Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity

Please always quote using this URN: urn:nbn:de:bvb:20-opus-184888
  • A series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classicalA series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classical B2X4L2 diborane(6) adducts, some of the more sterically demanding carbene ligands induce a halide displacement leading to the first halide-bridged monocationic diboron species, [B2X3L2]A (A = BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Lukas Englert, Andreas Stoy, Merle Arrowsmith, Jonas H. Müssig, Melanie Thaler, Andrea Deißenberger, Alena Häfner, Julian Böhnke, Florian Hupp, Jens Seufert, Jan Mies, Alexander Damme, Theresa Dellermann, Kai Hammond, Thomas Kupfer, Krzysztof Radacki, Torsten Thiess, Holger Braunschweig
URN:urn:nbn:de:bvb:20-opus-184888
Document Type:Preprint
Faculties:Fakultät für Chemie und Pharmazie / Institut für Anorganische Chemie
Language:English
Parent Title (English):Chemistry - A European Journal
Year of Completion:2019
Source:L. Englert, A. Stoy, M. Arrowsmith, J. H. Muessig, M. Thaler, A. Deißenberger, A. Häfner, J. Böhnke, F. Hupp, J. Seufert, J. Mies, A. Damme, T. Dellermann, K. Hammond, T. Kupfer, K. Radacki, T. Thiess, H. Braunschweig, Chem. Eur. J. 2019, 25, 8612. https://doi.org/10.1002/chem.201901437
DOI:https://doi.org/10.1002/chem.201901437
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 546 Anorganische Chemie
Tag:Lewis-base adducts; NMR spectroscopy; crystallography; diborane(6); ligand exchange
Release Date:2019/07/30
Note:
This is the pre-peer reviewed version of the following article: L. Englert, A. Stoy, M. Arrowsmith, J. H. Muessig, M. Thaler, A. Deißenberger, A. Häfner, J. Böhnke, F. Hupp, J. Seufert, J. Mies, A. Damme, T. Dellermann, K. Hammond, T. Kupfer, K. Radacki, T. Thiess, H. Braunschweig, Chem. Eur. J. 2019, 25, 8612. https://doi.org/10.1002/chem.201901437, which has been published in final form at https://doi.org/10.1002/chem.201901437. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
EU-Project number / Contract (GA) number:669054
OpenAIRE:OpenAIRE
Licence (German):License LogoDeutsches Urheberrecht