The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 52
Back to Result List

Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?

Please always quote using this URN: urn:nbn:de:bvb:20-opus-132016
  • Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential 'win-win' scenario has not yet been assessed for tropical agroforestry landscapes. We measured above-and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227-362 Mg C ha\(^{-1}\) toManaging ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential 'win-win' scenario has not yet been assessed for tropical agroforestry landscapes. We measured above-and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227-362 Mg C ha\(^{-1}\) to agroforests with 82-211 Mg C ha\(^{-1}\) showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Michael Kessler, Dietrich Hertel, Hermann F. Jungkunst, Jürgen Kluge, Stefan Abrahamczyk, Merijn Bos, Damayanti Buchori, Gerhard Gerold, S. Robbert Gradstein, Stefan Köhler, Christoph Leuschner, Gerald Moser, Ramadhanil Pitopang, Shahabuddin Saleh, Christian H. Schulze, Simone G. Sporn, Ingolf Steffan-Dewenter, Sri S. Tjitrosoedirdjo, Teja Tscharntke
URN:urn:nbn:de:bvb:20-opus-132016
Document Type:Journal article
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Language:English
Parent Title (English):PLoS One
Year of Completion:2012
Volume:7
Issue:10
Pagenumber:e47192
Source:PLoS One 7(10): e47192. doi:10.1371/journal.pone.0047192
DOI:https://doi.org/10.1371/journal.pone.0047192
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Tag:balance; conversion; diversity; forest soils; root; sequestration; stocks
Release Date:2017/01/12
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung