The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 13 of 151
Back to Result List

Processing of calcium and magnesium phosphate cements for bone substitution

Verarbeitung von Calcium- und Magnesiumphosphatzementen als Knochenersatz

Please always quote using this URN: urn:nbn:de:bvb:20-opus-169126
  • The main focus of this thesis was the processing of different calcium and magnesium phosphate cements together with an optimization of mechanical and biological properties. Therefore, different manufacturing techniques like 3D powder printing and centrifugally casting were employed for the fabrication of reinforced or biomedically improved implants. One of the main problems during 3D powder printing is the low green strength of many materials, especially when they are only physically bonded and do not undergo a setting reaction. Such materialsThe main focus of this thesis was the processing of different calcium and magnesium phosphate cements together with an optimization of mechanical and biological properties. Therefore, different manufacturing techniques like 3D powder printing and centrifugally casting were employed for the fabrication of reinforced or biomedically improved implants. One of the main problems during 3D powder printing is the low green strength of many materials, especially when they are only physically bonded and do not undergo a setting reaction. Such materials need post-treatments like sintering to exhibit their full mechanical performance. However, the green bodies have to be removed from the printer requiring a certain stability. With the help of fiber reinforcement, the green strength of printed gypsum samples could be increased by the addition of polymeric and glass fibers within the printing process. The results showed that fiber reinforcement during 3D powder printing is possible and opens up diverse opportunities to enhance the damage tolerance of green bodies as well as directly printed samples. The transfer to biomedically relevant materials like calcium and magnesium phosphate cements and biocompatible fibers would be the next step towards reinforced patient-specific implants. In a second approach, centrifugally casting derived from construction industries was established for the fabrication of hollow bioceramic cylinders. The aim was the replacement of the diaphysis of long bones, which exhibit a tubular structure with a high density of cortical bone on the fringe. By centrifugation, cement slurries with and without additives could be fabricated to tubes. As a first establishment, the processing parameters regarding the material (e.g. cement composition) as well as the set-up (e.g. rotation times) had to be optimized for each system. In respect of mechanics, such tubes can keep up with 3D powder printed tubes, although the mechanical performance of 3D printed tubes is strongly dependent on printing directions. Additionally, some material compositions like dual setting systems cannot be fabricated by 3D powder printing. Therefore, a transfer of such techniques to centrifugally casting enabled the fabrication of tubular structures with an extremely high damage tolerance due to high deformation ability. A similar effect was achieved by fiber (mesh) addition, as already shown for 3D powder printing. Another possibility of centrifugally casting is the combination of different materials resulting in graded structures to adjust implant degradation or bone formation. This became especially apparent for the incorporation of the antibiotic vancomycin, which is used for the treatment of bacterial implant infections. A long-term release could be achieved by the entrapment of the drug between magnesium phosphate cement layers. Therefore, the release of the drug could be regulated by the degradation of the outer shell, which supports the release into an acidic bacterial environment. The centrifugally casting technique exhibited to be a versatile tool for numerous materials and applications including the fabrication of non-centrosymmetric patient-specific implants for the reconstruction of human long bones. The third project aimed to manufacture strontium-substituted magnesium phosphate implants with improved biological behavior by 3D powder printing. As the promoting effect of strontium on bone formation and the inhibitory impact on bone resorption is already well investigated, the incorporation of strontium into a degradable magnesium phosphate cement promised a fast integration and replacement of the implant. Porous structures were obtained with a high pore interconnectivity that is favorable for cell invasion and bone ingrowth. Despite the porosity, the mechanical performance was comparable to pure magnesium phosphate cement with a high reliability of the printed samples as quantitatively determined by Weibull statistics. However, the biological testing was impeded by the high degradation rate and the relating ion release. The high release of phosphate ions into surrounding media and the detachment of cement particles from the surface inhibited osteoblast growth and activity. To distinguish those two effects, a direct and indirect cell seeding is always required for degradable materials. Furthermore, the high phosphate release compared to the strontium release has to be managed during degradation such that the adverse effect of phosphate ions does not overwhelm the bone promoting effect of the strontium ions. The manufacturing techniques presented in this thesis together with the material property improvement offer a diverse tool box for the fabrication of patient-specific implants. This includes not just the individual implant shape but also the application like bone growth promotion, damage tolerance and local drug delivery. Therefore, this can act as the basis for further research on specific medical indications.show moreshow less
  • Der Fokus dieser Dissertation lag auf der Verarbeitung von Calcium- und Magnesiumphosphatzementen zusammen mit der Optimierung mechanischer und biologischer Eigenschaften. Dazu wurden verschiedene Produktionsverfahren wie beispielsweise der 3D Pulverdruck und der Schleuderguss verwendet, um mechanisch verstärkte oder biomedizinisch verbesserte Implantate herzustellen. Eines der Hauptprobleme des 3D Pulverdrucks ist die geringe Festigkeit des Grünkörpers vieler Materialien, besonders wenn diese lediglich physikalisch gebunden sind und keineDer Fokus dieser Dissertation lag auf der Verarbeitung von Calcium- und Magnesiumphosphatzementen zusammen mit der Optimierung mechanischer und biologischer Eigenschaften. Dazu wurden verschiedene Produktionsverfahren wie beispielsweise der 3D Pulverdruck und der Schleuderguss verwendet, um mechanisch verstärkte oder biomedizinisch verbesserte Implantate herzustellen. Eines der Hauptprobleme des 3D Pulverdrucks ist die geringe Festigkeit des Grünkörpers vieler Materialien, besonders wenn diese lediglich physikalisch gebunden sind und keine Abbindereaktion durchlaufen. Solche Materialien müssen nachbearbeitet werden, beispielsweise durch Sintern, um ihre volle mechanische Leistungsfähigkeit zu entfalten. Die Grünkörper müssen jedoch aus dem 3D Drucker entnommen werden können, was eine gewisse Stabilität erfordert. Mit Hilfe der Faserverstärkung konnte die Festigkeit von gedruckten Grünkörper aus Gips erhöht werden, indem Polymer- und Glasfasern innerhalb des Druckprozesses eingebracht wurden. Die Ergebnisse zeigten, dass Faserverstärkung innerhalb des 3D Pulverdrucks möglich ist und dabei vielfältige Möglichkeiten eröffnet, um die Schadenstoleranz von Grünkörpern wie auch von direkt gedruckten Proben zu verbessern. Der nächste Schritt hin zu verstärkten, patientenspezifischen Implantaten wäre die Übertragung auf biomedizinisch relevante Materialien wie Calcium- und Magnesiumphosphatzemente und biokompatible Fasern. In einem zweiten Ansatz wurde der aus dem Baugewerbe stammende Schleuderguss für die Herstellung hohler Zylinder aus Biokeramik etabliert. Das Ziel war es, die Diaphyse von Röhrenknochen zu ersetzen, die eine tubuläre Struktur mit einer hohen Dichte an kortikalem Knochen am Rand aufweist. Durch Zentrifugieren konnten Zementpasten mit und ohne Additive zu Röhren verarbeitet werden. Zunächst mussten dabei die Prozessparameter bezüglich Material (z.B. Zementzusammensetzung) ebenso wie bezüglich der Einstellungen (z.B. Rotationszeiten) für jedes System optimiert werden. Im Hinblick auf ihre mechanischen Eigenschaften können solche Röhren mit 3D pulvergedruckten Röhren mithalten, obwohl die mechanische Leistungsfähigkeit von 3D gedruckten Röhren stark von der Druckrichtung abhängt. Zusätzlich können einige Materialkombinationen wie dual-abbindende Systeme nicht mit 3D Pulverdruck verarbeitet werden. Daher ermöglicht eine Übertragung solcher Techniken auf den Schleuderguss die Fertigung tubulärer Strukturen mit extrem hoher Schadenstoleranz aufgrund hoher Verformbarkeit. Wie bereits für das 3D Pulverdrucken gezeigt, konnte ein ähnlicher Effekt durch die Zugabe von Fasern (Geweben) erzielt werden. Eine weitere Möglichkeit des Schleudergusses ist die Kombination verschiedener Materialien zu gradientenartigen Strukturen, um den Implantatabbau oder die Knochenbildung anzupassen. Dies war besonders wichtig für die Einbringung des Antibiotikums Vancomycin, das für die Behandlung bakterieller Implantatinfektionen eingesetzt wird. Eine Langzeitfreisetzung konnte durch den Einbau des Arzneistoffs zwischen Magnesiumphosphatschichten erreicht werden. Dadurch konnte die Freisetzung des Wirkstoffs durch den Abbau der äußeren Hülle geregelt werden, was die Freisetzung in das saure Milieu von Bakterien unterstützt. Der Schleuderguss erwies sich als vielseitiges Werkzeug für viele Materialien und Anwendungen, was die Herstellung von nicht-zentrosymmetrischen, patientenspezifischen Implantaten zur Rekonstruktion von menschlichem Röhrenknochen einschließt. Das dritte Projekt zielte auf die Herstellung Strontium-substituierter Magnesiumphosphatimplantaten mittels 3D Pulverdruck mit verbessertem biologischen Verhalten ab. Da die unterstützende Wirkung von Strontium auf die Knochenbildung und die Hemmung des Knochenabbaus bereits eingehend untersucht sind, versprach die Einbringung von Strontium in den abbaubaren Magnesiumphosphatzement eine schnelle Integration und Ersatz des Implantats. Es konnten poröse Strukturen mit einer hohen Poreninterkonnektivität erhalten werden, was förderlich für die Einwanderung von Zellen und das Einwachsen von Knochen ist. Neben der Porosität waren auch die mechanischen Eigenschaften vergleichbar mit reinem Magnesiumphosphatzement mit einer hohen Verlässlichkeit der gedruckten Proben, was quantitativ durch eine Weibullstatistik bestimmt wurde. Die biologische Testung wurde allerdings durch die hohe Degradationsrate und der damit einhergehenden Ionenfreisetzung erschwert. Die hohe Freisetzung von Phosphationen in das umgebende Medium und die Ablösung von Zementpartikeln von der Oberfläche verhinderten das Wachstum und Aktivität der Osteoblasten. Um diese beiden Effekte voneinander unterscheiden zu können, war eine direkte und indirekte Zellbesiedelung der abbaubaren Materialien notwendig. Des Weiteren muss die hohe Phosphatfreisetzung im Vergleich zur Strontiumfreisetzung während des Abbaus derart gesteuert werden, dass die negativen Effekte der Phosphationen nicht die Förderung des Knochenaufbaus durch Strontiumionen überwiegen. Die in dieser Dissertation dargestellten Fertigungstechniken zusammen mit der Verbesserung der Materialeigenschaften bieten eine vielfältige Palette zur Herstellung patientenspezifischer Implantate. Dies beinhaltet nicht nur eine individuelle Implantatgeometrie, sondern auch eine Verbesserung der Schadenstoleranz, die Förderung des Knochenwachstums sowie eine lokale Wirkstofffreisetzung. Daher kann diese Arbeit als Grundlage für weitere Forschung im Bereich spezifischer, medizinischer Indikationen dienen.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Susanne Meininger [geb. Christ]
URN:urn:nbn:de:bvb:20-opus-169126
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Medizinische Fakultät / Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde
Referee:Prof. Dr. Jürgen Groll, Prof. Dr. Frank Müller, Prof. Dr. Uwe Gbureck
Date of final exam:2018/10/12
Language:English
Year of Completion:2018
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
GND Keyword:Calciumphosphate; Knochenzemente
Tag:Knochenersatz; Schleuderguss
3D powder printing; centrifugally casting
Release Date:2018/10/15
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand