• search hit 1 of 1
Back to Result List

Hp-Finite Elements for PDE-Constrained Optimization

Please always quote using this URN: urn:nbn:de:bvb:20-opus-115027
• This thesis deals with the hp-ﬁnite element method (FEM) for linear quadratic optimal control problems. Here, a tracking type functional with control costs as regularization shall be minimized subject to an elliptic partial diﬀerential equation. In the presence of control constraints, the ﬁrst order necessary conditions, which are typically used to ﬁnd optimal solutions numerically, can be formulated as a semi-smooth projection formula. Consequently, optimal solutions may be non-smooth as well. The hp-discretization technique considers thisThis thesis deals with the hp-ﬁnite element method (FEM) for linear quadratic optimal control problems. Here, a tracking type functional with control costs as regularization shall be minimized subject to an elliptic partial diﬀerential equation. In the presence of control constraints, the ﬁrst order necessary conditions, which are typically used to ﬁnd optimal solutions numerically, can be formulated as a semi-smooth projection formula. Consequently, optimal solutions may be non-smooth as well. The hp-discretization technique considers this fact and approximates rough functions on ﬁne meshes while using higher order ﬁnite elements on domains where the solution is smooth. The ﬁrst main achievement of this thesis is the successful application of hp-FEM to two related problem classes: Neumann boundary and interface control problems. They are solved with an a-priori reﬁnement strategy called boundary concentrated (bc) FEM and interface concentrated (ic) FEM, respectively. These strategies generate grids that are heavily reﬁned towards the boundary or interface. We construct an elementwise interpolant that allows to prove algebraic decay of the approximation error for both techniques. Additionally, a detailed analysis of global and local regularity of solutions, which is critical for the speed of convergence, is included. Since the bc- and ic-FEM retain small polynomial degrees for elements touching the boundary and interface, respectively, we are able to deduce novel error estimates in the L2- and L∞-norm. The latter allows an a-priori strategy for updating the regularization parameter in the objective functional to solve bang-bang problems. Furthermore, we apply the traditional idea of the hp-FEM, i.e., grading the mesh geometrically towards vertices of the domain, for solving optimal control problems (vc-FEM). In doing so, we obtain exponential convergence with respect to the number of unknowns. This is proved with a regularity result in countably normed spaces for the variables of the coupled optimality system. The second main achievement of this thesis is the development of a fully adaptive hp-interior point method that can solve problems with distributed or Neumann control. The underlying barrier problem yields a non-linear optimality system, which poses a numerical challenge: the numerically stable evaluation of integrals over possibly singular functions in higher order elements. We successfully overcome this diﬃculty by monitoring the control variable at the integration points and enforcing feasibility in an additional smoothing step. In this work, we prove convergence of an interior point method with smoothing step and derive a-posteriori error estimators. The adaptive mesh reﬁnement is based on the expansion of the solution in a Legendre series. The decay of the coeﬃcients serves as an indicator for smoothness that guides between h- and p-reﬁnement.
• Diese Arbeit behandelt die hp-Finite Elemente Methode (FEM) für linear quadratische Optimal-steuerungsprobleme. Dabei soll ein Zielfunktional, welches die Entfernung zu einem angestrebten Zustand und hohe Steuerungskosten (als Regularisierung) bestraft, unter der Nebenbedingung einer elliptischen partiellen Diﬀerentialgleichung minimiert werden. Bei der Anwesenheit von Steuerungsbeschränkungen können die notwendigen Bedingungen erster Ordnung, die typischerweise für numerische Lösungsverfahren genutzt werden, als halbglatte ProjektionsformelDiese Arbeit behandelt die hp-Finite Elemente Methode (FEM) für linear quadratische Optimal-steuerungsprobleme. Dabei soll ein Zielfunktional, welches die Entfernung zu einem angestrebten Zustand und hohe Steuerungskosten (als Regularisierung) bestraft, unter der Nebenbedingung einer elliptischen partiellen Diﬀerentialgleichung minimiert werden. Bei der Anwesenheit von Steuerungsbeschränkungen können die notwendigen Bedingungen erster Ordnung, die typischerweise für numerische Lösungsverfahren genutzt werden, als halbglatte Projektionsformel formuliert werden. Folglich sind optimale Lösungen oftmals auch nicht-glatt. Die Technik der hp-Diskretisierung berücksichtigt diese Tatsache und approximiert raue Funktionen auf feinen Gittern, während Elemente höherer Ordnung auf Gebieten verwendet werden, auf denen die Lösung glatt ist. Die erste Leistung dieser Arbeit ist die erfolgreiche Anwendung der hp-FEM auf zwei verwandte Problemklassen: Neumann- und Interface-Steuerungsprobleme. Diese werden zunächst mit entsprechenden a-priori Verfeinerungsstrategien gelöst, mit der randkonzentrierten (bc) FEM oder interface konzentrierten (ic) FEM. Diese Strategien generieren Gitter, die stark in Richtung des Randes beziehungsweise des Interfaces verfeinert werden. Um für beide Techniken eine algebraische Reduktion des Approximationsfehlers zu beweisen, wird eine elementweise interpolierende Funktion konstruiert. Außerdem werden die lokale und globale Regularität von Lösungen behandelt, weil sie entscheidend für die Konvergenzgeschwindigkeit ist. Da die bc- und ic- FEM kleine Polynomgrade für Elemente verwenden, die den Rand beziehungsweise das Interface berühren, können eine neue L2- und L∞-Fehlerabschätzung hergeleitet werden. Letztere bildet die Grundlage für eine a-priori Strategie zum Aufdatieren des Regularisierungsparameters im Zielfunktional, um Probleme mit bang-bang Charakter zu lösen. Zudem wird die herkömmliche hp-Idee, die daraus besteht das Gitter geometrisch in Richtung der Ecken des Gebiets abzustufen, auf die Lösung von Optimalsteuerungsproblemen übertragen (vc-FEM). Es gelingt, Regularität in abzählbar normierten Räumen für die Variablen des gekoppelten Optimalitätssystems zu zeigen. Hieraus resultiert die exponentielle Konvergenz im Bezug auf die Anzahl der Freiheitsgrade. Die zweite Leistung dieser Arbeit ist die Entwicklung einer völlig adaptiven hp-Innere-Punkte-Methode, die Probleme mit verteilter oder Neumann Steuerung lösen kann. Das zugrundeliegende Barriereproblem besitzt ein nichtlineares Optimilitätssystem, das eine numerische Herausforderung beinhaltet: die stabile Berechnung von Integralen über Funktionen mit möglichen Singularitäten in Elementen höherer Ordnung. Dieses Problem wird dadurch gelöst, dass die Steuerung an den Integrationspunkten überwacht wird. Die Zulässigkeit an diesen Punkten wird durch einen Glättungsschritt garantiert. In dieser Arbeit werden sowohl die Konvergenz eines Innere-Punkte-Verfahrens mit Glättungsschritt als auch a-posteriori Schranken für den Diskretisierungsfehler gezeigt. Dies führt zu einem adaptiven Lösungsalgorithmus, dessen Gitterverfeinerung auf der Entwicklung der Lösung in eine Legendre Reihe basiert. Hierbei dient das Abklingverhalten der Koeﬃzienten als Glattheitsindikator und wird für die Entscheidung zwischen h- und p-Verfeinerung herangezogen.

Author: Jan-Eric Wurst urn:nbn:de:bvb:20-opus-115027 Doctoral Thesis Universität Würzburg, Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik / Institut für Mathematik Prof. Dr. Daniel Wachsmuth 2015/06/15 English 2015 Würzburg University Press Würzburg 978-3-95826-024-5 (print) 978-3-95826-025-2 (online) 188 https://doi.org/10.25972/WUP-978-3-95826-025-2 5 Naturwissenschaften und Mathematik / 51 Mathematik / 518 Numerische Analysis Finite-Elemente-Methode; Optimale Kontrolle; Elliptische Differentialgleichung finite elements; higher order methods; optimal control; partial differetial equations 35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J25 Boundary value problems for second-order elliptic equations 35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J88 Systems of elliptic variational inequalities [See also 35R35, 49J40] 49-XX CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-XX] / 49Mxx Numerical methods [See also 90Cxx, 65Kxx] / 49M05 Methods based on necessary conditions 49-XX CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-XX] / 49Mxx Numerical methods [See also 90Cxx, 65Kxx] / 49M37 Methods of nonlinear programming type [See also 90C30, 65Kxx] 65-XX NUMERICAL ANALYSIS / 65Kxx Mathematical programming, optimization and variational techniques / 65K05 Mathematical programming methods [See also 90Cxx] 65-XX NUMERICAL ANALYSIS / 65Kxx Mathematical programming, optimization and variational techniques / 65K10 Optimization and variational techniques [See also 49Mxx, 93B40] 65-XX NUMERICAL ANALYSIS / 65Nxx Partial differential equations, boundary value problems / 65N30 Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods 90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING / 90Cxx Mathematical programming [See also 49Mxx, 65Kxx] / 90C51 Interior-point methods 2016/01/27 Parallel erschienen als Druckausg. in Würzburg University Press, ISBN 978-3-95826-024-5, 29,80 EUR. http://www.schoeningh-buch.de//shop/item/9783958260245 oder http://www.amazon.de/Hp-Finite-Elements-PDE-Constrained-Optimization-Jan-Eric/dp/3958260241. CC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen