The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 57 of 241
Back to Result List

Spin-dependence of angle-resolved photoemission from spin-orbit split surface states

Spin-Abhängigkeit in winkelaufgelöster Photoemission von Oberflächenzuständen mit Spin-Bahn-Aufspaltung

Please always quote using this URN: urn:nbn:de:bvb:20-opus-151025
  • Spin- and angle-resolved photoelectron spectroscopy is the prime method to investigate spin polarized electronic states at solid state surfaces. In how far the spin polarization of an emitted photoelectron reflects the intrinsic spin character of an electronic state is the main question in the work at hand. It turns out that the measured spin polarization is strongly influenced by experimental conditions, namely by the polarization of the incoming radiation and the excitation energy. The photoemission process thus plays a non-negligibleSpin- and angle-resolved photoelectron spectroscopy is the prime method to investigate spin polarized electronic states at solid state surfaces. In how far the spin polarization of an emitted photoelectron reflects the intrinsic spin character of an electronic state is the main question in the work at hand. It turns out that the measured spin polarization is strongly influenced by experimental conditions, namely by the polarization of the incoming radiation and the excitation energy. The photoemission process thus plays a non-negligible role in a spin-sensitive measurement. This work is dedicated to unravel the relation between the result of a spin-resolved measurement and the spin character in the ground state and, therefore, to gain a deep understanding of the spin-dependent photoemission process. Materials that exhibit significant spin-splittings in their electronic structure, owing to a strong spin-orbit coupling, serve as model systems for the investigations in this work. Therefore, systems with large Rashba-type spin-splittings as BiTeI(0001) and the surface alloys BiAg2/Ag(111) and PbAg2/Ag(111) are investigated. Likewise, the surface electronic structure of the topological insulators Bi2Te2Se(0001) and Bi2Te3(0001) are analyzed. Light polarization dependent photoemission experiments serve as a probe of the orbital composition of electronic states. The knowledge of the orbital structure helps to disentangle the spin-orbital texture inherent to the different surface states, when in addition the spin-polarization is probed. It turns out that the topological surface state of Bi2Te2Se(0001) as well as the Rashba-type surface state of BiTeI(0001) exhibit chiral spin-textures associated with the p-like in-plane orbitals. In particular, opposite chiralities are coupled to either tangentially or radially aligned p-like orbitals, respectively. The results presented here are thus evidence that a coupling between spin- and orbital part of the wave function occurs under the influence of spin-orbit coupling, independent of the materials topology. Systematic photon energy dependent measurements of the out-of-plane spin polarization of the topological surface state of Bi2Te3(0001) reveal a strong dependence and even a reversal of the sign of the photoelectron spin polarization with photon energy. Similarly, the measured spin component perpendicular to the wave vector of the surface state of BiAg2/Ag(111) shows strong modulations and sign reversals when the photon energy is changed. In BiAg2/Ag(111) the variations in the photoelectron spin polarization are accompanied by significant changes and even a complete suppression of the photoemission intensity from the surface state, indicating that the variations of the spin polarization are strongly related to the photoemission cross section. This relation is finally analyzed in detail by employing a simple model, which is based on an evaluation of the transition matrix elements that describe the presented experiments. The model shows that the underlying cause for the observed photoelectron spin reversals can be found in the coupling of the spin structure to the spatial part of the initial state wave function, revealing the crucial role of spin-orbit interaction in the initial state wave function. The model is supported by ab initio photoemission calculations, which show strong agreement with the experimental results.show moreshow less
  • Spin- und winkelaufgelöste Photoelektronenspektroskopie bietet einen Einblick in die elektronische Struktur spinpolarisierter Zustände an Festkörperoberflächen. In- wieweit eine Messung der Spinpolarisation emittierter Photoelektronen den tatsäch- lichen intrinsischen Spincharakter eines elektronischen Zustandes wiedergibt, ist die zentrale Fragestellung der vorliegenden Arbeit. Dabei zeigt sich, dass die gemessene Spinpolarisation stark von den experimentellen Gegebenheiten wie etwa der Pola- risation des einfallenden Lichtes oder derSpin- und winkelaufgelöste Photoelektronenspektroskopie bietet einen Einblick in die elektronische Struktur spinpolarisierter Zustände an Festkörperoberflächen. In- wieweit eine Messung der Spinpolarisation emittierter Photoelektronen den tatsäch- lichen intrinsischen Spincharakter eines elektronischen Zustandes wiedergibt, ist die zentrale Fragestellung der vorliegenden Arbeit. Dabei zeigt sich, dass die gemessene Spinpolarisation stark von den experimentellen Gegebenheiten wie etwa der Pola- risation des einfallenden Lichtes oder der Photonenenergie abhängt und der Photo- emissionsprozess eine somit nicht zu vernachlässigende Rolle für das Messergebnis spielt. Das Ziel dieser Arbeit ist es, den Zusammenhang zwischen dem Ergebnis einer spinsensitiven Messung und dem Spincharakter des Grundzustandes zu entschlüsseln und dabei ein tieferes Verständnis der Spinpolarisation im Photoemissionsprozess zu gewinnen. Als Modellsysteme dienen dabei Materialien, die aufgrund einer starken Spin- Bahn-Kopplung spinaufgespaltene Zustände aufweisen. Daher wird zum einen der Spin-und Orbitalcharakter der elektronischen Struktur von Modellsystemen mit Rashba-artigen Oberflächenzuständen untersucht, wie sie etwa BiTeI(0001) oder die Oberflächenlegierungen BiAg2/Ag(111) und PbAg2/Ag(111) aufweisen. Zum anderen wird die Oberflächenbandstruktur der topologischen Isolatoren Bi2Te2Se(0001) und Bi2Te3(0001) genauer analysiert. Mithilfe der winkelaufgelösten Photoelektronenspektroskopie mit unterschiedlicher Lichtpolarisation wird die orbitale Struktur der untersuchten elektronischen Zustände entschlüsselt. Im folgenden Schritt wird das Wissen um den orbitalen Charakter der Wellenfunktion genutzt, um durch zusätzliche Detektion des Photoelektronenspins einen Einblick in die gekoppelte Spin- und Orbitalstruktur zu gewinnen. Hierbei zeigt sich, dass sowohl der topologische Oberflächenzustand von Bi2Te2Se(0001) als auch der Rashba-artige Oberflächenzustand von BiTeI(0001) chirale Spinstrukturen aufweist, die an die in der Oberflächenebene orientierten p-artigen Orbitale gekoppelt sind. Für Orbitale, die tangential an den Oberflächenzustand angeordnet sind, und solche, die radial angeordnet sind, findet sich dabei eine entgegengesetzte Chiralität. Die Resultate dieser Arbeit dienen somit als Nachweis, dass die Kopplung zwischen Spin und Orbital unter dem Einfluss starker Spin-Bahn-Kopplung bei topologischen wie nicht-topologischen Zuständen in ähnlicher Form auftritt. Systematische photonenenergieabhängige Messungen der Spinpolarisation paral- lel zur Oberflächennormalen im topologischen Oberflächenzustand von Bi2Te3(0001) weisen eine starke Photonenenergieabhängigkeit und sogar Vorzeichenwechsel in der Photoelektronenspinpolarisation auf. In ähnlicher Weise zeigt auch die am Rashba- artigen Zustand von BiAg2/Ag(111) gemessene Spinpolarisation starke Änderun- gen bis hin zu einer Umkehr der Spinpolarisation mit der Photonenenergie. In BiAg2/Ag(111) gehen die Veränderungen der gemessenen Spinpolarisation mit deut- lichen Modulationen der Photoemissionsintensität einher. Dies impliziert einen mö- glichen Zusammenhang zwischen den Veränderungen des Photoelektronenspins und dem Wirkungsquerschnitt des Photoemissionsprozesses. Ein solcher Zusammenhang wird zuletzt im Rahmen eines einfachen Modells genauer untersucht. Dieses basiert auf den Übergangsmatrixelementen, die die vorgestellten Photoemissionsexperimente beschreiben, und ermöglicht es, die beobach- teten Veränderungen des Photoelektronenspins auf die Kopplung des Spins an die Realraumwellenfunktion des Ausgangszustands zurückzuführen. Das Modell wird durch ab initio-Photoemissionsrechnungen unterstützt, die eine hohe Übereinstim- mung mit den gemessenen Daten aufweisen.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Henriette Maaß
URN:urn:nbn:de:bvb:20-opus-151025
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Friedrich Reinert
Date of final exam:2017/06/13
Language:English
Year of Completion:2017
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Photoelektronenspektroskopie; Spinpolarisation
Tag:ARPES
SARPES; spin; spin-orbit-coupling
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 73.00.00 Electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures (for electronic structure and electrical properties of superconducting films and low-dimensional structures, see 74.78.-w; for computational / 73.20.-r Electron states at surfaces and interfaces / 73.20.At Surface states, band structure, electron density of states
Release Date:2017/09/18
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung