• search hit 1 of 3
Back to Result List

Evolution by genome duplication: insights from vertebrate neural crest signaling and pigmentation pathways in teleost fishes

Evolution durch Genomverdoppelung: Erkenntnisse aus Analysen der Signalwege in der Neuralleiste der Vertebraten und in den Pigmentzellen im Fisch

Please always quote using this URN: urn:nbn:de:bvb:20-opus-35702
  • Gene and genome duplications are major mechanisms of eukaryotic genome evolution. Three rounds of genome duplication have occurred in the vertebrate lineage, two rounds (1R, 2R) during early vertebrate evolution and a third round, the fish-specific genome duplication (FSGD), in ray-finned fishes at the base of the teleost lineage. Whole genome duplications (WGDs) are considered to facilitate speciation processes and to provide the genetic raw material for major evolutionary transitions and increases in morphological complexity. In the presentGene and genome duplications are major mechanisms of eukaryotic genome evolution. Three rounds of genome duplication have occurred in the vertebrate lineage, two rounds (1R, 2R) during early vertebrate evolution and a third round, the fish-specific genome duplication (FSGD), in ray-finned fishes at the base of the teleost lineage. Whole genome duplications (WGDs) are considered to facilitate speciation processes and to provide the genetic raw material for major evolutionary transitions and increases in morphological complexity. In the present study, I have used comparative genomic approaches combining molecular phylogenetic reconstructions, synteny analyses as well as gene function studies (expression analyses and knockdown experiments) to investigate the evolutionary consequences and significance of the three vertebrate WGDs. First, the evolutionary history of the endothelin signaling system consisting of endothelin ligands and receptors was reconstructed. The endothelin system is a key component for the development of a major vertebrate innovation, the neural crest. This analysis shows that the endothelin system emerged in an ancestor of the vertebrate lineage and that its members in extant vertebrate genomes are derived from the vertebrate WGDs. Each round of WGD was followed by co-evolution of the expanding endothelin ligand and receptor repertoires. This supports the importance of genome duplications for the origin and diversification of the neural crest, but also underlines a major role for the co-option of new genes into the neural crest regulatory network. Next, I have studied the impact of the FSGD on the evolution of teleost pigment cell development and differentiation. The investigation of 128 genes showed that pigmentation genes have been preferentially retained in duplicate after the FSGD so that extant teleost genomes contain around 30% more putative pigmentation genes than tetrapods. Large parts of pigment cell regulatory pathways are present in duplicate being potentially involved in teleost pigmentary innovations. There are also important differences in the retention of duplicated pigmentation genes among divergent teleost lineages. Functional studies of pigment synthesis enzymes in zebrafish and medaka, particularly of the tyrosinase family, revealed lineage-specific functional evolution of duplicated pigmentation genes in teleosts, but also pointed to anciently conserved gene functions in vertebrates. These results suggest that the FSGD has facilitated the evolution of the teleost pigmentary system, which is the most complex and diverse among vertebrates. In conclusion, the present study supports a major role of WGDs for phenotypic evolution and biodiversity in vertebrates, particularly in fish.show moreshow less
  • Gen- und Genomverdopplungen sind wichtige Mechanismen der Genomevolution in Eukaryonten. Im Verlauf der Evolution der Wirbeltiere gab es drei wichtige Genomduplikationen. Zwei Genomverdopplungen (1R, 2R) fanden während der sehr frühen Vertebratenevolution statt. In der Linie der Fische kam es an der Basis der Teleostier zu einer weiteren, fischspezifischen Genomduplikation (FSGD). Man nimmt an, dass Genomduplizierungen Artbildungsprozesse begünstigen und dass sie zusätzliches genetisches Material für wichtige evolutionäre Übergänge und für dieGen- und Genomverdopplungen sind wichtige Mechanismen der Genomevolution in Eukaryonten. Im Verlauf der Evolution der Wirbeltiere gab es drei wichtige Genomduplikationen. Zwei Genomverdopplungen (1R, 2R) fanden während der sehr frühen Vertebratenevolution statt. In der Linie der Fische kam es an der Basis der Teleostier zu einer weiteren, fischspezifischen Genomduplikation (FSGD). Man nimmt an, dass Genomduplizierungen Artbildungsprozesse begünstigen und dass sie zusätzliches genetisches Material für wichtige evolutionäre Übergänge und für die Steigerung morphologischer Komplexität erzeugen. In der vorliegenden Arbeit wurden Methoden der vergleichenden und funktionellen Genomik gewählt, um die Auswirkungen und die Bedeutung der drei Genomverdopplungen bei Vertebraten zu untersuchen. Dazu wurden molekularphylogenetische Stammbaumanalysen und Synteniedaten mit Genexpressionsstudien und Knockdown-Experimenten kombiniert. Zunächst wurde die Evolution des Endothelin-Signalsystems rekonstruiert. Dieses besteht aus Endothelin-Liganden und -Rezeptoren und hat eine Schlüsselrolle in die Entwicklung der Neuralleiste. Die Neuralleiste und die von ihr abgeleiteten Zelltypen sind wirbeltierspezifische Innovationen. Die Analyse zeigt, dass das Endothelin-System in einem gemeinsamen Vorfahren der Vertebraten entstanden ist. Die in den Genomen rezenter Vertebraten vorkommenden Komponenten des Endothelin-Systems sind durch die drei Genomverdoppelungen entstanden. Nach jeder der Duplizierungen kam es zur Ko-Evolution der Liganden- und Rezeptorenfamilien. Die Evolution des Endothelin-System unterstreicht daher die Bedeutung der Genomduplizierungen für den Ursprung und die Diversifizierung der Neuralleiste. Sie weist aber auch auf eine wichtige Rolle für die Integrierung neuer Gene in das regulatorische Netzwerk der Neuralleiste hin. Im Weiteren wurde der Einfluss der FSGD auf die Evolution der Pigmentzellentwicklung und differenzierung in Teleostiern untersucht. Die evolutionäre Analyse von 128 Genen zeigte, dass Pigmentierungsgene nach der FSGD bevorzugt in zwei Kopien erhalten geblieben sind. Daher besitzen rezente Teleostier im Vergleich zu Landwirbeltieren zusätzlich ca. 30% mehr Gene mit potentiellen Funktionen für die Pigmentierung. Große Teile der regulatorischen Signalwege in den Pigmentzellen liegen daher als zwei Kopien vor. Diese waren möglicherweise an der Evolution von Innovationen in der Körperfärbung von Teleostiern beteiligt. In der vorliegenden Arbeit wurden auch wichtige Unterschiede zwischen verschiedenen Fischgruppen im Erhalt duplizierter Pigmentierungsgene gefunden. Funktionelle Studien bei Zebrafish und bei Medaka an Enzymen der Pigmentsynthese, insbesondere der Tyrosinase-Familie, gaben Hinweise darauf, dass die funktionelle Evolution duplizierter Pigmentierungsgene in Fischen linienspezifisch verlaufen kann. Die Studien ergaben außerdem, dass bestimmte Funktionen der Pigmentsyntheseenzyme innerhalb der Vertebraten konserviert sind. Die Evolution des Pigmentierungssystems der Fische, welches das vielfältigste und komplexeste innerhalb der Wirbeltiere ist, wurde somit maßgeblich durch die FSGD beeinflusst. Zusammenfassend weisen die Ergebnisse der vorliegenden Arbeit darauf hin, dass die Verdopplung ganzer Genome ein wichtiger Mechanismus der phänotypische Evolution bei Vertebraten ist und damit in besonderem Maße zur ihrer Biodiversität beiträgt.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Ingo Braasch
URN:urn:nbn:de:bvb:20-opus-35702
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Date of final exam:2009/04/28
Language:English
Year of Completion:2009
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Molekulare Evolution; Fische; Entwicklungsbiologie; Evolutionsbiologie; Genanalyse
Tag:Gen-/Genomverdoppelung; Melanin; Neuralleiste; Pigmentierung; Vertebrat
fish; gene/genome duplication; neural crest; pigmentation; vertebrate
Release Date:2009/04/30
Advisor:Prof. Dr. Dr. Manfred Schartl