• search hit 9 of 345
Back to Result List

A Magnetic Semiconductor based Non-Volatile Memory and Logic Element

Ein auf magnetischen Halbleiter basierendes nicht-flüchtiges Speicher- und Logik-Element

Please always quote using this URN: urn:nbn:de:bvb:20-opus-71223
  • For the realization of a programmable logic device, or indeed any nanoscale device, we need a reliable method to probe the magnetization direction of local domains. For this purpose we extend investigations on the previously discovered tunneling anisotropic magneto resistance effect (TAMR) by scaling the pillar size from 100 µm down to 260 nm. We start in chapter 4 with a theoretical description of the TAMR effect and show experimental data of miniaturized pillars in chapter 5. With such small TAMR probes we are able to locally sense theFor the realization of a programmable logic device, or indeed any nanoscale device, we need a reliable method to probe the magnetization direction of local domains. For this purpose we extend investigations on the previously discovered tunneling anisotropic magneto resistance effect (TAMR) by scaling the pillar size from 100 µm down to 260 nm. We start in chapter 4 with a theoretical description of the TAMR effect and show experimental data of miniaturized pillars in chapter 5. With such small TAMR probes we are able to locally sense the magnetization on the 100 nm scale. Sub-micron TAMR and anisotropic magneto resistance (AMR) measurements of sub-millimeter areas show that the behavior of macroscopic (Ga,Mn)As regions is not that of a true macrospin, but rather an ensemble average of the behavior of many nearly identical macrospins. This shows that the magnetic anisotropies of the local regions are consistent with the behavior extracted from macroscopic characterization. A fully electrically controllable read-write memory device out the ferromagnetic semiconductor (Ga,Mn)As is presented in chapter 6. The structure consists of four nanobars which are connected to a circular center region. The first part of the chapter describes the lithography realization of the device. We make use of the sub-micron TAMR probes to read-out the magnetization state of a 650 nm central disk. Four 200 nm wide nanobars are connected to the central disk and serve as source and drain of a spin-polarized current. With the spin-polarized current we are able to switch the magnetization of the central disk by means of current induced switching. Injecting polarized holes with a spin angular momentum into a magnetic region changes the magnetization direction of the region due to the p-d exchange interaction between localized Mn spins and itinerant holes. The magnetization of the central disk can be controlled fully electrically and it can serve as one bit memory element as part of a logic device. In chapter 7 we discuss the domain wall resistance in (Ga,Mn)As. At the transition from nanobars to central disk we are able to generate 90° and 180° domain walls and measure their resistance. The results presented from chapter 5 to 7 combined with the preexisting ultracompact (Ga,Mn)As-based memory cell of ref. [Papp 07c] are the building blocks needed to realize a fully functioning programmable logic device. The work of ref. [Papp 07c] makes use of lithographically engineered strain relaxation to produce a structure comprised of two nanobars with mutually orthogonal uniaxial easy axes, connected by a narrow constriction. Measurements showed that the resistance of the constriction depends on the relative orientation of the magnetization in the two bars. The programmable logic device consists of two central disks connected by a small constriction. The magnetization of the two central disks are used as the input bits and the constriction serves as the output during the logic operation. The concept is introduced in the end of chapter 6 and as an example for a logic operation an XOR gate is presented. The functionality of the programmable logic scheme presented here can be straightforwardly extended to produce multipurpose functional elements, where the given geometry can be used as various different computational elements depending on the number of input bits and the chosen electrical addressing. The realization of such a programmable logic device is shown in chapter 8, where we see that the constriction indeed can serve as a output of the logic operation because its resistance is dependent on the relative magnetization state of both disks. Contrary to ref. [Papp 07c], where the individual magnetic elements connected to the constriction only have two non-volatile magnetic states, each disk in our scheme connected to the constriction has four non-volatile magnetic states. Switching the magnetization of a central disk with an electrical current does not only change the TAMR read-out of the respective disk, it also changes the resistance of the constriction. The resistance polar plot of the constriction maps the relative magnetization states of the individual disks. The presented device design serves as an all-electrical, all-semiconductor logic element. It combines a memory cell and data processing in a single monolithic paradigm.show moreshow less
  • Für die Realisierung eines programmierbaren Logikelements oder beliebiger nanometer großer Bauteile, brauchen wir eine verlässlige Methode, um die Magnetisierungsrichtung lokaler Domänen auzulesen. Dafür erweitern wir die Untersuchungen an TAMR (tunneling magneto resistance) Strukturen und skalieren die Fläche des Tunnelkontakts von 100 µm auf 260 nm. In Kapitel 4 geben wir zunächst eine theoretische Beschreibung des TAMR Effekts und zeigen darauf im folgenden Kapitel 5 experimentelle Daten der miniaturisierten Tunnelkontakte. Mit diesenFür die Realisierung eines programmierbaren Logikelements oder beliebiger nanometer großer Bauteile, brauchen wir eine verlässlige Methode, um die Magnetisierungsrichtung lokaler Domänen auzulesen. Dafür erweitern wir die Untersuchungen an TAMR (tunneling magneto resistance) Strukturen und skalieren die Fläche des Tunnelkontakts von 100 µm auf 260 nm. In Kapitel 4 geben wir zunächst eine theoretische Beschreibung des TAMR Effekts und zeigen darauf im folgenden Kapitel 5 experimentelle Daten der miniaturisierten Tunnelkontakte. Mit diesen TAMR-Kontakten ist es möglich die Magnetisierung lokal in einer Grössenordnung von 100 nm zu detektieren. Sub-micron TAMR-Messungen und anisotrope Magnetowiderstandmessungen (AMR) an sub-millimeter Gebieten zeigen, dass das Verhalten von makrokopischen (Ga,Mn)As nicht das eines Makrospins ist, sondern ein Ensembledurchschnitt von vielen fast identischen Makrospins. Dieses Ergebnis ist mit der makroskopischen Beschreibung der lokalen magnetischen Aniotropien konform.\\ Ein rein elektrisch kontrollierbares Read-Write Speicherelement aus dem ferromagnetischen Halbleiter (Ga,Mn)As wird in Kapitel 6 gezeigt. Das Element besteht aus vier 200 nm breiten Streifen, die mit einer kreisförmigen zentralen Disc verbunden sind. Der erste Teil des Kapitels beschreibt die einzelnen Lithographieschritte zur Herstellung des Elements. Zum Auslesen der Magnetisierungsrichtung der zentralen Disc mit einem Durchmesser von 650 nm verwenden wir einen miniaturisierten TAMR-Kontakt. Die 200 nm breiten Streifen dienen als Quelle eines spinpolarisierten Stromes in die zentrale Disc. Das Injezieren von polarisierten Löchern mit einem Spin-Drehimpuls in eine magnetische Region verändert die Magnetisierung der Region durch p-d Austauschwechselwirkung zwischen lokalisierten Mn-Spins und den Löchern. Die Magnetisierung der zentralen Disc kann rein elektrisch kontrolliert werden and als Bit eines Logikelementes verwendet werden. In Kapitel 7 untersuchen wir den Domänenwiderstand in (Ga,Mn)As. Am Übergang von den Streifen zur zentralen Disc ist es möglich 90°- und 180° Domänenwände zu erzeugen und deren Widerstand zu messen.\\ Die Ergebnisse von Kapitel 5 bis 7, kombiniert mit dem bereits existierenden Ergebnissen einer ultrakompakten (Ga,Mn)As-basierenden Speicherzelle von Ref. [Papp 07c], sind die Schlüsselelemente die man zur Realisierung eines programmierbaren Logikelements benötigt. Die Arbeit von Referenz [Papp 07c] nutzt Lithographie induzierte Deformationsrelaxation, um eine Struktur zu erzeugen, die aus zwei senkrechten Streifen besteht und durch eine Verengung verbunden sind. Der Widerstand dieser Verengung ist von der relativen Magnetisierungsorientierung der beiden Streifen abhängig. Das programmierbare Logikelement besteht aus zwei zentralen Discs, die mittels einer schmalen Verengung verbunden sind. Die Magnetisierung der beiden zentralen Discs dienen als Eingänge und die Verengung als Ausgang während der Logikoperation. Das Konzept wird am Ende des sechsten Kapitels eingeführt und als Beispiel für eine Logikoperation wird ein XOR-Gate präsentiert. Die Funktionalität des hier gezeigten programmierbaren Logikschemas kann Problemlos auf ein multifunktionales Element erweitert werden. Diese Geometrie kann abhängig von der Anzahl der Eingänge und der gewählten Adressierung für verschiedene Rechenelemente genutzt werden. \\ Die Realisierung eines programmierbaren Logikelements ist in Kapitel 8 gezeigt. Der Widerstand der Verengung hängt von der relativen Magnetisierungsrichtung der beiden zentralen Discs ab und wird als Ausgang während der Logikoperation verwendet. Im Gegensatz zu Referenz [Papp 07c], indem die einzelnen über die Verengung verbundenen magnetischen Elemente jeweils nur zwei nicht-flüchtige magnetische Zustände besitzen, hat jede zentrale Disc in unserem Schema vier nicht-flüchtige magnetische Zustände. Das Verändern der Magnetisierungsrichtung einer zentralen Disc durch einen elektrischen Strom kann durch den jeweiligen TAMR-Kontakt und durch die Widerstandänderung der Verengung gemessen werden. Der Widerstands-Fingerabdruck (resistance polar plot) der Verengung zeigt die verschiedenen relativen Magnetisierungszutände der zentralen Discs.\\ Das hier präsentierte Konzept dient als reines Halbleiter und rein-elektrisches Logikelement. Es kombiniert eine Speicherzelle und Datenverarbeitung in einem neuartigen monolithischen Bauelement.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Stefan Mark
URN:urn:nbn:de:bvb:20-opus-71223
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Date of final exam:2012/05/04
Language:English
Year of Completion:2011
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Magnetischer Halbleiter; Magnetische Anisotropie; Spintronik
Tag:Magnetische Anisotropien; Magnetische Halbleiter; Spinelektronik
Magnetic properties of thin films interfaces; Spinelectronic; magnetic anisotropy; magnetic semiconductors
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 75.00.00 Magnetic properties and materials (for magnetic properties of quantum solids, see 67.80.dk; for magnetic properties related to treatment conditions, see 81.40.Rs; for magnetic properties of superconductors, see 74.25.Ha; for magnetic properties of rocks a / 75.30.-m Intrinsic properties of magnetically ordered materials (for critical point effects, see 75.40.-s) / 75.30.Gw Magnetic anisotropy
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 75.00.00 Magnetic properties and materials (for magnetic properties of quantum solids, see 67.80.dk; for magnetic properties related to treatment conditions, see 81.40.Rs; for magnetic properties of superconductors, see 74.25.Ha; for magnetic properties of rocks a / 75.50.-y Studies of specific magnetic materials / 75.50.Pp Magnetic semiconductors
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 75.00.00 Magnetic properties and materials (for magnetic properties of quantum solids, see 67.80.dk; for magnetic properties related to treatment conditions, see 81.40.Rs; for magnetic properties of superconductors, see 74.25.Ha; for magnetic properties of rocks a / 75.70.-i Magnetic properties of thin films, surfaces, and interfaces (for magnetic properties of nanostructures, see 75.75.+a) / 75.70.Cn Magnetic properties of interfaces (multilayers, superlattices, heterostructures)
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 85.00.00 Electronic and magnetic devices; microelectronics; Vacuum tubes, see 84.47.+w; Microwave tubes, see 84.40.Fe; Phototubes, see 85.60.Ha; Conductors, resistors, and inductors, see 84.32.Ff, Hh / 85.75.-d Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields
Release Date:2012/06/11
Advisor:Prof. Dr. Laurens Molenkamp
Licence (German):License LogoDeutsches Urheberrecht