• search hit 1 of 4
Back to Result List

Molekulare Mechanismen des protonengekoppelten Zuckertransportes in Mesophyllvakuolen von Arabidopsis thaliana

Molecular mechanism of the proton-coupled sugar transport in mesophyll vacuoles of Arabidopsis thaliana

Please always quote using this URN: urn:nbn:de:bvb:20-opus-85596
  • Im Rahmen dieser Arbeit konnten neue Erkenntnisse zum Zuckertransport über die Vakuolenmembran von Arabidopsis thaliana sowie dessen Energetisierung durch die V-ATPase erlangt werden. Hierfür wurden Patch-Clamp-Experimente konzipiert, die eine direkte Erfassung der Transportmechanismen, Transporteigenschaften sowie Triebkräfte des vakuolären Zuckertransportes ermöglichten. Zusätzlich wurden Lokalisations- und Interaktionsstudien zu ausgewählten Transportern mit Hilfe der konfokalen Laser Scanning Mikroskopie durchgeführt. Im Einzelnen wurdenIm Rahmen dieser Arbeit konnten neue Erkenntnisse zum Zuckertransport über die Vakuolenmembran von Arabidopsis thaliana sowie dessen Energetisierung durch die V-ATPase erlangt werden. Hierfür wurden Patch-Clamp-Experimente konzipiert, die eine direkte Erfassung der Transportmechanismen, Transporteigenschaften sowie Triebkräfte des vakuolären Zuckertransportes ermöglichten. Zusätzlich wurden Lokalisations- und Interaktionsstudien zu ausgewählten Transportern mit Hilfe der konfokalen Laser Scanning Mikroskopie durchgeführt. Im Einzelnen wurden folgende Aspekte hinsichtlich des pflanzlichen Zuckertransports und dessen Energetisierung bearbeitet. Mittels der Patch-Clamp-Technik konnten vakuoläre glucose- und saccharose-induzierte Protonen-Transportkapazitäten in Mesophyllvakuolen von Wildtyp-pflanzen aufgelöst werden, die eindeutig einen Antiportmechanismus für beide Zucker zur Beladung der Vakuole vorschlagen. Dabei zeigten die Glucose- und Saccharoseantiporter eine geringe Affinität und hohe Transportkapazität für den jeweiligen Zucker. Auf molekularer Ebene konnte die protonengekoppelte Glucose- und Saccharoseaufnahme in die Vakuolen maßgeblich dem putativen Monosaccharid¬transporter AtTMT1/2 zugeordnet werden, der folglich als erster Glucose-Saccharose/Protonen-Antiporter identifiziert wurde. Im Zuge dieser Untersuchungen wurden der Zucker- und der pH-Gradient als Triebkräfte der Zuckertransportaktivität herausgearbeitet. In diesem Zusammenhang konnte ferner ein Beitrag zur quan¬titativen Charakterisierung der V-ATPase geleistet werden, welche den Einfluss der V-ATPase aufgrund ihrer pH-abhängigen H+-Pumpaktivität auf die pH-Homöostase belegt. Demzufolge scheint die V-ATPase als pH-regulierter Energielieferant für die Zuckertransporter zu fungieren. Darüber hinaus wurde die mitogenaktivierte Proteinkinase AtVIK1 als potentieller Regulationsfaktor von AtTMT1 identifiziert. Dies gelang durch den Nachweis einer spezifischen physikalischen Interaktion zwischen AtTMT1 und AtVIK1 mittels der Bimolekularen Fluoreszenzkomplemen¬tation. Neben der AtTMT1/2-vermittelten Aufnahme der beiden Zucker Glucose und Saccharose wurde ebenso die Zuckerentlassung aus der Vakuole näher charakterisiert. Mit Hilfe vergleichender Patch-Clamp-Analysen von verschiedenen Zuckertransporter-Verlustmutanten konnte AtERDl6 als Glucose/Protonen-Symporter identifiziert werden, der sich für den Glucoseexport aus der Vakuole verantwortlich zeigt. In Bezug auf den Saccharosetransport aus der Vakuole konnte erstmals die Saccharose/Protonen-Symportfunktion von AtSUC4 in planta nach dessen transienter Überexpression in Zuckertransporter-Verlustmutanten eindeutig aufgelöst und nachgewiesen werden. Desweiteren offenbarten die hier erlangten Ergebnisse bezüglich der Glucose/Saccharose-Beladung und -Entladung von Mesophyllvakuolen, dass weitere protonengekoppelte Zuckertransporter, neben AtTMT1/2 and AtERDl6, in diesem Zelltyp existieren, deren molekulare Natur es jedoch noch gilt herauszufinden.show moreshow less
  • This work provides new insights into the sugar transport across the vacuolar membrane of Arabidopsis thaliana and its energization by the V-ATPase. For this, patch-clamp experiments were specifically designed enabling low-resolution current recordings for the direct detection and characterization of the transport mechanisms, transport properties and driving forces of the vacuolar sugar transport. In addition, localization and interaction studies on selected transporters have been performed by using the confocal laser scanning microscopy. InThis work provides new insights into the sugar transport across the vacuolar membrane of Arabidopsis thaliana and its energization by the V-ATPase. For this, patch-clamp experiments were specifically designed enabling low-resolution current recordings for the direct detection and characterization of the transport mechanisms, transport properties and driving forces of the vacuolar sugar transport. In addition, localization and interaction studies on selected transporters have been performed by using the confocal laser scanning microscopy. In particular, following aspects of plant sugar transport and its energization were studied. In patch-clamp experiments on mesophyll vacuoles of wild type plants, prominent glucose- and sucrose-induced proton transport capacities were resolved, which could be clearly related to an antiport mechanism used for loading the vacuole with both sugars. Thereby, the vacuolar glucose and sucrose antiporter showed a low-affinity and a high transport-capacity for the respective sugar. On the molecular level, the proton-coupled uptake of both sugars, glucose and sucrose, into the vacuole could be mainly associated with the putative monosaccharide transporter AtTMT1/2, which was consequently identified as the first glucose-sucrose/proton-antiporter. In the course of these studies, the sugar- and the pH-gradient were revealed as driving forces of the sugar transport activity. In this context, a contribution was made to a quantitative characterization of the V-ATPase that proved the influence of the V-ATPase on the pH homeostasis based on the pH dependency of the H+-pump activity. Hence, the V-ATPase seems to function as a pH-regulated energy source for the sugar transporters. Moreover, a specific physical interaction between AtTMT1 and the mitogen-activated protein kinase AtVIK1 was detected via bimolecular fluorescence complementation assays identifiying AtVIK1 as a potential regulatory factor of AtTMT1. Beside the AtTMT1/2-mediated glucose and sucrose uptake into the vacuole, the sugar release from the vacuole was also characterized. By means of comparative patch-clamp studies on mutants lacking different sugar transporters, AtERDl6 was identified as glucose/proton symporter and appears to be responsible for glucose export from the vacuole. Concerning the export of sucrose out of the vacuole, for the first time direct evidence for the sucrose/proton symport function of AtSUC4 in planta was provided after its transient overexpression in certain sugar-transporter knockout lines. Furthermore, the studies on wild type and sugar-transporter knockout lines regarding vacuolar glucose/sucrose loading and unloading also revealed that in addition to AtTMT1/2 and AtERDl6 further proton-coupled sugar transporters - of yet unknown molecular identity - must be present in mesophyll cells.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Alexander Schulz
URN:urn:nbn:de:bvb:20-opus-85596
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Date of final exam:2013/02/01
Language:German
Year of Completion:2012
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Ackerschmalwand; Vakuole; Saccharose; Glucose; Mesophyll; Protonenpumpe; Glucosetransport
Tag:Antiport; AtERDl6; AtSUC4; AtTMT1/2; Glucose/Saccharose Transport; Mesophyllvakuole; Symport; V-ATPase
AtERDl6; AtSUC4; AtTMT1/2; V-ATPase; antiport; glucose/sucrose transport; mesophyll vacuole; symport
Release Date:2014/02/10
Advisor:Prof. Rainer Hedrich
Licence (German):License LogoDeutsches Urheberrecht