Well-posedness of a fluid-particle interaction model

Existenz und Eindeutigkeit von Entropielösungen eines Partikel-Fluid-Modells

Please always quote using this URN: urn:nbn:de:bvb:20-opus-169009
  • This thesis considers a model of a scalar partial differential equation in the presence of a singular source term, modeling the interaction between an inviscid fluid represented by the Burgers equation and an arbitrary, finite amount of particles moving inside the fluid, each one acting as a point-wise drag force with a particle related friction constant. \begin{align*} \partial_t u + \partial_x (u^2/2) &= \sum_{i \in N(t)} \lambda_i \Big(h_i'(t)-u(t,h_i(t)\Big)\delta(x-h_i(t)) \end{align*} The model was introduced for the case of a singleThis thesis considers a model of a scalar partial differential equation in the presence of a singular source term, modeling the interaction between an inviscid fluid represented by the Burgers equation and an arbitrary, finite amount of particles moving inside the fluid, each one acting as a point-wise drag force with a particle related friction constant. \begin{align*} \partial_t u + \partial_x (u^2/2) &= \sum_{i \in N(t)} \lambda_i \Big(h_i'(t)-u(t,h_i(t)\Big)\delta(x-h_i(t)) \end{align*} The model was introduced for the case of a single particle by Lagoutière, Seguin and Takahashi, is a first step towards a better understanding of interaction between fluids and solids on the level of partial differential equations and has the unique property of considering entropy admissible solutions and the interaction with shockwaves. The model is extended to an arbitrary, finite number of particles and interactions like merging, splitting and crossing of particle paths are considered. The theory of entropy admissibility is revisited for the cases of interfaces and discontinuous flux conservation laws, existing results are summarized and compared, and adapted for regions of particle interactions. To this goal, the theory of germs introduced by Andreianov, Karlsen and Risebro is extended to this case of non-conservative interface coupling. Exact solutions for the Riemann Problem of particles drifting apart are computed and analysis on the behavior of entropy solutions across the particle related interfaces is used to determine physically relevant and consistent behavior for merging and splitting of particles. Well-posedness of entropy solutions to the Cauchy problem is proven, using an explicit construction method, L-infinity bounds, an approximation of the particle paths and compactness arguments to obtain existence of entropy solutions. Uniqueness is shown in the class of weak entropy solutions using almost classical Kruzkov-type analysis and the notion of L1-dissipative germs. Necessary fundamentals of hyperbolic conservation laws, including weak solutions, shocks and rarefaction waves and the Rankine-Hugoniot condition are briefly recapitulated.show moreshow less
  • Diese Arbeit befasst sich mit dem Modell einer skalaren partiellen Differentialgleichung mit singulärem Quellterm, das die Interaktion zwischen einem reibungsfreiem Fluid, dargestellt durch die Burgers Gleichung, und einer gegebenen, endlichen Menge von sich in dem Fluid bewegenden Partikeln beschreibt, die eine punktweise Zugkraft auf das Fluid auswirken und durch eine entsprechende Reibungskonstante charakterisiert sind. \begin{align*} \partial_t u + \partial_x (u^2/2) &= \sum_{i \in N(t)} \lambda_iDiese Arbeit befasst sich mit dem Modell einer skalaren partiellen Differentialgleichung mit singulärem Quellterm, das die Interaktion zwischen einem reibungsfreiem Fluid, dargestellt durch die Burgers Gleichung, und einer gegebenen, endlichen Menge von sich in dem Fluid bewegenden Partikeln beschreibt, die eine punktweise Zugkraft auf das Fluid auswirken und durch eine entsprechende Reibungskonstante charakterisiert sind. \begin{align*} \partial_t u + \partial_x (u^2/2) &= \sum_{i \in N(t)} \lambda_i \Big(h_i'(t)-u(t,h_i(t)\Big)\delta(x-h_i(t)) \end{align*} Das Modell wurde für den Fall der Interaktion mit einem einzelnen Partikel durch Lagoutière, Seguin and Takahashi eingeführt, stellt einen ersten Schritt zu einem besseren Verständnis der Interaktion zwischen einem Fluid und Festkörpern auf dem Level der partiellen Differentialgleichungen dar und hat die einzigartige Eigenschaft, dass Entropielösungen und die Interaktion mit Schockwellen berücksichtigt werden. Das Modell wird zu einer beliebigen, endlichen Anzahl von Partikeln erweitert und Interaktionen wie das Verschmelzen und Spaltung von Partikeln werden behandelt. Existierende Theorie der Entropie-Zulässigkeit im Hinblick auf Interfaces und Erhaltungsgleichungen mit unstetiger Flussfunktion wird zusammengefasst, die Resultate werden verglichen und für die Regionen mit Partikelinteraktionen angepasst. Zu diesem Zweck wird die Theorie der Germs, eingeführt von Andreianov, Karlsen und Risebro, auf den vorliegenden Fall eines nicht-erhaltenden Interfaces erweitert. Für das Riemann Problem von auseinanderdriftenden Partikeln werden die exakten Lösungen berechnet und eine Analyse des Verhaltens von Entropielösungen über die von den Partikeln erzeugten Interface wird genutzt, um ein physikalisch sinnvolles und mit der Theorie eines einzelnen Partikels konsistentes Verhalten beim Verschmelzen und Spalten von Partikeln herzuleiten. Mit Hilfe einer expliziten Konstruktionsmethode, hergeleiteten L-infinity Beschränkungen, einer Approximation der Partikelpfade und Kompaktheitsargumenten wird gezeigt, dass das entsprechende Cauchy Problem wohlgestellt ist. Eindeutigkeit im Raum der schwachen Entropielösungen wird mit beinahe klassischen Argumenten der Theorie von Kruzkov sowie der Theorie von L1-dissipativen Germs gezeigt. Notwendige Grundlagen zu hyperbolischen Erhaltungsgleichungen, unter anderem die Theorie schwacher Lösungen, Schock- und Verdünnungswellen sowie die Rankine-Hugoniot Bedingung, werden in Grundzügen am Anfang der Arbeit wiederholt.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Jens Klotzky
URN:urn:nbn:de:bvb:20-opus-169009
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Mathematik und Informatik
Faculties:Fakultät für Mathematik und Informatik / Institut für Mathematik
Referee:Prof. Dr. Christian Klingenberg
Date of final exam:2018/08/08
Language:English
Year of Completion:2018
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 515 Analysis
GND Keyword:Hyperbolische Differentialgleichung; Entropielösung; Fluid-Partikel-Strömung; Burgers-Gleichung; Korrekt gestelltes Problem
Tag:Entropiebedingung; Existenz und Eindeutigkeit
Entropy admissibility condition; Well-posedness
MSC-Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Lxx Hyperbolic equations and systems [See also 58J45] / 35L65 Conservation laws
Release Date:2018/10/23
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand