Plant thermotolerance: The role of heat stress-induced triacylglycerols in \(Arabidopsis\) \(thaliana\)

Thermotoleranz in Pflanzen: Die Rolle von Hitzestress induzierten Triacylglycerolen in \(Arabidopsis\) \(thaliana\)

  • Plants are exposed to high temperature, especially during hot summer days. Temperatures are typically lowest in the morning and reach a maximum in the afternoon. Plants can tolerate and survive short-term heat stress even on hot summer days. A. thaliana seedlings have been reported to tolerate higher temperatures for different time periods, a phenomenon that has been termed basal thermotolerance. In addition, plants have the inherent capacity to acclimate to otherwise lethal temperatures. Arabidopsis thaliana seedlings acclimate at moderately ePlants are exposed to high temperature, especially during hot summer days. Temperatures are typically lowest in the morning and reach a maximum in the afternoon. Plants can tolerate and survive short-term heat stress even on hot summer days. A. thaliana seedlings have been reported to tolerate higher temperatures for different time periods, a phenomenon that has been termed basal thermotolerance. In addition, plants have the inherent capacity to acclimate to otherwise lethal temperatures. Arabidopsis thaliana seedlings acclimate at moderately elevated temperatures between 32–38° C. During heat acclimation, a genetically programmed heat shock response (HSR) is triggered that is characterized by a rapid activation of heat shock transcription factors (HSFs), which trigger a massive accumulation of heat shock proteins that are chiefly involved in protein folding and protection. Although the HSF-triggered heat-shock response is well characterized, little is known about the metabolic adjustments during heat stress. The aim of this work was to get more insight into heat-responsive metabolism and its importance for thermotolerance. In order to identify the response of metabolites to elevated temperatures, global metabolite profiles of heat-acclimated and control seedlings were compared. Untargeted metabolite analyses revealed that levels of polyunsaturated triacylglycerols (TG) rapidly increase during heat acclimation. TG accumulation was found to be temperature-dependent in a temperature range from 32–50° C (optimum at 42° C). Heat-induced TG accumulation was localized in extra-chloroplastic compartments by chloroplast isolation as well as by fluorescence microscopy of A. thaliana cell cultures. Analysis of mutants deficient in all four HSFA1 master regulator genes or the HSFA2 gene revealed that TG accumulation occurred independently to HSF. Moreover, the TG response was not limited to heat stress since drought and salt stress (but not short-term osmotic, cold and high light stress) also triggered an accumulation of TGs. In order to reveal the origin of TG synthesis, lipid analysis was carried out. Heat-induced accumulation of TGs does not derive from massive de novo fatty acid (FA) synthesis. On the other hand, lipidomic analyses of A. thaliana seedlings indicated that polyunsaturated FA from thylakoid galactolipids are incorporated into cytosolic TGs during heat stress. This was verified by lipidomic analyses of A. thaliana fad7/8 transgenic seedlings, which displayed altered FA compositions of plastidic lipids. In addition, wild type A. thaliana seedlings displayed a rapid conversion of plastidic monogalactosyldiacylglycerols (MGDGs) into oligogalactolipids, acylated MGDGs and diacylglycerols (DGs). For TG synthesis, DG requires a FA from the acyl CoA pool or phosphatidylcholine (PC). Seedlings deficient in phospholipid:diacylglycerol acyltransferase1 (PDAT1) were unable to accumulate TGs following heat stress; thus PC appears to be the major FA donor for TGs during heat treatment. These results suggest that TG and oligogalactolipid accumulation during heat stress is driven by post-translationally regulated plastid lipid metabolism. TG accumulation following heat stress was found to increase basal thermotolerance. Pdat1 mutant seedlings were more sensitive to severe heat stress without prior acclimatization, as revealed by a more dramatic decline of the maximum efficiency of PSII and lower survival rate compared to wild type seedlings. In contrast, tgd1 mutants over-accumulating TGs and oligogalactolipids displayed a higher basal thermotolerance compared to wild type seedlings. These results therefore suggest that accumulation of TGs increases thermotolerance in addition to the genetically encoded heat shock response. show moreshow less
  • Pflanzen sind besonders während der Sommerzeit hohen Temperaturschwankungen ausgesetzt. Temperaturen sind am Morgen meist niedrig und erreichen ihr Maximum während des Nachmittags. Pflanzen können Hitzestress im Sommer jedoch für eine kurze Zeit tolerieren. Arabidopsis thaliana Keimlinge können höhere Temperaturen für verschiedene Zeitspannen tolerieren, was als Basale Thermotoleranz beschrieben wird. Zusätzlich können Pflanzen durch Akklimatisierung eine Toleranz zu andernfalls letalen Temperaturen erwerben. A. thaliana Keimlinge beginnen sichPflanzen sind besonders während der Sommerzeit hohen Temperaturschwankungen ausgesetzt. Temperaturen sind am Morgen meist niedrig und erreichen ihr Maximum während des Nachmittags. Pflanzen können Hitzestress im Sommer jedoch für eine kurze Zeit tolerieren. Arabidopsis thaliana Keimlinge können höhere Temperaturen für verschiedene Zeitspannen tolerieren, was als Basale Thermotoleranz beschrieben wird. Zusätzlich können Pflanzen durch Akklimatisierung eine Toleranz zu andernfalls letalen Temperaturen erwerben. A. thaliana Keimlinge beginnen sich bereits bei moderat erhöhten Temperaturen zwischen 32–38° C zu akklimatisieren. Während der Hitzeakklimatisierung wird eine genetisch programmierte Hitzeschockantwort (HSR) ausgelöst, welche durch eine rasche Aktivierung von Hitzeschock-Transkriptionsfaktoren (HSF) eingeleitet wird. Dies führt wiederum zu einem enormen Anstieg von einer Reihe von Hitzeschockproteinen (HSP), welche an der Faltung und dem Schutz der Proteine beteiligt sind. Obwohl die HSF-induzierte Hitzeschockantwort bereits gut charakterisiert ist, ist über die metabolomische Anpassung während des Hitzestress nur wenig bekannt. Das Ziel dieser Arbeit war es mehr Kenntnisse von hitze-respondierenden Metaboliten zu erhalten sowie deren Bedeutung für die Thermotoleranz. Zur Identifizierung von thermosensitiven Metaboliten, wurden die Metabolitprofile von Hitze akklimatisierten und Kontrollkeimlingen miteinander verglichen. Mittels ungerichteter Metabolit Analyse wurde ein rascher Anstieg von vielfach ungesättigten Triacylglycerolen (TG) während der Hitzeakklimatisierung nachgewiesen. Der TG Anstieg ist temperaturabhängig in einem Bereich von 32–50° C (Optimum bei 42° C). Der hitzeinduzierte TG Anstieg konnte mittels Chloroplastenisolierung sowie der separaten Analyse von Wurzel und Spross in den extrachloroplastidären Kompartimenten lokalisiert werden. Dies konnte durch Fluoreszenz Mikroskopie in Zellkulturen von A. thaliana bestätigt werden. Die Analyse von Mutanten, die einen Defekt in allen vier HSFA1 Masterregulatoren oder in dem HSFA2 Gen besitzen, zeigte, dass der Anstieg der TGs keine Abhängigkeit von den HSFs aufweist. Zudem ist der TG Anstieg nicht nur auf die Hitzestressantwort begrenzt, sondern auch durch Trockenheit und Salzstress induzierbar, jedoch nicht durch kurzzeitigen osmotischen-, Kälte- und Hochlichtstress. Zur Aufklärung des Ursprungs der TG Synthese wurde eine Lipidanalyse durchgeführt. Die hitzeinduzierte TG Akkumulation durch eine massive De Novo Fettsäuresynthese konnte ausgeschlossen werden. Die Untersuchung des Lipidoms von A. thaliana Keimlingen nach Hitze bot jedoch Hinweise auf einen Einbau von vielfach ungesättigten Fettsäuren aus thylakoiden Galaktolipiden in zytosolische TGs. Dies konnte durch die Untersuchung des Lipidoms von fad7/8 transgenen A. thaliana Keimlingen mit veränderter Fettsäure Komposition der plastidären Lipide bestätigt werden. Der Wildtyp von A. thaliana wies zudem eine rasche Umwandlung von plastidärem Monogalactosyldiacylglycerolen (MGDGs) zu Oligogalaktolipiden, acylierten MGDGs und Diacylglycerolen (DGs) auf. Für die TG Biosynthese wird eine Fettsäure aus dem Acyl-CoA Pool oder von Phosphatidylcholin (PC) auf ein DG übertragen. Keimlinge, die einen Defekt in der Phosolipid:Diacylglycerol Acyltransferase (PDAT1) aufweisen, waren nicht in der Lage TGs nach Hitzestress zu akkumulieren, auf PC als der wesentliche Fettsäure-Donor für TGs nach Hitzestress hinweist. Die Ergebnisse deuten auf einen TG und Oligogalaktolipid Anstieg durch einen posttranskriptionell regulierten Lipidumbau während des Hitzestress hin. Es konnte gezeigt werden, dass der TG Anstieg nach Hitzestress zu einer erhöhten Thermotoleranz führt. Keimlinge der pdat1 Mutanten waren ohne Akklimatisierung empfindlicher gegenüber massiven Hitzestress, da sowohl ein dramatischer Abfall der maximalen Effizienz des Photosystems II und eine niedrigere Überlebensrate im Vergleich zu Keimlingen des Wildtyps nachgewiesen wurden. Im Gegensatz dazu zeigten tgd1 Mutanten, welche eine Überakkumulation von TGs und Oligogalaktolipiden aufweisen, eine höhere Thermotoleranz auf als Keimlinge des Wildtyps. Diese Ergebnisse weisen darauf hin, dass die TG Akkumulation die Thermotoleranz zusätzlich zu der genetisch kodierten Hitzeschockantwort erhöht. show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML
Metadaten
Author: Stephanie Müller
URN:urn:nbn:de:bvb:20-opus-152829
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Graduate Schools / Graduate School of Life Sciences
Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Referee:Dr. Agnes Fekete, Dr. Rosalia Deeken, Prof. Dr. Dr. Martin J. Mueller
Date of final exam:2017/08/09
Language:English
Year of Completion:2017
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 572 Biochemie
GND Keyword:Ackerschmalwand; Hitze; Triglyceride
Tag:Lipidumbau; Thermotoleranz
lipid remodeling; thermotolerance
Release Date:2017/08/18
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand

$Rev: 13581 $