The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 10
Back to Result List

Transport der Hauptosmotika an der vakuolären Membran von Schließzellen

Transport of the main osmotic substances on the vacuolar membrane of guard cells

Please always quote using this URN: urn:nbn:de:bvb:20-opus-75043
  • Im Rahmen der vorliegenden Arbeit wurden neue Einblicke bezüglich des Transport-prozesses vakuolärer Protonenpumpen, Zuckertransporter und des SV-Kanals von Arabidopsis thaliana gewonnen: 1. Mittels Patch-clamp-Technik wurden ATP- und Pyrophosphat-induzierte Pump-ströme an Mesophyllvakuolen des Wildtyps gemessen. Die durch ATP hervor-gerufenen Pumpströme konnten durch den spezifischen V-ATPase-Inhibitor Concanamycin A vollständig inhibiert werden. Messungen an der V-ATPase-Doppelmutante vha-a2-vha-a3 hingegen zeigten eine kaum vorhandeneIm Rahmen der vorliegenden Arbeit wurden neue Einblicke bezüglich des Transport-prozesses vakuolärer Protonenpumpen, Zuckertransporter und des SV-Kanals von Arabidopsis thaliana gewonnen: 1. Mittels Patch-clamp-Technik wurden ATP- und Pyrophosphat-induzierte Pump-ströme an Mesophyllvakuolen des Wildtyps gemessen. Die durch ATP hervor-gerufenen Pumpströme konnten durch den spezifischen V-ATPase-Inhibitor Concanamycin A vollständig inhibiert werden. Messungen an der V-ATPase-Doppelmutante vha-a2-vha-a3 hingegen zeigten eine kaum vorhandene ATPase-Aktivität auf. Die vakuoläre Pyrophosphatase-Aktivität der vha-a2-vha-a3-Mutante war mit dem WT vergleichbar und konnte die verminderten Pumpströme der V-ATPase nicht kompensieren. Zudem wurde an A. thaliana WT-Pflanzen die Expressionsrate und Pumpstromdichte der V-ATPase von Schließzellen und Mesophyllzellen untersucht. Dabei konnte bei Schließzellen eine höhere Expressionsrate sowie Pumpleistung im Vergleich zu Mesophyllzellen detektiert werden, wodurch an der vakuolären Membran von Schließzellen eine starke protonenmotorische Kraft generiert werden kann. 2. Des Weiteren wurden die Transporteigenschaften des im Tonoplasten lokalisierten Transportproteins AtINT1 an Arabidopsis Mesophyllzellen des Wildtyps näher untersucht. Unter inversen pH-Wert-Bedingungen konnte AtINT1 als Symporter identifiziert werden, welcher myo-Inositol H+-gekoppelt aus der Vakuole in das Cytosol transportiert. 3. Überdies wurde eine elektrophysiologische Charakterisierung des AtSUC4-Transporters durchgeführt. Unter einem physiologischen Protonengradienten konnte bei WT- und Atsuc4.1-Vakuolen ausschließlich ein Saccharose/H+ ge-triebener Antiportmechanismus detektiert werden. Im Gegensatz dazu zeigten 60 % der AtSUC4-ÜE unter inversen pH-Gradienten während Saccharose-Applikation Ströme, die auf einen Saccharose/H+-Symportmechanismus hinweisen. Bei der Atsuc4.1-Verlustmutante hingegen konnten unter gleichen Lösungsbedingungen ausschließlich Ströme detektiert werden, die mit einem Saccharose/H+-gekoppelten Antiportmechanismus in Einklang zu bringen sind. Durch die Erkenntnisse der Arbeitsgruppe unter Norbert Sauer, Universität Erlangen, wird die Vermutung untermauert, dass AtSUC4 Saccharose im Symport mit H+ aus der Vakuole in das Cytosol transportiert und somit eine Rolle bei der Remobilisierung der in der Vakuole gespeicherten Saccharose übernimmt. 4. Darüber hinaus konnten Studien am nichtselektiven spannungsabhängigen „slow-vacuolar-channel“ (SV-Kanal) von Arabidopsis Mesophyllvakuolen durchgeführt werden. Dabei wurde das 14-3-3-Protein GRF6 als regulatorisches Protein identifiziert, welches die SV-Kanalaktivität stark verringert. Die gain-of-function Mutante fou2 mit der Punktmutation D454N im TPC1-Kanalprotein zeigt abweichende Kanaleigenschaften zum WT auf. Das Aktivie-rungspotential des fou2-SV-Kanals liegt bei 30 mV negativeren Membranspan-nungen, was die Offenwahrscheinlichkeit des SV-Kanals unter physiologischen Membranspannungen erhöht. Die fou2-Mutation beeinflusst außerdem die luminale Ca2+-Bindestelle des SV-Kanals, wodurch die Affinität bzgl. luminalem Ca2+ geringer ist und die fou2-SV-Kanalaktivität bei hohen luminalen Ca2+-Konzentrationen bestehen bleibt. Die absolute Offenwahrscheinlichkeit des WT-SV-Kanals nimmt mit Ansäuern des vakuolären Lumens im Gegensatz zum fou2-SV-Kanal stark ab, die Einzelkanalleitfähigkeit des WT- als auch des fou2-SV-Kanals dagegen zu. Anhand der durchgeführten Messungen konnte eine regulatorische, vakuolär gelegene Ca2+-Bindestelle des TPC1-kodierten Kanals lokalisiert und charakterisiert werden, welche sich vermutlich nahe am Spannungssensor befindet und unter physiologischen Membranspannungen einen einwärtsgerichteten Kationenstrom ermöglicht. 5. Ferner wurden SV-Kanäle von Schließzellen untersucht und deren spezifische Eigenschaften mit Mesophyll-SV-Kanälen verglichen. In Schließzellen liegt neben einer erhöhten Transkriptmenge des single-copy Gens TPC1 eine höhere Stromdichte des SV-Kanals vor. Unter einwärtsgerichtetem K+-Gradienten liegt das Aktivierungspotential von Schließzell-SV-Kanäle um 30 mV negativer als bei Mesophyllvakuolen, was unter physiologischen Membranspannungen zu einem ausgeprägtem K+-Einstrom führt. Darüber hinaus zeigte der Schließzell-SV-Kanal eine höhere Permeabilität von Na+- gegenüber K+-Ionen (1,3:1) auf. Während Schließzell- und Mesophyll-SV-Kanäle eine vergleichbare luminale Ca2+-Sensitivität aufweisen, zeigen Schließzell-SV-Kanäle eine höhere cytosoli-sche Ca2+- und vakuoläre pH-Sensitivität auf. Sequenzanalysen der TPC1-cDNA zeigten, dass die Zelltypspezifischen Unterschiede des SV-Kanals nicht durch posttranskriptionale Modifikation hervorgerufen werden.show moreshow less
  • As an output of this dissertation, the following new insights into vacuolar transport pro-cesses of proton pumps, sugar transporters and slow vacuolar channels (SV-channels) via the patch clamp technique were gained: 1. The vacuolar V-ATPase of A. thaliana mesophyll cells of the WT as well as of the double mutant vha-a2-vha-a3 were analyzed. The specific V-ATPase-inhibitor concanamycin A inhibits the WT V-ATPase activity completely. In vha-a2-vha-a3 mutant the V-ATPase activity was completely absent and shows no ATP induced H+ currents.As an output of this dissertation, the following new insights into vacuolar transport pro-cesses of proton pumps, sugar transporters and slow vacuolar channels (SV-channels) via the patch clamp technique were gained: 1. The vacuolar V-ATPase of A. thaliana mesophyll cells of the WT as well as of the double mutant vha-a2-vha-a3 were analyzed. The specific V-ATPase-inhibitor concanamycin A inhibits the WT V-ATPase activity completely. In vha-a2-vha-a3 mutant the V-ATPase activity was completely absent and shows no ATP induced H+ currents. However, the vacuolar vha-a2-vha-a3 pyrophosphatase current density was indistinguishable from the WT and could not compensate the missing V-ATPase pump currents. Additionally, the V-ATPase expression rate and H+ currents of A. thaliana guard cells and mesophyll cells were examined. In guard cells the expression rate as well as the pump currents were higher compared to mesophyll cells which resulted in a stronger proton motive force. 2. Furthermore, the transport mechanism of the vacuolar membrane protein AtINT1 was studied on Arabidopsis WT mesophyll cells. At high vacuolar and low cytoplasmic pH values AtINT1 could be identified as an H+/inositol symporter. These data was confirmed by further measurements of the mutant lines Atint1.1 and Atint1.2. After application of myo-inositol the currents were completely absent in Atint1.1 and strongly reduced in the Atint1.2 mutant. 3. Besides transport characteristics of the tonoplast localized AtSUC4 protein was analyzed. After application of cytosolic sucrose, WT as well as Atsuc4.1 vacuoles showed an H+/sucrose driven Antiport mechanism in presence of physiological H+-gradient. However, in the presence of an inverse pH gradient, 60 % of the AtSUC4-overexpressing mutant showed sucrose induced currents indicating an H+/sucrose Symport mechanism of the AtSUC4 transport protein. Corresponding currents could not be detected in AtSUC4 less vacuoles (Atsuc4.1). In the inverse system sucrose induced currents of the Atsuc4.1 mutant were in accordance with an H+/sucrose coupled antiport mechanism. These patch clamp measurements confirm the findings of the working group of Norbert Sauer, University of Erlangen. AtSUC4 acts as a symporter by transporting sucrose coupled with H+ out of the vacuole into the cytosol and therefore plays a role in the remobilization of stored vacuolar sucrose. 4. Additionally the non-selective voltage dependent slow vacuolar channel (SV channel) of Arabidopsis mesophyll vacuoles was electrophysiologically characterized. Thereby the 14-3-3 protein GRF6 could be identified as a regulatory protein of the SV channel, which down-regulates the SV channel activity. The gain-of-function mutant fou2 containing the point mutation D454N on the vacuolar lumen side of the SV channel protein, shows different channel proper-ties compared to WT. The fou2 channel activation was shifted to 30 mV more negative membrane potentials which resulted in higher open probability than WT SV channels. The fou2 mutation also affected the luminal Ca2+ binding site of the SV channel and lowered the affinity to vacuolar Ca2+. fou2 channel activity remained high even at inhibitory vacuolar Ca2+ concentrations. The WT SV channel open probability decreased strongly with luminal acidification in contrast to fou2. However, the single channel conductance of WT and fou2 SV channels increased. The regulatory vacuolar Ca2+ binding site of the TPC1 channel seems to be located nearby the voltage sensor and enables a pronounced fou2 inward current under physiological membrane voltages. 5. The A. thaliana guard cell SV channel features were compared with mesophyll cells. In guard cells the transcript number of the single copy gene TPC1 was elevated which resulted in a higher SV current density than in mesophyll cells. When the K+ gradient was directed out of the vacuolar lumen the guard cell SV channel activated at about 30 mV less negative voltages compared to mesophyll cells and mediated distinct inward currents. The guard cell SV channel showed permeability for Na+ over K+ (1,3:1). SV channels from guard cells and mesophyll cells exhibited comparable luminal Ca2+ sensitivities. However, the guard cell SV channel is more sensitive to cytosolic Ca2+ and vacuolar pH. Sequence analyses of the TPC1 cDNA showed that the varying features of the guard cell and mesophyll cell SV channels are not related to posttranscriptional modifications.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Diana Krause
URN:urn:nbn:de:bvb:20-opus-75043
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Date of final exam:2013/01/18
Language:German
Year of Completion:2012
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Ackerschmalwand; Schließzelle; Vakuole; Saccharose; Inosite; Spannungskontrollierter Ionenkanal; Protonenpumpe
Tag:AtSUC4; AtTPC1; Protonenpumpe; Schließzelle; Vakuole
AtSUC4; AtTPC1; guard cell; proton pump; vacuole
Release Date:2013/01/24
Advisor:Prof. Rainer Hedrich
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitung