• search hit 4 of 5
Back to Result List

Rezeptor-Rezeptor-Interaktion ß-adrenerger Rezeptoren

Receptor-Receptor Interaction of ß-adrenergic Receptors

Please always quote using this URN: urn:nbn:de:bvb:20-opus-39712
  • Viele Membranrezeptoren liegen als über Disulfidbrücken-verbundene Dimere vor. Ein Nachweis der Dimerisierung ist in diesen Fällen methodisch klar und einfach zu erbringen. Für die meisten G-Protein-gekoppelten Rezeptoren dagegen ist weder die Existenz von Di- oder Oligomeren noch deren Funktion eindeutig belegt. Meist wurden Methoden wie Coimmunopräzipitation und Resonanz-Energie-Transfer-Verfahren wie BRET oder FRET verwendet, um Protein-Protein-Interaktionen zu untersuchen. Trotz ihrer hohen Sensitivität besitzen diese Methoden einigeViele Membranrezeptoren liegen als über Disulfidbrücken-verbundene Dimere vor. Ein Nachweis der Dimerisierung ist in diesen Fällen methodisch klar und einfach zu erbringen. Für die meisten G-Protein-gekoppelten Rezeptoren dagegen ist weder die Existenz von Di- oder Oligomeren noch deren Funktion eindeutig belegt. Meist wurden Methoden wie Coimmunopräzipitation und Resonanz-Energie-Transfer-Verfahren wie BRET oder FRET verwendet, um Protein-Protein-Interaktionen zu untersuchen. Trotz ihrer hohen Sensitivität besitzen diese Methoden einige Grenzen und können je nach experimentellem Ansatz und Verwendung verschiedener Kontrollen, unterschiedliche Ergebnisse hinsichtlich des Vorliegens einer Protein-Protein-Interaktion liefern. Weder die Stabilität der Interaktion, noch die Fraktion der interagierenden Proteine kann mittels Resonanz-Energie-Transfer-Assays zuverlässig ermittelt werden. Auch die Größe der Komplexe ist nicht oder nur technisch aufwendig bestimmbar. Deshalb wurde in dieser Arbeit eine neue, unabhängige Methode entwickelt, um Rezeptor-Rezeptor-Interaktionen in lebenden Zellen genauer untersuchen zu können. Diese auf „Fluorescence Recovery after Photobleaching“ basierende Mikroskopie-Methode erlaubt die Mobilität von Proteinen zu bestimmen. Um Homointeraktionen zwischen Proteinen messen zu können, müssen zwei Protein-Fraktionen mit unterschiedlicher Mobilität vorliegen. Deshalb wurde eine Rezeptor-Fraktion extrazellulär mit YFP markiert und mit Hilfe polyklonaler Antikörper gegen YFP spezifisch immobilisiert. Die andere Rezeptorfraktion wurde intrazellulär mit CFP oder Cerulean markiert und wurde deshalb nicht von extrazellulären Antikörpern erkannt. So konnten mittels Zwei-Farben-FRAP potenzielle Interaktionen zwischen den immobilisierten extrazellulär-markierten Rezeptoren und den intrazellulär-markierten Rezeptoren durch eine Mobilitätsänderung letzterer detektiert werden. Diese Methode wurde mittels eines monomeren (CD86) und kovalent dimeren (CD28) Rezeptors validiert. Es zeigte sich, dass eine spezifische Immobilisierung extrazellulär-markierter Proteine nur durch polyklonale, nicht aber durch monoklonale Antikörper gegen YFP erreicht werden konnte. Intrazellulär-markierte Proteine wurden hierbei in ihrer Mobilität nicht durch die extrazellulären Antikörper beeinflusst. Bei Immobilisierung des extrazellulär-markierten CD86 war das coexprimierte, intrazellulär-markierte CD86-CFP weiterhin voll mobil. Außerdem zeigte das Monomer CD86 eine vom relativen CFP-YFP-Expressionsverhältnis unabhängige Mobilität. Dieses Ergebnis ließ den Schluss zu, dass extra- und intrazellulär-markiertes CD86 nicht miteinander interagieren und als Monomer vorliegen. Die Mobilität des kovalenten Dimers CD28 war dagegen abhängig vom CFP–YFP-Expressionsverhältnis und stimmte gut mit theoretisch erwarteten Werten für ein Dimer überein. Die Anwendung der Zwei-Farben-Methode zur Untersuchung von Interaktionen zwischen ß1- und ß2-adrenergen Rezeptoren zeigte Unterschiede zwischen beiden Rezeptor-Subtypen. ß1-AR zeigte eine spezifische transiente Interaktion, ß2-AR dagegen lagen als stabile Oligomere höherer Ordnung vor. Die transiente Interaktion zwischen ß1-AR und die stabile Oligomerisierung von ß2-AR wurde nicht nur in HEK 293T-Zellen sondern auch in neonatalen Rattenkardiomyozyten und bei 37 °C beobachtet. Ferner hatte der Aktivierungszustand des jeweiligen Rezeptors keinen Einfluß auf das Ausmaß der Interaktion. Zwischen ß1- und ß2-AR wurde nur eine sehr schwache und instabile Heterointeraktion mittels der Zwei-Farben-FRAP-Methode beobachtet. Um zu überprüfen, ob eine direkte Interaktion zwischen den adrenergen Rezeptoren vorliegt, wurde die BRET-Methode verwendet. Mittels BRET wurde eine direkte Interaktion zwischen ß2-AR festgestellt, jedoch konnte nicht zwischen Dimeren und Oligomeren höherer Ordnung unterschieden werden. Bei ß1-AR fand bei höheren YFP-Rluc-Expressionsverhältnissen ein spezifischer Energietransfer statt. Bei niedrigeren Expressionsverhältnissen lag das Signal jedoch im unspezifischen Bereich. Auch bei Untersuchung der Heterointeraktion zwischen ß1- und ß2-AR konnte keine klare Aussage über eine spezifische Interaktion zwischen beiden Rezeptor-Subtypen getroffen werden.show moreshow less
  • Many membrane receptors exist as disulfide-bond dimers. In these cases dimerization is methodological clearly and easily provable. However, for most G-protein coupled receptors the postulated existence of di- or oligomerization nor their function is definitely demonstrated. Mostly, methods like co-immunoprecipitation and resonance energy transfer techniques like BRET and FRET were used to investigate protein-protein interactions. Despite their high sensitivity these methods have some limits and reveal sometimes distinct results regarding theMany membrane receptors exist as disulfide-bond dimers. In these cases dimerization is methodological clearly and easily provable. However, for most G-protein coupled receptors the postulated existence of di- or oligomerization nor their function is definitely demonstrated. Mostly, methods like co-immunoprecipitation and resonance energy transfer techniques like BRET and FRET were used to investigate protein-protein interactions. Despite their high sensitivity these methods have some limits and reveal sometimes distinct results regarding the occurrence of a protein-protein interaction depending on experimental approach and use of different controls. Neither the stability of the interaction nor the fraction of interacting proteins are determinable using resonance energy transfer assays. Furthermore the size of complexes is not or only technically difficult determinable. Therefore in this work a novel independent approach was developed to allow a more detailed investigation of receptor-receptor interactions in living cells. This method based on fluorescence recovery after photobleaching microscopy allows to determine the mobility of proteins. In order to measure homo-interactions between proteins two protein fractions with different mobility have to be distinguishable. Therefore one receptor fraction was extracellularly tagged with YFP and specifically immobilized using polyclonal antibodies against YFP. The other receptor fraction was intracellularly labeled with CFP or Cerulean and therefore not recognized by the extracellular antibodies. In this way using dual-color FRAP potential interactions between immobilized extracellularly-tagged receptors and intracellularly-tagged receptors were detectable due to a change of mobility of the latter. This method was validated using monomeric (CD86) and covalent dimeric (CD28) receptors. A specific immobilization of extracellularly-tagged proteins was achievable only by using polyclonal but not monoclonal antibodies against YFP. Intracellularly tagged proteins were not influenced in their mobility by extracellular antibodies. After immobilization of the extracellularly-labeled CD86 the coexpressed intracellularly-tagged CD86-CFP was still fully mobile. Furthermore the monomeric CD86 showed a relative CFP–YFP expression ratio independent mobility. This result led to the conclusion that extra- and intracellularly labeled CD86 did not interact with each other and exist as a monomer. The mobility of the covalent dimer CD28 however was depending on the relative CFP-YFP expression ratio and was in good agreement with theoretically expected values for a dimer. The application of the dual-color FRAP approach for the investigation of interactions between ß1- and ß2-adrenergic receptors showed differences between both receptor subtypes. ß1-AR exhibited a specific transient interaction, however ß2-AR existed as stable higher order oligomers. The transient interaction between ß1-AR and the stable higher order oligomerization of ß2-AR were not only observed in HEK 293T cells but also in neonatal rat cardiac myocytes and at 37°C. Furthermore the activation state of the respective receptor had no influence on the extent of the interaction. Between ß1- and ß2-AR only a weak and unstable hetero-interaction was observed using the dual-color FRAP approach. In order to control if a direct interaction between the adrenergic receptors is occurring the BRET method was applied. Using BRET a direct interaction between ß2-AR was observed, but it was not possible to distinguish between dimers and higher order oligomers. For ß1-AR a specific energy transfer occurred at higher YFP-Rluc expression ratios. At lower expression ratios the signal was in the unspecific range. Also the investigation of hetero-interactions between ß1- and ß2-AR revealed no clear conclusion about a specific interaction between both receptor subtypes.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Sandra Dorsch
URN:urn:nbn:de:bvb:20-opus-39712
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Medizinische Fakultät / Institut für Pharmakologie und Toxikologie
Date of final exam:2009/10/27
Language:German
Year of Completion:2009
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Dimerisierung
Tag:BRET; FRAP; GPCR; ß-adrenerge Rezeptoren
BRET; FRAP; GPCR; ß-adrenergic Receptors
Release Date:2009/11/04
Advisor:Prof. Moritz Bünemann