Impacts of climate variability and change on Maize (\(Zea\) \(mays\)) production in tropical Africa
Auswirkungen von Klimavariabilität und Veränderungen auf die Mais (\(Zea\) \(mays\)) Produktion im tropischen Afrika
Please always quote using this URN: urn:nbn:de:bvb:20-opus-259347
- Climate change is undeniable and constitutes one of the major threats of the 21st century. It impacts sectors of our society, usually negatively, and is likely to worsen towards the middle and end of the century. The agricultural sector is of particular concern, for it is the primary source of food and is strongly dependent on the weather. Considerable attention has been given to the impact of climate change on African agriculture because of the continent’s high vulnerability, which is mainly due to its low adaptation capac- ity. SeveralClimate change is undeniable and constitutes one of the major threats of the 21st century. It impacts sectors of our society, usually negatively, and is likely to worsen towards the middle and end of the century. The agricultural sector is of particular concern, for it is the primary source of food and is strongly dependent on the weather. Considerable attention has been given to the impact of climate change on African agriculture because of the continent’s high vulnerability, which is mainly due to its low adaptation capac- ity. Several studies have been implemented to evaluate the impact of climate change on this continent. The results are sometimes controversial since the studies are based on different approaches, climate models and crop yield datasets. This study attempts to contribute substantially to this large topic by suggesting specific types of climate pre- dictors. The study focuses on tropical Africa and its maize yield. Maize is considered to be the most important crop in this region. To estimate the effect of climate change on maize yield, the study began by developing a robust cross-validated multiple linear regression model, which related climate predictors and maize yield. This statistical trans- fer function is reputed to be less prone to overfitting and multicollinearity problems. It is capable of selecting robust predictors, which have a physical meaning. Therefore, the study combined: large-scale predictors, which were derived from the principal component analysis of the monthly precipitation and temperature; traditional local-scale predictors, mainly, the mean precipitation, mean temperature, maximum temperature and minimum temperature; and the Water Requirement Satisfaction Index (WRSI), derived from the specific crop (maize) water balance model. The projected maize-yield change is forced by a regional climate model (RCM) REMO under two emission scenarios: high emission scenario (RCP8.5) and mid-range emission scenario (RCP4.5). The different effects of these groups of predictors in projecting the future maize-yield changes were also assessed. Furthermore, the study analysed the impact of climate change on the global WRSI. The results indicate that almost 27 % of the interannual variability of maize production of the entire region is explained by climate variables. The influence of climate predictors on maize-yield production is more pronounced in West Africa, reaching 55 % in some areas. The model projection indicates that the maize yield in the entire region is expected to decrease by the middle of the century under an RCP8.5 emission scenario, and from the middle of the century to the end of the century, the production will slightly recover but will remain negative (around -10 %). However, in some regions of East Africa, a slight increase in maize yield is expected. The maize-yield projection under RCP4.5 remains relatively unchanged compared to the baseline period (1982-2016). The results further indicate that large-scale predictors are the most critical drivers of the global year-to-year maize-yield variability, and ENSO – which is highly correlated with the most important predictor (PC2) – seems to be the physical process underlying this variability. The effects of local predictors are more pronounced in the eastern parts of the region. The impact of the future climate change on WRSI reveals that the availability of maize water is expected to decrease everywhere, except in some parts of eastern Africa.…
- Weil die Folgen des Klimawandels die Lebensgrundlagen aller Lebewesen beeinträchtigen, ist der Klimawandel ein sehr relevantes Thema des 21. Jahrhunderts. Seine negativen Effekte betreffen bereits viele Sektoren unserer Gesellschaft und die Prognosen zeigen, dass sich die Auswirkungen des Klimawandels Mitte und Ende dieses Jahrhunderts ver- schärfen werden. Die Landwirtschaft ist besonders betroffen, denn sie ist sehr abhängig vom Klima. Da die Landwirtschaft als Hauptnahrungsquelle der Menschen gilt, ist es erforderlich sich mit den ProblemenWeil die Folgen des Klimawandels die Lebensgrundlagen aller Lebewesen beeinträchtigen, ist der Klimawandel ein sehr relevantes Thema des 21. Jahrhunderts. Seine negativen Effekte betreffen bereits viele Sektoren unserer Gesellschaft und die Prognosen zeigen, dass sich die Auswirkungen des Klimawandels Mitte und Ende dieses Jahrhunderts ver- schärfen werden. Die Landwirtschaft ist besonders betroffen, denn sie ist sehr abhängig vom Klima. Da die Landwirtschaft als Hauptnahrungsquelle der Menschen gilt, ist es erforderlich sich mit den Problemen des Klimawandels rechtzeitig zu beschäftigen, um in der Zukunft die Ernährung der Menschheit gewährleisten zu können. Viele Forscher beschäftigen sich mit den Folgen des Klimawandels in der Landwirtschaft. Besonders in Afrika wurde viel geforscht, weil die Landwirtschaft in Afrika sich technisch schlecht anpassen kann, um die Schwierigkeiten, die mit dem Klimawandel einhergehen, zu über- winden. Mehrere Studien wurden durchgeführt, um die Auswirkungen des Klimawan- dels in Afrika zu bewerten. Aufgrund der unterschiedlichen verwendeten statistischen Methoden, Modellierungen der Umweltprozesse oder Ertragsdaten sind die Ergebnisse teilweise kontrovers. Diese Studie versucht, einen wesentlichen Beitrag zum Einfluss des Klimawandels auf die Landwirtschaft in Westafrika zu leisten, indem sie spezifis- che Methoden vorschlägt, um das Klima der Zukunft projizieren zu können. Diese Studie behandelt Maiserträge in den Tropen Afrikas, da Mais dort die wichtigste Nutzpflanze ist. Um die Auswirkungen des Klimawandels auf den Maisertrag abzuschätzen, wurde ein Regressionsmodell (aus dem Englischen: robust cross-validated multiple) entwickelt, das Klimaprädiktoren und Maiserträge koppelt. Diese entwickelte statistische Übertra- gungsfunktion ist zuverlässiger bei Schwierigkeiten mit der Überanpassung und der Mul- tikollinearität. Außerdem ist sie auch in der Lage robuste Prädiktoren mit physikalischer Bedeutung auszuwählen. Deshalb wurden in der Studie großräumige und lokale Prädik- toren kombiniert. Erstere entstammen der Analyse der Komponenten des monatlichen Niederschlags und der Temperatur, letztere basieren basieren auf den mittleren und Ex- tremtemperaturen sowie dem mittleren Niederschlag. Zusätzlich zu den Prädiktoren wurde ein Index der Wasserbedarfsdeckung (Water Requirement Satisfaction Index, WRSI) verwendet, der auf einem Wasserhaushaltsmodell der Nutzpflanzen basiert. Die erwartete Mais-Ertragsänderung wird mithilfe eines regionalen Klimamodells (RCM) REMO für die Emissionsszenarien RCP8.5 und RCP4.5 simuliert. Die einzelnen Effekte der Prädiktoren- Gruppen bei der Prognose der zukünftigen Mais-Ertragsänderungen wurden ebenfalls bewertet. Darüber hinaus analysierte die Studie die Auswirkungen des Klimawandels auf den WSRI. Durchschnittlich zeigen die Ergebnisse eine jährliche Maisproduktionsän- derung von ca. 27 % in der gesamten Region. Diese Änderung, die in Westafrika mit ca. 55 % stärker ausgeprägt ist, ist eine Folge des Klimawandels. Die Simulationen des Mod- ells anhand von RCP8.5-Emissionsszenario zeigen auch, dass der Maisertrag der gesamten Region voraussichtlich bis Mitte des Jahrhunderts abnehmen wird. Danach findet eine geringe Ertragserhöhung statt, die jedoch um ca. 10 % unter der ursprünglichen Menge liegt. Im Gegensatz zu Westafrika wird in einigen Regionen Ostafrikas wird ein leichter Anstieg des Maisertrags simuliert. Die Mais-Ertragsprognose für die gesamte Region mittels RCP4.5 bleibt relativ unverändert im Vergleich zum ursprünglichen Ertrag. Die Ergebnisse zeigen weiterhin, dass die großräumigen Prädiktoren die wichtigste Rolle bei den globalen jährlichen Maisertragsschwankungen spielen. ENSO ist stark mit dem wichtigsten Prädiktor korreliert, was auf den physikalischen Prozess hinweist, der diese Ertragsänderung erklärt. Die Relevanz der lokalen Prädiktoren ist in den östlichen Re- gionen Afrikas stärker ausgeprägt. Sie beeinflussen den WRSI, sodass der Maisertrag im Verhältnis zur Wasserverfügbarkeit voraussichtlich überall abnehmen wird. Ausgenom- men sind einigen Regionen Ostafrikas.…
Author: | Freddy Fefe BangelesaORCiD |
---|---|
URN: | urn:nbn:de:bvb:20-opus-259347 |
Document Type: | Doctoral Thesis |
Granting Institution: | Universität Würzburg, Philosophische Fakultät (Histor., philolog., Kultur- und geograph. Wissensch.) |
Faculties: | Philosophische Fakultät (Histor., philolog., Kultur- und geograph. Wissensch.) / Institut für Geographie und Geologie |
Referee: | Prof. Dr. Heiko Paeth |
Date of final exam: | 2021/12/17 |
Language: | English |
Year of Completion: | 2022 |
DOI: | https://doi.org/10.25972/OPUS-25934 |
Dewey Decimal Classification: | 9 Geschichte und Geografie / 91 Geografie, Reisen / 916 Geografie Afrikas und Reisen in Afrika |
Tag: | Climate change; Food security; Modelling |
Release Date: | 2022/03/07 |
Licence (German): | CC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International |