The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 54 of 312
Back to Result List

Reaktivität von Boranen gegenüber Übergangsmetall-Lewis-Basen

Reactivity of boranes towards transition metal Lewis bases

Please always quote using this URN: urn:nbn:de:bvb:20-opus-125447
  • Im Rahmen der vorliegenden Arbeit wurden Dihydroborane (H2BR) sowie Dihalogenborane (X2BR) mit Übergangsmetall-Lewis-Basen umgesetzt und die Reaktivität der auf diese Weise erhaltenen Übergangsmetall–Bor-Komplexe eingehend untersucht. So wurde eine Serie neuer Borylkomplexe des Typs trans-[Pt{B(Br)R‘}Br(PR3)2] dargestellt und mit Salzen schwach-koordinierender Anionen umgesetzt. Diese Studien sollten die Triebkraft für die Bildung kationischer Borylenkomplexe näher beleuchten. Die experimentellen Ergebnisse zeigen, dass eine Substitution inIm Rahmen der vorliegenden Arbeit wurden Dihydroborane (H2BR) sowie Dihalogenborane (X2BR) mit Übergangsmetall-Lewis-Basen umgesetzt und die Reaktivität der auf diese Weise erhaltenen Übergangsmetall–Bor-Komplexe eingehend untersucht. So wurde eine Serie neuer Borylkomplexe des Typs trans-[Pt{B(Br)R‘}Br(PR3)2] dargestellt und mit Salzen schwach-koordinierender Anionen umgesetzt. Diese Studien sollten die Triebkraft für die Bildung kationischer Borylenkomplexe näher beleuchten. Die experimentellen Ergebnisse zeigen, dass eine Substitution in ortho-Position des borgebundenen Arylliganden für den notwendigen [1,2]-Halogenshift vom Bor- zum Platinzentrum und somit zur Realisierung einer Pt=B-Mehrfachbindung unabdingbar ist. Demnach reagieren Komplexe mit para-substituierten Arylliganden bei Halogenidabstraktion aus Borylkomplexen zu T-förmigen, kationischen Borylplatinkomplexen, während die Duryl-substituierten Analoga unter [1,2]-Halogenwanderung in kationische Borylenplatinkomplexe überführt werden. Neben dem Substitutionsmuster des borgebundenen Arylliganden wurde auch der Einfluss des Phosphanliganden untersucht. Die Molekülstrukturen der Borylkomplexe 2 und 4 im Festkörper zeigen grundlegende Unterschiede im strukturellen Aufbau. Der Durylsubstituent ist in 2 im Vergleich zur (Ph-4-tBu)-Einheit in 4 deutlich aus der {Br2–Pt–B–Br1}-Ebene herausgedreht (2: Pt–B–C1–C2: 31.4(1); 4: 4.3(7)°), was vermutlich einen [1,2]-Halogenshift in 2 begünstigt. Die Pt–B-Bindungen der kationischen Borylenkomplexe 6 (1.861(5) Å) und 7 (1.863(5) Å) sind deutlich kürzer als im neutralen Borylkomplex 2 (2.004(4) Å), was ein eindeutiger Beleg für den Mehrfachbindungscharakter der Pt–B-Bindungen in 6 und 7 ist. Demzufolge scheint der sterische Anspruch des borgebundene Arylsubstituenten entscheidend für den Reaktionspfad bei Halogenidabstraktionen und somit für die Bildung kationischer Borylenplatinkomplexe zu sein, während diesen Studien zu Folge der Einfluss der Ligandensphäre am Platinzentrum eher eine untergeordnete Rolle spielt. Des Weiteren gelang die Synthese der neuartigen heteroleptischen Platinkomplexe [Pt(cAACMe)(PiPr3)] (13) und [Pt(cAACMe)(PCy3)] (14) durch Umsetzung von [Pt(PCy3)2] und [Pt(PiPr3)2] mit dem cyclischen (Alkyl)(Amino)Carben cAACMe (Schema 34, A), bzw. durch Umsetzung von [Pt(nbe)2(PCy3)] (Schema 34, B) mit cAACMe. Die Darstellung des literaturbekannten homoleptischen Komplexes [Pt(cAACMe)2] (11) konnte durch Reaktion von [Pt(nbe)3] mit cAACMe deutlich vereinfacht werden bei gleichzeitiger Steigerung der Ausbeute (96%, Literatur: 79%). Die ungewöhnlich intensiv orangene Farbe dieser Verbindungsklasse geht laut DFT-Rechnungen auf die elektronische Anregung aus dem HOMO in das LUMO zurück, wobei hauptsächlich die π-Wechselwirkungen zwischen den Platin- und Carbenkohlenstoffatomen des cAACMe-Liganden beteiligt sind (DFT-Rechnungen von Dr. Mehmet Ali Celik). Auch in ihren strukturellen Eigenschaften sind sich 11 - 14 sehr ähnlich, wohingegen deutliche Unterschiede in deren Elektrochemie und Reaktivität beobachtet wurden. So konnte für 11 eine quasi-reversible Oxidationswelle (E1/2 = –0.30 V gegen [Cp2Fe]/[Cp2Fe]+ in THF) bestimmt werden, während die heteroleptischen Komplexe 13 und 14 (Epa = –0.09 V; –0.11 V) sowie deren Vorläufer [Pt(PCy3)2] und [Pt(PiPr3)2] (Epa = 0.00 V; +0.12 V) irreversible Oxidationswellen zeigen. Demnach kann 13 und 14 im Vergleich zu [Pt(PCy3)2] und [Pt(PiPr3)2] ein größeres Reduktionsvermögen zugeordnet werden. Reaktivitätsstudien zeigen, dass der homoleptische Komplex 11 inert gegenüber vielen Substraten wie z.B. Boranen, Diboranen(4) und Lewis-Säuren ist. Im Gegensatz dazu haben sich die heteroleptischen Komplexe 13 und 14 als deutlich reaktiver erwiesen, womit diese eine Mittelstellung zwischen 11 und der Spezies [Pt(PR3)2] einnimmt. Die Umsetzung von [Pt(cAACMe)(PiPr3)] (13) mit BBr3 und Br2BPh lieferte die Borylkomplexe 18 und 19, welche vollständig charakterisiert wurden. Die Reaktivität von 13 und 14 gegenüber den Lewis-Säuren GaCl3 und HgCl2 zeigt ebenfalls Analogien zu der von Bis(phosphan)platinkomplexen. Reaktion mit GaCl3 führte hierbei zur Bildung der MOLP-Komplexe [(cAACMe)(PiPr3)Pt→GaCl3] (21) und [(cAACMe)(PCy3)Pt→GaCl3] (22), während die oxidative Addition der Hg–Cl-Bindung an das Platinzentrum von 14 im Komplex [PtCl(HgCl)(cAACMe)(PiPr3)] (23) resultierte. Die Synthese von 23 gelang auch durch Umsetzung mit Kalomel unter Abscheidung eines Äquivalentes elementaren Quecksilbers. Ein weiterer Schwerpunkt dieser Arbeit lag auf der Übergangsmetall-vermittelten Dehydrokupplung von Dihydroboranen. Die Umsetzung von [Pt(cAACMe)(PiPr3)] (13) mit BBr3 und Br2BPh lieferte die Borylkomplexe 18 und 19, welche vollständig charakterisiert wurden. Die Reaktivität von 13 und 14 gegenüber den Lewis-Säuren GaCl3 und HgCl2 zeigt ebenfalls Analogien zu der von Bis(phosphan)platinkomplexen. Reaktion mit GaCl3 führte hierbei zur Bildung der MOLP-Komplexe [(cAACMe)(PiPr3)Pt→GaCl3] (21) und [(cAACMe)(PCy3)Pt→GaCl3] (22), während die oxidative Addition der Hg–Cl-Bindung an das Platinzentrum von 14 im Komplex [PtCl(HgCl)(cAACMe)(PiPr3)] (23) resultierte. Die Synthese von 23 gelang auch durch Umsetzung mit Kalomel unter Abscheidung eines Äquivalentes elementaren Quecksilbers. Ein weiterer Schwerpunkt dieser Arbeit lag auf der Übergangsmetall-vermittelten Dehydrokupplung von Dihydroboranen. Vor Beginn dieser Reaktivitätsstudien wurde zunächst eine vereinfachte Syntheseroute für Dihydroborane entwickelt. Durch Umsetzung von Cl2BDur mit HSiEt3 konnte auf diese Weise der Syntheseaufwand deutlich verringert und die Ausbeute an H2BDur von 74% auf 98% deutlich gesteigert werden. Zur Dehydrokupplung wurden neben Gold-, Rhodium- und Iridiumkomplexen auch Platinkomplexe mit H2BDur umgesetzt. Die Untersuchungen mit Gold- und Rhodiumverbindungen erwiesen sich hierbei als erfolglos und die Umsetzung der Iridiumpincerkomplexe [(PCP)IrH2] 26 und 27 (tBuPCP, AdPCP) mit H2BDur lieferte die Boratkomplexe 28 und 29 mit κ2-koordinierten {H2BHDur}-Liganden. Analog konnte bei Umsetzung von 26 mit H2BThx der Boratkomplex 30 spektroskopisch beobachtet, jedoch nicht isoliert werden. Bei den Komplexen 28 - 30 handelt es sich um die ersten κ2-σ:σ-Dihydroboratkomplexe mit sterisch anspruchsvollen Arylsubstituenten. Neben den Iridiumpincerkomplexen wurde auch der Komplex [Cp*IrCl2]2 mit H2BDur umgesetzt. Die Bildung des Boratkomplexes 34 ist mit einem [1,2]-Shift eines Chloratoms von Iridium auf das Borzentrum verbunden. Die Reaktivität von H2BDur gegenüber [Pt(PCy3)2] zeigte eine starke Abhängigkeit hängt von der Stöchiometrie. Bei der 1:1-Umsetzung konnten sowohl die farblosen Verbindungen trans-[(PCy3)2PtH2] und Cy3P→BH2Dur (48) isoliert werden, als auch die beiden dunkelroten Verbindungen [(Cy3P)3Pt3(2-B2Dur2)] (36) und [{(PCy3)Pt}4(2-BDur)2(4-BDur)] (37), kristallographisch untersucht werden. Der B–B-Abstand im π-Diborenkomplex 36 (1.614(6) Å) deutet eindeutig auf die Gegenwart einer B=B-Doppelbindung hin, wobei das Diboren side-on gebunden an zwei der drei Platinatome des Pt3-Gerüsts koordiniert ist. Die Zusammensetzung von 36 und 37 konnte auch durch Elementaranalysen bestätigt werden. Die Bildung von 36 und 37 deuten auch darauf hin, dass bei dieser Art der Dehydrokupplung multimetallische Wechselwirkungen eine wichtige Rolle für die Stabilisierung der borzentrierten Liganden spielen. So konnten bei der Reaktion von [Pt(PCy3)2] mit zwei Äquivalenten H2BDur neben Cy3P→BH2Dur (48) auch zwei weitere zweikernige Platinverbindungen isoliert und vollständig charakterisiert werden. Erhitzen der Reaktionslösung auf 68°C für 170 Minuten führte hierbei zur Bildung von [{(Cy3P)Pt}2(μ-BDur)(ƞ2:(μ-B)-HB(H)Dur)] (38) mit zwei verbrückenden borzentrierten Liganden, einem Borylen- (BDur) und einem Boranliganden (BH2Dur), welche im 11B{1H}-NMR Spektrum bei δ = 101.3 und δ = 32.8 ppm detektiert wurden. Die Röntgenstrukturanalyse von 38 lässt einen signifikanten σ-BH-Hinbindungsanteil des Boranliganden zu einem der Platinzentren vermuten, was einen anteiligen Pt2→B-Bindungscharakter andeutet. Dieser Befund konnte auch durch DFT-Rechnungen von Dr. William Ewing bestätigt werden. Die Studien haben auch gezeigt, dass die Bildung von 38 über eine Zwischenstufe verläuft, den hypercloso-Cluster [{(Cy3P)HPt}2(μ-H){μ:ƞ2-B2Dur2(μ-H)}] (39) mit einer tetraedrischen {Pt2B2}-Einheit, zwei terminalen Pt–H-Bindungen sowie je einen die Pt–Pt- bzw. B–B-Bindung verbrückenden Hydridliganden. 39 erwies sich als anfällig gegenüber H2-Eliminierung und lagert bei Raumtemperatur innerhalb von Tagen, bzw. bei 68°C innerhalb einer Stunde unter B–B-Bindungsbruch quantitativ in 38 um, welche selbst keinen direkten Bor–Bor-Kontakt mehr aufweist. Auf Grundlage der beschriebenen Resultate wurde zudem ein einfacher Zugang zu zweikernigen Platinkomplexen entwickelt. Demnach gelang es, den literaturbekannten zweikernigen Komplex [Pt2(μ:ƞ2-dppm)3] (50) (dppm = Ph2PCH2PPh2) durch Umsetzung von [Pt(nbe)3] mit dppm in guten Ausbeuten zu synthetisieren. Des Weiteren wurde die Reaktivität von 50 gegenüber verschiedenen Lewis-Säuren untersucht. Ein Großteil dieser Umsetzungen war mit der Bildung von schwer löslichen Feststoffen verbunden, weshalb lediglich bei der Reaktion mit Br2BPh und Br2BMes geringe Mengen an definiertem Produkt isoliert und durch Röntgenstrukturanalyse charakterisiert werden konnten. Demnach führte die Umsetzung von 50 mit Br2BPh oder Br2BMes zur oxidativen Addition beider B–Br-Bindungen an je eines der Platinzentren und der Bildung der verbrückenden Borylenplatinkomplexe 51 und 52. NMR-spektroskopische Studien deuteten eine analoge Reaktivität von Br2BDur und Br2BFc an, wobei die Komplexe 53 und 54 noch nicht vollständig charakterisiert werden konnten.show moreshow less
  • Another focus of this work was the dehydrocoupling of dihydroboranes (H2BDur) mediated by late transition metals. Prior to these reactivity studies, an improved protocol for a less time-consuming synthetic route of dihydroboranes was developed. To this end, reaction of Cl2BDur with an excess HSiEt3 was shown to proceed quantitatively, affording H2BDur in 98% yield (lit: 74%). Unfortunately, dehydrocoupling experiments of H2BDur with gold, rhodium and iridium complexes were unsuccessful. However, it was possible to isolate two dihydroborateAnother focus of this work was the dehydrocoupling of dihydroboranes (H2BDur) mediated by late transition metals. Prior to these reactivity studies, an improved protocol for a less time-consuming synthetic route of dihydroboranes was developed. To this end, reaction of Cl2BDur with an excess HSiEt3 was shown to proceed quantitatively, affording H2BDur in 98% yield (lit: 74%). Unfortunately, dehydrocoupling experiments of H2BDur with gold, rhodium and iridium complexes were unsuccessful. However, it was possible to isolate two dihydroborate complexes (28, 29) by reaction of iridium pincer complexes [(PCP)IrH2] 26 and 27 (tBuPCP, AdPCP) with H2BDur. Here, the {H2BHDur} moiety binds as a bidentate unit to the metal center. Similarly, the reaction of 26 with H2BThx yielded an analogous species, which was detected by NMR spectroscopy, but could not be isolated. Complexes 28 and 29 have to be considered the first κ2-σ:σ-dihydroborate complexes with sterically demanding aryl substituents. In addition, the iridium complex [Cp*IrCl2]2 was treated with H2BDur and a crystal of the dihydroborate complex 34 was obtained. In this case, formation of 34 was accompanied by a [1,2]-shift of one chloride atom from iridium to the boron center. ...show moreshow less

Download full text files

Export metadata

Metadaten
Author: Nicole Arnold
URN:urn:nbn:de:bvb:20-opus-125447
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Anorganische Chemie
Referee:Prof. Dr. Holger BraunschweigORCiD
Date of final exam:2016/01/22
Language:German
Year of Completion:2015
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Metallorganische Verbindungen; Borylene; Platinkomplexe
Tag:Borylenkomplexe; Borylkomplexe; Dehydrokupplung; Dihydroborane; Platin
Release Date:2016/01/26
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand