Inducible Knock-Down of the Mineralocorticoid Receptor in Mice Disturbs Regulation of the Renin-Angiotensin-Aldosterone System and Attenuates Heart Failure Induced by Pressure Overload

Please always quote using this URN: urn:nbn:de:bvb:20-opus-137575
  • Mineralocorticoid receptor (MR) inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox). Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP. MR mRNA levels in heart and kidney of inducible MR knock-down mice were unaltered in the absence of Dox, confirming the tightness of the system. InMineralocorticoid receptor (MR) inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox). Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP. MR mRNA levels in heart and kidney of inducible MR knock-down mice were unaltered in the absence of Dox, confirming the tightness of the system. In contrast, two weeks after Dox administration MR expression was significantly diminished in a variety of tissues. In the kidney, this resulted in lower mRNA levels of selected target genes, which was accompanied by strongly increased serum aldosterone and plasma renin levels as well as by elevated sodium excretion. In the healthy heart, gene expression and the amount of collagen were unchanged despite MR levels being significantly reduced. After transverse aortic constriction, however, cardiac hypertrophy and progressive heart failure were attenuated by MR silencing, fibrosis was unaffected and mRNA levels of a subset of genes reduced. Taken together, we believe that this mouse model is a useful tool to investigate the role of the MR in pathophysiological processes.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Elena Montes-Cobos, Xiao Li, Henrike J. Fischer, André Sasse, Sebastian Kügler, Michael Didié, Karl Toischer, Martin Fassnacht, Ralf Dressel, Holger M. Reichardt
URN:urn:nbn:de:bvb:20-opus-137575
Document Type:Journal article
Faculties:Medizinische Fakultät / Medizinische Klinik und Poliklinik I
Language:English
Parent Title (English):PLoS One
Year of Completion:2015
Volume:10
Issue:11
Pagenumber:e0143954
Source:PLoS ONE 10(11): e0143954. doi:10.1371/journal.pone.0143954
DOI:https://doi.org/10.1371/journal.pone.0143954
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:balance; cells; polarization; transgenic rats
Release Date:2016/09/05
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung