Transport properties of the three-dimensional topological insulator mercury telluride

Transporteigenschaften des dreidimensionalen topologischen Isolators Quecksilbertellurid

Please always quote using this URN: urn:nbn:de:bvb:20-opus-291731
  • The subject of this thesis is the investigation of the transport properties of topological and massive surface states in the three-dimensional topological insulator Hg(Mn)Te. These surface states give rise to a variety of extraordinary transport phenomena, making this material system of great interest for research and technological applications. In this connection, many physical properties of the topological insulator Hg(Mn)Te still require in-depth exploration. The overall aim of this thesis is to analyze the quantum transport of HgTe-basedThe subject of this thesis is the investigation of the transport properties of topological and massive surface states in the three-dimensional topological insulator Hg(Mn)Te. These surface states give rise to a variety of extraordinary transport phenomena, making this material system of great interest for research and technological applications. In this connection, many physical properties of the topological insulator Hg(Mn)Te still require in-depth exploration. The overall aim of this thesis is to analyze the quantum transport of HgTe-based devices ranging from hundreds of micrometers (macroscopic) down to a few micrometers in size (microscopic) in order to extend the overall understanding of surface states and the possibilities of their manipulation. In order to exploit the full potential of our high-quality heterostructures, it was necessary to revise and improve the existing lithographic fabrication process of macroscopic three-dimensional Hg(Mn)Te samples. A novel lithographic standard recipe for the fabrication of the HgTe-based macrostructures was developed. This recipe includes the use of an optimized Hall bar design and wet etching instead of etching with high-energy \(\mathrm{{Ar^{+}}}\)-ions, which can damage the samples. Further, a hafnium oxide insulator is applied replacing the SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\) dielectric in order to reduce thermal load. Moreover, the devices are metallized under an alternating angle to avoid discontinuities of the metal layers over the mesa edges. It was revealed that the application of gate-dielectric and top-gate metals results in n-type doping of the devices. This phenomenon could be attributed to quasi-free electrons tunneling from the trap states, which form at the interface cap layer/insulator, through the cap into the active layer. This finding led to the development of a new procedure to characterize wafer materials. It was found that the optimized lithographic processing steps do not unintentionally react chemically with our heterostructures, thus avoiding a degradation of the quality of the Hg(Mn)Te layer. The implementation of new contact structures Ti/Au, In/Ti/Au, and Al/Ti/Au did not result in any improvement compared to the standard structure AuGe/Au. However, a novel sample recipe could be developed, resulting in an intermixing of the contact metals (AuGe and Au) and fingering of metal into the mesa. The extent of the quality of the ohmic contacts obtained through this process has yet to be fully established. This thesis further deals with the lithographic realization of three-dimensional HgTe-based microstructures measuring only a few micrometer in size. Thus, these structures are in the order of the mean free path and the spin relaxation length of topological surface state electrons. A lithographic process was developed enabling the fabrication of nearly any desired microscopic device structure. In this context, two techniques suitable for etching microscopic samples were realized, namely wet etching and the newly established inductively coupled plasma etching. While wet etching was found to preserve the crystal quality of the active layer best, inductively coupled plasma etching is characterized by high reproducibility and excellent structural fidelity. Hence, the etching technique employed depends on the envisaged type of experiment. Magneto-transport measurements were carried out on the macroscopic HgTe-based devices fabricated by means of improved lithographic processing with respect to the transport properties of topological and massive surface states. It was revealed that due to the low charge carrier density present in the leads to the ohmic contacts, these regions can exhibit an insulating behavior at high magnetic fields and extremely low temperatures. As soon as the filling factor of the lowest Landau levels dropped below a critical value (\(\nu_{\mathrm{{c}}}\approx0.8\)), the conductance of the leads decreased significantly. It was demonstrated that the carrier density in the leads can be increased by the growth of modulation doping layers, a back-gate-electrode, light-emitting diode illumination, and by the application of an overlapping top-gate layout. This overlapping top-gate and a back-gate made it possible to manipulate the carrier density of the surface states on both sides of the Hg(Mn)Te layer independently. With this setup, it was identified that topological and massive surface states contribute to transport simultaneously in 3D Hg(Mn)Te. A model could be developed allowing the charge carrier systems populated in the sample to be determined unambiguously. Based on this model, the process of the re-entrant quantum Hall effect observed for the first time in three-dimensional topological insulators could be explained by an interplay of n-type topological and p-type massive surface states. A well-pronounced \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) sequence of quantum Hall plateaus was found in manganese-doped HgTe-based samples. It is postulated that this is the condensed-matter realization of the parity anomaly in three-dimensional topological insulators. The actual nature of this phenomenon can be the subject of further research. In addition, the measurements have shown that inter-scattering occurs between counter-propagating quantum Hall edge states. The good quantization of the Hall conductance despite this inter-scattering indicates that only the unpaired edge states determine the transport properties of the system as a whole. The underlying inter-scattering mechanism is the topic of a publication in preparation. Furthermore, three-dimensional HgTe-based microstructures shaped like the capital letter "H" were investigated regarding spin transport phenomena. The non-local voltage signals occurring in the measurements could be attributed to a current-induced spin polarization of the topological surface states due to electrons obeying spin-momentum locking. It was shown that the strength of this non-local signal is directly connected to the magnitude of the spin polarization and can be manipulated by the applied top-gate voltage. It was found that in these microstructures, the massive surface and bulk states, unlike the topological surface states, cannot contribute to this spin-associated phenomenon. On the contrary, it was demonstrated that the population of massive states results in a reduction of the spin polarization, either due to the possible inter-scattering of massive and topological surface states or due to the addition of an unpolarized electron background. The evidence of spin transport controllable by a top-gate-electrode makes the three-dimensional material system mercury telluride a promising candidate for further research in the field of spintronics.show moreshow less
  • Die vorliegende Dissertation beschäftigt sich mit der Untersuchung der Transporteigenschaften von topologischen und massiven Oberflächenzuständen in dem dreidimensionalen topologischen Isolator Hg(Mn)Te. Da diese Oberflächenzustände zu einer Vielzahl von außergewöhnlichen Transportphänomenen führen, ist dieses Materialsystem für die Grundlagenforschung und technologische Anwendungen von großem Interesse. Der Bereich der dreidimensionalen topologischen Isolatoren stellt ein relativ junges Forschungsgebiet dar. Daher bedürfen noch vieleDie vorliegende Dissertation beschäftigt sich mit der Untersuchung der Transporteigenschaften von topologischen und massiven Oberflächenzuständen in dem dreidimensionalen topologischen Isolator Hg(Mn)Te. Da diese Oberflächenzustände zu einer Vielzahl von außergewöhnlichen Transportphänomenen führen, ist dieses Materialsystem für die Grundlagenforschung und technologische Anwendungen von großem Interesse. Der Bereich der dreidimensionalen topologischen Isolatoren stellt ein relativ junges Forschungsgebiet dar. Daher bedürfen noch viele physikalische Eigenschaften des topologischen Isolators Hg(Mn)Te ein tiefergehendes Verständnis. Das übergeordnete Ziel dieser Arbeit ist die Analyse des Quantentransports von HgTe-basierten Proben, deren Abmessungen von mehreren hundert Mikrometern (makroskopisch) bis hin zu wenigen Mikrometern (mikroskopisch) reichen. Auf diese Weise soll das allgemeine Verständnis der Oberflächenzustände und die Möglichkeiten ihrer Manipulation erweitert werden. Um das volle Potential unserer hochqualitativen Heterostrukturen, welche durch Molekularstrahlepitaxie gewachsen werden, ausschöpfen zu können, musste das bestehende lithographische Herstellungsverfahren für makroskopische dreidimensionale Hg(Mn)Te-Proben überarbeitet und verbessert werden. Es konnte ein neuartiges lithographisches Standardrezept für die Herstellung von HgTe-basierten Makrostrukturen entwickelt werden. Dieses Rezept beinhaltet die Verwendung eines optimierten Probendesigns und verwendet nasschemisches Ätzen anstelle von Ätzen mit hochenergetischen \(\mathrm{{Ar^{+}}}\)-Ionen, welches die Proben beschädigen kann. Außerdem wird ein Isolator aus Hafniumoxid verwendet, der das SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\)-Dielektrikum ersetzt, um die thermische Belastung der Proben zu verringern. Darüber hinaus werden die Proben unter einem veränderlichen Winkel metallisiert, um Diskontinuitäten der Metallschichten entlang der Ränder der Mesa zu vermeiden. Es zeigte sich, dass das Aufbringen des Isolators und der Feldeffektelektrode zu einer Erhöhung der Elektronendichte in der Hg(Mn)Te-Schicht führt. Dieses Phänomen konnte darauf zurückgeführt werden, dass quasifreie Elektronen aus sogenannten Fallenzuständen, welche sich an der Grenzfläche zwischen der Cd\(_{0.7}\)Hg\(_{0.3}\)Te Deckschicht und dem Dielektrikum bilden, durch die Deckschicht in die aktive Schicht tunneln können. Dieser neue Einblick führte zu der Entwicklung einer neuen Prozedur zur Charakterisierung von Wafermaterialien. Es stellte sich heraus, dass die optimierten lithographischen Prozessschritte nicht unbeabsichtigt mit unseren Heterostrukturen chemisch reagieren, was eine Verringerung der Qualität der Hg(Mn)Te-Schicht verhindert. Die Implementierung der neuen Kontaktstrukturen Ti/Au, In/Ti/Au und Al/Ti/Au führte zu keiner Verbesserung im Vergleich zur Standardstruktur AuGe/Au. Es konnte jedoch ein neuartiges Probenrezept entwickelt werden, dessen Anwendung zu einer Vermischung der Kontaktmetalle (AuGe und Au) und zu einem Eindiffundieren von Metall in die Mesa führt. Das Ausmaß der Qualität der ohmschen Kontakte, welche durch dieses Verfahren erhalten werden, muss noch vollständig ermittelt werden. Zudem befasst sich diese Dissertation mit der lithographischen Realisierung dreidimensionaler HgTe-basierter Mikrostrukturen, die nur wenige Mikrometer groß sind. Somit liegen diese Strukturen in der Größenordnung der mittleren freien Weglänge und der Spinrelaxationslänge von Elektronen, welche sich in den topologischen Oberflächenzuständen befinden. Es wurde ein lithographischer Prozess entwickelt, der die Herstellung nahezu jeder gewünschten mikroskopischen Struktur ermöglicht. In diesem Zusammenhang wurden zwei für das Ätzen mikroskopischer Proben geeignete Techniken vorgestellt, nämlich nasschemisches Ätzen mit einer flüssigen KI:I\(_{2}\):HBr Lösung und das Ätzen unter Verwendung eines induktiv gekoppelten Methan-Plasmas. Während nasschemisches Ätzen die Kristallqualität der Hg(Mn)Te-Schicht am besten erhält, zeichnet sich das Plasmaätzen durch eine hohe Reproduzierbarkeit und ausgezeichnete Strukturtreue aus. Die Wahl der zu bevorzugenden Ätztechnik hängt daher von der Art des geplanten Experiments ab. An den makroskopischen Bauelementen auf HgTe-Basis, welche durch Anwendung der verbesserten lithographischen Prozessierung hergestellt wurden, wurden magnetfeldabhängige Transportmessungen hinsichtlich der Transporteigenschaften von topologischen und massiven Oberflächenzuständen durchgeführt. Es zeigte sich, dass die Zuleitungen zu den ohmschen Kontakten bei hohen Magnetfeldern (\(B>4\,\mathrm{{T}}\)) und extrem tiefen Temperaturen (\(T\ll1\,\mathrm{K}\)) ein isolierendes Verhalten aufweisen können. Eine geringe Ladungsträgerdichte in diesen Bereichen wurde als Ursache identifiziert. Sobald der Füllfaktor der untersten Landau-Niveaus unter einen kritischen Wert fiel, nahm die Leitfähigkeit der Zuleitungen deutlich ab. Es wurde festgestellt, dass der Betrag dieses kritischen Füllfaktors für alle untersuchten Proben ungefähr 0,8 beträgt und unabhängig davon ist, ob die untersten Landau-Niveaus elektronen- oder lochartig sind. Darüber hinaus konnte gezeigt werden, dass die Ladungsträgerdichte in den Zuleitungen durch das Wachstum von Modulationsdotierschichten, eine unterhalb des Bauelements angeordnete Feldeffektelektrode, die Bestrahlung mit einer Leuchtdiode und das Aufbringen einer mit den ohmschen Kontakten überlappenden Feldeffektelektrode erhöht werden kann. Diese beiden Feldeffektelektroden, welche sich unter- und oberhalb der Heterostruktur befinden, ermöglichten es die Ladungsträgerdichte der Oberflächenzustände auf beiden Seiten der Hg(Mn)Te-Schicht unabhängig voneinander zu manipulieren. Mit diesem Aufbau wurde festgestellt, dass topologische und massive Oberflächenzustände gleichzeitig zum Transport in 3D Hg(Mn)Te beitragen. Es konnte ein Modell entwickelt werden, welches die eindeutige Bestimmung der in der Probe besetzten Ladungsträgersysteme ermöglicht. Auf der Grundlage dieses Modells konnte ein magnetfeldabhängiger Prozess, welcher sich durch wiedereinkehrende Plateaus im Rahmen des Quanten-Hall-Effekts auszeichnet, erklärt werden. Dieser erstmals in dreidimensionalen topologischen Isolatoren beobachtete Prozess ist das Resultat des Zusammenspiels von zwei elektronenartigen topologischen Oberflächenzuständen und einem lochartigen massiven Oberflächenzustand. Eine besonders deutlich ausgeprägte \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) Abfolge von Plateaus konnte in mit Mangan dotierten dreidimensionalen HgTe-basierten topologischen Isolatoren gefunden werden. Es wird postuliert, dass es sich dabei um die Realisierung der Paritätsanomalie in kondensierter Materie handelt. Die tatsächliche Natur dieses Phänomens kann Gegenstand weiterer Forschung sein. Darüber hinaus haben die Messungen gezeigt, dass entgegengesetzt verlaufende elektronen- und lochartige Randzustände miteinander streuen. Die gute Quantisierung der Hall-Leitfähigkeit, welche ungeachtet dieser Streuung beobachtet werden kann, deutet darauf hin, dass nur die ungepaarten Randzustände die Transporteigenschaften des Gesamtsystems bestimmen. Der zugrundeliegende Streumechanismus ist das Thema einer Publikation, welche sich in der Vorbereitung befindet. Des Weiteren wurden dreidimensionale HgTe-basierte Mikrostrukturen, die wie der Großbuchstabe “H” geformt sind, hinsichtlich Spintransportphänomene untersucht. Die bei den Messungen auftretenden nichtlokalen Spannungssignale konnten auf eine strominduzierte Spinpolarisation der topologischen Oberflächenzustände zurückgeführt werden. Ursache für diese strominduzierte Spinpolarisation ist die starke Kopplung des Elektronenspins an den Elektronenimpuls. Es wurde gezeigt, dass die Intensität dieses nichtlokalen Signals direkt mit der Stärke der Spinpolarisation zusammenhängt und durch eine Feldeffektelektrode manipuliert werden kann. Es wurde festgestellt, dass in diesen Mikrostrukturen die massiven Oberflächen- und Bulkzustände, im Gegensatz zu den topologischen Oberflächenzuständen, nicht zu diesem mit dem Spin assoziierten Phänomen beitragen können. Es wurde im Gegenteil gezeigt, dass eine Besetzung der massiven Zustände zu einer Verringerung der Spinpolarisation führt. Die verantwortlichen Mechanismen sind das Streuen von massiven und topologischen Oberflächenzuständen und das Hinzufügung eines großen Hintergrunds an unpolarisierten Elektronen. Der Nachweis des durch eine Feldeffektelektrode kontrollierbaren Spintransports macht das dreidimensionale Materialsystem Quecksilbertellurid zu einem vielversprechenden Kandidaten für weitere Forschungen auf dem Gebiet der Spintronik.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Fabian Bernhard SchmittORCiD
URN:urn:nbn:de:bvb:20-opus-291731
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Hartmut Buhmann, Prof. Dr. Sven Höfling
Date of final exam:2022/11/11
Language:English
Year of Completion:2022
DOI:https://doi.org/10.25972/OPUS-29173
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Topologischer Isolator; Quecksilbertellurid; Elektronentransport
Tag:HgTe; interplay of surface states; spin transport; topological insulator
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 73.00.00 Electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures (for electronic structure and electrical properties of superconducting films and low-dimensional structures, see 74.78.-w; for computational
Release Date:2022/11/23
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand