• search hit 1 of 2
Back to Result List

The anti-myeloma activity of bone morphogenetic protein 2 predominantly relies on the induction of growth arrest and is apoptosis-independent

Please always quote using this URN: urn:nbn:de:bvb:20-opus-158993
  • Multiple myeloma (MM), a malignancy of the bone marrow, is characterized by a pathological increase in antibody-producing plasma cells and an increase in immunoglobulins (plasmacytosis). In recent years, bone morphogenetic proteins (BMPs) have been reported to be activators of apoptotic cell death in neoplastic B cells in MM. Here, we use bone morphogenetic protein 2 (BMP2) to show that the "apoptotic" effect of BMPs on human neoplastic B cells is dominated by anti-proliferative activities and cell cycle arrest and is apoptosis-independent. TheMultiple myeloma (MM), a malignancy of the bone marrow, is characterized by a pathological increase in antibody-producing plasma cells and an increase in immunoglobulins (plasmacytosis). In recent years, bone morphogenetic proteins (BMPs) have been reported to be activators of apoptotic cell death in neoplastic B cells in MM. Here, we use bone morphogenetic protein 2 (BMP2) to show that the "apoptotic" effect of BMPs on human neoplastic B cells is dominated by anti-proliferative activities and cell cycle arrest and is apoptosis-independent. The anti-proliferative effect of BMP2 was analysed in the human cell lines KMS12-BM and L363 using WST-1 and a Coulter counter and was confirmed using CytoTox assays with established inhibitors of programmed cell death (zVAD-fmk and necrostatin-1). Furthermore, apoptotic activity was compared in both cell lines employing western blot analysis for caspase 3 and 8 in cells treated with BMP2 and FasL. Additionally, expression profiles of marker genes of different cell death pathways were analysed in both cell lines after stimulation with BMP2 for 48h using an RT-PCR-based array. In our experiments we observed that there was rather no reduction in absolute cell number, but cells stopped proliferating following treatment with BMP2 instead. The time frame (48–72 h) after BMP2 treatment at which a reduction in cell number is detectable is too long to indicate a directly BMP2-triggered apoptosis. Moreover, in comparison to robust apoptosis induced by the approved apoptotic factor FasL, BMP2 only marginally induced cell death. Consistently, neither the known inhibitor of apoptotic cell death zVAD-fmk nor the necroptosis inhibitor necrostatin-1 was able to rescue myeloma cell growth in the presence of BMP2.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Charlotte Lagler, Mohamed El-Mesery, Alexander Christian Kübler, Urs Dietmar Achim Müller-Richter, Thorsten Stühmer, Joachim Nickel, Thomas Dieter Müller, Harald Wajant, Axel Seher
URN:urn:nbn:de:bvb:20-opus-158993
Document Type:Journal article
Faculties:Medizinische Fakultät / Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie
Medizinische Fakultät / Abteilung für Molekulare Innere Medizin (in der Medizinischen Klinik und Poliklinik II)
Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Medizinische Fakultät / Lehrstuhl für Tissue Engineering und Regenerative Medizin
Language:English
Parent Title (English):PLoS ONE
Year of Completion:2017
Volume:12
Issue:10
Pagenumber:e0185720
Source:PLoS ONE 12(10): e0185720 (2017). DOI: 10.1371/ journal.pone.0185720
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:B cells; cell cycle and cell division; cell metabolism; multiple myeloma; necrotic cell death
apoptosis; gene expression
Release Date:2018/03/27
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2017
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International