The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 94 of 396
Back to Result List

Polyphenole aus Apfelsaft : Studien zur Verfügbarkeit im Humanstoffwechsel

Polyphenols from apple juice : Studies on availability in human metabolism

Please always quote using this URN: urn:nbn:de:bvb:20-opus-32514
  • Ziel der vorliegenden Arbeit war es, den Umfang der gastrointestinalen Absorption und Metabolisierung von mit der Nahrung aufgenommenen Polyphenolen in vivo zu ermitteln. Darüber hinaus sollte deren systemische Verfügbarkeit anhand von humanen Serum- und Urinproben bestimmt werden. Lebensmittel der Wahl war dabei Apfelsaft. Die Identifizierung und Strukturaufklärung der Polyphenole und ihrer Metabolite erfolgte mittels Hochleistungsflüssigchromatographie-Diodenarray-Detektion (HPLC-DAD), HPLC-Elektrospray-TandemmassenspektrometrieZiel der vorliegenden Arbeit war es, den Umfang der gastrointestinalen Absorption und Metabolisierung von mit der Nahrung aufgenommenen Polyphenolen in vivo zu ermitteln. Darüber hinaus sollte deren systemische Verfügbarkeit anhand von humanen Serum- und Urinproben bestimmt werden. Lebensmittel der Wahl war dabei Apfelsaft. Die Identifizierung und Strukturaufklärung der Polyphenole und ihrer Metabolite erfolgte mittels Hochleistungsflüssigchromatographie-Diodenarray-Detektion (HPLC-DAD), HPLC-Elektrospray-Tandemmassenspektrometrie (HPLC-ESI-MS/MS) sowie Kapillargaschromatographie-Massenspektrometrie (HRGC-MS). Quantitative Analysen wurden mittels HPLC-DAD durchgeführt; für die Bestimmung der Polyphenolgehalte in Urinproben sowie von D-(-)-Chinasäure wurde die HPLC-ESI-MS/MS im Single Reaction Monitoring (SRM) Modus eingesetzt. Zur Etablierung der Polyphenolanalytik und zur Auswahl eines für die Studien geeigneten Saftes wurden die Polyphenolprofile verschiedener Presssäfte aus Most- und Tafeläpfeln sowie kommerziell erhältlicher Apfelsäfte ausgewertet. Für die Säfte aus Tafeläpfeln wurden Polyphenolmengen zwischen 154 und 178 mg/L bestimmt, wohingegen die Säfte aus Mostäpfeln Gehalte zwischen 261 und 970 mg/L aufwiesen. Bei den Säften des Handels wiesen die naturtrüben Apfelsäfte mit 182 bis 459 mg/L höhere Polyphenolgehalte auf als die klaren Produkte (120 - 173 mg/L). Bei oraler Aufnahme kommen die Polyphenole zuerst mit Speichel in Kontakt. Umsetzungen mit zentrifugiertem Speichel führten zu keiner Modifikation der Substanzen. In Gegenwart von nativem Speichel wurden für die ß-glycosidisch gebundenen Flavonoidglycoside hydrolytische Abbaureaktionen in Abhängigkeit der Struktur ihres Zuckerrestes beobachtet. Nach Antibiotikumzugabe wurden deutlich geringere Abbauraten ermittelt. Die Hydrolyse erfolgt demnach hauptsächlich durch Enzyme der bakteriellen Mundflora. Im Weiteren gelangen die Polyphenole über die Speiseröhre in den stark sauren Magen. Zur Überprüfung ihrer Stabilität wurden die Apfelpolyphenole mit künstlichem Magensaft (pH 1,81) über vier Stunden inkubiert. Einzig für Procyanidin B2 wurde ein nahezu vollständiger Abbau nachgewiesen. Nach Passage des Magens erreichen die Polyphenole das neutrale bis leicht alkalische Duodenum. Die Inkubation erfolgte mit simuliertem Duodenalsekret (pH 7,2) über einen Zeitraum von 24 Stunden. Für 5-Kaffeoylchinasäure wurde eine 37%ige Abnahme beobachtet. Dabei wurden 3- und 4-Kaffeolychinasäure, Kaffeesäure, D-(-)-Chinasäure sowie Kaffeesäuremethylester generiert. Vergleichbare Ergebnisse wurden bei der Inkubation von 4-p-Cumaroylchinasäure erhalten. Kaffeesäure unterlag einer 26,3%igen Umsetzung zu Ferulasäure, Dihydrokaffeesäure und Kaffeesäuremethylester. Bei den monomeren Flavan-3-olen wurden mittels HPLC-Analytik an chiraler Phase Epimerisierungen nachgewiesen. Procyanidin B2 war nach vier Stunden nur noch in Spuren erfassbar. Quercetin wurde vollständig in Phloroglucin, 3,4-Dihydroxybenzoesäure und 2,4,6-Trihydroxybenzoesäure gespalten. Um die Verfügbarkeit der Polyphenole im Dickdarm zu untersuchen, wurde eine Interventionsstudie mit naturtrübem Apfelsaft bei Probanden mit einem Stoma des terminalen Ileums durchgeführt. Nach oraler Aufnahme von einem Liter Saft wurde der Ileostomaausfluss über einen Zeitraum von acht Stunden gesammelt. In den Ileostomabeuteln wurden zwischen Null und 33,1% der einzelnen aus dem Apfelsaft aufgenommenen phenolischen Substanzen wiedergefunden. Der ausgeschiedene Anteil der Flavonoidglycoside war dabei abhängig von der Struktur des jeweiligen Zuckerrestes. Als Metabolite waren D-(-)-Chinasäure, 1- und 3-Kaffeoylchinasäure, Phloretin und dessen 2´-O-Glucuronid sowie die Methylester der Kaffee- und p-Cumarsäure nachweisbar. Für die höhermolekularen Procyanidine wurden Wiederfindungen von 90,3% sowie deren partieller Abbau ermittelt. Die systemische Verfügbarkeit der Polyphenole sowie ihre renale Ausscheidung wurden in zwei weiteren Humanstudien mit gesunden Probanden untersucht. Nach Konsum von einem Liter naturtrüben Apfelsaft erfolgten Blutabnahmen über einen Zeitraum von acht Stunden; Urin wurde über einen Zeitraum von 24 Stunden untersucht. Die Bilanzierung der Apfelpolyphenole erfolgte sowohl vor als auch nach enzymatischer Hydrolyse. Kaffeesäure, 5-Kaffeoylchinasäure, 4-p-Cumaroylchinasäure, (-)-Epicatechin, Phloretin und Quercetin waren sowohl im Serum als auch im Urin detektierbar. Insgesamt wurden 5,3% (Serum) bzw. 23% (Urin) der mit dem Saft aufgenommenen phenolischen Verbindungen wiedergefunden. Davon waren im Urin 19,5% in Form hydroxylierter phenolischer Säuren nachweisbar.show moreshow less
  • The objective of the present work was to determine the amount of gastrointestinal absorption and metabolism of polyphenols after food consumption in vivo. Furthermore, their systemic availability should be determined by serum and urine samples.. The food under study was apple juice. Identification and structural elucidation of polyphenols and their metabolites were performed by high-performance liquid chromatography diode-array detection (HPLC-DAD), HPLC electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) as well asThe objective of the present work was to determine the amount of gastrointestinal absorption and metabolism of polyphenols after food consumption in vivo. Furthermore, their systemic availability should be determined by serum and urine samples.. The food under study was apple juice. Identification and structural elucidation of polyphenols and their metabolites were performed by high-performance liquid chromatography diode-array detection (HPLC-DAD), HPLC electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) as well as high-resolution gas chromatography mass spectrometry (HRGC-MS). Quantitative analyses were performed by HPLC-DAD; for the quantitation of polyphenol contents in the urine samples under study as well as the D-(-)-quinic acid, HPLC-ESI-MS/MS in the single reaction monitoring (SRM) mode was used. For the establishment of polyphenol analysis and for the selection of a suitable juice for the studies, the polyphenol profiles of different pressed juices of cider and dessert apples as well as commercially available apple juices were analysed first of all. For the juices from dessert apples polyphenol amounts ranged between 154 and 178 mg/l, whereas the juices from cider apples showed contents between 261 and 970 mg/l. Among commercially available juices, with 182 to 459 mg/l cloudy apple juices showed higher contents than the clear products (120 - 173 mg/l). By oral consumption, polyphenols come first into contact with saliva. Conversions with centrifuged saliva led to no modification of the substances. In the presence of whole saliva in ß-glycosidic bound flavonoid glycosides hydrolytic decomposition reactions in dependence of their sugar moiety were observed. After the addition of antibiotic, smaller degradation rates were clearly determined. Thus, hydrolysis resulted mainly from the enzymes of the oral bacterial flora. Afterwards, the polyphenols reach the highly acid stomach via the oesophagus. For examination of their stability the apple polyphenols were incubated with artificial gastric juice (pH 1.81) for four hours. Only for procyanidin B2 an almost complete decomposition was demonstrated. Following the passage of the stomach the polyphenols reach the neutral to slightly alkaline duodenum. Incubations were performed with simulated duodenal secretion (pH 7.2) over a period of 24 hours. For 5-caffeoylquinic acid, a decomposition of 37% was observed. Thereby,3- and 4-caffeoylquinic acid, caffeic acid, D-(-)-quinic acid as well as caffeic acid methyl ester were generated. Comparable results were received with the incubation of 4-p-coumaroylquinic acid. 26.3% of the caffeic acid underwent a conversion to ferulic acid, dihydrocaffeic acid and caffeic acid methyl ester. For monomeric flavan-3-ols epimerisation was demonstrated by HPLC analytics using a chiral phase. Only traces of procyanidin B2 were detectable after four hours. Quercetin was split completely into phloroglucinol, 3,4-dihydroxybenzoic acid and 2,4,6-trihydroxybenzoic acid. In order to investigate the availability of polyphenols in the large intestine, an intervention study with cloudy apple juice was accomplished by volunteers with a terminal ileostomy. After oral intake of one litre of juice the ileostomy discharge was collected over a period of eight hours. Between zero and 33.1% of the particular phenolic substances absorbed from the apple juice were recovered in the ileostomy bags. The excreted amount of the flavonoid glycosides depended thereby on the structure of the respective sugar moiety. As metabolites, D-(-)-quinic acid, 1- and 3-caffeoylquinic acid, phloretin and its 2´-O-glucuronide as well as the methyl ester of the caffeic and p-coumaric acid were detectable. For the high-molecular procyanidins recoveries of 90.3% as well as their partial decomposition were detected. The systemic availability of polyphenols as well as their renal elimination was investigated in two further human studies with healthy volunteers, respectively. After consumption of one litre of cloudy apple juice blood samples were taken over a period of eight hours; urine was analysed over a period of 24 hours. The measurement of the apple polyphenols was carried out both before and after enzymatic hydrolysis. Caffeic acid, 5-caffeoylquinic acid, 4-p-coumaroylquinic acid, (-)-epicatechin, phloretin and quercetin were detectable both in serum and urine. Alltogether 5.3% (serum) and 23.0% (urine) of the phenolic compounds consumed with the juice were recovered. In the urine, 19.5% of that was determined in form of hydroxylated phenolic acids.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Kathrin Kahle
URN:urn:nbn:de:bvb:20-opus-32514
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Pharmazie und Lebensmittelchemie
Date of final exam:2008/12/18
Language:German
Year of Completion:2008
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Apfelsaft; HPLC; Verfügbarkeit; Polyphenole
Tag:Humanstoffwechsel
HPLC; apple juice; availability; human metabolism; polyphenols
Release Date:2009/01/08
Advisor:Prof. Dr. Peter Schreier