Switches in trypanosome differentiation: ALBA proteins acting on post-transcriptional mRNA control

Steuerungsmechanismen der Differenzierung in Trypanosomen: die Rolle von ALBA Proteinen in post-transkriptioneller mRNA Kontrolle

Please always quote using this URN: urn:nbn:de:bvb:20-opus-85707
  • Trypanosoma brucei is a digenetic eukaryotic parasite that develops in different tissues of a mammalian host and a tsetse fly. It is responsible for sleeping sickness in sub-saharan Africa. The parasite cycle involves more than nine developmental stages that can be clearly distinguished by their general morphology, their metabolism and the relative positioning of their DNA-containing organelles. During their development, trypanosomes remain exclusively extracellular and encounter changing environments with different physico-chemical propertiesTrypanosoma brucei is a digenetic eukaryotic parasite that develops in different tissues of a mammalian host and a tsetse fly. It is responsible for sleeping sickness in sub-saharan Africa. The parasite cycle involves more than nine developmental stages that can be clearly distinguished by their general morphology, their metabolism and the relative positioning of their DNA-containing organelles. During their development, trypanosomes remain exclusively extracellular and encounter changing environments with different physico-chemical properties (nutritional availability, viscosity, temperature, etc.). It has been proposed that trypanosomes use their flagellum as a sensing organelle, in agreement with the established role of structurally-related cilia in metazoa and ciliates. Recognition of environmental triggers is presumed to be at the initiation of differentiation events, leading to the parasite stage that is the best suited to the new environment. These changes are achieved by the modification of gene expression programmes, mostly underlying post-transcriptional control of mRNA transcripts. We first demonstrate that the RNA-binding proteins ALBA3/4 are involved in specific differentiation processes during the parasite development in the fly. They are cytosolic and expressed throughout the parasite cycle with the exception of the stages found in the tsetse fly proventriculus, as shown by both immunofluorescence and live cell analysis upon endogenous tagging with YFP. Knock-down of both proteins in the developmental stage preceding these forms leads to striking modifications: cell elongation, cell cycle arrest and relocalization of the nucleus in a posterior position, all typical of processes acting in parasites found in the proventriculus region. When ALBA3 is over-expressed from an exogenous copy during infection, it interferes with the relocalization of the nucleus in proventricular parasites. This is not observed for ALBA4 over-expression that does not visibly impede differentiation. Both ALBA3/4 proteins react to starvation conditions by accumulating in cytoplasmic stress granules together with DHH1, a recognized RNA-binding protein. ALBA3/4 proteins also partially colocalize with granules formed by polyA+ RNA in these conditions. We propose that ALBA are involved in trypanosome differentiation processes where they control a subset of developmentally regulated transcripts. These processes involving ALBA3/4 are likely to result from the specific activation of sensing pathways. In the second part of the thesis, we identify novel flagellar proteins that could act in sensing mechanisms. Several protein candidates were selected from a proteomic analysis of intact flagella performed in the host laboratory. This work validates their flagellar localization with high success (85% of the proteins examined) and defines multiple different patterns of protein distribution in the flagellum. Two proteins are analyzed during development, one of them showing down-regulation in proventricular stages. The functional analysis of one novel flagellar membrane protein reveals its rapid dynamics within the flagellum but does not yield a visible phenotype in culture. This is coherent with sensory function that might not be needed in stable culture conditions, but could be required in natural conditions during development. In conclusion, this work adds new pieces to the puzzle of identifying molecular switches involved in developmental mRNA control and environmental sensing in trypanosome stages in the tsetse fly.show moreshow less
  • Trypanosoma brucei ist ein digenetischer, eukaryotischer Parasit, der zwischen Säugetier und Tsetsefliege alterniert, in welchen er unterschiedliche Gewebe besiedelt. Er ist die Ursache für die Schlafkrankheit in Afrika südlich der Sahara. Der Lebenszyklus der Trypanosomen besteht aus mehr als neun Parasitenstadien, die eindeutig anhand ihrer Morphologie, ihres Metabolismus und der Positionierung ihrer DNA Organellen unterschieden werden können. Trypanosomen bleiben ausschließlich extrazellulär und kommen im Laufe ihres Infektionszyklus mitTrypanosoma brucei ist ein digenetischer, eukaryotischer Parasit, der zwischen Säugetier und Tsetsefliege alterniert, in welchen er unterschiedliche Gewebe besiedelt. Er ist die Ursache für die Schlafkrankheit in Afrika südlich der Sahara. Der Lebenszyklus der Trypanosomen besteht aus mehr als neun Parasitenstadien, die eindeutig anhand ihrer Morphologie, ihres Metabolismus und der Positionierung ihrer DNA Organellen unterschieden werden können. Trypanosomen bleiben ausschließlich extrazellulär und kommen im Laufe ihres Infektionszyklus mit sich verändernden Umwelteinflüssen in Berührung, z. B. Temperaturschwankungen, Variation in vorhandenen Energiequellen, erhöhte Viskosität usw. In Übereinstimmung mit der anerkannten sensorischen Funktion die Cilien in Vielzellern ausüben, wurde für diese Rolle das strukturverwandte Flagellum in Trypanosomen vorgeschlagen. Die Erkennung wechselnder Umweltparameter ist der vermutliche Auslöser für Differenzierungsprozesse, die ein Entwicklungsstadium hervorbringen, welches am besten an die neue Umgebung angepasst ist. Dies wird durch eine Modifizierung der Genexpression erreicht, die in Trypanosomen fast ausschließlich auf posttranskriptioneller Ebene erfolgt. Diese Arbeit zeigt, dass die RNA bindenden Proteine ALBA3 und ALBA4 an der Differenzierung von Trypanosomen in der Tsetsefliege beteiligt sind. Immunfluoreszenzanalyse und Lebendvideomikroskopie von Zellen, die eine an YFP gekoppelte Variante der Proteine enthalten, haben gezeigt, dass sich ALBA3/4 im Zytosol befinden und dass sie in jedem Parasitenstadium exprimiert sind, mit Ausnahme derer, die im Proventrikel der Tsetsefliege zu finden sind. Das Herunterregulieren der Proteine in vorangehenden Stadien, führt zu markanten Veränderungen, die mit denjenigen, die in Parasiten im Proventrikel zu finden sind, vergleichbar sind: z. B. Verlängerung der Zelle, Zellzyklusarrest und Lokalisierung des Zellkerns in eine posteriore Position. Im Gegenteil dazu findet die Umpositionierung des Zellkerns nicht statt, wenn ALBA3 während der Entwicklung des Parasiten in der Tsetsefliege überexprimiert wird. Ein vergleichbarer Effekt wird mit ALBA4 Überexpression nicht erreicht, welches die Entwicklung nicht negativ zu beeinflussen scheint. Wenn Trypanosomen Hungerstress ausgesetzt sind, reichern sich beide ALBA Proteine zusammen mit DHH1, einem anerkannten RNA bindenden Protein, in zytoplasmatischen Aggregaten an, die nur teilweise mit denjenigen kolokalisieren, die durch polyA+ RNA in diesen Bedingungen verursacht werden. Diese Arbeit zeigt, dass ALBA Proteine eine wichtige Rolle in der Entwicklung von Trypanosomen spielen und legt nahe, dass sie an der entwicklungsbedingten Kontrolle eines Teils der mRNA Expression beteiligt sind. Der zweite Teil dieser Arbeit handelt von der Identifizierung neuer flagellarer Proteine, die eine sensorische Funktion haben könnten. Hierfür wurden mehrere Proteinkandidaten aus einer durchgeführten Proteomanalyse intakter Flagellen gewählt. Die vorliegende Arbeit bestätigt die flagellare Lokalisierung der Proteine mit großem Erfolg (85% der untersuchten Proteine) und zeigt, dass sie unterschiedliche Verteilungsmuster vorweisen. Zwei der Proteine werden während der Infektion des Parasiten in der Tsetsefliege untersucht, was aufdeckt, dass eines davon in den Stadien im Proventrikel herunterreguliert ist. Die Funktionsstudie eines neu identifizierten flagellaren Membranproteins weist seine schnelle Dynamik im Flagellum auf, führt jedoch zu keinem sichtbaren Phänotyp in Laborbedingungen. Diese Beobachtung passt zu der Annahme, dass Proteine mit sensorischer Funktion in stabilen Laborverhältnissen nicht essentiell sind aber eine wichtige Rolle während der Entwicklung des Parasiten in natürlichen Bedingungen spielen. Zusammenfassend fügt diese Arbeit Teile zum Puzzle der Identifizierung molekularer Schalter, die in Trypanosomenstadien in der Tsetsefliege an der mRNA Kontrolle und der Erkennung der Umwelt beteiligt sind.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Ines Subota
URN:urn:nbn:de:bvb:20-opus-85707
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Date of final exam:2011/10/12
Language:English
Year of Completion:2011
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Trypanosoma brucei; Parasit; Entwicklung; Tsetsefliege; Genexpression
Tag:ALBA Proteine; Differenzierung; Kontrolle der Genexpression; Trypanosomen; Tsetse Fliege; parasitärer Entwicklungszyklus
ALBA proteins; FLAMM; differentiation; flagellar sensing proteins; gene expression control; parasite cycle; trypanosomes; tsetse fly
Release Date:2014/10/02
Note:
Durchführung der Experimente am Institut Pasteur, Arbeitsgruppe Trypanosome Cell Biology Unit, Paris, Frankreich
Advisor:Prof. Dr. Markus Engstler, Institut Pasteur, Paris Philippe Dr. Bastin
Licence (German):License LogoDeutsches Urheberrecht