• search hit 7 of 22
Back to Result List

Spatial and temporal patterns of crop yield and marginal land in the Aral Sea Basin: derivation by combining multi-scale and multi-temporal remote sensing data with alight use efficiency model

Räumliche und zeitliche Muster von Erntemengen und marginalem Land im Aralseebecken: Erfassung durch die Kombination von multiskaligen und multitemporalen Fernerkundungsdaten mit einem Lichtnutzungseffizienzmodell

Please always quote using this URN: urn:nbn:de:bvb:20-opus-87939
  • Irrigated agriculture in the Khorezm region in the arid inner Aral Sea Basin faces enormous challenges due to a legacy of cotton monoculture and non-sustainable water use. Regional crop growth monitoring and yield estimation continuously gain in importance, especially with regard to climate change and food security issues. Remote sensing is the ideal tool for regional-scale analysis, especially in regions where ground-truth data collection is difficult and data availability is scarce. New satellite systems promise higher spatial and temporalIrrigated agriculture in the Khorezm region in the arid inner Aral Sea Basin faces enormous challenges due to a legacy of cotton monoculture and non-sustainable water use. Regional crop growth monitoring and yield estimation continuously gain in importance, especially with regard to climate change and food security issues. Remote sensing is the ideal tool for regional-scale analysis, especially in regions where ground-truth data collection is difficult and data availability is scarce. New satellite systems promise higher spatial and temporal resolutions. So-called light use efficiency (LUE) models are based on the fraction of photosynthetic active radiation absorbed by vegetation (FPAR), a biophysical parameter that can be derived from satellite measurements. The general objective of this thesis was to use satellite data, in conjunction with an adapted LUE model, for inferring crop yield of cotton and rice at field (6.5 m) and regional (250 m) scale for multiple years (2003-2009), in order to assess crop yield variations in the study area. Intensive field measurements of FPAR were conducted in the Khorezm region during the growing season 2009. RapidEye imagery was acquired approximately bi-weekly during this time. The normalized difference vegetation index (NDVI) was calculated for all images. Linear regression between image-based NDVI and field-based FPAR was conducted. The analyses resulted in high correlations, and the resulting regression equations were used to generate time series of FPAR at the RapidEye level. RapidEye-based FPAR was subsequently aggregated to the MODIS scale and used to validate the existing MODIS FPAR product. This step was carried out to evaluate the applicability of MODIS FPAR for regional vegetation monitoring. The validation revealed that the MODIS product generally overestimates RapidEye FPAR by about 6 to 15 %. Mixture of crop types was found to be a problem at the 1 km scale, but less severe at the 250 m scale. Consequently, high resolution FPAR was used to calibrate 8-day, 250 m MODIS NDVI data, this time by linear regression of RapidEye-based FPAR against MODIS-based NDVI. The established FPAR datasets, for both RapidEye and MODIS, were subsequently assimilated into a LUE model as the driving variable. This model operated at both satellite scales, and both required an estimation of further parameters like the photosynthetic active radiation (PAR) or the actual light use efficiency (LUEact). The latter is influenced by crop stress factors like temperature or water stress, which were taken account of in the model. Water stress was especially important, and calculated via the ratio of the actual (ETact) to the potential, crop-specific evapotranspiration (ETc). Results showed that water stress typically occurred between the beginning of May and mid-September and beginning of May and end of July for cotton and rice crops, respectively. The mean water stress showed only minor differences between years. Exceptions occurred in 2008 and 2009, where the mean water stress was higher and lower, respectively. In 2008, this was likely caused by generally reduced water availability in the whole region. Model estimations were evaluated using field-based harvest information (RapidEye) and statistical information at district level (MODIS). The results showed that the model at both the RapidEye and the MODIS scale can estimate regional crop yield with acceptable accuracy. The RMSE for the RapidEye scale amounted to 29.1 % for cotton and 30.4 % for rice, respectively. At the MODIS scale, depending on the year and evaluated at Oblast level, the RMSE ranged from 10.5 % to 23.8 % for cotton and from -0.4 % to -19.4 % for rice. Altogether, the RapidEye scale model slightly underestimated cotton (bias = 0.22) and rice yield (bias = 0.11). The MODIS-scale model, on the other hand, also underestimated official rice yield (bias from 0.01 to 0.87), but overestimated official cotton yield (bias from -0.28 to -0.6). Evaluation of the MODIS scale revealed that predictions were very accurate for some districts, but less for others. The produced crop yield maps indicated that crop yield generally decreases with distance to the river. The lowest yields can be found in the southern districts, close to the desert. From a temporal point of view, there were areas characterized by low crop yields over the span of the seven years investigated. The study at hand showed that light use efficiency-based modeling, based on remote sensing data, is a viable way for regional crop yield prediction. The found accuracies were good within the boundaries of related research. From a methodological viewpoint, the work carried out made several improvements to the existing LUE models reported in the literature, e.g. the calibration of FPAR for the study region using in situ and high resolution RapidEye imagery and the incorporation of crop-specific water stress in the calculation.show moreshow less
  • Die vorliegende Arbeit beschäftigt sich mit der Modellierung regionaler Erntemengen von Baumwolle und Reis in der usbekischen Region Khorezm, einem Bewässerungsgebiet das geprägt ist von langjähriger Baumwoll-Monokultur und nicht-nachhaltiger Land- und Wassernutzung. Basis für die Methodik waren Satellitendaten, die durch ihre großflächige Abdeckung und Objektivität einen enormen Vorteil in solch datenarmen und schwer zugänglichen Regionen darstellen. Bei dem verwendeten Modell handelt es sich um ein sog. Lichtnutzungseffizienz-Modell (imDie vorliegende Arbeit beschäftigt sich mit der Modellierung regionaler Erntemengen von Baumwolle und Reis in der usbekischen Region Khorezm, einem Bewässerungsgebiet das geprägt ist von langjähriger Baumwoll-Monokultur und nicht-nachhaltiger Land- und Wassernutzung. Basis für die Methodik waren Satellitendaten, die durch ihre großflächige Abdeckung und Objektivität einen enormen Vorteil in solch datenarmen und schwer zugänglichen Regionen darstellen. Bei dem verwendeten Modell handelt es sich um ein sog. Lichtnutzungseffizienz-Modell (im Englischen Light Use Efficiency [LUE] Model), das auf dem Anteil der photosynthetisch aktiven Strahlung basiert, welcher von Pflanzen für das Wachstum aufgenommen wird (Fraction of Photosynthetic Active Radiation, FPAR). Dieser Parameter kann aus Satellitendaten abgeleitet werden. Das allgemeine Ziel der vorliegenden Arbeit war die Nutzung von Satellitendaten für die Ableitung der Erntemengen von Baumwolle und Reis. Dazu wurde ein Modell entwickelt, das sowohl auf der Feldebene (Auflösung von 6,5 m) als auch auf der regionalen Ebene (Auflösung von 250 m) operieren kann. Während die Ableitung der Erntemengen auf der Feldebene nur für ein Jahr erfolgte (2009), wurden sie auf der regionalen Ebene für den Zeitraum 2003 bis 2009 modelliert. Intensive Feldmessungen von FPAR wurden im Studiengebiet während der Wachstumssaison 2009 durchgeführt. Parallel dazu wurden RapidEye-Daten in ca. zweiwöchentlichem Abstand aufgezeichnet. Aus den RapidEye-Daten wurde der Normalized Difference Vegetation Index (NDVI) berechnet, der anschließend mit den im Feld gemessenen FPAR-Werten korreliert wurde. Die entstandenen Regressionsgleichungen wurden benutzt um Zeitserien von FPAR auf RapidEye-Niveau zu erstellen. Anschließend wurden diese Zeitserien auf die MODIS-Skala aggregiert um damit das MODIS FPAR-Produkt zu validieren (1 km), bzw. eine Kalibrierung des 8-tägigen 250 m NDVI-Datensatzes vorzunehmen. Der erste Schritt zeigte dass das MODIS-Produkt im Allgemeinen die RapidEye-basierten FPAR-Werte um 6 bis 15 % überschätzt. Aufgrund der besseren Auflösung wurde das kalibrierte 250 m FPAR-Produkt für die weitere Modellierung verwendet. Für die eigentliche Modellierung wurden neben den FPAR-Eingangsdaten noch weitere Daten und Parameter benötigt. Dazu gehörte z.B. die tatsächliche Lichtnutzungseffizienz (LUEact), welche von Temperatur- und Wasserstress beeinflusst wird. Wasserstress wurde berechnet aus dem Verhältnis von tatsächlicher (ETact) zu potentieller, feldfruchtspezifischer Evapotranspiration (ETc), die beide aus einer Kombination von Satelliten- und Wetterdaten abgeleitet wurden. Der durchschnittliche Wasserstress schwankte nur geringfügig von Jahr zu Jahr, mit Ausnahmen in den Jahren 2008 und 2009. Die Modellschätzungen wurden durch feldbasierte Ernteinformationen (RapidEye-Ebene) sowie regionale statistische Daten (MODIS-Ebene) evaluiert. Die Ergebnisse zeigten, dass beide Modellskalen regionale Ernteerträge mit guter Genauigkeit nachbilden können. Der Fehler für das RapidEye-basierte Modell betrug 29,1 % für Baumwolle und 30,4 % für Reis. Die Genauigkeiten für das MODIS-basierte Modell variierten, in Abhängigkeit des betrachteten Jahres, zwischen 10,5 % und 23,8 % für Baumwolle und zwischen -0,4 % und -19,4 % für Reis. Insgesamt gab es eine leichte Unterschätzung der Baumwoll- (Bias = 0,22) und Reisernte (Bias = 0,11) seitens des RapidEye-Modells. Das MODIS-Modell hingegen unterschätzte zwar auch die (offizielle) Reisernte (mit einem Bias zwischen 0,01 und 0,87), überschätzte jedoch die offiziellen Erntemengen für die Baumwolle (Bias zwischen -0,28 und -0,6). Die Evaluierung der MODIS-Skala zeigte dass die Genauigkeiten extrem zwischen den verschiedenen Distrikten schwankten. Die erstellten Erntekarten zeigten dass Erntemengen grundsätzlich mit der Distanz zum Fluss abnehmen. Die niedrigsten Erntemengen traten in den südlichsten Distrikten auf, in der Nähe der Wüste. Betrachtet man die Ergebnisse schließlich über die Zeit hinweg, gab es Gebiete die über den gesamten Zeitraum von sieben Jahren stets von niedrigen Erntemengen gekennzeichnet waren. Die vorliegende Studie zeigt, dass satellitenbasierte Lichtnutzungseffizienzmodelle ein geeignetes Werkzeug für die Ableitung und die Analyse regionaler Erntemengen in zentralasiatischen Bewässerungsregionen darstellen. Verglichen mit verwandten Studien stellten sich die ermittelten Genauigkeiten sowohl auf der RapidEye- als auch auf der MODIS-Skala als gut dar. Vom methodischen Standpunkt aus gesehen ergänzte diese Arbeit vorhanden LUE-Modelle um einige Neuerungen und Verbesserungen, wie z.B. die Validierung und Kalibrierung von FPAR für die Studienregion mittels Feld- und hochaufgelösten RapidEye-Daten und dem Einbezug von feldfrucht-spezifischem Wasserstress in die Modellierung.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Sebastian Fritsch
URN:urn:nbn:de:bvb:20-opus-87939
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Philosophische Fakultät (Histor., philolog., Kultur- und geograph. Wissensch.)
Faculties:Philosophische Fakultät (Histor., philolog., Kultur- und geograph. Wissensch.) / Institut für Geographie und Geologie
Date of final exam:2013/05/08
Language:English
Year of Completion:2013
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
GND Keyword:Fernerkundung; Modellierung; Ernte; Baumwollpflanze; Reis; Satellit; Erdbeobachtung
Tag:crop yield; irrigation; light use efficiency; modeling; remote sensing
Release Date:2015/06/12
Advisor:Prof. Christopher Conrad
Licence (German):License LogoDeutsches Urheberrecht