• Treffer 2 von 2
Zurück zur Trefferliste

Spinal Cord Neuronal Network Formation in a 3D Printed Reinforced Matrix-A Model System to Study Disease Mechanisms

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-256353
  • 3D cell cultures allow a better mimicry of the biological and mechanical environment of cells in vivo compared to 2D cultures. However, 3D cell cultures have been challenging for ultrasoft tissues such as the brain. The present study uses a microfiber reinforcement approach combining mouse primary spinal cord neurons in Matrigel with melt electrowritten (MEW) frames. Within these 3D constructs, neuronal network development is followed for 21 days in vitro. To evaluate neuronal development in 3D constructs, the maturation of inhibitory3D cell cultures allow a better mimicry of the biological and mechanical environment of cells in vivo compared to 2D cultures. However, 3D cell cultures have been challenging for ultrasoft tissues such as the brain. The present study uses a microfiber reinforcement approach combining mouse primary spinal cord neurons in Matrigel with melt electrowritten (MEW) frames. Within these 3D constructs, neuronal network development is followed for 21 days in vitro. To evaluate neuronal development in 3D constructs, the maturation of inhibitory glycinergic synapses is analyzed using protein expression, the complex mechanical properties by assessing nonlinearity, conditioning, and stress relaxation, and calcium imaging as readouts. Following adaptation to the 3D matrix-frame, mature inhibitory synapse formation is faster than in 2D demonstrated by a steep increase in glycine receptor expression between days 3 and 10. The 3D expression pattern of marker proteins at the inhibitory synapse and the mechanical properties resemble the situation in native spinal cord tissue. Moreover, 3D spinal cord neuronal networks exhibit intensive neuronal activity after 14 days in culture. The spinal cord cell culture model using ultrasoft matrix reinforced by MEW fibers provides a promising tool to study and understand biomechanical mechanisms in health and disease.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Natalie Fischhaber, Jessica Faber, Ezgi Bakirci, Paul D. Dalton, Silvia Budday, Carmen Villmann, Natascha SchaeferORCiD
URN:urn:nbn:de:bvb:20-opus-256353
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Institut für Klinische Neurobiologie
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Advanced Healthcare Materials
Erscheinungsjahr:2021
Band / Jahrgang:10
Heft / Ausgabe:19
Aufsatznummer:2100830
Originalveröffentlichung / Quelle:Advanced Healthcare Materials 2021, 10(19):2100830. DOI: 10.1002/adhm.202100830
DOI:https://doi.org/10.1002/adhm.202100830
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):3D cell cultures; mouse; neuronal networks; spinal cord neurons
Datum der Freischaltung:17.02.2022
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International