• search hit 3 of 5
Back to Result List

Adsorption-Induced Deformation of Nanoporous Materials — in-situ Dilatometry and Modeling

Adsorptionsinduzierte Deformation nanoporöser Materialien — in-situ Dilatometrie und Modellierung

Please always quote using this URN: urn:nbn:de:bvb:20-opus-157145
  • The goal of this work is to improve the understanding of adsorption-induced deformation in nanoporous (and in particular microporous) materials in order to explore its potential for material characterization and provide guidelines for related technical applications such as adsorption-driven actuation. For this purpose this work combines in-situ dilatometry measurements with in-depth modeling of the obtained adsorption-induced strains. A major advantage with respect to previous studies is the combination of the dilatometric setup and aThe goal of this work is to improve the understanding of adsorption-induced deformation in nanoporous (and in particular microporous) materials in order to explore its potential for material characterization and provide guidelines for related technical applications such as adsorption-driven actuation. For this purpose this work combines in-situ dilatometry measurements with in-depth modeling of the obtained adsorption-induced strains. A major advantage with respect to previous studies is the combination of the dilatometric setup and a commercial sorption instrument resulting in high quality adsorption and strain isotherms. The considered model materials are (activated and thermally annealed) carbon xerogels, a sintered silica aerogel, a sintered hierarchical structured porous silica and binderless zeolites of type LTA and FAU; this selection covers micro-, meso- and macroporous as well as ordered and disordered model materials. All sample materials were characterized by scanning electron microscopy, gas adsorption and sound velocity measurements. In-situ dilatometry measurements on mesoporous model materials were performed for the adsorption of N2 at 77 K, while microporous model materials were also investigated for CO2 adsorption at 273 K, Ar adsorption at 77 K and H2O adsorption at 298 K. Within this work the available in-situ dilatometry setup was revised to improve resolution and reproducibility of measurements of small strains at low relative pressures, which are of particular relevance for microporous materials. The obtained experimental adsorption and strain isotherms of the hierarchical structured porous silica and a micro-macroporous carbon xerogel were quantitatively analyzed based on the adsorption stress model; this approach, originally proposed by Ravikovitch and Neimark, was extended for anisotropic pore geometries within this work. While the adsorption in silica mesopores could be well described by the classical and analytical theory of Derjaguin, Broekhoff and de Boer, the adsorption in carbon micropores required for comprehensive nonlocal density functional theory calculations. To connect adsorption-induced stresses and strains, furthermore mechanical models for the respective model materials were derived. The resulting theoretical framework of adsorption, adsorption stress and mechanical model was applied to the experimental data yielding structural and mechanical information about the model materials investigated, i.e., pore size or pore size distribution, respectively, and mechanical moduli of the porous matrix and the nonporous solid skeleton. The derived structural and mechanical properties of the model materials were found to be consistent with independent measurements and/or literature values. Noteworthy, the proposed extension of the adsorption stress model proved to be crucial for the correct description of the experimental data. Furthermore, it could be shown that the adsorption-induced deformation of disordered mesoporous aero-/xerogel structures follows qualitatively the same mechanisms obtained for the ordered hierarchical structured porous silica. However, respective quantitative modeling proved to be challenging due to the ill-shaped pore geometry of aero-/xerogels; good agreement between model and experiment could only be achieved for the filled pore regime of the adsorption isotherm and the relative pressure range of monolayer formation. In the intermediate regime of multilayer formation a more complex model than the one proposed here is required to correctly describe stress related to the curved adsorbate-adsorptive interface. Notably, for micro-mesoporous carbon xerogels it could be shown that micro- and mesopore related strain mechanisms superimpose one another. The strain isotherms of the zeolites were only qualitatively evaluated. The result for the FAU type zeolite is in good agreement with other experiments reported in literature and the theoretical understanding derived from the adsorption stress model. On the contrary, the strain isotherm of the LTA type zeolite is rather exceptional as it shows monotonic expansion over the whole relative pressure range. Qualitatively this type of strain isotherm can also be explained by the adsorption stress model, but a respective quantitative analysis is beyond the scope of this work. In summary, the analysis of the model materials' adsorption-induced strains proved to be a suitable tool to obtain information on their structural and mechanical properties including the stiffness of the nonporous solid skeleton. Investigations on the carbon xerogels modified by activation and thermal annealing revealed that adsorption-induced deformation is particularly suited to analyze even small changes of carbon micropore structures.show moreshow less
  • Ziel dieser Arbeit ist es, dass Verständnis der adsorptionsinduzierter Deformation von nanoporösen (insbesondere mikroporösen) Materialien zu erweitern, um ihr Potenzial für die Materialcharakterisierung zu erforschen. Zusätzlich sollen Orientierungshilfen für technische Anwendungen, wie z.B. adsorptionsgetriebene Aktuatoren, bereitgestellt werden. Hierfür kombiniert diese Arbeit in-situ Dilatometriemessungen und detaillierte Modellierung der gemessenen adsorptionsinduzierten Dehnungen. Der wesentliche Vorteil dieser Arbeit gegenüber vorherigenZiel dieser Arbeit ist es, dass Verständnis der adsorptionsinduzierter Deformation von nanoporösen (insbesondere mikroporösen) Materialien zu erweitern, um ihr Potenzial für die Materialcharakterisierung zu erforschen. Zusätzlich sollen Orientierungshilfen für technische Anwendungen, wie z.B. adsorptionsgetriebene Aktuatoren, bereitgestellt werden. Hierfür kombiniert diese Arbeit in-situ Dilatometriemessungen und detaillierte Modellierung der gemessenen adsorptionsinduzierten Dehnungen. Der wesentliche Vorteil dieser Arbeit gegenüber vorherigen Studien ist die Kombination des dilatometrischen Messaufbaus mit einer kommerziellen Gasadsorptionsanlage, was die Messung qualitativ hochwertiger Adsorptions- und Dehnungsisothermen erlaubt. Die betrachteten Materialsysteme sind (aktivierte und geglühte) Kohlenstoffxerogele, ein gesintertes Silica-Aerogel, ein gesintertes, hierarchisch strukturiertes, poröses Silica und binderlose Zeolithe der Typen LTA und FAU. Diese Auswahl umfasst mikro-, meso- und makroporöse ebenso wie geordnete und ungeordnete Modellmaterialien. Alle Modellmaterialien wurden mit Rasterelektronenmikroskopie, Gasadsorption und Schallgeschwindigkeitsmessungen charakterisiert. In-situ Dilatometriemessungen an mesoporösen Modellsystemen wurden für N2-Adsorption bei 77 K durchgeführt, während alle mikroporösen Modellsysteme zusätzlich bei CO2-Adsorption (273 K), Ar-Adsorption (77 K) und H2O-Adsorption (298 K) untersucht wurden. Der verfügbare Messaufbau für in-situ Dilatometrie wurde im Rahmen dieser Arbeit weiterentwickelt, um Auflösung und Reproduzierbarkeit der Messungen von kleinen Dehnungen zu verbessern, was insbesondere für mikroporöse Materialien von Bedeutung ist. Die experimentellen Adsorptions- und Dehnungsisothermen des hierarchisch strukturierten, porösen Silicas und des mikro-makroporösen Kohlenstoff-Xerogels wurden mit dem adsorption-stress-Modell quantitativ ausgewertet. Hierfür wurde das adsorption-stress-Modell, ursprünglich eingeführt von Ravikovitch et al., für die Verwendung von anisotropen Porengeometrien erweitert. Während die der Deformation zu Grunde liegende Adsorption im Fall des mesoporösen Silicas gut mit der klassischen und analytischen Theorie von Derjaguin, Broekhoff und de Boer beschrieben werden konnte, erforderte die Adsorption in den Kohlenstoffmikroporen umfassende Berechnungen mittels nichtlokaler Dichtefunktionaltheorie. Um die adsorptionsinduzierten Spannungen mit entsprechenden Dehnungen zu korrelieren, wurden zusätzlich mechanische Modelle für die untersuchten Materialien entworfen. Das resultierende theoretische Konstrukt aus Adsorptions-, adsorption-stress- und mechanischem Modell wurde auf die ermittelten experimentellen Daten angewandt und strukturelle und mechanische Eigenschaften der Modellmaterialien bestimmt, d.h. Porengröße bzw. Porengrößenverteilung sowie die mechanischen Module der porösen Matrix und des unporösen Festkörperskeletts. Es konnte gezeigt werden, dass die ermittelten Materialeigenschaften konsistent mit unabhängigen Messungen und/oder Literaturwerten sind. Hierbei ist zu beachten, dass sich die Erweiterung des adsorption-stress-Modells für eine korrekte Auswertung der experimentellen Daten als zwingend erforderlich erwies. Des Weiteren konnte gezeigt werden, dass die adsorptionsinduzierte Deformation von ungeordneten mesoporösen Aero-/Xerogelstrukturen qualitativ denselben Mechanismen folgt, die für das geordnete, hierarchisch strukturierte, poröse Silica identifiziert wurden. Die entsprechende quantitative Modellierung erwies sich allerdings als schwierig, da die Poren in Aero-/Xerogelstrukturen geometrisch schlecht zu fassen sind. Gute Übereinstimmung zwischen Modell und Experiment konnte nur für das Stadium gefüllter Poren und den relativen Druckbereich der Monolagenbildung erzielt werden. Der Zwischenbereich der Multilagenadsorption erfordert ein komplexeres Modell, um die Spannung quantitativ korrekt zu beschreiben, die sich auf Grund der gekrümmten Adsorbat-Adsorptiv-Grenzfläche im Material ausbildet. Mit Hinblick auf mikro-mesoporöse Kohlenstoffxerogele konnte gezeigt werden, dass sich dort Deformationsmechanismen von Mikro- und Mesoporen überlagern. Die Dehnungsisothermen der Zeolithe wurden nur qualitativ ausgewertet. Das Ergebnis für den Zeolithen vom Typ FAU stimmt gut mit anderen in der Literatur beschriebenen Experimenten und dem theoretischen Verständnis überein, das sich aus dem adsorption-stress-Modell ergibt. Im Gegensatz dazu ist die gemessene Dehnungsisotherme des Zeolithen vom Typ LTA eher ungewöhnlich, da sie monotone Expansion des LTA-Zeolithen über den gesamten Druckbereich zeigt. Qualitativ kann dieses Ergebnis ebenfals mit dem adsorption-stress-Modell erklärt werden, aber eine detaillierte, quantitative Analyse übersteigt den Rahmen dieser Arbeit. Insgesamt erweist sich die Analyse der adsorptionsinduzierten Dehnungen der Modellmaterialien als geeignetes Mittel, um Informationen über deren strukturelle und mechanische Eigenschaften zu erlangen, was auch die Steifigkeit des unporösen Festkörperskeletts miteinschließt. Desweiteren zeigen Untersuchungen an aktivierten und geglühten Kohlenstoffxerogelen, dass adsorptionsinduzierte Deformation insbesondere geeignet ist, um kleine Änderungen an Mikroporenstrukturen zu analysieren.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Christian BalzerORCiD
URN:urn:nbn:de:bvb:20-opus-157145
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Vladimir Dyakonov, Prof. Dr. Oskar Paris
Date of final exam:2017/10/27
Language:English
Year of Completion:2018
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Nanoporöser Stoff; Adsorption; Deformation; Dilatometrie
Tag:adsorption; adsorption-induced deformation; deformation; density functional theory; dilatometer; modeling; nanostructured
PACS-Classification:80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY
Release Date:2018/02/02
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International