• search hit 9 of 493
Back to Result List

Field Dependence of Charge Carrier Generation in Organic Bulk Heterojunction Solar Cells

Feldabhängige Ladungsträgergenerierung in organischen Bulk Heterojunction-Solarzellen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-91963
  • In the field of organic photovoltaics, one of the most intensely researched topics to date is the charge carrier photogeneration in organic bulk heterojunction solar cells whose thorough understanding is crucial for achieving higher power conversion efficiencies. In particular, the mechanism of singlet exciton dissociation at the polymer–fullerene interface is still controversially debated. This work addresses the dissociation pathway via relaxed charge transfer states (CTS) by investigating its field dependence for reference material systemsIn the field of organic photovoltaics, one of the most intensely researched topics to date is the charge carrier photogeneration in organic bulk heterojunction solar cells whose thorough understanding is crucial for achieving higher power conversion efficiencies. In particular, the mechanism of singlet exciton dissociation at the polymer–fullerene interface is still controversially debated. This work addresses the dissociation pathway via relaxed charge transfer states (CTS) by investigating its field dependence for reference material systems consisting of MDMO-PPV and one of the fullerene derivatives PC61BM, bisPCBM and PC71BM. Field dependent photoluminescence (PL(F)) and transient absorption (TA(F)) measurements give insight into the recombination of charge transfer excitons (CTE) and the generation of polarons, respectively. Optically detected magnetic resonance and atomic force microscopy are used to characterize the morphology of the samples. The comparison of the experimental field dependent exciton recombination recorded by PL(F) and the theoretical exciton dissociation probability given by the Onsager–Braun model yields the exciton binding energy as one of the key parameters determining the dissociation efficiency. The binding energies of both the singlet exciton in neat MDMO-PPV and the CTE in MDMO-PPV:PC61BM 1:1 are extracted, the latter turning out to be significantly reduced with respect to the one of the singlet exciton. Based on these results, the field dependence of CTE dissociation is evaluated for MDMO-PPV:PC61BM blends with varying fullerene loads by PL(F) and TA(F). For higher PC61BM contents, the CTE binding energies decrease notably. This behavior is ascribed to a larger effective dielectric constant for well-intermixed blends and to an interplay between dielectric constant and CTE delocalization length for phase separated morphologies, emphasizing the importance of high dielectric constants for the charge carrier photogeneration process. Finally, the CTE binding energies are determined for MDMO-PPV blends with different fullerene derivatives, focusing on the influence of the acceptor LUMO energy. Here, the experimental results suggest the latter having no or at least no significant impact on the binding energy of the CTE. Variations of this binding energy are rather related to different trap levels in the acceptors which seem to be involved in CTS formation.show moreshow less
  • Einer der aktuellen Forschungsschwerpunkte im Bereich der organischen Photovoltaik ist die Ladungsträgergenerierung in „Bulk Heterojunction-Solarzellen“, deren Verständnis für das Erreichen höherer Wirkungsgrade essentiell ist. In diesem Zusammenhang wird derzeit vor allem der Dissoziationsmechanismus der Singulett-Exzitonen an der Donator–Akzeptor-Grenzfläche kontrovers diskutiert. Die vorliegende Arbeit adressiert die Dissoziation über relaxierte Ladungstransferzustände (CTS) durch die Untersuchung der Feldabhängigkeit des Prozesses fürEiner der aktuellen Forschungsschwerpunkte im Bereich der organischen Photovoltaik ist die Ladungsträgergenerierung in „Bulk Heterojunction-Solarzellen“, deren Verständnis für das Erreichen höherer Wirkungsgrade essentiell ist. In diesem Zusammenhang wird derzeit vor allem der Dissoziationsmechanismus der Singulett-Exzitonen an der Donator–Akzeptor-Grenzfläche kontrovers diskutiert. Die vorliegende Arbeit adressiert die Dissoziation über relaxierte Ladungstransferzustände (CTS) durch die Untersuchung der Feldabhängigkeit des Prozesses für Referenzsysteme aus MDMO-PPV und den Fullerenderivaten PC61BM, bisPCBM sowie PC71BM. Feldabhängige Photolumineszenz (PL(F)) und transiente Absorption (TA(F)) geben Aufschluss über Rekombination der Ladungstransfer-Exzitonen (CTE) bzw. Polaronengenerierung, während die Morphologie der Proben durch optisch detektierte Magnetresonanz und Rasterkraftmikroskopie charakterisiert wird. Durch den Vergleich der experimentellen feldabhängigen Exzitonenrekombination mit der theoretischen Dissoziationswahrscheinlichkeit nach dem Onsager–Braun-Modell lässt sich die Bindungsenergie der Exzitonen ermitteln, welche die Dissoziationseffizienz entscheidend beeinflusst. Diese Bindungsenergie wird sowohl für das Singulett-Exziton in reinem MDMO-PPV als auch für das CTE in MDMO-PPV:PC61BM 1:1 bestimmt, wobei letztere deutlich geringer als die des Singulett-Exzitons ist. Ausgehend von diesen Ergebnissen wird die Feldabhängigkeit der CTE-Dissoziation für MDMO-PPV:PC61BM-Gemische mit unterschiedlichen Fullerenanteilen durch PL(F) und TA(F) untersucht. Für höhere PC61BM-Konzentrationen nimmt die CTE-Bindungsenergie merklich ab. Dieses Verhalten ist für gut durchmischte Systeme einer höheren dielektrischen Konstante und für phasenseparierte Systeme dem Zusammenspiel zwischen Dielektrizitätskonstante und Delokalisation der CTE zuzuschreiben. Schließlich werden die CTE-Bindungsenergien für Gemische aus MDMO-PPV und unterschiedlichen Fullerenderivaten bestimmt, wobei der Einfluss des LUMO-Niveaus der Akzeptoren im Fokus steht. Dieses scheint jedoch keine oder nur eine geringe Bedeutung für die CTE-Bindungsenergie zu besitzen. Die beobachteten Variationen der Bindungsenergie sind vielmehr auf die Fallenzustände der Akzeptoren zurückzuführen, welche offenbar an der Ausbildung der CTS beteiligt sind.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Julia Kern
URN:urn:nbn:de:bvb:20-opus-91963
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Vladimir Dyakonov
Date of final exam:2014/02/12
Language:English
Year of Completion:2013
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Organische Solarzelle
Tag:Bindungsenergie
binding energy; bulk heterojunction; charge carrier generation; charge transfer state; organic photovoltaics
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES
Release Date:2014/02/26
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand