Techniques for the Automatic Extraction of Character Networks in German Historic Novels

Techniken zur automatischen Extraktion von Figurennetzwerken aus deutschen Romanen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-209186
  • Recent advances in Natural Language Preprocessing (NLP) allow for a fully automatic extraction of character networks for an incoming text. These networks serve as a compact and easy to grasp representation of literary fiction. They offer an aggregated view of the text, which can be used during distant reading approaches for the analysis of literary hypotheses. In their core, the networks consist of nodes, which represent literary characters, and edges, which represent relations between characters. For an automatic extraction of such a network,Recent advances in Natural Language Preprocessing (NLP) allow for a fully automatic extraction of character networks for an incoming text. These networks serve as a compact and easy to grasp representation of literary fiction. They offer an aggregated view of the text, which can be used during distant reading approaches for the analysis of literary hypotheses. In their core, the networks consist of nodes, which represent literary characters, and edges, which represent relations between characters. For an automatic extraction of such a network, the first step is the detection of the references of all fictional entities that are of importance for a text. References to the fictional entities appear in the form of names, noun phrases and pronouns and prior to this work, no components capable of automatic detection of character references were available. Existing tools are only capable of detecting proper nouns, a subset of all character references. When evaluated on the task of detecting proper nouns in the domain of literary fiction, they still underperform at an F1-score of just about 50%. This thesis uses techniques from the field of semi-supervised learning, such as Distant supervision and Generalized Expectations, and improves the results of an existing tool to about 82%, when evaluated on all three categories in literary fiction, but without the need for annotated data in the target domain. However, since this quality is still not sufficient, the decision to annotate DROC, a corpus comprising 90 fragments of German novels was made. This resulted in a new general purpose annotation environment titled as ATHEN, as well as annotated data that spans about 500.000 tokens in total. Using this data, the combination of supervised algorithms and a tailored rule based algorithm, which in combination are able to exploit both - local consistencies as well as global consistencies - yield an algorithm with an F1-score of about 93%. This component is referred to as the Kallimachos tagger. A character network can not directly display references however, instead they need to be clustered so that all references that belong to a real world or fictional entity are grouped together. This process widely known as coreference resolution is a hard problem in the focus of research for more than half a century. This work experimented with adaptations of classical feature based machine learning, with a dedicated rule based algorithm and with modern techniques of Deep Learning, but no approach can surpass 55% B-Cubed F1, when evaluated on DROC. Due to this barrier, many researchers do not use a fully-fledged coreference resolution when they extract character networks, but only focus on a more forgiving subset- the names. For novels such as Alice's Adventures in Wonderland by Lewis Caroll, this would however only result in a network in which many important characters are missing. In order to integrate important characters into the network that are not named by the author, this work makes use of automatic detection of speaker and addressees for direct speech utterances (all entities involved in a dialog are considered to be of importance). This problem is by itself not an easy task, however the most successful system analysed in this thesis is able to correctly determine the speaker to about 85% of the utterances as well as about 65% of the addressees. This speaker information can not only help to identify the most dominant characters, but also serves as a way to model the relations between entities. During the span of this work, components have been developed to model relations between characters using speaker attribution, using co-occurrences as well as by the usage of true interactions, for which yet again a dataset was annotated using ATHEN. Furthermore, since relations between characters are usually typed, a component for the extraction of a typed relation was developed. Similar to the experiments for the character reference detection, a combination of a rule based and a Maximum Entropy classifier yielded the best overall results, with the extraction of family relations showing a score of about 80% and the quality of love relations with a score of about 50%. For family relations, a kernel for a Support Vector Machine was developed that even exceeded the scores of the combined approach but is behind on the other labels. In addition, this work presents new ways to evaluate automatically extracted networks without the need of domain experts, instead it relies on the usage of expert summaries. It also refrains from the uses of social network analysis for the evaluation, but instead presents ranked evaluations using Precision@k and the Spearman Rank correlation coefficient for the evaluation of the nodes and edges of the network. An analysis using these metrics showed, that the central characters of a novel are contained with high probability but the quality drops rather fast if more than five entities are analyzed. The quality of the edges is mainly dominated by the quality of the coreference resolution and the correlation coefficient between gold edges and system edges therefore varies between 30 and 60%. All developed components are aggregated alongside a large set of other preprocessing modules in the Kallimachos pipeline and can be reused without any restrictions.show moreshow less
  • Techniken zur automatischen Extraktion von Figurennetzwerken aus deutschen Romanen

Download full text files

Export metadata

Metadaten
Author: Markus Krug
URN:urn:nbn:de:bvb:20-opus-209186
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Mathematik und Informatik
Faculties:Fakultät für Mathematik und Informatik / Institut für Informatik
Referee:Prof. Dr. Frank Puppe, Prof. Dr. Fotis Jannidis
Date of final exam:2020/07/23
Language:English
Year of Completion:2020
DOI:https://doi.org/10.25972/OPUS-20918
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
GND Keyword:Netzwerk
Tag:Character Networks; Character Reference Detection; Coreference; Quotation Attribution; Relation Detection
CCS-Classification:J. Computer Applications
Release Date:2020/07/27
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International