Characterizing new photoreceptors to expand the Optogenetic toolbox

Charakterisierung neuer Photorezeptoren zur Erweiterung der Optogenetik

Please always quote using this URN: urn:nbn:de:bvb:20-opus-112941
  • Optogenetics is a method to control the cell activity with light by expression of a natural or engineered photoreceptor via genetic modification technology. Optogenetics early success came with the light-gated cation channel "Channelrhodopsin-2" in neurons and expanded from neuroscience to other research fields such as cardiac research and cell signaling, also due to the enrichment by new photoreceptors. In this study, I focus on searching and characterizing new photoreceptors to expand the optogenetic tool box. In this work I characterizeOptogenetics is a method to control the cell activity with light by expression of a natural or engineered photoreceptor via genetic modification technology. Optogenetics early success came with the light-gated cation channel "Channelrhodopsin-2" in neurons and expanded from neuroscience to other research fields such as cardiac research and cell signaling, also due to the enrichment by new photoreceptors. In this study, I focus on searching and characterizing new photoreceptors to expand the optogenetic tool box. In this work I characterize three newly discovered microbial rhodopsins and some engineered mutants of them. The first rhodopsin is a proton pump from the diatom Fragilariopsis cylindrus, Fragilariopsis Rhodopsin or abbreviated: FR. I cloned the full-length FR and proved it to be a light-activated proton pump with high efficacy in comparison to Bacteriorhodopsin (BR). During this study, I also developed a new method to improve the plasma membrane targeting of several microbial rhodopsins. I also obtained a FR mutant (channel-like FR or chFR) which behaves like a light-gated proton channel. FR can be used for optogenetic hyperpolarization or alkalization of a cell while the chFR could be used for depolarization or lowering of the cellular pH. The induction of FR expression under iron-limited conditions in the diatom indicated an alternative energy generation mechanism of F. cylindrus when iron-containing enzymes are scarce. I then characterized a new microbial rhodopsin with novel light-regulated Guanylyl Cyclase (GC) activity. This rhodopsin guanylyl cyclase from the fungus Blastocladiella emersonii (B.e. CyclaseOpsin or BeCyclOp) has been proven by me to be an efficient light-gated GC with high specificity and fast kinetics. BeCyclOp also has a novel structure with eight transmembrane helices, containing a long cytosolic N-terminus which participates in the tight regulation of the GC activity. In collaboration with Prof. Alexander Gottschalk (Univ. Frankfurt/M.), BeCyclOp has been tested in muscle cells and sensory neurons of Caenorhabditis elegans and proven to be a powerful optogenetic tool in a living animal. I also generated a BeCyclOp mutant with enhanced light sensitivity. Already more than ten years ago, guanylyl cyclase rhodopsins were suggested to exist in Chlamydomonas reinhardtii by analyzing genomic sequence data. But until now no functional proof existed. By further cloning and sequencing I discovered such a rhodopsin with light-regulated guanylyl cyclase activity. This functional Cyclaseopsin (COP6c) is quite different to BeCyclOp, as it was proven to be a light-inhibited GC. Cop6c is much larger than BeCyclOp with a His-Kinase and a response regulator domain between the rhodopsin and the cyclase domain. I also introduced a new strategy for generating optogenetic tools by fusing the photoactivated adenylyl cyclase bPAC to two different CNG channels. These new tools function via light-gated cAMP production and subsequent CNG channel activation. These tools combined the properties of bPAC (highly sensitive to blue light) and CNG channels (high single-channel conductance and high Ca2+ permeability), as demonstrated by expression in Xenopus oocytes. As a further benefit the fusing of bPAC to CNG channels leads to a bPAC with a more than tenfold reduced dark activity which is a valuable improvement for bPAC itself as an optogenetic tool.show moreshow less
  • Als Optogenetik wird die Technik bezeichnet, durch genetische Veränderung Photorezeptoren in Zellen einzubringen, um die Zellaktivität mit Licht zu steuern. Frühe Erfolge der Optogenetik wurden mit dem Licht-gesteuerten Kationenkanal "Channelrhodopsin-2" in Neuronen von lebenden Tieren erzielt. Die Anwendung erweiterte sich von den Neurowissenschaften zu anderen Forschungsfeldern, wie Herzforschung und Zellbiologie, auch durch die Bereicherung mit neuen Photorezeptoren. Hier konzentriere ich mich auf die Suche und Charakterisierung neuerAls Optogenetik wird die Technik bezeichnet, durch genetische Veränderung Photorezeptoren in Zellen einzubringen, um die Zellaktivität mit Licht zu steuern. Frühe Erfolge der Optogenetik wurden mit dem Licht-gesteuerten Kationenkanal "Channelrhodopsin-2" in Neuronen von lebenden Tieren erzielt. Die Anwendung erweiterte sich von den Neurowissenschaften zu anderen Forschungsfeldern, wie Herzforschung und Zellbiologie, auch durch die Bereicherung mit neuen Photorezeptoren. Hier konzentriere ich mich auf die Suche und Charakterisierung neuer Photorezeptoren. In dieser Arbeit werden drei neu entdeckte, natürliche mikrobielle Rhodopsine, sowie ausgewählte Mutanten, charakterisiert. Das erste Rhodopsin ist eine Protonenpumpe aus der Kieselalge (Diatomee) Fragilariopsis cylindrus, Fragilariopsis-Rhodopsin, abgekürzt FR. Ich klonierte FR und bewies, dass FR eine Licht-aktivierte Protonenpumpe mit hoher Wirksamkeit ist. In dieser Studie zeige ich auch eine Methode, um die Plasmamembran-Lokalisation von FR und mehreren anderen Rhodopsinen zu verbessern. Ich identifizierte eine FR-Mutante (chFR), die sich wie ein Licht-gesteuerter Protonenkanal verhält. FR kann für die Licht-gesteuerte Hyperpolarisation oder Alkalisierung der Zelle verwendet werden, während chFR möglicherweise verwendet werden könnte, um den zellulären pH Licht-gesteuert abzusenken. Die Induktion der FR-Expression unter Eisenmangel-Bedingungen legt einen neuen Energieerzeugungsmechanismus von F. cylindrus nahe, wenn Eisen-haltige Enzyme in den Chloroplasten fehlen. Ich habe dann ein neues mikrobielles Rhodopsin mit Licht-geregelter Guanylylcyclase (GC) Aktivität untersucht. Für dieses Cyclaseopsin aus dem Pilz Blastocladiella emersonii (BeCyclOp) konnte ich zeigen, dass es sich um eine effiziente lichtgesteuerte GC mit hoher Spezifität und schneller Kinetik handelt. BeCyclOp hat eine für ein Opsin neuartige Struktur mit acht Transmembranhelices. Für den langen cytosolischen N-Terminus zeigte ich eine Beteiligung an der Regulierung der GC-Aktivität. BeCyclOp wurde im Labor von Prof. A. Gottschalk (Univ. Frankfurt/M.) in den Muskelzellen und sensorischen Neuronen von Caenorhabditis elegans getestet und erwies sich als ein leistungsfähiges Werkzeug in optogenetisch veränderten, lebenden Tieren. Ich habe dann auch eine BeCyclOp Mutante mit verbesserter Lichtempfindlichkeit hergestellt. Bereits vor über zehn Jahren wurden anhand genomischer Daten Guanylylcyclase-Rhodopsine in Chlamydomonas reinhardtii postuliert, konnten aber funktionell bisher nicht nachgewiesen werden. Durch Klonieren von verschiedenen Chlamydomonas reinhardtii Stämmen gelang es mir, solch ein Opsin (Cop6c) zu entdecken, dessen Guanylylcyclase-Aktivität eindeutig Licht-reguliert ist. COP6c ist ganz anders als BeCyclOp, nicht nur weil die GC-Aktivität durch Licht inhibiert wird. Außerdem ist Cop6c ein viel größeres Protein mit einer zusätzlichen His-Kinase-, sowie einer Transducer-Domäne zwischen der Rhodopsin- und der Cyclase-Domäne. Schlussendlich zeige ich auch eine neue Strategie zur Erzeugung von optogenetischen Werkzeugen durch Fusion der Licht-aktivierten Adenylyl-Cyclase (AC) bPAC mit CNG-Kanälen. Diese neuen "Werkzeuge" funktionieren über Licht-gesteuerte cAMP-Produktion und die anschließende Aktivierung eines cAMP-sensitiven Kationen-(CNG-) Kanals. Hierbei werden die positiven Eigenschaften von bPAC (sehr empfindlich auf blaues Licht) und CNG-Kanälen (hohe Leitfähigkeit bei hoher Ca2+-Durchlässigkeit) kombiniert. Darüber hinaus konnte ich demonstrieren, dass die Fusion der bPAC an den CNG-Kanal zu einer bPAC mit stark reduzierter AC-Aktivität im Dunkeln führte, was allein schon eine gute Verbesserung der bPAC als optogenetische Werkzeug ist.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Shiqiang Gao
URN:urn:nbn:de:bvb:20-opus-112941
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Referee:Prof. Dr. Georg Nagel, Prof. Dr. Klaus Fendler
Date of final exam:2015/05/13
Language:English
Year of Completion:2017
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Optogenetics; photoreceptors; microbial rhodopsin; Guanylyl Cyclase; proton pump
Tag:Optogenetics; microbial rhodopsin; photoreceptors
CCS-Classification:E. Data
Release Date:2017/05/15
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitung