• search hit 1 of 16
Back to Result List

Die Rolle präsynaptischer Proteine Aktiver Zonen bei konditionierten Lernprozessen

The role of presynaptic active zone proteins in conditioned learning behaviour

Please always quote using this URN: urn:nbn:de:bvb:20-opus-169090
  • Synaptische Plastizität wird als Grundlage für Lern- und Gedächtnisprozesse in unserem Gehirn angesehen. Aktive Zonen (AZ) und ihre spezifischen Proteine modulieren diesen Prozess und bahnen essentielle Vorgänge der synaptischen Transmission. In dieser Arbeit wurden drei zentrale Proteine Aktiver Zonen - Bruchpilot, RIM (Rab3 interacting molecule) und Fife - untersucht und ihre Rolle bei konditionierten Lernprozessen in Drosophila melanogaster Larven geprüft. Hierzu wurde das etablierte Paradigma des larvalen appetitiven olfaktorischen LernensSynaptische Plastizität wird als Grundlage für Lern- und Gedächtnisprozesse in unserem Gehirn angesehen. Aktive Zonen (AZ) und ihre spezifischen Proteine modulieren diesen Prozess und bahnen essentielle Vorgänge der synaptischen Transmission. In dieser Arbeit wurden drei zentrale Proteine Aktiver Zonen - Bruchpilot, RIM (Rab3 interacting molecule) und Fife - untersucht und ihre Rolle bei konditionierten Lernprozessen in Drosophila melanogaster Larven geprüft. Hierzu wurde das etablierte Paradigma des larvalen appetitiven olfaktorischen Lernens genutzt, bei dem eine Gruppe von Larven lernt, einen Duft mit einem gustatorischen Verstärker zu koppeln. Durch die vielfältigen genetischen Manipulationsmöglichkeiten des Modellorganismus war es möglich, die Funktion der Proteine bei assoziativen Lernvorgängen selektiv zu betrachten. Bruchpilot wird für den funktionellen Aufbau Aktiver Zonen in Drosophila benötigt und ist wichtig für die Akkumulation von Calcium-Kanälen in der Nähe von AZ. Durch gentechnische Veränderungen dieses Proteins ließ sich jedoch keine Beeinträchtigung im olfaktorischen Lernverhalten von Drosophila Larven beobachten. RIM fungiert durch seine Interaktionsdomänen als Bindeglied zwischen verschiedensten Effektoren und hat Einfluss auf synaptische Plastizität. Es wurde gezeigt, dass eine Punktmutation in der C2A-Domäne von RIM beim Menschen gleichzeitig zur Retinadegeneration und zu einem gesteigert verbalen IQ (Intelligenzquotient) führt. Eine durch die hohe Homologie vergleichbare Mutation im Drosophila-Genom resultierte nicht in einem veränderten Phänotyp im olfaktorischen Lernen. Fife ist ein Protein, das für eine funktionsfähige Architektur von AZ und damit u.a. für den reibungslosen Vesikelverkehr zuständig ist. Es zeigte sich, dass dieses Protein auch synaptische Plastizität und Lernvorgänge beeinflusst. Die Ergebnisse der vorliegenden Arbeit sind ein Beitrag, um die Zusammenhänge der synaptischen Plastizität und die Funktion Aktiver Zonen Proteine besser begreifen zu können. Hervorzuheben dabei ist, dass die Bruchpilot- und RIM-Mutanten-Larven keinen veränderten Phänotyp, bzw. bei Fife nur teilweise einen eingeschränkten Phänotyp im olfaktorischen larvalen Lernen im Vergleich zu den Wildtyp-Kontrollen zeigten. Gleichwohl man früher schon signifikante strukturelle Veränderungen an Aktiven Zonen dieser Mutanten an der neuromuskulären Endplatte und auch Effekte auf das Verhalten in adulten Drosophila gefunden hat. Es wird entscheidend sein, den Zusammenhang zwischen Struktur und Funktion Aktiver Zonen Proteine weiter zu konkretisieren.show moreshow less
  • Synaptic plasticity is considered to be the basis for learning and memory in our brain. Active zones (AZ) and its proteins orchestrate this process and are crucial to synaptic transmission. This work focused on three essential AZ proteins - Bruchpilot, RIM (Rab3 interacting molecule) and Fife- and their role in conditioned learning behaviour in Drosophila melanogaster larvae. To do so the well-established appetitive olfactory learning paradigm was used, in which a group of larvae is trained to learn that a specific odour is linked to aSynaptic plasticity is considered to be the basis for learning and memory in our brain. Active zones (AZ) and its proteins orchestrate this process and are crucial to synaptic transmission. This work focused on three essential AZ proteins - Bruchpilot, RIM (Rab3 interacting molecule) and Fife- and their role in conditioned learning behaviour in Drosophila melanogaster larvae. To do so the well-established appetitive olfactory learning paradigm was used, in which a group of larvae is trained to learn that a specific odour is linked to a gustatory reinforcer. Due to the various genetic possibilities of Drosophila larvae it was possible to specifically study the function of each protein in associative learning behaviour. Bruchpilot is important for AZ structure in Drosophila and the accumulation of calcium channels in close proximity to active zones. Genetic manipulation of this protein did not impair olfactory learning in Drosophila larvae. Through its various interaction domains RIM connects with different molecular effectors and modulates synaptic plasticity. In Humans a point mutation in the C2A-domain of the protein leads to cone rod dystrophy and an elevated verbal IQ at the same time. A similar mutation in the Drosophila genome, thanks to the high genetic homologies, did not result in an altered phenotype. Fife is responsible for normal AZ architecture and also for efficient vesicle trafficking. It was shown that this protein modulates synaptic plasticity and learning processes. The results of this work contribute to a better understanding of synaptic plasticity and the function of active zone proteins. I would like to point out that Bruchpilot and RIM mutants did not show modified phenotypes in appetitive olfactory learning whereas Fife mutants were partially impaired in the tested paradigm compared to control groups. Although in previous works those mutants were found to cause structural changes at active zones in neuromuscular junctions and to affect learning behaviour in Drosophila adults. In future studies it will be crucial to determine the particular task and to specify the structure to function relationship of each AZ protein.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Sandra Gabi Jungbauer [geb. Ulzhöfer]
URN:urn:nbn:de:bvb:20-opus-169090
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Medizinische Fakultät
Faculties:Medizinische Fakultät / Physiologisches Institut
Referee:Prof. Dr. Manfred Heckmann
Date of final exam:2018/09/12
Language:German
Year of Completion:2018
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 571 Physiologie und verwandte Themen
GND Keyword:Plastizität
Tag:Aktive Zone; Drosophila melanogaster; Konditioniertes Lernen; Proteine
Release Date:2018/10/12
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International