The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 19119
Back to Result List

Spektroskopische Untersuchungen an elektrisch und optisch erzeugten Exziton-Polariton-Kondensaten

Spectroscopic investigations of electrically and optically created exciton polariton condensates

Please always quote using this URN: urn:nbn:de:bvb:20-opus-176897
  • Eine technologisch besonders vielversprechende Art von Mikrokavitäten besteht aus einem optisch aktiven Material zwischen zwei Spiegeln, wobei das Licht auf Größe seiner Wellenlänge eingesperrt wird. Mit diesem einfachen Konzept Licht auf Chipgröße einzufangen entstand die Möglichkeit neue Phänomene der Licht-Materie Wechselwirkung zu studieren. Der Oberflächenemitter (VCSEL), welcher sich das veränderte Strahlungsverhalten aufgrund der schwachen Kopplung und stimulierten Emission zu Nutze macht, ist bereits länger kommerziell sehr erfolgreich.Eine technologisch besonders vielversprechende Art von Mikrokavitäten besteht aus einem optisch aktiven Material zwischen zwei Spiegeln, wobei das Licht auf Größe seiner Wellenlänge eingesperrt wird. Mit diesem einfachen Konzept Licht auf Chipgröße einzufangen entstand die Möglichkeit neue Phänomene der Licht-Materie Wechselwirkung zu studieren. Der Oberflächenemitter (VCSEL), welcher sich das veränderte Strahlungsverhalten aufgrund der schwachen Kopplung und stimulierten Emission zu Nutze macht, ist bereits länger kommerziell sehr erfolgreich. Er umfasst ein erwartetes Marktvolumen von ca. 5.000 Millionen Euro bis 2024, welches sich auf verschiedenste Anwendungen im Bereich von Sensorik und Kommunikationstechnologie bezieht. Dauerhaft hohe Wachstumsraten von 15-20% pro Jahr lassen auf weiteres langfristiges Potential von Mikrokavitäten in der technologischen Gesellschaft der nächsten Generation hoffen. Mit fortschreitender Entwicklung der Epitaxie-Verfahren gelang es Kavitäten solcher Qualität herzustellen, dass zum ersten Mal das Regime der starken Kopplung erreicht wurde. Starke Kopplung bedeutet in diesem Fall die Bildung eines neuen Quasiteilchens zwischen Photon und Exziton, dem Exziton-Polariton (Polariton). Dieses Quasiteilchen zeigt eine Reihe interessanter Eigenschaften, welche sowohl aus der Perspektive der Technologie, als auch aus der Sicht von Grundlagenforschung interessant sind. Bei systemabhängigen Teilchendichten erlaubt das Polariton ebenfalls die Erzeugung von kohärentem Licht über den Exziton-Polariton-Kondensatszustand (Kondensat), den Polariton-Laser. Die Eigenschaften des emittierten Lichtes ähneln denen eines VCSELs, allerdings bei einigen Größenordnungen geringerem Energieverbrauch, bzw. niedrigerer Laserschwelle, bei Wahl geeigneter Verstimmung von Exziton und Photon. Diese innovative Entwicklung kann daher unter anderem neue Möglichkeiten für besonders energiesparende Anwendungen in der Photonik eröffnen. Die vorliegende Doktorarbeit soll zur Erweiterung des Forschungsstandes in diesem Gebiet zwischen Photonik und Festkörperphysik beitragen und untersucht zum einen den anwendungsorientierten Teil des Feldes mit Studien zur elektrischen Injektion, beleuchtet aber auch den interessanten Phasenübergang des Systems über seine Kohärenz- und Spineigenschaften. Es folgt eine knappe überblicksartige Darstellung der Ergebnisse, die in dieser Arbeit genauer ausgearbeitet werden. Rauschanalyse und die optische Manipulation eines bistabilen elektrischen Polariton-Bauelements Aufbauend auf der Realisierung eines elektrischen Polariton-Lasers wurde in dieser Arbeit ein optisches Potential in das elektrisch betriebene Kondensat mit einem externen Laser induziert. Dieses optische Potential ermöglicht die Manipulation der makroskopischen Besetzung der Grundzustandswellenfunktion, welches sich als verändertes Emissionsbild im Realraum darstellt. Der polaritonische Effekt wird über Verschiebung der Emissionslinie zu höheren Energien durch Wechselwirkung des Exzitonanteils nachgewiesen. Diese experimentellen Beobachtungen konnten mit Hilfe eines Gross-Pitaevskii-Differentialgleichungsansatzes erläutert und theoretisch nachgebildet werden. Weiterhin zeigt der elektrische Polariton-Laser eine Bistabilität in seiner Emissionskennlinie an der polaritonischen Kondensationsschwelle. Die Hysterese hat ihren physikalischen Ursprung in der Lebenszeitabhängigkeit der Ladungsträger von der Dichte des Ladungsträgerreservoirs durch die progressive Abschirmung des inneren elektrischen Feldes. In dieser Arbeit wird zum tieferen Verständnis der Hysterese ein elektrisches Rauschen über den Anregungsstrom gelegt. Dieses elektrische Rauschen befindet sich auf der Mikrosekunden-Zeitskala und beeinflusst die Emissionscharakteristik, welche durch die Lebensdauer der Polaritonen im ps-Bereich bestimmt wird. Mit steigendem Rauschen wird ein Zusammenfall der Hysterese beobachtet, bis die Emissionscharakteristik monostabil erscheint. Diese experimentellen Befunde werden mit einem gekoppelten Ratengleichungssystem sowie mit Hilfe einer Gauss-verteilten Zufallsvariable in der Anregung modelliert und erklärt. Die Hysterese ermöglicht außerdem den Nachweis eines optischen Schalteffekts über eine zusätzliche Ladungsträgerinjektion mit einem Laser weit über der Bandkante des Systems, um den positiven Rückkopplungseffekt zu erzeugen. Im Bereich der Hysterese wird das System auf den unteren Zustand elektrisch angeregt und dann mit Hilfe eines nicht-resonanten Laserpulses in den Kondensatszustand gehoben. Polaritonfluss geleitet durch Kontrolle der lithographisch definierten Energielandschaft Polaritonen können durch den photonischen Anteil weiterhin in Wellenleiterstrukturen eingesperrt werden, worin sie bei der Kondensation gerichtet entlang des Kanals mit nahe Lichtgeschwindigkeit fließen. Dies geschieht mit der Besonderheit über ihren Exzitonanteil stark wechselwirken zu können. Die Möglichkeit durch Lithographie solche eindimensionalen Kanäle zu definieren, wurde bereits in verschiedenen Prototypen für Polaritonen benutzt und untersucht. In dieser Arbeit werden zwei verschiedene, neue Ansätze zur Lenkung von gerichtetem Polaritonfluss vorgestellt: zum einen über die sogenannte Josephson-Kopplung zwischen zwei Wellenleitern, realisiert über halbgeätzte Spiegel und zum anderen über eine Mikroscheibe gekoppelt an zwei Wellenleiter. Der Begriff der Josephson-Kopplung ist hier angelehnt an den bekannten Effekt in Supraleitern, welcher phänomenologische Ähnlichkeiten aufweist. Die Verwendung in der Polaritonik ist historisch gewachsen. Die Josephson-Kopplung ermöglicht die Beobachung von Oszillationen des Polariton-Kondensats zwischen den Wellenleitern, in Abhängigkeit der verbleibenden Anzahl Spiegelpaare zwischen den Strukturen, wodurch eine definierte Selektion des Auskopplungsarms ermöglicht wird. Die Mikroscheibe funktioniert ähnlich einer Resonanztunneldiode. Sie ermöglicht eine Energieselektion der transmittierten Moden durch die Diskretisierung der Zustände in den niederdimensionalen Strukturen. Es ergibt sich die Bedingung, dass nur energetisch gleiche Niveaus zwischen Strukturübergängen koppeln können. Gleichzeitig erlaubt die Mikroscheibenanordnung eine Umkehrung der Flussrichtung. Kohärenzeigenschaften und die Photonenstatistik von Polariton-Kondensaten unter photonischen Einschlusspotentialen Die Kohärenzeigenschaften der Emission von Polariton-Kondensaten ist seit längerem ein aktives Forschungsfeld. Die noch ausstehenden Fragen betreffen die Beobachtung hoher Abweichungen von traditionellen, auf Inversion basierenden Lasersystemen (z.B. VCSELs). Diese haben selbst bei schwellenlosen Lasern einen Wert der Autokorrelationsfunktion zweiter Ordnung von Eins. Polariton-Kondensate jedoch zeigen erhöhte Werte in der Autokorrelationsfunktion, welches auf einen Mischzustand zwischen kohärentem und thermischem Licht hinweist. In dieser Arbeit wurde ein systematischer Weg untersucht, die Kohärenzeigenschaften des Polariton-Kondensats denen eines traditionellen Lasers anzunähern. Dies geschieht über den lateralen photonischen Einschluss der Kondensate mittels lithographisch definierter Mikrotürmchen mit verschiedenen Durchmessern. In Kohärenzmessungen wird der Einfluss dieser Veränderung der Energielandschaft der Polariton-Kondensate auf die Autokorrelationseigenschaften zweiter Ordnung untersucht. Es wird ein direkter Zusammenhang zwischen großem Einschlusspotential und guten Korrelationseigenschaften nachgewiesen. Der Effekt wird theoretisch über den veränderten Einfluss der Phononen auf das Polariton-Relaxationsverhalten erklärt. Durch die stärkere Lokalisierung der Polaritonwellenfunktion in kleineren Mikrotürmchen wird die Streuwahrscheinlichkeit erhöht, was eine effizientere Relaxation in den Grundzustand ermöglicht. Dies verhindert zu starke Besetzungsfluktuationen der Grundmode in der Polariton-Lebenszeit, was bisher als Grund für die erhöhte Autokorrelation postuliert wurde. Weiterhin wird eine direkte Messung der Photonenstatistik eines Polaritonkondensats entlang steigender Polaritondichte im Schwellbereich vorgestellt. Die Photonenstatistik eines thermischen Emitters zeigt einen exponentiellen Verlauf, während ein reiner Laser Poisson-verteilt emittiert. Der Zwischenbereich, der für einen Laser am Übergang zwischen thermischer und kohärenter Lichtquelle vorhergesagt wird, kann durch eine Überlagerung der beiden Zustände beschrieben werden. Über eine Anpassungsfunktion der gemessenen Verteilungsfunktionen kann der Phasenübergang des Kondensats mit Hilfe dem Anteil der kohärenten Partikel im System verfolgt werden. Dadurch, dass der gemessene Übergang dem Paradigma der thermisch-kohärenten Zustände folgt, wurde nachgewiesen, dass bei rötlicher Verstimmung die Interaktionen keinen signifikanten Anteil an der Ausbildung von Kohärenz im Polaritonsystem spielen. Polarisationskontrolle von Polariton-Kondensaten Die Polarisationseigenschaften des durch Polaritonenzerfall emittierten Lichts korrespondieren zum Spinzustand der Quasiteilchen. Unterhalb der Kondensationsschwelle ist diese Emission durch Spin-Relaxation der Ladungsträger unpolarisiert und oberhalb der Schwelle bildet sich unter bestimmten Voraussetzungen lineare Polarisation als Ordnungsparameter des Phasenübergangs aus. Der Prozess der stimulierten Streuung kann die (zirkulare) Polarisation des Lasers auch bei Anregung auf höheren Energien auf dem unteren Polaritonast erhalten. Dies resultiert aus sehr schneller Einnahme des Grundzustands, welche eine Spin-Relaxation verhindert. Bisher wurde, nach unserem Kenntnisstand, nur teilweise Erhaltung zirkularer Polarisation unter nicht-resonanter Anregung beobachtet. In dieser Arbeit wird vollständige zirkulare Polarisationserhaltung, energetisch 130 meV vom Kondensatszustand entfernt angeregt, nachgewiesen. Diese Polarisationserhaltung setzt an der Kondensationsschwelle ein, was auf den Erhalt durch stimulierte Streuung hinweist. Unter dieser Voraussetzung der Spinerhaltung erzeugt die linear polarisierte Anregung (als Überlagerung zirkularem Lichts beider Orientierungen) elliptisch polarisiertes Licht. Dies geschieht, weil eine linear polarisierte Anregung durch Fokussierung eines Objektivs leicht elliptisch wird. Der Grad der Elliptizität wird sowohl durch die Verstimmung zwischen Photon und Exziton Mode beeinflusst, als auch durch die Dichte im System. Dies kann erklärt werden über das spezielle Verhalten der Relaxationsprozesse auf dem unteren Polaritonast, welche von der transversal-elektrischen und transversal-magnetischen (TE-TM) energetischen Aufspaltung abhängen. Weiterhin werden elliptische Mikrotürmchen untersucht, um den Einfluss dieses asymmetrischen photonischen Einschlusses auf die Kondensatseigenschaften herauszuarbeiten. Die Ellipse zwingt das Kondensat zu einer linearen Polarisation, welche sich entlang der langen Achse des Türmchens ausrichtet. In asymmetrischen Mikrotürmchen ist die Grundmode aufgespalten in zwei linear polarisierte Moden entlang der beiden orthogonal zueinander liegenden Hauptachsen, wobei die längere Achse das linear polarisierte Energieminimum des Systems bildet. Der Grad der linearen Polarisation nimmt mit geringerem Mikrotürmchendurchmesser und größerer Ellipzität zu. Dies geschieht durch erhöhten energetischen Abstand der beiden Moden. Bei Ellipsen mit einem langen Hauptachsendurchmesser von 2 Mikrometer und einem Achsenverhältnis von 3:2 kann ein nahezu vollständig linear polarisierter Zustand eines Polariton-Kondensats nachgewiesen werden. Damit wurde erforscht, dass auch unter nicht-resonanter Anregung Exziton-Polariton-Kondensate experimentell und theoretisch jeglichen Spinzustand unter entsprechenden Anregungsbedingungen annehmen können.show moreshow less
  • A technologically especially promising type of microcavities consists of an optical material between two mirrors, whereby light is trapped on the scale of its wavelength. With this simple concept of trapping light on the size of a chip arose the possibility to study new phenomena of light-matter interaction. The VCSEL, which takes advantage of the changed emission behavior due to weak coupling and stimulated emission, has been commercially successful for a long time. The market encompasses a volume of approximately 5000 million euros till 2024,A technologically especially promising type of microcavities consists of an optical material between two mirrors, whereby light is trapped on the scale of its wavelength. With this simple concept of trapping light on the size of a chip arose the possibility to study new phenomena of light-matter interaction. The VCSEL, which takes advantage of the changed emission behavior due to weak coupling and stimulated emission, has been commercially successful for a long time. The market encompasses a volume of approximately 5000 million euros till 2024, which itself encompasses a plethora of different applications in the areas of sensors to communication technology. Continued high growth rates of up to 15-20% per year give rise to hope for an enduring potential of microcavities in the technological society of the next generation. Continued development of epitaxial methods finally allowed to fabricate cavities of such quality that the regime of strong-coupling was reached. Strong coupling means, in this case, the creation of a new quasi-particle between photon and exciton, the exciton-polariton. This quasi-particle shows a series of interesting properties, which are relevant from both the perspective of technology and basic science. At a system dependant particle density, the polariton allows creation of coherent light via the exciton-polariton condensate state, the polariton-laser. The properties of the emitted light resemble those of a VCSEL, albeit at magnitudes less energy consumption or laser threshold, at an advantageous detuning between exciton and photon. This innovative development has therefore opened up new possibilities for energy saving applications in photonics. This doctorial thesis contributes to science in this research area between photonics and solid-state physics and not only looks at the application relevant part of this field with studies regarding electrical injection, but also illuminates the interesting phase transition of the system via exploration of coherence and spin properties. Now follows a short summary of the results, which are developed in more detail in the main body of the work. Evaluation of noise impact and optical manipulation of a bistable electrical polariton device Building on the realisation of an electrical polariton laser, this work induces an optical potential with an external laser into the electrically driven condensate. This optical potential enables the manipulation of the macroscopic occupation of the groundstate wavefunction, which manifests itself in a changed emission structure in real space. The polaritonic effect is proven via the blueshift of the emission with increased interaction of the exciton part of the polariton. These experimental observations can be theoretically explained with a Gross-Pitaevskii equation approach. Furthermore, the electrical polariton-laser exhibits a bistability behavior at its polaritonic condensation threshold. The hysteresis originates in the lifetime dependance of the carriers on the density of the carrier reservoir by screening of the inner electrical field of the structure. In this work, to get a deeper understanding of the hysteresis, an electrical noise component is superpositioned to the injection current. The electrical noise is on the micrsecond time-scale and affects the emission characteristics which are given by the polariton lifetime on the order of picoseconds. With increased noise, the hysteresis progressively vanishes until the emission appears monostable. These experimental results are modelled with a rate equation approach with a Gaussian random distribution in the excitation. Moreover, the hysteresis allows the observation of an optical switch effect via additional carrier injection with an energetically far off laser to attain the positive feedback effect. In the region of the hystereis, the system is positioned at a lower state with electrical injection and then pushed into the condensate regime with a laser pulse. Polariton flow controlled by a lithographically defined energy landscape Polaritons can be trapped in waveguide structures due to their photonic part, along which they propagte upon condensation with close to the speed of light. This happens with the special property of being able to strongly interact via their exciton content. The possibility to define such channels has been used in a variety of different prototypes for polaritons. This work presents two new approaches to route polariton flow: first via a Josephson-like coupling between two waveguides, realized by partly etched mirrors and second with a microdisk potential coupled to two waveguides. Josephson coupling refers to the known effect in superconducters which shows some resemblance to the observed effect and which use of is historically motivated. Josephson coupling allows observation of oscillations of the polariton condensate between the waveguides, which depends on the remaining mirrorpairs between the structure, which ultimately allows routing into a specific exit arm. The microdisk functions in a similiar way to a resonance tunnel diode. It allows energy selection of the transmitted modes via the discretization of the states in the low-dimensional structures. This results in the condition that only energetically fitting modes are allowed to propagate between the structures. Additionally, the microdisk structure allows counter directional routing of the polariton flow. Coherence properties and the photonstatistics of trapped polariton condensates The coherence properties of the emission of polariton-condensates is a long-standing active research area. The remaining questions regard the observations of high deviations between traditional inversion based systems (e.g. VCSELs). These show, even in thresholdless lasers, a value of the second order autocorrelation function of one. Polariton condensates exhibit increased values, which hint at a mixed state between coherent and thermal light. In this work a systematic way has been investigated, which tries to approach the coherence properties of polariton condensates to those of a traditional laser. This happens via the lateral photonic confinement of the condensates in lithographically defined micropillars with different diameters. The influence of the changes of the energy landscape have been evaluated in coherence measurements of the second order autocorrelation function. A direct link between a high trapping potential and good coherence properties has been proven. The effect is theoretically explained in the changed influence of phonons onto the polariton relaxation mechanisms. Because of the stronger localisation of the polariton wavefunction in smaller micropillars, the probability to scatter is increased, which allows a more efficient relaxation into the ground state. This suppressses strong occupation fluctuations of the ground state in the polariton lifetime, which has been speculated to be the origin of the increased autocorrelation . Additionally, a direct measurement of the photon statistics of the polariton condensate along increased polariton densities is presented. The photon statistics of a thermal emitter shows an exponential relationship, while the emission of a laser is Poisson distributed. The regime in-between, which is proposed for a laser at its threshold, can be described as a mixture of those two states. By fitting a function to the measured distributions, the phase transition can be tracked via the coherent particle fraction present in the system. Because this transition follows the paradigm of the thermal-coherent mixture states, it was proven that interactions do not play a significant role in establishing coherence in a polariton condensate with a photonic detuning. Polarisation control of polariton condensates The polarisation properties of the light originating in decay of polaritons correspond to the spin state of the quasiparticle. Below condensation threshold, this emission is largely unpolarised due to spin relaxation and above threshold, under certain circumstances, linear polarisation can be observed as an order parameter of the phase transition. The process of stimulated scattering can preserve circular polarisation of the laser at excitations positioned on the lower polariton branch. This is due to the fast relaxation to the ground state which prevents spin relaxation. Up until now, up to our knowledge, only partial conservation of circular polarisation in non-resonant excitation has been observed. In this work, complete circular polarisation conservation has been proven, at excitation 130 meV above the condensate state. This polarisation conservation starts at condensation threshold, which hints at conservation due to stimulated scattering. Under these conditions, linear excitation (as a superposition between both circular components) creates elliptically polarised light. This happens due to the fact that linear excitation focused via an objective becomes slightly elliptical. The degree of elliptical polarisation is determined by the detuning between exciton and photon and the particle density present in the condensate system. This can be explained with the relaxation processes on the lower polariton branch, which depend on the energy splitting between TE and TM modes. Additionally, elliptical micropillars have been investigated, to work out the influence of asymetric photonic confinement on the condensation properties. The elliptical confinement forces the condensate into a linear polarisation, which establishes itself along the long axis of the micropillar. In asymmetric micropillars, the ground state is split into two linear polarised modes along both orthogonal main axes, whereby the long axis determines the energy minimum of the system. The degree of linear polarisation increases with decreasing micropillar diameter and increasing ellipticity. This happens due to increased energy difference between the two modes. The ellipses have a long axis diameter of 2 micrometers and an axis relation of 3:2, in which nearly fully linearly polarised condensates have been observed. With this it was investigated that non-resonant excitation of polariton condensates can experimentally and theoretically attain every spin state under fitting excitation conditions.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Martin Klaas
URN:urn:nbn:de:bvb:20-opus-176897
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Sven Höfling, Prof. Dr. Karl Brunner
Date of final exam:2019/02/08
Language:German
Year of Completion:2019
DOI:https://doi.org/10.25972/OPUS-17689
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Exziton-Polariton; Bose-Einstein-Kondensation; Spektroskopie
Tag:Polariton-Laser
Release Date:2019/02/20
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International