Growth and Characterization of Epitaxial Manganese Silicide Thin Films

Wachstum und Charakterisierung dünner epitaktischer MnSi Schichten

Please always quote using this URN: urn:nbn:de:bvb:20-opus-184720
  • This thesis describes the growth and characterization of epitaxial MnSi thin films on Si substrates. The interest in this material system stems from the rich magnetic phase diagram resulting from the noncentrosymmetric B20 crystal structure. Here neighboring spins prefer a tilted relative arrangement in contrast to ferro- and antiferromagnets, which leads to a helical ground state where crystal and spin helix chirality are linked [IEM+85]. This link makes the characterization and control of the crystal chirality the main goal of thisThis thesis describes the growth and characterization of epitaxial MnSi thin films on Si substrates. The interest in this material system stems from the rich magnetic phase diagram resulting from the noncentrosymmetric B20 crystal structure. Here neighboring spins prefer a tilted relative arrangement in contrast to ferro- and antiferromagnets, which leads to a helical ground state where crystal and spin helix chirality are linked [IEM+85]. This link makes the characterization and control of the crystal chirality the main goal of this thesis. After a brief description of the material properties and applied methods, the thesis itself is divided into four main parts. In the first part the advancement of the MBE growth process of MnSi on Si\((111)\) substrate as well as the fundamental structural characterization are described. Here the improvement of the substrate interface by an adjusted substrate preparation process is demonstrated, which is the basis for well ordered flat MnSi layers. On this foundation the influence of Mn/Si flux ratio and substrate temperature on the MnSi layer growth is investigated via XRD and clear boundaries to identify the optimal growth conditions are determined. The nonstoichiometric phases outside of this optimal growth window are identified as HMS and Mn\(_5\)Si\(_3\). Additionally, a regime at high substrate temperatures and low Mn flux is discovered, where MnSi islands are growing incorporated in a Si layer, which could be interesting for further investigations as a size confinement can change the magnetic phase diagram [DBS+18]. XRD measurements demonstrate the homogeneity of the grown MnSi layers over most of the 3 inch wafer diameter and a small \(\omega\)-FWHM of about 0.02° demonstrates the high quality of the layers. XRD and TEM measurements also show that relaxation of the layers happens via misfit dislocations at the interface to the substrate. The second part of the thesis is concerned with the crystal chirality. Here azimuthal \(\phi\)-scans of asymmetric XRD reflections reveal twin domains with a \(\pm\)30° rotation to the substrate. These twin domains seem to consist of left and right-handed MnSi, which are connected by a mirror operation at the \((\bar{1}10)\) plane. For some of the asymmetric XRD reflections this results in different intensities for the different twin domains, which reveals that one of the domains is rotated +30° and the other is rotated -30°. From XRD and TEM measurements an equal volume fraction of both domains is deduced. Different mechanisms to suppress these twin domains are investigated and successfully achieved with the growth on chiral Si surfaces, namely Si\((321)\) and Si\((531)\). Azimuthal \(\phi\)-scans of asymmetric XRD reflections demonstrate a suppression of up to 92%. The successful twin suppression is an important step in the use of MnSi for the proposed spintronics applications with skyrmions as information carriers, as discussed in the introduction. Because of this achievement, the third part of the thesis on the magnetic properties of the MnSi thin films is not only concerned with the principal behavior, but also with the difference between twinned and twin suppressed layers. Magnetometry measurements are used to demonstrate, that the MnSi layers behave principally as expected from the literature. The analysis of saturation and residual magnetization hints to the twin suppression on Si\((321)\) and Si\((531)\) substrates and further investigations with more samples can complete this picture. For comparable layers on Si\((111)\), Si\((321)\) and Si\((531)\) the Curie-Weiss temperature is identical within 1 K and the critical field within 0.1 T. Temperature dependent magnetoresistivity measurements also demonstrate the expected \(T^2\) behavior not only on Si\((111)\) but also on Si\((321)\) substrates. This demonstrates the successful growth of MnSi on Si\((321)\) and Si\((531)\) substrates. The latter measurements also reveal a residual resistivity of less then half for MnSi on Si\((321)\) in comparison to Si\((111)\). This can be explained with the reduced number of domain boundaries demonstrating the successful suppression of one of the twin domains. The homogeneity of the residual resistivity as well as the charge carrier density over a wide area of the Si\((111)\) wafer is also demonstrated with these measurements as well as Hall effect measurements. The fourth part shows the AMR and PHE of MnSi depending on the angle between in plane current and magnetic field direction with respect to the crystal direction. This was proposed as a tool to identify skyrmions [YKT+15]. The influence of the higher C\(_{3\mathrm{v}}\) symmetry of the twinned system instead of the C\(_3\) symmetry of a B20 single crystal is demonstrated. The difference could serve as a useful additional tool to prove the twin suppression on the chiral substrates. But this is only possible for rotations with specific symmetry surfaces and not for the studied unsymmetrical Si\((321)\) surface. Measurements for MnSi layers on Si\((111)\) above the critical magnetic field demonstrate the attenuation of AMR and PHE parameters for increasing resistivity, as expected from literature [WC67]. Even if a direct comparison to the parameters on Si\((321)\) is not possible, the higher values of the parameters on Si\((321)\) can be explained considering the reduced charge carrier scattering from domain boundaries. Below the critical magnetic field, which would be the region where a skyrmion lattice could be expected, magnetic hysteresis complicates the analysis. Only one phase transition at the critical magnetic field can be clearly observed, which leaves the existence of a skyrmion lattice in thin epitaxial MnSi layers open. The best method to solve this question seems to be a more direct approach in the form of Lorentz-TEM, which was also successfully used to visualize the skyrmion lattice for thin plates of bulk MnSi [TYY+12]. For the detection of in plane skyrmions, lamellas would have to be prepared for a side view, which seems in principle possible. The demonstrated successful twin suppression for MnSi on Si\((321)\) and Si\((531)\) substrates may also be applied to other material systems. Suppressing the twinning in FeGe on Si\((111)\) would lead to a single chirality skyrmion lattice near room temperature [HC12]. This could bring the application of skyrmions as information carriers in spintronics within reach. Glossary: MBE Molecular Beam Epitaxy XRD X-Ray Diffraction HMS Higher Manganese Silicide FWHM Full Width Half Maximum TEM Tunneling Electron Microscopy AMR Anisotropic MagnetoResistance PHE Planar Hall Effect Bibliography: [IEM+85] M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka. Crystal Chirality and Helicity of the Helical Spin Density Wave in MnSi. II. Polarized Neutron Diffraction. Journal of the Physical Society of Japan, 54(8):2975, 1985. [DBS+18] B. Das, B. Balasubramanian, R. Skomski, P. Mukherjee, S. R. Valloppilly, G. C. Hadjipanayis, and D. J. Sellmyer. Effect of size confinement on skyrmionic properties of MnSi nanomagnets. Nanoscale, 10(20):9504, 2018. [YKT+15] T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, A. Kikkawa, Y. Taguchi, M. Kawasaki, M. Ichikawa, F. Kagawa, and Y. Tokura. Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect. Journal of the Physical Society of Japan, 84(10):104708, 2015. [WC67] R. H. Walden and R. F. Cotellessa. Magnetoresistance of Nickel-Copper Single-Crystal Thin Films. Journal of Applied Physics, 38(3):1335, 1967. [TYY+12] A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura. Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples. Nano Letters, 12(3):1673, 2012. [HC12] S. X. Huang and C. L. Chien. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Physical Review Letters, 108(26):267201, 2012.show moreshow less
  • Diese Arbeit befasst sich mit dem Wachstum und der Charakterisierung dünner epitaktischer MnSi Schichten auf Si Substraten. Das Interesse an diesem Materialsystem liegt insbesondere im reichhaltigen magnetischen Phasendiagramm begründet, welches aus der nicht zentrosymmetrischen B20 Kristallstruktur des MnSi resultiert. Im Gegensatz zu Ferro- oder Antiferromagneten bevorzugen benachbarte Spins sich unter einem Winkel zueinander auszurichten, was zu einem helikalen Grundzustand führt in dem die Händigkeit von Kristallstruktur und Spin-HelixDiese Arbeit befasst sich mit dem Wachstum und der Charakterisierung dünner epitaktischer MnSi Schichten auf Si Substraten. Das Interesse an diesem Materialsystem liegt insbesondere im reichhaltigen magnetischen Phasendiagramm begründet, welches aus der nicht zentrosymmetrischen B20 Kristallstruktur des MnSi resultiert. Im Gegensatz zu Ferro- oder Antiferromagneten bevorzugen benachbarte Spins sich unter einem Winkel zueinander auszurichten, was zu einem helikalen Grundzustand führt in dem die Händigkeit von Kristallstruktur und Spin-Helix aneinander gekoppelt sind [IEM+85]. Diese Kopplung macht die Charakterisierung und Kontrolle der Händigkeit der Kristallstruktur zum Hauptziel dieser Arbeit. Nach einer kurzen Beschreibung der Materialeigenschaften und der angewendeten Methoden ist die Arbeit selbst in vier Hauptteile aufgeteilt. Im ersten Teil ist sowohl die Verbesserung des Molekularstrahlepitaxie-Wachstumsprozesses von MnSi auf Si\((111)\) Substrat, als auch die grundlegende strukturelle Charakterisierung beschrieben. Hierbei ist die Verbesserung der Substratgrenzfläche mit Hilfe eines angepassten Vorbereitungsprozesses erläutert, welche die Basis für glatte, geordnete dünne MnSi Schichten bildet. Auf dieser Basis ist der Einfluss des Mn/Si Fluss-Verhältnisses sowie der Substrattemperatur mittels Röntgenbeugung dargestellt und ein optimales Wachstumsfenster identifiziert. Die nicht stöchiometrischen Phasen außerhalb dieses Wachstumsfensters sind MnSi\(_{1.75-x}\) (HMS) sowie Mn\(_5\)Si\(_3\). Zusätzlich tritt bei hohen Substrattemperaturen und niedrigem Mn Fluss eine Phase auf, in der MnSi Inseln, eingebettet in eine Si Schicht, wachsen. Diese könnten von weiterführendem Interesse sein, da die Größenbeschränkung das magnetische Phasendiagramm beeinflussen kann [DBS+18]. Röntgenbeugungsmessungen zeigen die Homogenität der gewachsenen MnSi Schichten über einen Großteil des 3\ Zoll Wafer Durchmessers sowie die hohe Qualität mittels einer kleinen \(\omega\)-Halbwertsbreite von ungefähr 0.02°. Röntgenbeugungs- und Transmissionselektronenmikroskopiemessungen zeigen außerdem, dass die MnSi Dünnschichten mittels Fehlversetzungen an der Grenzfläche zwischen Dünnschicht und Substrat relaxieren. Der zweite Teil befasst sich mit der Händigkeit der Kristallstruktur. Azimutale \(\phi\)-Messungen asymmetrischer Röntgenbeugungsreflexe zeigen Kristallzwillingsdomänen welche \(\pm\)30° zum Substrat rotiert sind. Die Kristallzwillingsdomänen lassen sich vermutlich als rechts- und links-händiges MnSi identifizieren, welche durch eine Spiegelung an der \((\bar{1}10)\) Ebene verbunden sind. Anhand der unterschiedlichen Intensität mancher Reflexe für unterschiedliche Händigkeit wird außerdem gezeigt, dass eine der Domänen um +30° und die andere Domäne um -30° rotiert ist. Mithilfe der Röntgenbeugung und Transmissionselektronenmikroskopie wird außerdem der gleiche Volumenanteil der Kristallzwillinge demonstriert. Verschieden Mechanismen zur Unterdrückung dieser Kristallzwillingsdomänen werden untersucht und die erfolgreiche Unterdrückung gelang mit Hilfe des Wachstums auf chiralen Si Substraten, nämlich Si\((321)\) und Si\((531)\) Substraten. Hier ist mit azimutalen \(\phi\)-Messungen der asymmetrischen Röntgenbeugungsreflexen eine Unterdrückung von bis zu 92% demonstriert. Die erfolgreiche Unterdrückung der Kristallzwillingsdomänen ist ein wichtiger Schritt zur vorgeschlagenen Nutzung von MnSi in Spintronik-Anwendungen, wie in der Einleitung erläutert. Aufgrund dessen befasst sich der dritte Teil nicht nur mit den magnetischen Eigenschaften der dünnen MnSi Schichten, sondern auch damit, wie die Unterschiede für Schichten mit Kristallzwillingsdomänen und mit deren Unterdrückung sind. Im ersten Abschnitt ist anhand von Magnetometriemessungen gezeigt, dass sich die MnSi Dünnschichten prinzipiell so verhalten, wie es aus der Literatur zu erwarten ist. Das Verhalten von Sättigungs- und Restmagnetisierung deutet auf die Unterdrückung der Kristallzwillingsdomänen auf Si\((321)\) und Si\((531)\) Substraten hin, wobei das Gesamtbild mittels einer erweiterten Probenserie vervollständigt werden kann. Für vergleichbare MnSi Dünnschichten auf Si\((111)\), Si\((321)\) und Si\((531)\) ist die Curie-Weiss Temperatur innerhalb von 1 K und das kritische Magnetfeld innerhalb von 0.1 T identisch. Die Temperaturabhängigkeit des Magnetowiderstands zeigt das zu erwartende \(T^2\) Verhalten nicht nur auf Si\((111)\), sondern auch auf Si\((321)\). Dies zeigt das erfolgreiche Wachstum von MnSi auf Si\((321)\) und Si\((531)\). Die letzteren Messungen ergeben außerdem einen Restwiderstand von weniger als der Hälfte für MnSi auf Si\((321)\) im Vergleich zu Si\((111)\). Dies kann durch die geringere Anzahl an Domänengrenzen erklärt werden und zeigt die erfolgreiche Unterdrückung einer Kristallzwillingsdomäne. Mit Hilfe der Restwiderstände und Hall-Messungen ist die Homogenität des Restwiderstandes und der Ladungsträgerdichte über einen großen Bereich des Wafers gezeigt. Im vierten Teil werden der Anisotrope Magnetwiderstand und der Planare Hall Effekt für MnSi abhängig von den Winkeln von Stromrichtung und Magnetfeld im Bezug auf die Kristallrichtung untersucht. Dies wurde als Werkzeug zur Identifikation der Skyrmionenphase vorgeschlagen [YKT+15]. Der Einfluss der höheren C\(_{3\mathrm{v}}\) Symmetrie des Kristallzwillingssystems und nicht der C\(_3\) Symmetrie des B20 Einzelkristalls ist gezeigt Der Unterschied könnte ein nützliches zusätzliches Werkzeug für die Demonstration der Kristallzwillingsunterdrückung sein. Dies ist allerdings nur für die Rotation mit spezifischen symmetrischen Oberflächen möglich und nicht für die untersuchte unsymmetrische Si\((321)\) Oberfläche. Messungen von MnSi Dünnschichten auf Si\((111)\) oberhalb des kritischen Magnetfeldes zeigen die Abnahme der Anisotropie-Parameter für den Anisotropen Magnetwiderstand und den Planaren Hall-Effekt für steigenden Widerstand, wie aus der Literatur zu erwarten [WC67]. Auch wenn ein direkter Vergleich zu den Parametern für Dünnschichten auf Si\((321)\) nicht möglich ist, können die größeren Parameterwerte bei Si\((321)\) mit der reduzierten Streuung an Domänengrenzen erklärt werden. Die Analyse unterhalb des kritischen Magnetfeldes, der Bereich in dem eine mögliche Skyrmionenphase zu erwarten wäre, wird durch magnetische Hysterese verkompliziert. Nur ein Phasenübergang beim kritischen Magnetfeld kann deutlich gezeigt werden. Damit bleibt die Frage zur Existenz der Skyrmionen in den MnSi Dünnschichten weiter offen. Die beste Möglichkeit diese Frage zu klären wäre ein direkterer Ansatz in Form von Lorentz-Transmissionselektronenmikroskopie, welche schon erfolgreich genutzt wurde um das Skyrmionengitter in dünnen Platten aus Volumenkristall MnSi zu visualisieren [TYY+12]. Für die Detektion von Skyrmionen in der Schichtebene müssten Lamellen für eine Seitenansicht präpariert werden, was prinzipiell möglich erscheint. Die gezeigte erfolgreiche Unterdrückung von einem der Kristallzwillinge für MnSi Schichten auf Si\((321)\) und Si\((531)\) sollte außerdem auf andere Materialsysteme übertragbar sein. Die Kristallzwillingsbildung in FeGe auf Si\((111)\) zu unterdrücken würde zu einem Skyrmionengitter mit einer einzigen Händigkeit bei annähernd Raumtemperatur führen [HC12]. Dies könnte Skyrmionen als Informationsträger in der Spintronik in greifbare Nähe bringen. Bibliographie: [IEM+85] M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka. Crystal Chirality and Helicity of the Helical Spin Density Wave in MnSi. II. Polarized Neutron Diffraction. Journal of the Physical Society of Japan, 54(8):2975, 1985. [DBS+18] B. Das, B. Balasubramanian, R. Skomski, P. Mukherjee, S. R. Valloppilly, G. C. Hadjipanayis, and D. J. Sellmyer. Effect of size confinement on skyrmionic properties of MnSi nanomagnets. Nanoscale, 10(20):9504, 2018. [YKT+15] T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, A. Kikkawa, Y. Taguchi, M. Kawasaki, M. Ichikawa, F. Kagawa, and Y. Tokura. Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect. Journal of the Physical Society of Japan, 84(10):104708, 2015. [WC67] R. H. Walden and R. F. Cotellessa. Magnetoresistance of Nickel-Copper Single-Crystal Thin Films. Journal of Applied Physics, 38(3):1335, 1967. [TYY+12] A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura. Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples. Nano Letters, 12(3):1673, 2012. [HC12] S. X. Huang and C. L. Chien. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Physical Review Letters, 108(26):267201, 2012.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Mirko Trabel
URN:urn:nbn:de:bvb:20-opus-184720
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Karl Brunner, Prof. Dr. Grzegorz Karczewski
Date of final exam:2019/06/21
Language:English
Year of Completion:2019
DOI:https://doi.org/10.25972/OPUS-18472
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Molekularstrahlepitaxie; Röntgendiffraktometrie; Zwillingsbildung; Magnetismus; Magnetowiderstand
Tag:Anisotropic Magnetoresistance; Epitaxy; Magnetometry; Magnetoresistance; MnSi; Twin Domains; Twin Suppression; XRD
PACS-Classification:60.00.00 CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES / 68.00.00 Surfaces and interfaces; thin films and nanosystems (structure and nonelectronic properties) (for surface and interface chemistry, see 82.65.+r, for surface magnetism, see 75.70.Rf)
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 73.00.00 Electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures (for electronic structure and electrical properties of superconducting films and low-dimensional structures, see 74.78.-w; for computational
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 75.00.00 Magnetic properties and materials (for magnetic properties of quantum solids, see 67.80.dk; for magnetic properties related to treatment conditions, see 81.40.Rs; for magnetic properties of superconductors, see 74.25.Ha; for magnetic properties of rocks a
Release Date:2019/07/29
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand