Poly(2-ethyl-2-oxazoline-co-N-propylethylene imine)s by controlled partial reduction of poly(2-ethyl-2-oxazoline): synthesis, characterization and cytotoxicity

Please always quote using this URN: urn:nbn:de:bvb:20-opus-352444
  • The partial reduction of poly(2-ethyl-2-oxazoline) was investigated. A series of poly(2-ethyl-2-oxazoline-co-N-propylethylene imine)s were synthesized by direct reduction using lithium aluminum hydride or borane/dimethylsulfide (BH3/DMS), respectively. It is shown that the degree of reduction can be readily controlled either by the reaction time when using an excess of LiAlH4 or by the stoichiometry of BH3/DMS, as was demonstrated by 1H-NMR spectroscopy. Differential scanning calorimetry revealed that the glass transition temperature of theThe partial reduction of poly(2-ethyl-2-oxazoline) was investigated. A series of poly(2-ethyl-2-oxazoline-co-N-propylethylene imine)s were synthesized by direct reduction using lithium aluminum hydride or borane/dimethylsulfide (BH3/DMS), respectively. It is shown that the degree of reduction can be readily controlled either by the reaction time when using an excess of LiAlH4 or by the stoichiometry of BH3/DMS, as was demonstrated by 1H-NMR spectroscopy. Differential scanning calorimetry revealed that the glass transition temperature of the products decreased with increasing degree of reduction up to 25% of reduction, above which no glass transition could be detected. Moreover, acid–base titration showed a very pronounced, reduction degree dependent buffering capacity of these polymers between pH 4 and 8, which is of great interest, e.g. in the context of endosomal escape. This control over the reduction allows to tailor the synthesis of partially cationic polymers on the basis of poly(2-oxazoline)s, which, in combination over the hydrophilic/lipophilic balance through the side chain length allows a tight control over materials properties. Such materials may be interesting, inter alia, for biomaterials or organic electronics.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Sebastian Halupczok, Maria Pfister, Annemarie Ringhand, Corinna Fetsch, Alevtina Cubukova, Antje Appelt-Menzel, Robert Luxenhofer
URN:urn:nbn:de:bvb:20-opus-352444
Document Type:Journal article
Faculties:Fakultät für Chemie und Pharmazie / Institut für Funktionsmaterialien und Biofabrikation
Medizinische Fakultät / Lehrstuhl für Tissue Engineering und Regenerative Medizin
Language:English
Parent Title (English):Polymer Chemistry
Year of Completion:2021
Volume:12
Pagenumber:680-688
Source:Polymer Chemistry (2021) 12:680-688. https://doi.org/10.1039/D0PY01258K
DOI:https://doi.org/10.1039/d0py01258k
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Release Date:2024/11/27
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International