Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate

Please always quote using this URN: urn:nbn:de:bvb:20-opus-191906
  • We describe a setup for time-resolved photoemission electron microscopy (TRPEEM) with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215–970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications. Efficient photoemission from plasmonic Au nanoresonators is investigated with phase-coherent pulse pairs from an actively stabilized interferometer. More complex excitation fieldsWe describe a setup for time-resolved photoemission electron microscopy (TRPEEM) with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215–970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications. Efficient photoemission from plasmonic Au nanoresonators is investigated with phase-coherent pulse pairs from an actively stabilized interferometer. More complex excitation fields are created with a liquid-crystal-based pulse shaper enabling amplitude and phase shaping of NOPA pulses with spectral components from 600 to 800 nm. With this system we demonstrate spectroscopy within a single plasmonic nanoslit resonator by spectral amplitude shaping and investigate the local field dynamics with coherent two-dimensional (2D) spectroscopy at the nanometer length scale (“2D nanoscopy”). We show that the local response varies across a distance as small as 33 nm in our sample. Further, we report two-color pump–probe experiments using two independent NOPA beamlines. We extract local variations of the excited-state dynamics of a monolayered 2D material (WSe2) that we correlate with low-energy electron microscopy (LEEM) and reflectivity (LEER) measurements. Finally, we demonstrate the in-situ sample preparation capabilities for organic thin films and their characterization via spatially resolved electron diffraction and dark-field LEEM.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Bernhard HuberORCiD, Sebastian PresORCiD, Emanuel WittmannORCiD, Lysanne Dietrich, Julian Lüttig, Daniel Fersch, Enno KraussORCiD, Daniel Friedrich, Johannes Kern, Victor Lisinetskii, Matthias HensenORCiD, Bert HechtORCiD, Rudolf BratschitschORCiD, Eberhard RiedleORCiD, Tobias BrixnerORCiD
URN:urn:nbn:de:bvb:20-opus-191906
Document Type:Preprint
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Fakultät für Chemie und Pharmazie / Institut für Physikalische und Theoretische Chemie
Language:English
ISSN:0034-6748
Year of Completion:2019
Source:Review of Scientific Instruments 90, 113103 (2019); https://doi.org/10.1063/1.5115322
DOI:https://doi.org/10.1063/1.5115322
Sonstige beteiligte Institutionen:Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität München
Sonstige beteiligte Institutionen:NanoOptics & Biophotonics Group, Experimental Physics 5, Universität Würzburg
Sonstige beteiligte Institutionen:Institute of Physics and Center for Nanotechnology, University of Münster
Sonstige beteiligte Institutionen:Center for Nanosystems Chemistry (CNC), Universität Würzburg
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
5 Naturwissenschaften und Mathematik / 54 Chemie / 541 Physikalische Chemie
Tag:Low energy electron microscopy LEEM; Photoemission electron microscopy PEEM; Spatially resolved 2D spectroscopy; Time-resolved photoemission electron microscopy; Two-color pump-probe spectroscopy
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES
Release Date:2019/11/22
Note:
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Review of Scientific Instruments 90, 113103 (2019); https://doi.org/10.1063/1.5115322 and may be found at https://doi.org/10.1063/1.5115322.
EU-Project number / Contract (GA) number:614623
OpenAIRE:OpenAIRE
Licence (German):License LogoDeutsches Urheberrecht