• search hit 4 of 8
Back to Result List

Elektrophysiologische Untersuchungen zur frühen Erkennungsphase zwischen Pflanzen und Mikroorganismen

Electrophysiological analyses of the early recognition phase between plants and microorganism

Please always quote using this URN: urn:nbn:de:bvb:20-opus-47489
  • An der pflanzlichen Plasmamembran geschieht die erste Wahrnehmung von mikrobiellen Molekülen, die MAMPs genannt werden. MAMP/PAMP Rezeptoren leiten frühe Abwehrantworten, wie die Produktion von reaktiven Sauerstoffspezies (ROS), externe Alkalisierung oder Ethylen, ein. Die Arabidopsis FLS2 rezeptorartige Kinase (RLK) stellt einen plasmamembran-lokalisierten MAMP Rezeptor dar, der über die Detektion des Flagellum von Pseudomonas species, eine basale Immunität in Arabidopsis thaliana vermittelt. Flg22, der kürzeste aktive Teil des bakteriellenAn der pflanzlichen Plasmamembran geschieht die erste Wahrnehmung von mikrobiellen Molekülen, die MAMPs genannt werden. MAMP/PAMP Rezeptoren leiten frühe Abwehrantworten, wie die Produktion von reaktiven Sauerstoffspezies (ROS), externe Alkalisierung oder Ethylen, ein. Die Arabidopsis FLS2 rezeptorartige Kinase (RLK) stellt einen plasmamembran-lokalisierten MAMP Rezeptor dar, der über die Detektion des Flagellum von Pseudomonas species, eine basale Immunität in Arabidopsis thaliana vermittelt. Flg22, der kürzeste aktive Teil des bakteriellen Flagellins besteht aus 22 Aminosäuren und ist der bestuntersuchte bakterielle Elizitor. In der vorliegenden Arbeit zeigen wir eine starke Beteiligung von Ionenflüssen in der Initiationsphase der basalen Immunität. Unsere Messungen an intakten Arabidopsis Pflanzen und Pflanzengeweben sind in höchstem Masse reproduzierbar und öffnen eine neue Sicht, über die Natur von Ionentransporten in der Pflanzen - Mikroben Interaktion. Als Antwort auf die Applikation von flg22, haben wir nach einer Verzögerungsphase von etwa 2 Minuten eine transiente, dosis-abhängige Depolarisation (EC50=0,2 nM) in Mesophyll- und Wurzelhaarzellen von A. thaliana messen können. Das um 2 Aminsäuren kürzere Peptid flg22 Δ2 oder das Flagellin anderer Bakterien (Agrobacterium or Azospirillum) führten zu keiner Membrandepolarisation. Ebenso konnten keine Membranspannungsänderungen in dem Arabidopsis Ökotypen Ws-0, dem der funktionelle FLS2 Rezeptor fehlt, detektiert werden. Die Komplementation von Ws-0 Pflanzen mit dem intakten FLS2 Rezeptorgen rief eine Resensibilisierung für flg22 hervor. Mit dem EF-Tu Elizitor Peptid aus E.coli, welches durch den Arabidopsis MAMP Rezeptor EFR detektiert wird, wurden ähnliche Ergebnisse erzielt. Auf der Basis von Aequorin wurden Kalzium-induzierte Lumineszenzmessungen durchgeführt, in denen ein transienter Anstieg der zytosolischen Kalziumkonzentration als Antwort auf die Applikation von flg22 gemessen werden konnte. Dosis-Abhängigkeitsmessungen von flg22 und [Ca2+]cyt wiesen zwei unterschiedliche EC50 Werte, von 43 ± 2 pM und 67 ± 42 nM, auf. Möglicherweise wird auf zwei verschiedene Kalziumpools zugegriffen oder es werden zwei verschiedene Kalziumleitfähigkeiten aktiviert. Die Ionenkanalaktivierung und folgende Depolarisation benötigt die aktive Rezeptorkinase. In bak1-4 Arabidopsis Pflanzen, in denen die FLS2 Untereinheit BAK1 – eine weitverbreitete RLK, die auch mit dem Brassinosteroid Rezeptor assoziiert ist – fehlt, konnte keine Depolarisation als Antwort auf flg22 gemessen werden. Arabidopsis Mesophyllzellen zeigten die typische Alkalisierung des Apoplasten als Antwort auf flg22. Nicht-invasive MIFETM Experimente mit Ionen-selektiven Elektroden ergaben, dass der pH-Anstieg durch einen Einstrom von Protonen hervorgerufen wurde. Zusätzlich wurde ein Ausstrom von Chlorid und Kalium aufgezeichnet. Ähnlich wie das Kalziumsignal waren alle detektierten Ionenströme von transienter Natur. Im zweiten Ansatz wurden Membranpotential-Messungen durchgeführt, während in der externen Lösung die Konzentrationen von Protonen, Kalzium, Kalium oder Anionen variiert wurden. Nur eine Änderung des Anionengradienten hatte einen entscheidenden Einfluss auf die flg22-induzierte Depolarisation, was die Wichtigkeit der Anionenkanalaktivierung unterstreicht. Exudat Analysen ergaben, dass Nitrat das bevorzugt transportierte Ion ist. Unter zahlreichen getesteten Ionenkanalblockern erwies sich lediglich Lanthan als effektiver Blocker des flg22-induzierten zytosolichen Kalziumanstiegs, des Protoneneinstroms und der Membrandepolarisation. Da Lanthan bekanntlich unspezifische Kationenkanäle blockt, kann man an diesem Punkt davon ausgehen, dass Kalzium-aktivierte Anionenkanäle die Membrandepolarisation vermitteln und darauf eine Aktivierung von auswärtsgerichteten Kaliumkanälen folgt. Zukünftige Studien mit Doppelläufigen-Mikroelektroden Spannungsklemmexperimenten oder externen ionenselektiven Elektroden an intakten Schliesszellen werden helfen weitere Informationen über die Natur der Ionenkanäle in der basalen Immunität oder generell in der Pflanzen-Mikroben Interaktion zu erhalten. Über die elektrophysiologische Charakterisierung der multiplen Ionenströme in der basalen Immunität hinaus, ist natürlich der nächste wichtige Schritt das oder die Gene zu finden, die für die Ionenkanäle oder Transporter kodieren, die durch nicht nekrotisierende Elizitoren wie flg22 in der basalen Immunantwort in Pflanzen aktiviert werden.show moreshow less
  • The plant plasma membrane represents the first site for recognition of microbial patterns called MAMPs. MAMP receptors mediate early defense responses including production of reactive oxygen species (ROS), external alkalinisation or ethylene. The Arabidopsis FLS2 receptor-like kinase (RLK) represents a plasma-membrane localized MAMP receptor that provides for innate immunity in Arabidopsis thaliana plants by specifically recognizing the flagellum (flg) of Pseudomonas species. Flg22, the shortest active part of flagellin, composed by 22The plant plasma membrane represents the first site for recognition of microbial patterns called MAMPs. MAMP receptors mediate early defense responses including production of reactive oxygen species (ROS), external alkalinisation or ethylene. The Arabidopsis FLS2 receptor-like kinase (RLK) represents a plasma-membrane localized MAMP receptor that provides for innate immunity in Arabidopsis thaliana plants by specifically recognizing the flagellum (flg) of Pseudomonas species. Flg22, the shortest active part of flagellin, composed by 22 aminoacids is the best established bacterial elicitor that. About the role of ion channels in innate immunity nothing was known yet. In the current work we show a strong involvement of ion fluxes in the initiating phase of innate immunity. Our measurements on intact Arabidopsis plants and plant tissues are highly reproducible and open a new view of ion channel functions in plant microbe interactions. In response to the application of flg22, after a delay of about 2 minutes, we recorded a transient, dose-dependent depolarization (EC50=0.2 nM) in mesophyll and root hair cells of A. thaliana. Following wash-out of the peptide elicitor and recovery of the membrane potential to resting potential values within 70 ± 9 min, depolarizations could be elicited several times. No membrane depolarization was evoked upon application of flg22Δ2, a truncated flg22 peptide, or by application of flagellin from other bacteria (Agrobacterium or Azospirillum). Likewise, depolarization was not observed in the natural knockout mutant of the Arabidopsis ecotype Ws-0 lacking the functional FLS2 receptor. Complementation of transgenic Ws-0 plants with the functional FLS2 receptor restored flg22 sensitivity, indicating that FLS2 is essential for flg22 evoked membrane potential changes. Similar results were obtained using the E. coli EF-Tu elicitor peptide elf18, which is recognized by the Arabidopsis MAMP receptor EFR. Aequorin based calcium measurements allowed us to record a transient increase in cytosolic calcium concentration in response to applied flg22. Dose-response studies revealed two distinct EC50 values for the calcium response of 43 ± 2 pM and 67 ± 42 nM respectively. This indicates that two different calcium pools or two different calcium permeabilities in the plasma membrane were activated by flg22. In line with a requirement of receptor-kinase activity for ion channel activation and subsequent depolarization, the latter was completely blocked by the kinase inhibitor K-252a. In bak1-4 Arabidopsis plants, lacking the FLS2 subunit BAK1 – a promiscuous RLK also associated with the brassinosteroid receptor - no depolarisation was measured in response to flg22. This indicated that both RLKs – FLS2 and BAK1 – are required for flagellin induced ion channel activation. Arabidopsis mesophyll cells showed the typical alkalinization of the apoplast in response to flg22. Noninvasive experiments with vibrating ion-selective electrodes revealed that this pH rise was due to an influx of protons. In addition an efflux of chloride and potassium was recorded. All fluxes were transient in nature, as was the observed calcium signal. Simultaneous measurements using two ion-selective electrodes showed a delay of the potassium efflux in comparison to the other ions that participate in the flg22 response. In the second approach, membrane potential measurements were performed while changing extracellular concentrations of protons, calcium, potassium or anions. Changing the anion gradient had the greatest impact on flg22 induced depolarization, suggestive of anion channel activation. Exudates analyses of flg22 treated leaves revealed that nitrate was the favored anion transported. Among many putative channel blocking agents tested, only lanthanum was identified to be potent in blocking the flg22 induced the cytosolic calcium rise, proton influx, and membrane potential depolarization. Since lanthanum represents a non-specific cation channel blocker, we favor to conclude that a calcium dependent activation of anion channels mediated membrane potential depolarization and consequently outward rectifying potassium channels. Future studies with double-barreled microelectrode voltage-clamp or external ion selective electrodes on intact guard cells may help to gain further information about the nature of ion channels in innate immunity or plant microbe interaction in general. Of course, all over the electrophysiological characterization of the multiple ion fluxes in innate immunity the next important step would be to discover the gene(s) coding for ion channels or transporters activated by non necrotic elicitors as flg22 in the innate immune response of plants.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Elena Jeworutzki
URN:urn:nbn:de:bvb:20-opus-47489
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Date of final exam:2010/02/12
Language:German
Year of Completion:2009
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 58 Pflanzen (Botanik) / 580 Pflanzen (Botanik)
GND Keyword:Calcium; Induzierte Resistenz; Ackerschmalwand; Ionenkanal; Elektrophysiologie; Pseudomonas syringae; Membranpotenzial; Flagelline
Tag:Anionen; Einstichmessungen; Ionenkanäle; Rezeptorkinasen; basale Immunität
Anion; Arabidopsis thaliana; Calcium; Pseudomonas syringae; flagellin; innate immunity; ion channels; membrane potential; receptor kinases
Release Date:2010/04/08
Advisor:PD Dr. Dirk Becker