• search hit 1 of 1
Back to Result List

Molekulardynamische Untersuchungen zur Charakterisierung von Flexibilität, Bindemechanismen und Bindungsaffinitäten von Aldose Reduktase und Nukleären Rezeptoren

Molecular Dynamics Simulations to investigate flexibility, binding mechanism and binding affinity of Aldose Reductase and Nuclear Receptors

Please always quote using this URN: urn:nbn:de:bvb:20-opus-72110
  • Aldose Reduktase ALR2 katalysiert den ersten Schritt des Sorbitol-Stoffwechselweges. In diesem wird mit Hilfe des Kofaktors NADPH Glukose zu Sorbitol reduziert. Bei erhöhtem Blutzuckerspiegel, wie dies bei Diabetes-Patienten der Fall ist, ist dieser metabolische Weg von Bedeutung. Bis zu einem Drittel der Blutglukose wird zu Sorbitol reduziert. Die Folge der Sorbitolakkumulation in den Zellen und der Verminderung der NADPH-Konzentration sind „osmotischer“ sowie „oxidativer“ Stress. Diese stehen in Zusammenhang mit den vielfach diskutiertenAldose Reduktase ALR2 katalysiert den ersten Schritt des Sorbitol-Stoffwechselweges. In diesem wird mit Hilfe des Kofaktors NADPH Glukose zu Sorbitol reduziert. Bei erhöhtem Blutzuckerspiegel, wie dies bei Diabetes-Patienten der Fall ist, ist dieser metabolische Weg von Bedeutung. Bis zu einem Drittel der Blutglukose wird zu Sorbitol reduziert. Die Folge der Sorbitolakkumulation in den Zellen und der Verminderung der NADPH-Konzentration sind „osmotischer“ sowie „oxidativer“ Stress. Diese stehen in Zusammenhang mit den vielfach diskutierten Spätschäden des Diabetes, wie diabetischer Katarakt, Neuro- und Nephropathie. Das Enzym ist experimentell sehr gut untersucht und eignet sich daher als Modellsystem zur Untersuchung der intrinsischen Proteinflexibilität und thermodynamischer Daten mit Hilfe von Computermethoden. Unter diesen Voraussetzungen steht der Gewinn eines besseren Verständnisses von molekularer Erkennung und Proteinbeweglichkeit der ALR2 unter Verwendung von Molekulardynamik-Simulationen MD als primäres Ziel im Zentrum dieser Arbeit. Dabei wurden MD-Studien zu zwei kristallographisch erhaltenen Protein-Ligand-Komplexen durchgeführt. Die Liganden unterscheiden sich nur geringfügig in der Länge einer Seitenkette, ihre Bindung führt allerdings zu gänzlich unterschiedlichen Bindemodi. Einer davon ist bislang einzigartig für die ALR2. Mit Hilfe von MD-Simulationen wurde versucht, eine Erklärung für diese neue Konformation der Bindetasche im Vergleich zu jener eines strukturell sehr ähnlichen Liganden zu finden. Außerdem waren über diese Studien Aussagen über besonders flexible Bereiche der ALR2-Bindetasche möglich, die mit bereits existierenden Erkenntnissen über die Bindetaschenflexibilität verglichen werden konnten. Darüber hinaus gelang es, durch die Methode der gesteuerten Molekulardynamik SMD einen Übergang zwischen einer röntgenkristallografisch ermittelten kofaktorgebundenen Holo-Konformation und kofaktorfreien Apo-Konformation zu simulieren. Computergestützte Methoden ermöglichen es also, weitläufige Bewegungen von einer Proteinkonformation in die andere nachzuvollziehen bzw. die experimentell erhaltenen Strukturen zu bestätigen. Eine mechanistische Deutung des Kofaktorassoziations- und Kofaktordissoziationsprozesses wurde ebenfalls versucht. Dafür war es notwendig, strukturelle Veränderungen im Protein zeitlich zu verfolgen und entscheidende Vorgänge zu identifizieren. Die Methode der SMD wurde in dieser Arbeit auch auf ein weiteres, pharmakologisch interessantes System übertragen. Dabei wurde versucht auch an zwei Vertretern der Klasse der Nukleären Rezeptoren NRs, dem Androgenrezeptor AR und dem Estrogenrezeptor ER, eine solche weitreichende Bewegung nachzuvollziehen. Auch bei diesen Rezeptoren sind zwei in der Position einer alpha-Helix unterschiedliche Formen bekannt. Auch hier wurden mit Hilfe der genannten Methode, relevante Ereignisse hinsichtlich der Helixmobilität identifiziert. Abschließend wurde auf den thermodynamischen Aspekt der Protein-Ligand-Komplexe eingegangen. Durch Berechnungen anhand der Methode der thermodynamischen Integration TI wurden relative Bindungsaffinitäten am Modellsystem ALR2 gewonnen. Durch den Vergleich mit experimentell vorhandenen Daten konnte die Methode validiert werden. Das Verfahren der TI sollte in Zukunft eine Voraussage von Affinitäten beliebiger, sich geringfügig unterscheidender Inhibitoren, die aber denselben Bindemodus aufweisen, ermöglichen und damit den Prozess des Wirkstoffdesigns erleichtern. Zusammenfassend ergab sich eine gute Übereinstimmung der experimentell ermittelten Strukturen bzw. Daten mit den durch Computersimulationen erhaltenen.show moreshow less
  • Aldose Reductase ALR2 catalyzes the first step of the sorbitol pathway leading to a reduction of glucose into sorbitol. NADPH acts as cofactor. People suffering from diabetes mellitus blood show a raised glucose level and up to one third of the available glucose is processed in this way. As a consequence sorbitol accumulates in cells with insulin-independent glucose uptake and the NADPH concentration decreases. This leads to “osmotic” as well as “oxidative” stress, which are correlated to the late-onset diabetic complications like diabeticAldose Reductase ALR2 catalyzes the first step of the sorbitol pathway leading to a reduction of glucose into sorbitol. NADPH acts as cofactor. People suffering from diabetes mellitus blood show a raised glucose level and up to one third of the available glucose is processed in this way. As a consequence sorbitol accumulates in cells with insulin-independent glucose uptake and the NADPH concentration decreases. This leads to “osmotic” as well as “oxidative” stress, which are correlated to the late-onset diabetic complications like diabetic cataract, neuro- and nephropathy. The enzyme is experimentally very well examined. Therefore, it can be taken as model system for the investigation of the intrinsic protein flexibility and formerly gained thermodynamic data by application of computer methods. It is in that context that Aldose Reductase is regarded as an important target for this work with the aim of getting a broader insight into molecular recognition and protein mobility by use of molecular dynamics simulations MD. MD simulations were carried out for two crystallographically obtained protein-ligand-complexes. Both ligands lead to different binding modes although they differ only by the length of one sidechain. The binding mode for one of these inhibitors is unique for ALR2. MD simulations should shed light upon this novel binding site conformation and investigate enzyme’s inherent flexibility in comparison with former studies. Beyond that it was possible to reconstruct the transition between the cofactor bound "holo" comformation to a cofactor unbound "apo" one by the application of Steered Molecular Dynamics SMD. Therefore computer simulations offer the possibility to simulate large movements from one protein conformation to the other one and affirm the experimentally obtainable stuctures. A mechanistical explanation of the cofactor association and dissociation process was also tried. For this purpose an observation of the structural rearrengements in time was necessary to elucidate crucial events. The method of SMD was additionally used to investigate the large movements in two members of the class of the pharmacollogically very interesting Nuclear Receptors NR, the Androgen Receptor AR and the Estrogen Receptor ER. For both this receptors two different conformations are known, differing from each other by the position of an alpha-helix. Here relevant events in helix mobility were identified. To conclude the thermodynamic aspect of protein-ligand-complexes was examined. By the method of thermodynamic integration TI relative binding affinities of ALR2 inhibitors were gained. Comparison with experimental data allowed a validation. In the future the prediction of binding affinities of slightly different inhibitors showing an identical binding mode should be possible by the use of TI to ease the process of drug design. In summary, an good agreement between experimental structures respectively data and computational results is obtained.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Monika Nocker
URN:urn:nbn:de:bvb:20-opus-72110
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Pharmazie und Lebensmittelchemie
Date of final exam:2012/07/27
Language:German
Year of Completion:2012
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Molekulardynamik; Aldehydreductase; Kernrezeptor
Tag:Aldose Reduktase; Bindemechanismus; Bindungsaffinität; Flexibilität; Ligand; Nukleäre Rezeptoren; Statistische Thermodynamik
Aldose Reductase; Nuclear Receptor; binding affinity; binding mechanism; flexibility
Release Date:2012/07/27
Advisor:Prof. Dr. Christoph Sotriffer
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitung