• search hit 3 of 4
Back to Result List

Fast self-navigated wall shear stress measurements in the murine aortic archusing radial 4D-phase contrast cardiovascular magnetic resonance at 17.6 T

Please always quote using this URN: urn:nbn:de:bvb:20-opus-201120
  • Purpose 4D flow cardiovascular magnetic resonance (CMR) and the assessment of wall shear stress (WSS) are non-invasive tools to study cardiovascular risks in vivo. Major limitations of conventional triggered methods are the long measurement times needed for high-resolution data sets and the necessity of stable electrocardiographic (ECG) triggering. In this work an ECG-free retrospectively synchronized method is presented that enables accelerated high-resolution measurements of 4D flow and WSS in the aortic arch of mice. Methods 4D flow andPurpose 4D flow cardiovascular magnetic resonance (CMR) and the assessment of wall shear stress (WSS) are non-invasive tools to study cardiovascular risks in vivo. Major limitations of conventional triggered methods are the long measurement times needed for high-resolution data sets and the necessity of stable electrocardiographic (ECG) triggering. In this work an ECG-free retrospectively synchronized method is presented that enables accelerated high-resolution measurements of 4D flow and WSS in the aortic arch of mice. Methods 4D flow and WSS were measured in the aortic arch of 12-week-old wildtype C57BL/6 J mice (n = 7) with a radial 4D-phase-contrast (PC)-CMR sequence, which was validated in a flow phantom. Cardiac and respiratory motion signals were extracted from the radial CMR signal and were used for the reconstruction of 4D-flow data. Rigid motion correction and a first order B0 correction was used to improve the robustness of magnitude and velocity data. The aortic lumen was segmented semi-automatically. Temporally averaged and time-resolved WSS and oscillatory shear index (OSI) were calculated from the spatial velocity gradients at the lumen surface at 14 locations along the aortic arch. Reproducibility was tested in 3 animals and the influence of subsampling was investigated. Results Volume flow, cross-sectional areas, WSS and the OSI were determined in a measurement time of only 32 min. Longitudinal and circumferential WSS and radial stress were assessed at 14 analysis planes along the aortic arch. The average longitudinal, circumferential and radial stress values were 1.52 ± 0.29 N/m2, 0.28 ± 0.24 N/m2 and − 0.21 ± 0.19 N/m2, respectively. Good reproducibility of WSS values was observed. Conclusion This work presents a robust measurement of 4D flow and WSS in mice without the need of ECG trigger signals. The retrospective approach provides fast flow quantification within 35 min and a flexible reconstruction framework.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Patrick Winter, Kristina Andelovic, Thomas Kampf, Fabian Tobias Gutjahr, Julius Heidenreich, Alma Zernecke, Wolfgang Rudolf Bauer, Peter Michael Jakob, Volker Herold
URN:urn:nbn:de:bvb:20-opus-201120
Document Type:Journal article
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Medizinische Fakultät / Medizinische Klinik und Poliklinik I
Language:English
Parent Title (English):Journal of Cardiovascular Magnetic Resonance
Year of Completion:2019
Volume:21
Pagenumber:64
Source:Journal of Cardiovascular Magnetic Resonance (2019) 21:64. https://doi.org/10.1186/s12968-019-0566-z
DOI:https://doi.org/10.1186/s12968-019-0566-z
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:4D flow; Aortic arch; Mouse; OSI; Self-navigation; WSS
Release Date:2020/05/11
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2019
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International