . , λn)Φ∗ is a circulant matrix with given eigenvalues

λ1, . . . , λn.

Theorem 5.21. A matrix C ∈ Kn×n is of circulant structure if and only if it can be

written as pC(S), where pC ∈ K[z].

This shows that the circulant structure of a complex matrix poses no restriction on the

eigenvalues. In particular, the inverse eigenvalue problem is always solvable in the class

of complex circulants. This is no longer true for real circulants, where the realness of the

coefficients of C poses restrictions on the multiplicities of the real eigenvalues, because

they have to be even. We summarize the properties of circulant matrices in a theorem.

Theorem 5.22. Let A,B be circulant matrices and αk ∈ C. Then,

(i) AT , A∗, α1A+ α2B, A ·B and
∑r

k=0 αiA
i are circulants;

(ii) A and B commute;

(iii) if A is nonsingular, its inverse is a circulant. If

A = Φ∗ diag(λ1, . . . , λn)Φ

with λi 6= 0, then its inverse is given by

A−1 = Φ∗ diag(λ−1
1 , . . . , λ−1

n )Φ.

Let circn(C) denote the set of all complex circulant matrices of order n, i.e.

circn(C) := {p(S) | p ∈ C[z], deg p < n}

and let Circn(C) denote the subset of all invertible complex circulants, i.e.

Circn(C) := {C | C ∈ circn(C), detC 6= 0}.

Then, circn(C) is a complex n-dimensional Abelian Lie subalgebra of the full matrix Lie

algebra Cn×n. Moreover, since the product of two circulant matrices and the inverse of

an invertible circulant are again circulant matrices, the set Circn(C) forms an Abelian Lie

subgroup of GLn(C). The same holds for real circulants. The matrix exponential function

exp : circn(C) −→ Circn(C), C 7→ eC

maps the Lie algebra circn(C) onto the Lie group Circn(C).

Since the eigenvector decomposition (5.10) applies in particular also to unitary circulant

matrices, we obtain the following result.
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Theorem 5.23. A circulant matrix C is unitary if and only if the generating polynomial

pC satisfies |pC(ωi)| = 1 for i = 0, . . . , n−1. Moreover, any n complex numbers of absolute

value one are the eigenvalues of a suitable unitary circulant matrix.

Furthermore, the set of all unitary circulants is a compact Abelian Lie group

UCircn(C) : = {C | C circulant and unitary}

= {ΦΛΦ−1 | Λ = diag(λ1, ..., λn) with |λi| = 1}, (5.12)

i.e. UCircn(C) can be identified with the n-Torus S1 × ...× S1. Similarly, the set

ucircn(C) := {C | C circulant and skew-Hermitian}

of skew-Hermitian circulants is a real Lie subalgebra of circn(C). It is the Lie algebra of

UCircn(C); therefore the exponential map

exp : ucircn(C) −→ UCircn(C), C 7→ eC

is surjective.

We now extend the definitions and basic results of circulant matrices to the more general

setting of λ-circulant matrices.

Definition 5.24. Let λ ∈ C denote an arbitrary nonzero complex number. A complex

λ-circulant matrix of order n is of the form

Circλ(c0, c1, ..., cn−1) =



c0 c1 c2 · · · cn−1

λcn−1 c0 c1 · · · cn−2

λcn−2 λcn−1 c0 · · · cn−3

...
. . .

...

λc1 λc2 · · · λcn−1 c0


with ci ∈ C. A pseudo-circulant matrix is a λ-circulant matrix for some complex number

λ 6= 0.

As we will now see, the set of λ-circulant matrices has properties very similar to those of

circulants. For any nonzero complex number λ 6= 0, we pick any of its n−th root which
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we denote by γ, i.e. γn = λ. Then, the special λ-circulant

Sλ = Circλ(0, 1, 0, ..., 0) :=



0 1 0 . . . 0

0 0 1 . . . 0

...
. . .

0 1

λ 0 . . . . . . 0


(5.13)

has eigenvalues γωk for k = 0, . . . , n− 1, γn = λ. Note that S1 = S. By conjugating the

circulant matrix S with the diagonal matrix Λγ = diag(1, γ, γ2, . . . , γn−1), we obtain that

Sλ = Λγ(γS)Λ−1
γ .

Since any λ-circulant can be written as a polynomial Cλ = pC(Sλ) in Sλ, this shows that

the eigenvalues of Cλ are pC(γωk) for k = 0, . . . , n− 1. Define

Φγ := diag(1, γ, ..., γn−1)Φ,

which is unitary if and only if |γ| = 1. It follows that all λ-circulants have the form

Cλ = Circλ(c0, c1, ..., cn−1) = Φγ diag(pC(γ), pC(γω), . . . , pC(γωn−1))Φ−1
γ .

This shows that λ-circulants are simultaneously diagonalizable. We state the analogon to

Theorem 5.22 for λ-circulant matrices.

Theorem 5.25. Let A,B be λ-circulant matrices and αk ∈ C. Then,

(i) AT , A∗, α1A+ α2B, A ·B and
∑r

k=0 αiA
i are λ-circulants;

(ii) A and B commute;

(iii) if A is nonsingular, its inverse is a λ-circulant. Let

A = Φ∗λ diag(λ1, . . . , λn)Φλ

with λi 6= 0, then its inverse is given by

A−1 = Φ∗λ diag(λ−1
1 , . . . , λ−1

n )Φλ.

Moreover, the set of invertible λ-circulant matrices forms an Abelian Lie group that is

isomorphic to the Abelian group of invertible circulant matrices. Note further, that any

pseudo-circulant matrix is a Toeplitz matrix. The connection between pseudo-circulant

matrices and Toeplitz matrices has been discovered in [20]:
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Theorem 5.26. A nonsingular Toeplitz matrix has a Toeplitz inverse if and only if T is

pseudo-circulant.

Let circλn(C) denote the set of all complex n× n λ-circulant matrices

circλn(C) := {p(Sλ) | p ∈ C[z],deg p < n}

and let Circλn(C) denote the subset of all invertible complex λ-circulants

Circλn(C) := {C | C ∈ circλn(C), detC 6= 0}.

Then circλn(C) is a complex n-dimensional Abelian Lie subalgebra of the full matrix Lie

algebra Cn×n. As in the case for circulant matrices, we obtain that the matrix exponential

function

exp : circλn(C) −→ Circλn(C), C 7→ eC

defines a surjection onto the Lie group Circλn(C). Similarly, the set ucircλn(C) of skew-

Hermitian λ-circulants is the Lie algebra of the compact Abelian Lie group

UCircλn(C) := {C | C λ-circulant and unitary}

with a surjective exponential map exp : ucircλn(C) −→ UCircλn(C).

5.4.2 Circulant and pseudo-circulant control systems

Before analyzing the controllability properties of Toeplitz formations we consider the

more specific type of control systems: circulant formations. Shortly, we will find out that

circulant control systems are never controllable. This motivates to consider afterwards

more general classes of systems, e.g., those defined by pseudo-circulants, where pseudo-

circulant matrices have one degree of freedom more than circulant matrices.

5.4.2.1 Circulant control systems

We consider now bilinear control systems on Cn of the form

ẋ =

 d∑
j=1

ujCj

x, (5.14)

defined by circulant matrices C1, . . . , Cd ∈ Cn×n, d ≤ n. Without loss of generality we

can assume that the circulant matrices Cj := Circ(c
(j)
0 , ..., c

(j)
n−1) are linearly independent.
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Let

pCj (z) =
n−1∑
k=0

c
(j)
k zk

denote the representer of the circulant matrix Cj , j = 1, . . . , d, and let Vd denote the vector

space of complex polynomials spanned by pC1 , . . . , pCd
. Moreover, we identify a vector of

coefficients x = (x0, . . . , xn−1)> ∈ Cn with the associated polynomial πx(z) :=
∑n−1

k=0 xkz
k.

Since circulant matrices permute, every element in the system Lie algebra of (5.14) is of

the form Φp(Ω)Φ∗, where p runs through the elements of Vd and Ω is of the form (5.9).

Therefore, the elements of the system Lie group are exactly Φep(Ω)Φ∗, where p ∈ Vd.

Thus, for x ∈ Cn, the reachable sets of (5.14) are

R(x) = {Φep(Ω)Φ∗x | p ∈ Vd}.

Since circulant matrices commute with each other, the system Lie algebra of (5.14) is

d-dimensional and at most n-dimensional. Hence, (5.14) cannot be accessible and thus

not controllable.

Easy considerations and the currently made observations yield the following theorem.

Theorem 5.27. Let

ẋ =

 d∑
j=1

ujCj

x (5.15)

be a bilinear system on Cn, where Cj are circulant matrices. Then, the following holds

for (5.15):

(i) The circulant control system (5.15) is never controllable on Cn.

(ii) For d = n there is a unique reachable set R(x) that is dense in Cn. R(x) is

characterized by πx(ωj) 6= 0 for j = 0, . . . , n− 1.

(iii) For d < n all reachable sets have empty interior.

5.4.2.2 Pseudo-circulant control systems

In Section 5.4.2.1 we have seen that control systems defined by circulant matrices are

never controllable on Cn since circulant matrices commute with each other. Therefore,

we change over to a more general case. This leads us to bilinear control systems with

pseudo-circulant coefficient matrices of the form

ẋ =

 d∑
j=1

ujCλj

x, (5.16)
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defined by pseudo-circulant matrices Cλ1 , . . . , Cλd ∈ Cn×n and d ≤ n. Again we can

assume that the pseudo-circulant matrices Cλj := Circλj (c
(j)
0 , . . . , c

(j)
n−1) are linearly inde-

pendent.

Before we apply Theorem 2.20 or Theorem 2.23 to pseudo-circulant systems, we first set

up some notation. Let ω := e2πi/n denote a primitive n−th root of unity and consider the

unitary diagonal matrix

Ω(ω) := diag(1, ω, . . . , ωn−1).

For i < j consider the proper linear subspaces

Vij := ker
(
In − Ω(ωj−i)

)
⊂ Cn

and for (i, j) 6= (k, l) with i < j, k 6= l consider

Wijkl := ker
(
In − Ω(ωj−i) + Ω(ωl−i)− Ω(ωk−i)

)
⊂ Cn.

All the subspaces contain the first standard basis vector e1 and therefore have codimension

at least 1. We have the following lemma, whose proof follows from a short calculation.

Lemma 5.28. Let p(z) =
∑n−1

p=0 cpz
p ∈ C[z] and c = (c0, . . . , cn−1) ∈ Cn denote the

associated coefficient vector. Then,

(i) p(ωiz) 6= p(ωjz) if and only if c /∈ Vij.

(ii) p(ωiz)− p(ωjz) 6= p(ωkz)− p(ωlz) if and only if c /∈Wijkl.

Now, consider the union of subspaces V :=
⋃
ij Vij and W :=

⋃
ijklWijkl. Then, their

complements Cn\V and Cn\W are non-empty Zariski-open subsets of Cn. Here, the

term Zariski-open specifies subsets whose complement is a closed algebraic variety. By

construction, V ⊂W . The next result gives sufficient conditions for V,W being small.

Lemma 5.29. The inclusion Ce1 ⊂ V ⊂W ⊂ Cn holds.

(i) V = Ce1 if and only if n is a prime number.

(ii) V = W if (and only if) either n is odd or n = 2.

Proof. The inclusion Ce1 ⊂ V ⊂ W is obvious. By definition, the set V differs from Ce1

if and only if there exist 0 < j − i < n and 0 < k < n such that ωk(j−i) = 1. This is

equivalent to the condition that n divides k(j−i). If n is a prime this is clearly impossible,

as n would have to divide k or j − i, which are both smaller than n. If n = n1n2 is not a

prime, choose k := n1, i = 1, j = n2 + 1. Then ωk(j−i) = 1 and V 6= Ce1. This completes

the proof of the first claim.
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If n = 2, one immediately verifies V = W . Thus assume, that n = 2m + 1 is odd. By

construction, the spaces V,W differ from each other if and only if there exist nontrivial,

distinct integers 0 < r, s, t < n

1 + ωs = ωr + ωt. (5.17)

Without loss of generality, 0 < s ≤ m and t ≥ r. By taking absolute values on both sides

we obtain the equality of real parts <(ωs) = <(ωt−r), i.e. cos(2πs/n) = cos(2π(t− r)/n),

which implies t = r+ s. Since n is odd, there exists no s with ωs = −1. Thus 1 +ωs 6= 0.

From 1 +ωs = ωr(1 +ωs), we therefore conclude ωr = 1, which is impossible, since r < n.

Thus there exists no non-trivial solution to equation (5.17) and we are done.

Now, we can prove the following theorem.

Theorem 5.30. Let c ∈ Cn be given and λ ∈ C denote any nonzero complex number with

Cλ := Circλ(c0, . . . , cn−1) the associated λ-circulant matrix. Then,

(i) there exists λ ∈ C\{0} such that Cλ is strongly regular if and only if c ∈ Cn\W ;

(ii) there exists no nontrivial invariant subspace for Cλ, λ ∈ C, if c ∈ Cn\V .

Proof. Let D(z) := diag(1, z, . . . , zn−1) and substitute λ = zn for z ∈ C\{0}. Define

S := S1 the special circulant matrix. Then

Czn = D(z)p(zS)D(z)−1

has eigenvalues p(ωiz) with i = 0, . . . , n− 1. By Lemma 5.28, the vector of coefficients c

satisfies c /∈ Wijkl if and only if Czn is strongly regular for some (and hence almost all)

z ∈ C. This proves (i).

For (ii), note that a nontrivial linear subspace U ⊂ Cn is invariant under all matrices Czn

if and only if D(z)−1U is an invariant subspace of the circulant matrix p(zS). Condition

c ∈ Cn\V is equivalent to p(zS) having distinct eigenvalues for almost all z. Thus, for

almost all complex numbers z, the circulant matrix p(zS) has only finitely many invariant

subspaces and these are independent of z. So, the invariant D(z)−1U is independent of

z and, in particular, therefore D(z)−1U = D(1)−1U = U holds for all z 6= 0. This shows

that U is an invariant subspace of D(z) and is therefore spanned by standard basis vectors

ei1 , . . . , eik . But the standard basis vectors do not span an invariant subspace of p(zS),

as otherwise the column vectors of the Fourier matrix Φei1 , . . . ,Φeik would have to span

an invariant subspace of diag(p(z), . . . , p(ωn−1z)), which is impossible.

The result follows.
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Now, we can apply Theorem 2.23.

Theorem 5.31. Let c ∈ Cn −W , c0 6= 0. Then, the bilinear control system on GLn(C)

Ẋ = Circu(t)(c0, . . . , cn−1)X (5.18)

is accessible.

Proof. By Theorem 5.30 the bilinear control system (5.18) with system matrices

Circu(c0, . . . , cn−1), u ∈ C

satisfies the assumptions of Theorem 2.23, since c ∈ Cn\W . Thus, the system Lie algebra

is either equal to sln(C) or equal to gln(C). But c0 6= 0 by assumption. Thus, L = gln(C).

The result follows.

With Lemma 5.29 we obtain an immediate consequence from Theorem 5.31.

Corollary 5.32. Let n be a prime number. The bilinear pseudo-circulant control system

Ẋ =



c0 c1 · · · cn−1

u(t)cn−1 c0 c1 · · · cn−2

...
. . .

. . .
. . .

...

u(t)c2 · · ·
. . .

. . . c1

u(t)c1 · · · · · · u(t)cn−1 c0


X

is accessible on GLn(C) if and only if c0 6= 0, (c1, . . . , cn−1) 6= (0, . . . , 0).

It is immediately seen by inspection that the polynomial p(z) = z−1 satisfies the genericity

condition c = (−e1 + e2)> ∈ Cn\W . This shows

Corollary 5.33. The bilinear pseudo-circulant control system on GLn(C)

Ẋ =



−1 1 0 . . . 0

0 −1 1 . . . 0

...
. . .

. . .
. . .

0 1

1 + u(t) 0 · · · 0 −1


X (5.19)

is accessible.
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We now describe a generalizations of the above mentioned results.

Theorem 5.34. GLn(C) is the smallest Lie group that contains all invertible pseudo-

circulant matrices. In particular, the pseudo-circulant control system

Ẋ = Circun(t)(u0(t), . . . , un−1(t))X, X(0) = In,

is controllable on GLn(C) . Here, u0(t), . . . , un(t) denote arbitrary control sequences such

that
∑n−1

j=0 ujz
j 6= 0 on all n−th roots of un 6= 0.

Proof. By Theorem 5.31, the Lie algebra generated by pseudo-circulant matrices is equal

to the full matrix Lie algebra Cn×n. Therefore, the products of exponentials of pseudo-

circulant matrices generate GLn(C). The result follows, as every matrix exponential of a

pseudo-circulant is an invertible pseudo-circulant.

Since the elements of the reachable sets of a symmetric bilinear control system on a Lie

group are always reached in finite time, this has an interesting consequence in Linear

Algebra.

Corollary 5.35. Any complex invertible matrix is a finite product of invertible pseudo-

circulant matrices.

For real circulants we can strengthen this result a bit.

Theorem 5.36. Let C,C ′ ∈ circn(R) be circulant matrices. Then:

(i) There exist real numbers c0, . . . , cn−1 such that C is strongly regular.

(ii) Let C := Circ(c0, . . . , cn−1) and C ′ := Circ(c′0, . . . , c
′
n−1) be two real circulant ma-

trices such that C and C ′ have both distinct eigenvalues, respectively. Let D =

diag(γ1, . . . , γn) be a diagonal matrix. Then C and D−1C ′D have no nontrivial

common invariant subspace if

det(Circ(γ1, . . . , γn)) 6= 0.

Proof. From identity (5.11) it is easily seen that the linear map Φ : Rn −→ Cn, c 7→ Φc,

has image

{ξ ∈ Cn | ξ0 ∈ R, ξn−i = ξ̄i, i = 1, . . . , n− 1}

since the representer of a real circulant matrix C := Circ(c0, . . . , cn−1) is a polynomial with

real coefficients. To prove (i), note, that the sequence of real numbers 2j , j = 0, . . . , n− 1

is strongly regular for any n ∈ N.

Let n = 2m+1 be odd. Define ξ0 = 1, ξj := 2j(1+i), j = 1, . . . ,m and ξj = 2n−j(1−i), j =
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m + 1, . . . , n − 1. Then the pairwise differences ξj − ξk = (2j − 2k)(1 + i) are distinct

for 1 ≤ j, k ≤ m and similarly for ξr − ξs = (2r − 2s)(1 − i) and m + 1 ≤ r, s ≤ n − 1,

respectively. In the mixed case, 1 ≤ j, k ≤ m, m + 1 ≤ j, k ≤ n − 1, the differences are

ξj − ξr = (2j − 2r) + (2j + 2r)i. Again, these are seen to be pairwise different. Thus

ξ0, . . . ξn−1 are strongly regular. A similar construction works for n = 2m even. This

shows (i).

For (ii), note that C = ΦΛΦ∗ and C ′ = ΦΛ′Φ∗ hold for diagonal matrices Λ,Λ′ with

distinct eigenvalues, respectively. Let CI :=< ei1 , . . . , eik > denote the complex k-

dimensional subspace, spanned by the standard basis vectors ei1 , . . . , eik , 1 ≤ ik ≤ n− 1.

By assumption, the k-dimensional invariant subspaces of C are of the form U := ΦCI .
Assume, that one such subspace is also invariant under D−1C ′D. Equivalently, Φ∗DΦCI

is an invariant subspace of Λ′. Since Λ′ has distinct eigenvalues and is a diagonal matrix,

the invariant subspaces are spanned by sets of standard basis vectors. Thus, it follows

that DΦCI = ΦCJ for some subset J = {j1, . . . , jk} ⊂ {1, . . . , n} of cardinality k. Let

Φi denote the i-th column vector of Φ. This leads to Φ∗jrDΦis = 0 for all suitable sets

{jk+1, . . . , jn}, {i1, . . . , ik} ⊂ {1, . . . , n}. Hence, we get the equality

n∑
k,l=1

γklω
is(l−1)−jr(k−1) = 0,

where γkl are the entries of the matrix D. For the diagonal matrix D = diag(γ1, . . . , γn),

this equation reduces to
n∑
k=1

γk(ω
ir−js)k−1 = 0.

But this is impossible, since by assumption det(Circ(γ1, . . . , γn)) 6= 0. Thus, the polyno-

mial
∑n

k=1 γkz
k−1 is coprime to zn − 1.

Corollary 5.37. Let c ∈ Rn be given and λ ∈ R denote any nonzero real number with

Cλ := Circλ(c0, . . . , cn−1) the associated λ-circulant matrix. Then:

(i) There exist real numbers c0, . . . , cn−1 such that Cλ is strongly regular.

(ii) Let n be odd and λ = −1. Let C := Circ(c0, . . . , cn−1) be any real circulant matrix

such that C and C−1 have both distinct eigenvalues, respectively. Then, C and C−1

have no nontrivial common invariant subspace.

Proof. Statement (i) follows from Theorem 5.36 (i).

To prove (ii), note that Theorem 5.36 applies with D = diag(1,−1, . . . , (−1)n−1). Thus,

it is sufficient to check that
∑n−1

k=0(−1)kzk and zn − 1 are coprime, since then it follows

det(Circ(1,−1, . . . , (−1)n−1)) 6= 0.
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This is obvious, as for any n-th root of unity ξ the equality

2 = 1 + ξn = (1 + ξ)(1− ξ + ξ2 + . . .+ (−ξ)n−1)

holds.

Apparently, Theorem 5.34 also holds for real pseudo-circulant matrices.

Theorem 5.38. GLn(R) is the smallest Lie group that contains all real invertible pseudo-

circulant matrices. In particular, the pseudo-circulant control system

Ẋ = Circun(t)(u0(t), . . . , un−1(t))X, X(0) = In,

is controllable on GL+
n (R) . Here, u0(t), . . . , un(t) denote real control sequences such that∑n−1

j=0 ujz
j 6= 0 on all n−th roots of un 6= 0.

Proof. By Theorem 5.36, the Lie algebra generated by pseudo-circulant matrices is equal

to the full matrix Lie algebra Rn×n. Therefore, the products of exponentials of pseudo-

circulant matrices generate GLn(R). The result follows, as every matrix exponential of a

pseudo-circulant is an invertible pseudo-circulant.

Now we can state the real analogon to Theorem 5.31.

Theorem 5.39. There exists real numbers c0, . . . , cn−1 such that the bilinear control sys-

tem on GL+
n (R)

Ẋ = Circu(t)(c0, . . . , cn−1)X (5.20)

is accessible.

Proof. From Corollary 5.37 there exists c0, . . . , cn−1 such that the system matrices Cu, u ∈
R satisfies the assumptions of Theorem 2.20. Thus, the system Lie algebra is either equal

to slnR or glnR. Hence, the result follows.

5.4.3 Toeplitz and Hankel control systems

Since Toeplitz matrices are a generalization of pseudo-circulant matrices, we immediately

get as a generalization the following theorem.

Theorem 5.40. The Lie algebra generated by n × n complex Toeplitz matrices is equal

to the full matrix Lie algebra Cn×n. In particular, the bilinear Toeplitz control system

Ẋ =

 n−1∑
k=−(n−1)

ukTk

X
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is controllable on GLn(C).

Proof. This follows with Theorem 2.6 from Theorem 5.31.

The above results were stated for complex matrices only. It is possible to extend the

theory to real matrices.

Theorem 5.41. The Lie algebra generated by n×n real Toeplitz matrices is equal to the

full matrix Lie algebra Rn×n. In particular, the bilinear Toeplitz control system

Ẋ =

 n−1∑
k=−(n−1)

ukTk

X

is controllable on GL+
n (R).

The proof works analogously to the complex case with Theorem 5.39. We give an sample

of what is possible for real Toeplitz matrices.

Theorem 5.42. Let C denote any real n× n circulant matrix with distinct eigenvalues.

Then, for a generic class of real symmetric Toeplitz matrices T , the bilinear control system

Ẋ = (uC + vT )X

is controllable on GLn(R). As a special case, the system with Toeplitz matrix T∗ = T1+T−1

is controllable.

Proof. We apply Theorem 5.39 for real matrices. It has been shown by Landau [37] that

the inverse eigenvalue problem for real symmetric Toeplitz matrices is always solvable.

Thus there exists a Zariski open subset T of real symmetric Toeplitz matrices T that are

strongly regular.

We claim that there exists a Zariski-open subset T ′ ⊂ T such that, for any T ∈ T ′, the

matrices T,C have no non-trivial joint invariant subspaces. By assumption, the circulant

C has pairwise different eigenvalues. Therefore, each invariant subspace V of C is spanned

by the column vectors of the Fourier matrix Φ. Let U1, . . . , UN denote these non-trivial

invariant subspaces of C. Consider the real algebraic varieties

Mi := {T ∈ T | TUi ⊂ Ui}, i = 1, . . . , N.

Then, M := M1 ∪ . . .∪MN is a real algebraic variety, too, and therefore the complement

T ′ := T −M is Zariski open.

We have to show that T ′ is nonempty. Suppose it is not, then M = T and therefore

Mi = T for some i = 1, . . . , N . But this means that every symmetric Toeplitz matrix has
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a fixed invariant subspace Ui, spanned by the column vectors of Φ. But this is impossible.

Choose for instance the symmetric Toeplitz matrix T = T∗. It is well-known that T∗

has eigenvalues λk = 2 cos( kπ
n+1), k = 1, . . . , n. These eigenvalues are pairwise distinct,

but T∗ is not always strongly regular. Note that T∗ differs from the circulant matrix

Circ(0, 1, · · · , 0, 1) by the rank two symmetric matrix J = e1e
>
n + ene

>
1 . Thus, T∗ has a

common invariant subspace with C if and only if J does.

But Φ∗JΦ has entries aij = ω−j(1 +ωi+j), which is zero if and only if n = 2m is even and

i + j = m or i + j = 3m. Hence, the zero entries of this matrix are exactly at positions

(m, 0), (m − 1, 1), . . . , (0,m) and (2m − 1,m + 1), (2m − 2,m + 2), . . . , (m + 1, 2m − 1).

In particular, J is permutation irreducible and does not have any subspace of the form

CI :=< ei1 , . . . , eik > as an invariant subspace. This completes the proof.

As an immediate consequence of Corollary 5.35 we deduce

Corollary 5.43. Any complex invertible matrix is a finite product of invertible Toeplitz

matrices.

We now extend the above controllability analysis to the situation, where the Toeplitz

matrices that define the dynamics are confined to be unitary. This depends on a charac-

terization of unitary Toeplitz matrices via unitary pseudo-circulants. More precisely, we

have the following characterization of unitary Toeplitz matrices:

Theorem 5.44. A unitary matrix T is a Toeplitz matrix if and only if there exists λ ∈ C,

|λ| = 1, a0, ..., an−1 ∈ C with

T =



a0 a1 · · · an−1

λan−1 a0
. . .

...

...
. . .

. . . a1

λa1 · · · λan−1 a0


,

Proof. This is Theorem 3.6. of [21].

The result shows that the class of unitary Toeplitz matrices coincides with the class of

unitary pseudo-circulant matrices.

Theorem 5.45. The unitary Toeplitz matrices generate Un(C). Every unitary matrix is

a finite product of unitary Toeplitz matrices and every unitary matrix is a finite product

of unitary Hankel matrices.

Proof. With Theorem 5.44 we obtain that the set of unitary Toeplitz matrices coincides

with the set of unitary λ-circulant matrices. Hence, it suffices to prove the theorem for
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the class of unitary pseudo-circulant matrices.

Consider the Abelian Lie algebra circλn(C) of skew-Hermitian λ-circulant matrices. The

elements in this real vector space can have arbitrary purely imaginary eigenvalues. Thus,

there exist strongly regular skew-Hermitian pseudo-circulant matrices.

Now, suppose that the skew-Hermitian pseudo-circulants have a common nontrivial in-

variant subspace V . Then V is invariant for all skew-Hermitian λ-circulants A1, . . . , Ad,

λ 6= 0 arbitrary. Nevertheless, V is also invariant for iA1, . . . , iAd. Therefore, V is an

invariant subspace for all complex pseudo-circulant matrices. Since the Lie algebra gener-

ated by pseudo-circulant matrices equals gln(C), we obtain a contradiction. Thus, we can

apply Theorem 2.20 and conclude that the Lie algebra generated by the unitary Toeplitz

matrices is equal to gln(C).

It follows, that every unitary matrix is a finite product of matrix exponentials of skew-

Hermitian pseudo-circulants, i.e. a finite product of unitary pseudo-circulants. The result

about Hankel matrices follows, cf. Remark 5.18.
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Conclusions

System Lie algebras of control systems are important for the study in many areas. For

example, accessibility of a control system is closely related to it. In 1976 Brockett classified

all conjugation types of system Lie algebras which can appear for simple feedback systems

of the form

ẋ = (A+ u(t)bc)x

under the assumption that the linear system is controllable and observable.

In this thesis we consider networks of linear dynamical systems, where output feedback is

applied due to the interconnection structure. The resulting bilinear control system of the

network can be described as

ẋ = (A+ BU(t)C)x,

where U(t) is a matrix-valued control function somehow dependent on the interconnection

structure of the network. Based on the interconnection structure, we developed conditions

which guarantee accessibility for the control system above. We discussed two different

scenarios for the interconnections:

First, we assumed that all interconnections are independently controllable and hence, the

underlying graph is simple. Under these assumptions the control function U(t) has the

form of a controlled adjacency matrix. Then a certain connectivity of the underlying

graph is necessary and sufficient for the control system to be accessible in case the net-

work has 3 or more nodes. Contrary to expectations we were able to prove the same

result both for homogeneous and for heterogeneous networks. For the proofs we did not

use Brockett’s result on simple feedback systems and computed the Lie algebra directly.

Further, applying Brockett’s result on simple feedback systems with complex dynamics

but only real controls we were able to generalize it to homogeneous networks with complex

dynamics.

121



122 Chapter 6. Conclusions

Second, we allowed for linear dependencies between interconnections, self-loops and mul-

tiple vertices. According to expectations, we had to distinguish between homogeneous

and heterogeneous in this setting. We only found sufficient conditions for accessibility

since the dynamics of the node systems have a big impact on the generated Lie algebra.

To obtain accessibility conditions which are either necessary and sufficient one need ad-

ditional assumptions on the node dynamics.

Concluding, we studied the class of circulant matrices, pseudo-circulant matrices and

Toeplitz matrices in view of getting insight in networks with special structured inter-

connections. Since both pseudo-circulant and Toeplitz matrices generate the general Lie

algebra glN (R), we deduce accessibility results for homogeneous networks.

Open Problem

In this thesis we act on the assumption that the dynamics of each node are linear. Clearly,

a more general assumption would be that each node dynamics are nonlinear of the form

ẋi = fi(xi, vi(t))

yi = gi(xi),

where u is a scalar-valued control function, f and g are functions in C∞ and xi are

elements of a manifold M . Applying output feedback of the form

vi(t) =
∑

(j,i)∈E

uij(t)gj(xj).

where E is the set of all vertices of the network, yields the affine nonlinear control system

ẋi = fi

xi, ∑
(j,i)∈E

uij(t)gj(xj)


for every 1 ≤ i ≤ N . Considering a network of N agents we deduce the nonlinear control

system 

ẋ1

ẋ2

...

ẋN


=



f1

(
x1,
∑

(j,1)∈E u1j(t)gj(xj)
)

f2

(
x2,
∑

(j,2)∈E u2j(t)gj(xj)
)

...

fN

(
xN ,

∑
(j,N)∈E uNj(t)gj(xj)

)


, (6.1)
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where uij are scalar-valued control functions. Then

x̂ =

(
x1 x2 . . . xN

)>
is an element of M̂ := M ×M × . . .×M which is again a manifold.

For bilinear systems accessibility at one p ∈ M is equivalent to accessibility at every

p ∈ M due to the right-invariance. Since system (6.1) is no longer right-invariant, its

accessibility has to be checked in every point p ∈M .

The set of all C∞ vector fields on a manifold M is an infinite dimensional real vector

space X (M) [44] and a Lie algebra with the Lie bracket defined by

[f, g](x) :=
dg

dx
(x) · f(x)− df

dx
(x) · g(x),

where f, g and [f, g] ∈ X (M) (cf. A.1). Let C denote the accessibility Lie algebra of the

system (6.1), i.e. the smallest subalgebra of X (M) that contains f(x) and U · g(x) for all

piecewise constant controls U . Then the accessibility distribution C is defined as

C(p) = span{X(p)
∣∣ X ∈ C}

for every p ∈ M . If dimC(p) = n for every p ∈ M , system (6.1) is accessible (Corollary

3.11 [44]). The equivalence does not hold.

The question again arises which network architecture guarantees accessibility of system

(6.1). But now, one has to determine the dimension of the Lie algebras C(p) for every

p ∈ M̂ .





Appendix A

Lie theory

In this appendix we recall some basic facts and definitions in Lie theory. For more details

we refer the reader to [23, 25, 32]. According to the content of this thesis, we focus on

matrix Lie groups and matrix Lie algebras.

Definition A.1. A K-Lie algebra is a K-vector space L together with a bilinear map

[·, ·] : L× L→ L, which satisfies

(i) [X,Y ] = −[Y,X] for all X,Y ∈ L

(ii) [X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]] for all X,Y, Z ∈ L (Jacobi identity).

The following examples present the matrix Lie algebras which appear in this thesis.

Example A.2. For K = R or K = C the following list gives some examples for Lie

algebras, which all appear in this thesis:

• gln(K) := Kn×n

• sln(K) := {X ∈ gln(K) | tr(X) = 0}

• spn(K) := {X ∈ gln(K) | X>Jn,n + Jn,nX = 0, trX = 0}, where

J :=

 0 In

−In 0

 (A.1)

with dimension n(n + 1)/2. From the definition it is obvious that the Lie algebra

only exists for even n ∈ N.

• sun(K) := {X ∈ gln(K) | X +X> = 0, trX = 0}
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• su(µ, ν) := {X ∈ slµ+ν(C) | X∗Iµ,ν + Iµ,νX = 0} for µ+ ν ≥ 2, where

Iµ,ν :=

Iµ 0

0 −Iν

 . (A.2)

A Lie algebra g over R is called real, if g is over C it is called a complex Lie algebra. A

Lie subalgebra h of g is a subspace satisfying [h, h] ⊆ h, whereat

[h, h] := {[H1, H2]|H1, H2 ∈ h}.

A Lie subalgebra h is called an ideal, if [h, g] ⊂ h. A Lie algebra g is Abelian if [g, g] = {0}.

Definition A.3. Let g be a K-Lie algebra. Then g is called semisimple if the biggest

solvable ideal of g is {0}. The Lie algebra g is called simple if it is not Abelian and has

no other ideals than g and {0}.

For any X ∈ g, the adjoint transformation is the linear map

adX : g→ g, Y → [X,Y ]

and

ad : g→ End(g), Y 7→ adY

is called the adjoint representation of g. The set of linear mappings End(g) consists of all

endomorphisms g → g of g. For finite dimensional Lie algebras the symmetric bilinear

form

κ : g× g→ K, κ(X,Y ) 7→ tr(adX adY )

is called the Killing form of g.

Definition A.4. If G is a group and at the same time an analytic manifold, then G is

called a Lie group.

For an arbitrary Lie group the tangent space T1G at the unit element 1 ∈ G has the

structure of a Lie algebra. Therefore, the tangent space T1G is referred to as the associated

Lie algebra to the Lie group G denoted by L(G).

Example A.5. Examples of Lie groups

• the general linear group

GLn(K) = {A ∈ Kn×n : detA 6= 0}

with associated Lie algebra gln(R)
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• the special linear group

SLn(K) = {A ∈ Kn×n : detA = 1}

with associated Lie algebra sln(R)

• the symplectic group

SPn(K) :=
{
A ∈ Kn×n

∣∣ A>JA = J
}
,

where J is defined in (A.1), with associated Lie algebra spn(K)

• the special unitary group

SU(n) = {A ∈ GLn(C) | A∗A = 1 and det g = 1}

with associated Lie algebra sun(C)

• the special unitary group of signature µ, ν is

SU(µ, ν) =
{
A ∈ GLµ+ν(C)

∣∣ A∗Iµ,νA = Iµ,ν
}
,

where Iµ,ν is defined in (A.2), with associated Lie algebra su(µ, ν)





Appendix B

Properties of irreducible

polynomials

In this section we give some results on irreducible polynomials which we need for Chapter

3. The proofs of all results stated here can be found in [7].

Let p(s) ∈ F [s] be a monic polynomial of the form

p(s) = sn + pn−1s
n−1 + . . .+ p0, (B.1)

where F denotes a field of characteristic 0 and denote all roots of p(s) by si for 1 ≤ i ≤ n
counted with multiplicity. Dependent on p(s) we define the two following polynomials

[p(s)](r) :=
∏

1≤i1<i2<...<ir≤n
(s− (si1 + si2 + . . .+ sir))

and

ad[p(s)] :=
∏

1≤i,j≤n
(s− (si − sj)) .

The zeros of [p(s)](2) and ad[p(s)] are closely related.

Lemma B.1. Let p(s) be a polynomial over F of degree n and assume that all roots of

p(s) are distinct. Then p(s/2)[p(s)](2) has a repeated root if and only if s−n ad[p(s)] has

a repeated root.

Proof. Let us assume that s−n ad[p(s)] has a repeated root. Then, in terms of the roots

{si} of p(s) we get

si − sj = sk − sl

129



130 Appendix B. Properties of irreducible polynomials

for some i 6= j, k 6= l and {i, j} 6= {k, l}. This implies {i, l} 6= {j, k} and hence

si + sl = sj + sk.

Thus, p(s/2)[p(s)](2) has a repeated root as well.

Now, suppose p(s/2)[p(s)](2) has a repeated root, i.e., for {i, j} 6= {k, l} we have

si + sj = sk + sl.

Due to the assumption that all zeros of p(s) are distinct, we obtain i 6= k, i 6= l and

j 6= k, j 6= l. Thus,

si − sl = sk − sj

with i 6= l and k 6= j and s−n ad[p(s)] has a repeated root.

We show that the splitting fields Er|F of [p(s)](r) coincide for all r = 1, . . . n− 1 and that

the multiplicity of repeated roots of [p(s)](r) is bounded by n/r for s ∈ R if the polynomial

[p(s)](r−1) has distinct zeros. Here, a splitting field E|F of a polynomial p with coefficients

in the field F is the smallest field extension of F over which the polynomial decomposes

into linear factors.

Lemma B.2. Let F be a field of characteristic zero and p(s) ∈ F [s] be monic and of

degree n. Given r such that 1 ≤ r ≤ n − 1, then the splitting field E|F of p(s) and the

splitting field Er|F of [p(s)](r) are the same. Moreover, if [p(s)](r) = [q(s)](r) holds for

one r with 1 ≤ r ≤ n− 1 and q monic, this implies p(s) = q(s).

Proof. Firstly, the zeros of [p(s)](r) are of the form si1 + si2 + . . . + sir with sij zero of

p(s). Hence, the splitting field Er|F of [p(s)](r) is contained in the splitting field E|F of

p(s).

Secondly, since s1 + s2 + . . .+ sr−1 + sr, s1 + s2 + . . .+ sr−1 + sr+1 etc. are elements of

the splitting field Er|F of [p(s)](r), adding up n− r − 1 of these and taking advantage of

s1 + s2 + . . . + sn = pn−1 ∈ F , where pn−1 is defined in (B.1) and therefore pn−1 ∈ F ,

we obtain that (n− r)(s1 + s2 + . . .+ sr−1) ∈ Er|F. Because n− r 6= 0, we can show by

induction that all sums of zeros of p(s) with arbitrary length are elements of Er|F . Thus,

E|F = Er|F for 1 ≤ r ≤ n − 1 and the zeros of p(s) can be expressed in terms of the

roots of [p(s)](r). Thus, [p(s)](r) determines p(s) uniquely as a monic polynomial.

In the following lemmas we make use of a substantial result in Galois theory: The Galois

group of a polynomial acts transitively on the zeros of every irreducible factor of it ([17]).

The Galois group G of a field extension E|F is defined as the group of automorphisms of

E, which leaves the field F fixed. This Galois group acts transitively on the zeros of a

polynomial p(s) if for every pair of zeros si, sj there exists an automorphism g ∈ G such

that g(si) = sj . A polynomial p(s) ∈ F [s] is said to be irreducible if it cannot be factored
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in a product of two or more non-trivial polynomials which are in F [s]. For an overview

on Galois theory we refer the interested reader to [17].

Lemma B.3. Let F be a field of characteristic zero and p(s) ∈ F [s] be irreducible, monic

and of degree n. Let 1 < r ≤ n/2 and suppose that [p(s)](r−1) has no repeated roots. Then

no root of [p(s)](r) is of multiplicity greater than n/r. Moreover, [p(s)](r) has a root in F

if and only if the two conditions are satisfied:

(i) r divides n;

(ii) [p(s)](r) has a root of multiplicity n/r.

Proof. Assume that [p(s)](r) has a root with multiplicity greater than n/r. Then, we have

si1 + . . . + sir = sj1 + . . . + sjr , where sk denote the zeros of p(s). Necessarily, there is

one root appearing on both sides of the equation, which contradicts our assumption that

[p(s)](r−1) does not have repeated roots.

Now, suppose [p(s)](r) has a root in F . Then, by renumbering the roots, we can write it

as

f := s1 + s2 + . . .+ sr ∈ F.

As p(s) is irreducible, the Galois group acts transitively on the zeros and since f ∈ F it

belongs to the fixed field of the Galois group. Therefore, for a suitable numbering of the

roots of p(s) we get

s1 + s2 + . . .+ sr = sr+1 + sr+2 + . . .+ s2r = s2r+1 + s2r+2 + . . .+ s3r = . . . .

Since repetition on a subscript would give us a repeated root of [p(s)](r−1), this contradicts

our assumption. Hence, r divides n and the multiplicity of the root f is n/r.

Let us now assume that r divides n and [p(s)](r) has a root of multiplicity n/r. It follows

with a suitable numbering of the roots of p(s) that

s1 + s2 + . . .+ sr = sr+1 + sr+2 + . . .+ s2r = s2r+1 + s2r+2 + . . .+ s3r = . . . .

Taking advantage of [p(s)](r−1) having no repeated roots, we get (n−r)(s1+s2+. . .+sr) =

pn−1 ∈ F . Hence, s1 + s2 + . . .+ sr ∈ F and the result follows.

Lemma B.4 (Gauss’s lemma). Let F be a field of characteristic zero. If p(s) + uq(s) =

ψ1(s, u)ψ2(s, u) has a solution with ψ1 and ψ2 polynomials in s with coefficients in F (u),

then it has a solution with ψ1, ψ2 polynomials in s and u.

Proof. This is a consequence from Theorem 8.18 in [33].

Lemma B.5. A polynomial q(s) + up(s) is irreducible as a polynomial over F (u) if and

only if q and p are coprime as elements of F [s].
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Proof. Let us assume that q(s) + up(s) is reducible with factorization q(s) + up(s) =

ψ1(s, u) ·ψ2(s, u), where ψ1 and ψ2 are polynomials in s over F (u). Then, we obtain with

Lemma B.4 that ψ1 and ψ2 are polynomials in s and u. But q(s) + up(s) is linear in u,

thus, at most one ψi can depend on u. The other ψi is a polynomial in s, independent of

u and hence a common factor of q(s) and p(s). The other direction is obvious.

One of the main tools for later purpose is the following lemma.

Lemma B.6. Let F = R or F = C and q(s) + up(s) ∈ F (u)[s] be of the form

q(s) + up(s) = sn + qn−1s
n−1 + . . .+ q0 + u

(
pn−2s

n−2 + . . .+ p0

)
.

Assume that q(s) and p(s) are coprime and that pn−2 6= 0. If [q(s) + up(s)](2) ∈ F (u)[s]

has a repeated root, then this root is σ := −2qn−1/n, it is of multiplicity n/2 and φ(s) :=

q(s+ σ/2) + up(s+ σ/2) ∈ F (u)[s] is an even polynomial.

Proof. Let us assume that the polynomial

[q(s) + up(s)](2) =
∏

1≤i1<i2≤n
(s− (si1 + si2))

has a repeated root, i.e., si + si′ = sj + sj′ for {i, i′} 6= {j, j′} with si, si′ , sj , sj′ being

roots of q(s) + up(s). From the coprimeness of q(s) and p(s), we obtain with Lemma B.5

that q(s) +up(s) is irreducible. Hence, the Galois group Gal(E|F (u)) of its splitting field

E|F (u) acts transitively on the roots of q(s) + up(s). For two arbitrary zeros sk, sl of

q(s) + up(s) there always exists an automorphism g ∈ Gal(E|F (u)) with g(sk) = sl. In

case of a repeated root si + si′ = sj + sj′ of [q(s) + up(s)](2) this gives us

g(si) + g(si′) = g(si + si′) = g(sj + sj′) = g(sj) + g(sj′)

for all g ∈ Gal(E/F (u)). As the Galois group Gal(E/F (u)) acts transitively on the zeros,

we get that for every root sk of q(s) +up(s) a relation exists of the form sk + sk′ = sl + sl′

with k 6= l. As pn−2 6= 0 two of the roots of q(s) + up(s) can be expressed for u near

infinity as

s1 =
√
pn−2u−

qn−1

2
+ . . . (B.2)

s2 = −√pn−2u−
qn−1

2
+ . . . , (B.3)

where the remaining terms are powers of 1/
√
u and the other n−2 roots can be expressed

as power series in 1/u (Proposition 4.1.3 [26]). As a result, from

s1 + si = sj + sk,
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it follows i = 2 and from s2 + si = sj + sk that i = 1 since all roots sl are distinct.

Therefore, if si + si′ = sj + sj′ , then si + si′ is bounded for u→∞.

When the polynomial [q(s) + up(s)](2) has repeated roots, it is therefore reducible. Let

φ(s) be an irreducible factor of [q(s)+up(s)](2), which contains the linear factor s−s1−s2.

Since s1+s2 is a repeated root, this irreducible factor is not unique. Cleary, φ(s) ∈ F (u)[s]

but it divides [q(s) + up(s)](2). By Lemma B.4 it immediately follows that φ(s) ∈ F [u, s].

The coefficients of φ(s) can be written as symmetric functions of its roots. Since all

roots of φ(s) are bounded for u ∈ C\{0} and the coefficients of φ(s) are polynomials

in u, the coefficients have to be constants. Therefore, φ(s) ∈ F [s] and the root s1 + s2

belongs to the algebraic closure of F , i.e., s1 + s2 ∈ C. With Lemma B.3 we get that

2 divides n and [q(s) + up(s)](2) has no root with multiplicity greater than n/2. Hence,

n is even. So we found a root in C, which is of multiplicity n/2 and therefore, we get

s1 + s2 = s3 + s4 = . . . = sn−1 + sn. With s1 + s2 + . . . + sn = pn−1 it follows that

s1 + s2 = 2pn−1/n.

When we shift s to s̄ = s+ σ/2 the roots of q(s̄) + up(s̄) appear with their negatives. As

n is even it follows that q(s̄) + up(s̄) is even in s. This proves the result.

The other way around, we get from Lemma B.6 that if q(s + σ) + up(s + σ) is not even

for any σ ∈ R with p and q coprime, it follows that the polynomial [q(s) + up(s)](2) does

not have any repeated roots. Hence, by Lemma B.1 the polynomial ad[q(s) + up(s)] has

maximum number of distinct roots, which is n2 − n + 1. Note that s−n ad[q(s) + up(s)]

does not have the root s = 0 since all roots of q(s) + up(s) are assumed to be distinct.

Hence, the maximum number of distinct roots of ad[q(s)+up(s)] is the maximum number

of distinct roots of s−n ad[q(s) + up(s)] plus one. Thus, it is left to determine, how many

repeated roots the polynomial ad[q(s) + up(s)] has in case there exists a number σ ∈ R
such that q(s+ σ) + up(s+ σ) is an even polynomial.

Lemma B.7. Let q(s) +up(s) ∈ F (u)[s] be as in Lemma B.6. Then the repeated roots of

((q + up)(s/2)) [q(s) + up(s)](2) ∈ F (u)[s]

are the repeated roots of [q(s) + up(s)](2) ∈ F (u)[s] with the same multiplicity.

Proof. Since the zeros of q(s)+up(s) are all distinct, the factor (q+up)(s/2) cannot have

a repeated root. Suppose that there exists a repeated root of (q+up)(s/2)[q(s)+up(s)](2),

which has the form 2si = sl + sk. Then, we get i 6= k, i 6= l, l 6= k. Again, we use that the

Galois group G of p acts transitively and we can find an automorphism g ∈ G such that

g(si) = s1, where s1 is the root defined in (B.2). Then we obtain

2s1 = g(2si) = g(sl) + g(sk). (B.4)
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Since g is an automorphism g(sl) 6= s1 and g(sk) 6= s1 holds. Therefore, the equation (B.4)

yields a contradiction. Hence, the repeated roots of the polynomial (q + up)(s/2)[q(s) +

up(s)](2) are only the repeated roots of [q(s) + up(s)](2).

Lemma B.8. Let q(s) + up(s) ∈ F (u)[s] be as in Lemma B.6 and assume that it is an

even polynomial in s. Then ad[q(s) + up(s)] has 1 + n2/2 distinct zeros.

Proof. Since q(s) + up(s) is an even polynomial in s, i.e., q(s) + up(s) = q(−s) + up(−s),
the zeros of q(s) + up(s) appear with their negatives. Therefore, si − sj = (−sj)− (−si)
is a repeated root of ad[q(s) + up(s)]. Hence, n2 − n + 1 − (n2/2 − n) = 1 + n2/2 is an

upper bound for the number of distinct zeros of ad[q(s) + up(s)]. We assume that not all

zeros of ad[q(s) + up(s)] are distinct. Then, in case we have a repeated root,

si − sj = sk − sl or si + sl = sj + sk.

From Lemma B.6 we know that this only holds if sl = −si and sk = −sj since q(s)+up(s)

is assumed to be even. But the polynomial ((q + up)(s/2)) [q(s) +up(s)](2) has maximum
n(n−1)

2 + n = n(n+1)
2 distinct zeros. Then, from Lemma B.6 and Lemma B.7 we get that

the only repeated root is 0 with multiplicity n/2. Hence, the number of distinct nonzero

roots of ((q + up)(s/2)) [q(s) + up(s)](2) is n(n+1)
2 − n

2 = n2

2 . It follows, ad[q(s) + up(s)]

has n2/2 distinct nonzero roots plus the root 0.

We know from Lemma B.1 that the polynomial s−n ad[q(s) + up(s)] has a repeated root

if and only if (q + up)(s/2)[q(s) + up(s)](2) has a repeated root. Consequently, if the

polynomial (q+ up)(s/2)[q(s) + up(s)](2) has no repeated roots, the polynomial ad[q(s) +

up(s)] has n2 − n + 1 distinct roots. Therefore, it results from Lemma B.6 and Lemma

B.8 that s−n ad[q(s) + up(s)] has either no repeated root or [q(s) + up(s)](2) is an even

polynomial and then ad[q(s) + up(s)] has 1 + n2/2 distinct roots.
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Proofs of Lemma 3.16 and

Theorem 3.40

We give the proof of Lemma 3.16.

Proof. If there exists a linear relation between matrices in {adiA+ubc(bc)
∣∣ i ∈ N}, we have∑k

i=1 αi adiA+ubc(bc) = 0 for some k ∈ N. With

di

dti

(
e(A+ubc)tbce−(A+ubc)t

) ∣∣
t=0

= adiA+ubc(bc)

for all i ∈ N we get
k∑
i=1

αi
di

dti

(
e(A+ubc)tbce−(A+ubc)t

) ∣∣
t=0

= 0

and hence for all h, g ∈ Rn

k∑
i=1

αi
di

dti

(
he(A+ubc)tbce−(A+ubc)tg

) ∣∣
t=0

= 0. (C.1)

Since (A, b, c) is controllable and observable we know that for any sets of real numbers

{βi} and {γi} we can find vectors h and g such that

he(A+ubc)tbce−(A+ubc)tg =
∑
i,j

βiγje
(λi−λj)t, (C.2)

where λi, λj denote the eigenvalues of A + ubc and hence λi − λj are the eigenvalues of

adA+ubc. This can be seen as follows: Due to Lemma 3.8 we can w.l.o.g. assume that the

matrix A+ ubc is diagonal. Hence,

he(A+ubc)tbce−(A+ubc)tg =
∑
i,j

hibicjgje
(λi−λj)t.
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Due to the controllability and observability of (A, b, c) we know that b and c have a

nonzero component in every invariant subspace of A and therefore, bi 6= 0 and cj 6= 0 for

1 ≤ i, j ≤ n. Clearly, we can choose hi and gj such that hibi = βi and cjgj = γj .

Therefore, we can insert (C.2) into (C.1). Clearly, the minimal polynomial of adA+ubc(·)
divides p(s) = αks

k + αk−1s
k−1 + . . .+ α1s. Thus, the minimal polynomial of adA+ubc(·)

regarded as an operator on the real span of {adiA+ubc(bc)
∣∣ i ∈ N} has each factor

of ad[p(s) + uq(s)] as a factor. Therefore, the number of distinct nonzero zeros of

ad[p(s) + uq(s)] is a lower bound for the number of linearly independent matrices in

the set span{adA+ubc(bc)
∣∣ i ∈ N}. Taking the maximum we obtain that either n2/2 or

n2 − n are lower bounds for the dimension of the vector space span{adA+ubc(bc)
∣∣ i ∈ N}

from the observations of this chapter. Clearly, the eigenvalues of adA+ubc(·) are just the

zeros of the polynomial ad[p(s) + uq(s)].

On the other side, due to Lemma 3.8, the matrix A + ubc is diagonalizable for almost

all u ∈ F and thus has a complete set of eigenvectors. So, adA+ubc(·) has a complete

set of eigenvectors and is diagonalizable for almost all values of u ∈ F , too. Clearly,

there cannot exist a cyclic subspace generated by a finite-dimensional operator acting on

bc with a dimension which exceeds the number of distinct eigenvalues of adA+ubc(·) and

therefore, n2 − n + 1 and n2/2 + 1, respectively, are upper bounds for the number of

linearly independent matrices in {adiA+ubc(bc)
∣∣ i ∈ N0}.

Let diag bc 6= 0, i.e., not all diagonal entries of bc vanish. Since A + ubc can be as-

sumed to be diagonal, the matrices adiA+ubc(bc) have vanishing diagonal. Therefore,

bc 6∈ span{adiA+ubc(bc)
∣∣ i ∈ N}. Hence, 0 is an eigenvalue of

adA+ubc(·)
∣∣
span{adi

A+bc(bc) | i∈N0}

and the result holds.

Otherwise, let diag bc = 0, i.e., the diagonal entries of bc vanish. With Lemma 3.8 we

obtain adiA+ubc(bc) 6= 0 for all i ∈ N for almost all u. Hence, 0 is not an eigenvalue of

adA+ubc(·) restricted to the cyclic subspace span{adiA+ubc(bc)
∣∣ i ∈ N}. Thus, bc is an

element of span{adA+ubc(bc)
∣∣ i ∈ N} and the result follows.

Before we give the proof of Theorem 3.40, we state a useful lemma.

Lemma C.1. If L is a Lie algebra of n× n matrices, which properly contains spn/2(R),

then L is either equal to spn/2(R)⊕ RI, sln(R) or gln(R).
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Proof. If L differs only by multiples of the identity from spn/2(R), then L = spn/2(R)⊕RI.

Alternatively, there exists a matrix M in L of the form

M =

F R

S F>

 ,

where R and S are skew-symmetric, i.e., R = −R> and S = −S>, and F is not a nonzero

multiple of the identity, since every matrix can be written as the sum of a symmetric and

a skew-symmetric matrix. Clearly, spn/2(R) contains the matrices

N =

I 0

0 −I

 , P =

0 0

I 0

 and P> =

0 I

0 0

 ,

thus the following elements lie in L:

• [N,M ] =

 0 2R

−2S 0



• [P, 1
2 [N,M ]] =

−R 0

0 R

 and therefore R̃ :=

R 0

0 0

 ∈ L since R = −R>

• [P>,−1
2 [N,M ]] =

S 0

0 S>

 and therefore

S 0

0 0

 ∈ L since S = −S>

• M + 1
2 [N,M ]− 2[R̃, P>] =

F 0

0 F>

 and therefore

F 0

0 0

 ∈ L
At least one of these 3 preceding matrices is unequal zero and not a multiple of the

identity. By calculating
A 0

0 −A>

 ,

X 0

0 0


 =

[A,X] 0

0 0


for X = R, X = S or X = F , one can easily see thatk 0

0 0

 ⊂ L,
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where k := {R,S, F}Ideal is an ideal of gln/2(R) generated by R,S or F . Hence, sln/2(R) ⊂
k since sln/2(R) is simple. With the same argumentation we get0 0

0 k

 ⊂ L,
with sln/2(R) ⊂ k. With

A 0

0 0

 ,

0 Si

0 0


 =

0 ASi

0 0

 and


0 Si

0 0

 ,

0 0

0 A


 =

0 SiA

0 0


we get 0 k

0 0

 ⊂ L,
where k := {Si}Ideal is an ideal of gln/2(R) generated by some symmetric matrices Si and

hence sln/2(R) ⊂ k. Similarly, 0 0

k 0

 ⊂ L.
Completing this to a Lie algebra yields

sln(R) ⊂ g.

This proves the result.

For the sake of completeness we give the proof of Theorem 3.40 which can be found in [5].

Proof. By Lemma 3.38 we know there exist K, b and c such that (A+BKC,Bb, cC) is a

controllable and observable triple. Thus, by Theorem 3.28 we know that the Lie algebra

(3.10) contains spn/2(R). From Theorem 3.32 we know that it is spn/2(R) or spn/2(R)⊕RI
if and only if there exists an α and some nonsingular matrix Q = Q> such that

QUG(s+ α) = G>(−s)U>Q

holds for all matrices U of appropriate dimension. This is impossible if G(s) is of rank 2

or more. Thus, the Lie algebra (3.10) is either sln(R) or gln(R). Clearly, we have{
A,BUC

∣∣ U ∈ Rp×p}
LA

= sln(R)
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if and only if all matrices in
{
A,BUC

∣∣ U ∈ Rp×p}
LA

have trace zero. This is only

satisfied when trA = 0 and CB = 0.





List of Notations

adA(bc) adjoint transformation [A, bc]

γ adjacency matrix of the graph Γ

γ(u) controlled adjacency matrix of the graph Γ

Circ(c0, ..., cn−1) Circulant matrix with first row (c0, ..., cn−1)

Circλ(c0, c1, ..., cn−1) λ-circulant matrix with first row (c0, c1, ..., cn−1)

Circn(C) Lie group of all invertible circulant matrices

Circλn(C) Group of all nonsingular λ-circulant matrices

circn(C) Lie algebra of all circulant matrices

circλn(C) Set of all λ-circulant matrices

diagX = 0 The diagonal entries of X are all zero

g ∼= k The Lie algebras g and k are conjugated

LEλ(A) The generalized left eigenspace associated to the eigenvalue λ of

the matrix A

gln(K) General linear Lie algebra over K

sln(K) Special linear Lie algebra over K

spn(K) Symplectic Lie algebra over K

su(µ, ν) Special unitary Lie algebra of signature (p, q)

sun(C) Special unitary Lie algebra of n× n matrices

u(µ, ν) Unitary Lie algebra of signature (p, q)

un(C) Unitary Lie algebra of n× n matrices

Ω diag(1, ω, . . . , ωn−1)
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Φ Fourier matrix

REλ(A) The generalized right eigenspace associated to the eigenvalue λ of

the matrix A

σ(A) The spectrum of the matrix A

Toe(n) Vector space of all n× n Toeplitz matrices

{A, bc}CLA The complex matrix Lie algebra generated by A and bc

{X,Y }LA Lie algebra generated by X and Y

A∗ the conjugate transpose A
>

Eij Single-entry matrix with entry 1 at (i, j) and the other entries are

zero

G(s) Transfer function of a MIMO system

g(s) Transfer function of a SISO system

g∗(s) g(s) with coefficients complex conjugated

GLn(K) Lie group of all invertible n× n matrices

GL+
n (R) Lie group of all invertible n×n matrices with positive determinant

pC(z) Representer of circulant matrix C

S Circ(0, 1, ..., 0)

Sλ Circλ(0, 1, 0, ..., 0)
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