Lipid rafts in Arabidopsis thaliana leaves

Lipid Rafts in Arabidopsis thaliana Blättern

  • Arabidopsis thaliana (A.th.) mesophyll cells play a pivotal role in the regulation of the drought stress response. The signaling & transport components involved in drought stress regulation within lipid rafts of the plasma membrane were investigated by DRM isolation from highly purified plasma membranes. Detergent treatment with Brij-98 and Triton X-100 resulted in a total of 246 DRM proteins which were identified by nano HPLC-MS/MS. The majority of these proteins could be isolated by Triton X-100 treatment (78.5 %) which remains the ”golden” sArabidopsis thaliana (A.th.) mesophyll cells play a pivotal role in the regulation of the drought stress response. The signaling & transport components involved in drought stress regulation within lipid rafts of the plasma membrane were investigated by DRM isolation from highly purified plasma membranes. Detergent treatment with Brij-98 and Triton X-100 resulted in a total of 246 DRM proteins which were identified by nano HPLC-MS/MS. The majority of these proteins could be isolated by Triton X-100 treatment (78.5 %) which remains the ”golden” standard for the isolation of DRMs. Comparing in-gel and in-solution digestion approaches disclosed additional protein identifications for each method but the in-gel approach clearly delivered the majority of the identified proteins (81.8 %). Functionally, a clear bias on signaling proteins was visible – almost 1/3 of the detected DRM proteins belonged to the group of kinases, phosphatases and other signaling proteins. Especially leucine-rich repeat receptor-like protein kinases and calcium-dependent protein kinases were present in Brij-98 & Triton X-100 DRMs, for instance the calcium-dependent protein kinase CPK21. Another prominent member of DRMs was the protein phosphatase 2C 56, ABI1, which is a key regulator of the ABA-mediated drought stress response in A.th. The lipid raft localization of the identified DRM proteins was confirmed by sterol-depletion with the chemical drug MCD. Proteins which depend upon a sterol-rich environment are depleted from DRMs by MCD application. Especially signaling proteins exhibited a strong sterol-dependency. They represented the vast majority (41.5 %) among the Triton X-100 DRM proteins which were no longer detected following MCD treatment. AtRem 1.2 & 1.3 could be shown to be sterol-dependent in mesophyll cells as well as two CPKs (CPK10 & CPK21) and the protein phosphatase ABI1. AtRem 1.2 & 1.3 could be proven to represent ideal plant lipid raft marker proteins due to their strong presence in Triton X-100 DRMs and dependency upon a sterol-rich environment. When fluorescence labeled AtRem 1.2 & 1.3 were transiently expressed in A.th. leaves, they localized to small, patchy structures at the plasma membrane. CPK21 was an intrinsic member of Triton X-100 DRMs and displayed extreme susceptibility to sterol-depletion by MCD in immunological and proteomic assays. Calcium-dependent protein kinases (CPKs) have already been studied to be involved in drought stress regulation, for instance at the regulation of S-type anion channels in guard cells. Hence, further transient expression studies with the anion channel SLAH3, protein kinase CPK21 and its counterpart, protein phosphatase ABI1 were performed in Nicotiana benthamiana. Transient co-expression of CPK21 and the anion channel SLAH3, a highly mesophyll- specific homologue of the guard cell anion channel SLAC1, resulted in a combined, sterol-dependent localization of both proteins in DRMs. Supplementary co-expression of the counterpart protein phosphatase ABI1 induced dislocation of SLAH3 from DRMs, probably by inactivation of the protein kinase CPK21. CPK21 is known to regulate the anion channel SLAH3 by phosphorylation. ABI1 dephosphorylates CPK21 thus leading to deactivation and dislocation of SLAH3 from DRMs. All this regulative events are taking place in DRMs of A.th. mesophyll cells. This study presents the first evidence for a lipid raft-resident protein complex combining signaling and transport functions in A.th. Future perspectives for lipid raft research might target investigations on the lipid raft localization of candidate DRM proteins under presence of abiotic and biotic stress factors. For instance, which alterations in the DRM protein composition are detectable upon exogenous application of the plant hormone ABA? Quantitative proteomics approaches will surely increase our knowledge of the post-transcriptional regulation of gene activity under drought stress conditions.show moreshow less
  • Mesophyllzellen spielen eine sehr wichtige Rolle bei der Regulierung der Trockenstress-Antwort in der Pflanze Arabidopsis thaliana (A.th.). Um die an der Trockenstress-Antwort beteiligten Signaltransduktions- und Transportproteine zu identifizieren, die sich in Lipid Rafts der pflanzlichen Plasmamembran befinden, wurden Detergent-Resistant Membranes (DRMs) aus hochreinen Arabidopsis Plasmamembran-Präparationen isoliert. Behandlung dieser hochreinen Plasmamembran mit den Detergentien Brij-98 und Triton X-100 führte zur Identifikation von 246 DRMMesophyllzellen spielen eine sehr wichtige Rolle bei der Regulierung der Trockenstress-Antwort in der Pflanze Arabidopsis thaliana (A.th.). Um die an der Trockenstress-Antwort beteiligten Signaltransduktions- und Transportproteine zu identifizieren, die sich in Lipid Rafts der pflanzlichen Plasmamembran befinden, wurden Detergent-Resistant Membranes (DRMs) aus hochreinen Arabidopsis Plasmamembran-Präparationen isoliert. Behandlung dieser hochreinen Plasmamembran mit den Detergentien Brij-98 und Triton X-100 führte zur Identifikation von 246 DRM Proteinen, die mittels der nano HPLC-MS/MS Technologie detektiert wurden. Hierbei war festzustellen, dass das Detergens Triton X-100 eindeutig den Standard für die Isolierung von DRMs darstellt. Die große Mehrheit (78,5 %) der identifizierten DRM Proteine konnte nämlich mit Triton X-100 aufgereinigt werden. Vergleichende Anwendung verschiedener Verdaumethoden (In-Gel & In-Lösung Verdau) zeigte auf, dass jede Methode einen unterschiedlichen Pool an Proteinen identifiziert. Das Gros der analysierten Proteine (81,8 %) konnte jedoch auch alleine durch In-Gel Verdau ermittelt werden. Unter den identifizierten DRM Proteinen stellten Proteine, die an der Signaltransduktion beteiligt sind, fast 1/3 dar. Diese Proteingruppe wurde hauptsächlich durch Kinasen und Phosphatasen vertreten. Insbesondere Leucin-reiche rezeptor-artige and Calcium-abhängige Proteinkinasen waren in Brij-98 & Triton X-100 DRMs zu beobachten, z.B. die Calcium-abhängige Proteinkinase CPK21. Ebenso in Triton X-100 DRMs wurde die Proteinphosphatase 2C 56 (ABI1) lokalisiert, die eine zentrale Rolle bei der ABA-vermittelten Antwort auf Trockenstress in A.th. inne hat. Zur Bestätigung der Lipid Raft Lokalisation der identifizierten DRM Proteine wurden Sterole aus der Plasmamembran mittels der Chemikalie Methyl-ß-D-cyclodextrin entfernt. Besonders Proteine, die an der Signalweiterleitung beteiligt sind, zeigten eine starke Abhängigkeit von der Präsenz der Sterole. Sie waren besonders betroffen: 41,5 % der Proteine, die nach MCD Behandlung nicht mehr in DRMs identifiziert wurden, gehörten zur Gruppe der Signaltransduktionsproteine. Beispiele waren sowohl die Calcium-abhängigen Proteinkinasen CPK10 & CPK21, als auch die Proteinphosphatase ABI1. Die A.th. Remorine AtRem 1.2 & 1.3 stellen ideale Kandidaten für pflanzliche Lipid Raft Markerproteine dar, da beide sowohl ziemlich stark in Triton X-100 DRMs vertreten, als auch im besonderen Maße auf die Präsenz von Sterolen in DRMs angewiesen sind. Fluoreszenzmarkierte AtRem 1.2 & 1.3 Fusionskonstrukte lokalisierten bei transienter Expression in A.th. Blättern in kleinen, punktförmigen Strukturen an der Plasmamembran. Diese Strukturen zeigten frappierende Ähnlichkeit zu bereits bekannten Mustern von Lipid Raft Proteinen in Hefen und Säugetieren. CPK21 stellte ein besonderes Mitglied der Triton X-100 DRMs dar, welches ebenfalls stark auf die Präsenz von Sterolen in DRMs angewiesen war. Dies konnte durch immunologische and massenspektrometrische Experimente nachgewiesen werden. Calcium-abhängige Proteinkinasen (CPKs) sind an der Regulierung der Trockenstress-Antwort in Pflanzen beteiligt, z.B. bei der Aktivierung von S-typ Anionenkanälen in Schließzellen von A.th. Aufgrund dieser Beteiligung an der Trockenstress-Antwort, wurden transiente Co-Expressionsstudien des Anionenkanals SLAH3, der Proteinkinase CPK21 und ihrem Gegenspieler, der Proteinphosphatase ABI1 in Nicotiana benthamiana Blättern durchgeführt. Transiente Co-Expression von CPK21 und SLAH3, einem zum schließzell-spezifischen Anionenkanal SLAC1 homologen Protein in Mesophyllzellen, resultierte in einer sterol-abhängigen Co-Lokalisation beider Proteine in DRMs. Zusätzliche Gabe vom Gegenspieler ABI1 führte zum Verschwinden von SLAH3 aus DRMs, was möglicherweise auf die Inaktivierung der Proteinkinase CPK21 durch ABI1 zurückzuführen ist. Für CPK21 konnte schon aufgezeigt werden, dass es den Anionenkanal SLAH3 durch Phosphorylierung aktiviert. ABI1 hingegen dephosphoryliert die Proteinkinase CPK21 und führt zur Deaktivierung vom Anionenkanal SLAH3, welcher dann auch nicht mehr in DRMs lokalisierbar ist. Diese streng regulierten Prozesse im Rahmen der Trockenstress-Antwort spielen sich in DRMs von A.th. Mesophyllzellen ab. Die vorliegende Arbeit ist der erste Bericht eines Lipid Raft-lokalisierten Proteinkomplexes, der Signalweiterleitung und Transportprozesse in Arabidopsis Lipid Rafts vereint. Zukünftige Lipid Raft Studien könnten sich mit der Lokalisation von putativen DRM Proteinen nach Anwendung von abiotischen und biotischen Stressfaktoren befassen. So könnte man sich die Frage stellen, inwiefern sich die Proteinzusammensetzung in DRMs von der Zugabe des pflanzlichen Hormons Abscisinsäure (ABA) beeinflussen läßt. Insbesondere quantitative Proteomstudien werden in Zukunft mit Sicherheit unser Wissen über die posttranskriptionelle Regulation der Genaktivität bei Trockenstress erweitern.show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author: Fatih Demir
URN:urn:nbn:de:bvb:20-opus-53223
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Date of final exam:2010/12/10
Language:English
Year of Completion:2010
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 58 Pflanzen (Botanik) / 580 Pflanzen (Botanik)
GND Keyword:Abscisinsäure; Ackerschmalwand; Mesophyll; Plasmamembran; Stressreaktion
Tag:ABA; Anionenkanal; Biomembran; Blatt; DRMs; Membran; Membrandomänen; Trockenstress
ABA; Anion channel; DRMs; Drought stress; Membrane domains
Release Date:2010/12/14
Advisor:Prof. Dr. Rainer Hedrich
Licence (German):License LogoCC BY-NC-SA: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Weitergabe unter gleichen Bedingungen

$Rev: 13581 $