The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 1546
Back to Result List

Integrated Systems Biology Analysis; Exemplified on Potyvirus and Geminivirus interaction with \(Nicotiana\) \(benthamiana\)

Integrierte Systeme Biologie Analyse, Beispiel für Potyvirus und Geminivirus Interaktion mit \(Nicotiana\) \(benthamiana\)

Please always quote using this URN: urn:nbn:de:bvb:20-opus-153412
  • Viral infections induce a significant impact on various functional categories of biological processes in the host. The understanding of this complex modification of the infected host immune system requires a global and detailed overview on the infection process. Therefore it is essential to apply a powerful approach which identifies the involved components conferring the capacity to recognize and respond to specific pathogens, which in general are defeated in so-called compatible virus-plant infections. Comparative and integrated systemsViral infections induce a significant impact on various functional categories of biological processes in the host. The understanding of this complex modification of the infected host immune system requires a global and detailed overview on the infection process. Therefore it is essential to apply a powerful approach which identifies the involved components conferring the capacity to recognize and respond to specific pathogens, which in general are defeated in so-called compatible virus-plant infections. Comparative and integrated systems biology of plant-virus interaction progression may open a novel framework for a systemic picture on the modulation of plant immunity during different infections and understanding pathogenesis mechanisms. In this thesis these approaches were applied to study plant-virus infections during two main viral pathogens of cassava: Cassava brown streak virus and African cassava mosaic virus. Here, the infection process was reconstructed by a combination of omics data-based analyses and metabolic network modelling, to understand the major metabolic pathways and elements underlying viral infection responses in different time series, as well as the flux activity distribution to gain more insights into the metabolic flow and mechanism of regulation; this resulted in simultaneous investigations on a broad spectrum of changes in several levels including the gene expression, primary metabolites, and enzymatic flux associated with the characteristic disease development process induced in Nicotiana benthamiana plants due to infection with CBSV or ACMV. Firstly, the transcriptome dynamics of the infected plant was analysed by using mRNA-sequencing, in order to investigate the differential expression profile according the symptom developmental stage. The spreading pattern and different levels of biological functions of these genes were analysed associated with the infection stage and virus entity. A next step was the Real-Time expression modification of selected key pathway genes followed by their linear regression model. Subsequently, the functional loss of regulatory genes which trigger R-mediated resistance was observed. Substantial differences were observed between infected mutants/transgenic lines and wild-types and characterized in detail. In addition, we detected a massive localized accumulation of ROS and quantified the scavenging genes expression in the infected wild-type plants relative to mock infected controls. Moreover, we found coordinated regulated metabolites in response to viral infection measured by using LC-MS/MS and HPLC-UV-MS. This includes the profile of the phytohormones, carbohydrates, amino acids, and phenolics at different time points of infection with the RNA and DNA viruses. This was influenced by differentially regulated enzymatic activities along the salicylate, jasmonate, and chorismate biosynthesis, glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways, as well as photosynthesis, photorespiration, transporting, amino acid and fatty acid biosynthesis. We calculated the flux redistribution considering a gradient of modulation for enzymes along different infection stages, ranging from pre-symptoms towards infection stability. Collectively, our reverse-engineering study consisting of the generation of experimental data and modelling supports the general insight with comparative and integrated systems biology into a model plant-virus interaction system. We refine the cross talk between transcriptome modification, metabolites modulation and enzymatic flux redistribution during compatible infection progression. The results highlight the global alteration in a susceptible host, correlation between symptoms severity and the alteration level. In addition we identify the detailed corresponding general and specific responses to RNA and DNA viruses at different stages of infection. To sum up, all the findings in this study strengthen the necessity of considering the timing of treatment, which greatly affects plant defence against viral infection, and might result in more efficient or combined targeting of a wider range of plant pathogens.show moreshow less
  • Virale Infektionen haben einen signifikanten Einfluss auf verschiedene funktionelle Eigenschaften und biologische Prozesse im Wirt. Das Verständnis dieser komplexen Modifikation des infizierten Wirtsimmunsystems benötigt eine globale und detaillierte Einsicht in den Infektionsprozess. Diese erfordert einen leistungsfähigen Ansatz zur Identifizierung der beteiligten Komponenten, welche eine Pathogen-Erkennung und Antwort vermitteln bzw. eine kompatible Virus-Pflanze-Infektion voraussetzen. Die Anwendung der vergleichenden und integriertenVirale Infektionen haben einen signifikanten Einfluss auf verschiedene funktionelle Eigenschaften und biologische Prozesse im Wirt. Das Verständnis dieser komplexen Modifikation des infizierten Wirtsimmunsystems benötigt eine globale und detaillierte Einsicht in den Infektionsprozess. Diese erfordert einen leistungsfähigen Ansatz zur Identifizierung der beteiligten Komponenten, welche eine Pathogen-Erkennung und Antwort vermitteln bzw. eine kompatible Virus-Pflanze-Infektion voraussetzen. Die Anwendung der vergleichenden und integrierten Systembiologie zur Untersuchung dieser Pflanzen-Virus-Interaktionen im Infektionsverlauf kann eine neue Grundlage zum systematischen Verständnis der Modulation des Immunsystems der Pflanze und der Pathogen-Mechanismen während verschiedener Infektionen eröffnen. In dieser Arbeit wenden wir diese Ansätze an, um Pflanzen-Virus-Infektionen der zwei häufigsten viralen Pathogenen von Maniok zu untersuchen, den Cassava brown streak virus (CBSV) und den African cassava mosaic virus (ACMV). Dazu rekonstruieren wir den Infektionsprozess durch die Kombination von „omics“ basierten Datenanalysen und metabolischen Netzwerkmodellen um die wichtigen Elemente des viralen Infektionsprozesses zu verschieden Zeitpunkten aufzuklären. Metabolische Flussanalysen geben Einblick in metabolische Umsätze und deren Regulierung. Diese simultanen Untersuchungen erfassen ein breites Spektrum der Virus-vermittelten Veränderungen im Wirt über mehrere „omics“ Ebenen, einschließlich Geneexpression, Primärmetabolite und enzymatischer Aktivitäten, die mit dem charakteristischen Krankheitsentwicklungsprozess assoziiert sind, der in Nicotiana benthamiana Pflanzen aufgrund einer Infektion mit CBSV oder ACMV induziert wurde. Zuerst wurde die Dynamik des Transkriptoms infizierter Pflanzen mittels mRNA-Sequenzierung analysiert um das differentielle Expressionsprofil nach dem Symptomentwicklungsstadium zu untersuchen. Die Expressionsmuster und die biologischen Funktionen dieser Gene wurden im Hinblick auf die Infektionsstufe und den Virus Einheiten aufgelöst. Ein nächster Schritt war die Echtzeit-Expressionsmodifikation ausgewählter Schlüsselprozess-Gene, gefolgt von der Umsetzung im linearen Regressionsmodell. Anschließend wurde der funktionelle Verlust von regulatorischen Genen ermittelt, welche eine R-vermittelte Resistenz auslösen können. Es wurden erhebliche Unterschiede zwischen infizierten Mutanten / transgenen Linien und Wild-typen beobachtet und im Detail charakterisiert. Darüber hinaus entdeckten wir eine massive lokalisierte Akkumulation von reaktiven Sauerstoffspezies und quantifizierten die Expression von Abbauproteinen in den infizierten Wildtyp-Pflanzen relativ zu Mock-infizierten Kontrollen. Darüber hinaus fanden wir koordinierte regulierte Metaboliten als Reaktion auf eine virale Infektion, gemessen unter Verwendung von LC-MS / MS und HPLC-UV-MS Techniken. Dazu gehören die Analyse der Profile von Phytohormonen, Kohlenhydraten, Aminosäuren, und Phenolika zu verschiedenen Zeitpunkten der Infektion mit den RNA und DNA-Viren. Diese wurden beeinflusst durch die differentielle regulierten enzymatischen Aktivitäten entlang der Salicylat-, Jasmonat- und Chorismat-Biosynthese, der Glykolyse, Tricarbonsäure und Pentose-Phosphat-Umsetzung, der Photosynthese und Photorespiration, des Transportes und der Aminosäure sowie Fettsäure-Biosynthese. Wir berechneten die Umverteilung des metabolischen Flusses unter Berücksichtigung einer ansteigenden Beeinflussung von Enzymen in den verschiedeneren Infektionsstadien, die von Prä-Symptomen zur Infektionsstabilität reichen. Zusammengefasst beinhaltet unsere Reverse-Engineering-Studie die Generierung von experimentellen Daten und deren Modellierung mittels vergleichender und integrierter Systembiologie zum Einblick in das Modell-Pflanzen-Virus-Interaktionssystem. Wir lösten die Interaktion zwischen Transkriptom-Modifikation, Metabolitenmodulation und die Umverteilung des metabolischen Flusses während des kompatiblen Infektionsprozesses auf. Das Ergebnis zeigt die globalen Veränderungen in einem anfälligen Wirt auf, sowie die Korrelation zwischen Symptomschwere und der Stärke dieser Veränderungen. Darüber hinaus identifizieren wir im Detail die entsprechenden allgemeinen und spezifischen Reaktionen auf RNA und DNA-Viren in den verschiedenen Stadien der Infektion. Zusammenfassend lässt sich feststellen, dass die Erkenntnisse aus dieser Studie die Notwendigkeit aufzeigen, den zeitlichen Ablauf bei einer Pflanzenschutzbehandlung zu berücksichtigen, welche die pflanzliche Abwehr gegen eine Virusinfektion stark beeinflusst; und insgesamt zu einer effizienteren oder kombinierten Anwendung gegen ein breiteres Spektrum von Pflanzenpathogenen führen könnte.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Pirasteh Pahlavan
URN:urn:nbn:de:bvb:20-opus-153412
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Referee:Prof. Dr. Thomas Dandekar, PD. Dr. Susanne Berger, Prof. Dr. Christian Wegener, Prof. Dr. Thomas Rudel
Date of final exam:2017/09/13
Language:English
Year of Completion:2019
DOI:https://doi.org/10.25972/OPUS-15341
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Tag:RNA-seq; fluxosome; metabolite profiling; next generation sequencing; transcriptome; virus
Release Date:2019/09/13
Note:
I also provided some supplementary data in digital version, which are available on-request from the dean's office.
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand