• search hit 2 of 3
Back to Result List

Starke Korrelationen in Festkörpern : von lokalisierten zu itineranten Elektronen

Strong correlations in solids : from localized to itinerant electrons

Please always quote using this URN: urn:nbn:de:bvb:20-opus-36459
  • In dieser Arbeit wurden mittels winkelaufgelöster Photoemission verschiedene Verbindungen mit stark korrelierten Elektronen untersucht. Es wurde gezeigt, dass diese Technik einen direkten Zugang zu den niederenergetischen Wechselwirkungen bietet und dadurch wichtige Informationen über die Vielteilchenphysik dieser Systeme liefert. Die direkte Beobachtung der scharfen Quasiteilchenstrukturen in der Nähe der Fermikante ermöglichte insbesondere die genaue Betrachtung der folgenden Punkte: 1. Quantenphasenübergang: analog zu [27] wurde gezeigt,In dieser Arbeit wurden mittels winkelaufgelöster Photoemission verschiedene Verbindungen mit stark korrelierten Elektronen untersucht. Es wurde gezeigt, dass diese Technik einen direkten Zugang zu den niederenergetischen Wechselwirkungen bietet und dadurch wichtige Informationen über die Vielteilchenphysik dieser Systeme liefert. Die direkte Beobachtung der scharfen Quasiteilchenstrukturen in der Nähe der Fermikante ermöglichte insbesondere die genaue Betrachtung der folgenden Punkte: 1. Quantenphasenübergang: analog zu [27] wurde gezeigt, dass die hochaufgelöste PES Zugriff auf die lokale Energieskala TK bietet. Außerdem konnte im Rahmen eines störungstheoretischen Modells allgemein gezeigt werden, wie sich kleine RKKY-Störungen auf TK auswirken. Aus der experimentellen Entwicklung von TK(x) in CeCu6-xAux lassen sich mit Hilfe dieses Modells Rückschlüsse auf den Quantenphasenübergang bei T = 0 ziehen. 2. Kondogitter: mit Hilfe einer geordneten CePt5/Pt(111)-Oberflächenlegierung wurde demonstriert, dass mit ARPES Kondogittereffekte beobachtet werden können. Dazu zählen die Beobachtung von Hybridisierungsbandlücken und der starken Renormierung der Bandmassen in der Nähe von EF. Diese Effekte lassen sich, mit Hilfe unterschiedlicher Anregungsenergien und Messungen an einer isostrukturellen LaPt5-Schicht, eindeutig dem Resultat einer d f -Mischung der elektronischen Zustände zuweisen. Anhand von temperaturabhängigenMessungen konnte erstmals der Übergang von lokalisierten zu kohärenten Quasiteilchen in einem Kondosystem mittels ARPES beobachtet werden. 3. Phasenübergänge: bei FeSi und URu2Si2 wurde jeweils gezeigt, dass die ARPES sensitiv für kleinste Änderungen der elektronischen Struktur in unmittelbarer Umgebung der Fermienergie ist. Es konnten charakteristische Energien und Temperaturen, sowie am Phasenübergang beteiligte Bänder und deren effektive Massen m* quantifiziert werden. Insbesondere wurde gezeigt, dass Heavy-Fermion-Bänder mit m* = 40 me eine wichtige Rolle beim Hidden-order-Phasenübergang in URu2Si2 spielen. 4. Oberflächeneffekte: für alle Proben, außer CeCu6-xAux, musste festgestellt werden, dass Oberflächenzustände beträchtliche Anteile am Spektrum besitzen können. Daher ist bei jedem Material größte Vorsicht bei der Präparation der Oberfläche und der Interpretation der Spektren angebracht. Als eine geeignete Methode um Oberflächen und Volumenanteile auseinander zu halten, stellten sich anregungsenergieabhängige Messungen heraus. 5. theoretische Modelle: trotz der Bezeichnung “stark korrelierte Systeme”, unterscheiden sich die untersuchten Verbindungen bezüglich ihrer theoretischen Beschreibung: die Physik der Cersysteme (CeCu6, CePt5/Pt(111)) ist bei T > TK durch lokale Störstellen bestimmt und lassen sich somit im Rahmen des SIAM beschreiben. Bei tieferen Temperaturen T < TK treten jedoch Anzeichen von beginnender Kohärenz auf und geben somit den Übergang zum PAM wieder. Schwere, dispergierenden Bänder in URu2Si2 und FeSi zeigen, dass beide Systeme nur mit Hilfe eines geordneten Gitters beschreibbar sind. Insbesondere stellt sich für FeSi heraus, dass eine Erklärung im Kondoisolator-Bild falsch ist und ein Hubbard-Modell-Ansatz angebrachter scheint.show moreshow less
  • In this thesis angle-resolved photoemission investigations on diverse strongly- correlated systems were presented. It was shown that this technique gives a direct access to the low-energy excitations of a solid and therefore provides important information about its many-body physics. In particular the spectroscopic investigation of the sharp quasi-particle features near the Fermi edge gave information about the following points: 1. quantum phase transition: as already investigated in [27], it was shown that high resolution PES gives a directIn this thesis angle-resolved photoemission investigations on diverse strongly- correlated systems were presented. It was shown that this technique gives a direct access to the low-energy excitations of a solid and therefore provides important information about its many-body physics. In particular the spectroscopic investigation of the sharp quasi-particle features near the Fermi edge gave information about the following points: 1. quantum phase transition: as already investigated in [27], it was shown that high resolution PES gives a direct access to the local energy scale TK. In the framework of a pertubative model, it was presented how small RKKY corrections influence the Kondo temperature. From the experimental evolution of TK(x) in CeCu6-xAux conclusions could be drawn about the quantum phase transition at T = 0. 2. Kondo lattice: an ordered CePt5/Pt(111) surface alloy was prepared and investigated by ARPES. The sharp spectra show the characteristics of a Kondo lattice: hybridization gaps and a strong renormalization of the band mass in the vicinity of the Fermi edge. With the aid of different excitation energies and measurements on an isostructural LaPt5 surface alloy it was shown, that these effects are due to a d f -mixing. For the first time, the transition from the single-impurity to the heavy-fermion regime could be observed by ARPES. 3. phase transitions: for FeSi and URu2Si2 the sensitivity of ARPES to small changes in the Fermi surface was shown in the temperature dependent spectra. The measurements reveal characteristic energies and temperatures of the phase transitions. Furthermore the bands which are involved in the phase transition and their effective masses m* could be quantified. In the case of URu2Si2 it was shown that a heavy-fermion band with m* = 40 me is affected by the hidden-order phase transition. 4. surface effects: besides CeCu6-xAux all samples showed significant surface contribution to the spectra. Excitation energy dependent measurements were found to be a good tool to distinguish between bulk and surface contributions. 5. theoretical models: despite the shared expression “strongly correlated systems” the compounds differ in their theoretical description: it was found that the physics of cerium systems (CeCu6, CePt5/Pt(111)) at T > TK can be described in the framework of the SIAM. However, at lower temperatures (T < TK) the signatures of coherence appear in the spectra. These can only be described by the PAM. Heavy dispersing bands have been observed for URu2Si2 and FeSi. Thus these systems must be described by a Hamiltonian with lattice properties, too. Especially the transition metal compound FeSi was shown to be no Kondo insulator. A description in the framework of a multi-band Hubbard Hamiltonian seems to be more appropriate for this compound.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Markus Klein
URN:urn:nbn:de:bvb:20-opus-36459
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Date of final exam:2009/06/19
Language:German
Year of Completion:2009
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Kondo-Effekt; Kondo-Modell; Kondo-System; Schwere-Fermionen-System; Photoemission; Cerlegierung; Uran; Festkörperspektroskopie; Festkörperoberfläche; Festkörperphysik; Selbstenergie
Tag:CeCu6; CePt5; FeSi; URu2Si2
CeCu6; CePt5; FeSi; URu2Si2
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 71.00.00 Electronic structure of bulk materials (see section 73 for electronic structure of surfaces, interfaces, low-dimensional structures, and nanomaterials; for electronic structure of superconductors, see 74.25.Jb) / 71.27.+a Strongly correlated electron systems; heavy fermions
Release Date:2009/06/29
Advisor:Prof. Dr. Friedrich Reinert