A sharp Bernstein–type inequality and application to the Carleson embedding theorem with matrix weights

Please always quote using this URN: urn:nbn:de:bvb:20-opus-270485
  • We prove a sharp Bernstein-type inequality for complex polynomials which are positive and satisfy a polynomial growth condition on the positive real axis. This leads to an improved upper estimate in the recent work of Culiuc and Treil (Int. Math. Res. Not. 2019: 3301–3312, 2019) on the weighted martingale Carleson embedding theorem with matrix weights. In the scalar case this new upper bound is optimal.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Author: Daniela Kraus, Annika Moucha, Oliver Roth
Document Type:Journal article
Faculties:Fakultät für Mathematik und Informatik / Institut für Mathematik
Parent Title (English):Analysis and Mathematical Physics
Year of Completion:2022
Article Number:40
Source:Analysis and Mathematical Physics 2022, 12(1):40. DOI: 10.1007/s13324-021-00639-5
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Tag:Bernstein-type inequality; Carleson embedding theorem; complex polynomials
Release Date:2022/06/23
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International