• search hit 10 of 25
Back to Result List

Boryl- und Borylenplatinkomplexe : Darstellung und Reaktivität ungesättigter Komplexe; Reaktivitätsstudien zur Metall-vermittelten Knüpfung von Bor-Kohlenstoff- und Bor-Bor-Bindungen

Boryl- and Boryleneplatinumcomplexes

Please always quote using this URN: urn:nbn:de:bvb:20-opus-73022
  • Die Reaktion der Verbindungen trans-[Pt{B(Br)(R)}Br(PCy3)2] mit Lewis-aciden Bromboranen BBr2(R) liefert Bromo-verbrückte, zweikernige Borylkomplexe. Sowie die jeweiligen Phosphan–Boran-Addukte Cy3P–BBr2(R). Die Reaktion von [Pt{B(X)(R)}(-X)(PCy3)]2 mit 4-Picolin erfolgt unter Koordination der Base am Boratom unter formaler Halogenidverschiebung zur Entstehung der ersten neutralen, basenstabilisierten Borylenkomplexe cis-[Pt{B(R)(4-Pic)}X2(PCy3)]. Durch oxidative Addition der B–Cl-Bindung von BCl3 an [Pt(PCy3)2] ist trans-[Pt(BCl2)Cl(PCy3)2]Die Reaktion der Verbindungen trans-[Pt{B(Br)(R)}Br(PCy3)2] mit Lewis-aciden Bromboranen BBr2(R) liefert Bromo-verbrückte, zweikernige Borylkomplexe. Sowie die jeweiligen Phosphan–Boran-Addukte Cy3P–BBr2(R). Die Reaktion von [Pt{B(X)(R)}(-X)(PCy3)]2 mit 4-Picolin erfolgt unter Koordination der Base am Boratom unter formaler Halogenidverschiebung zur Entstehung der ersten neutralen, basenstabilisierten Borylenkomplexe cis-[Pt{B(R)(4-Pic)}X2(PCy3)]. Durch oxidative Addition der B–Cl-Bindung von BCl3 an [Pt(PCy3)2] ist trans-[Pt(BCl2)Cl(PCy3)2] zugänglich, welches durch Reaktion mit Na[BArf4] zum kationischen Borylkomplex trans-[Pt(BCl2)(PCy3)2][BArf4] umgesetzt wird. Durch die strukturelle Charakterisierung von trans-[Pt{B(Br)(Fc)}Br(PiPr3)2] und trans-[Pt{B(Br)(Fc)}(PiPr3)2][BArf4] kann gezeigt werden, dass der Borylligand {B(Br)(Fc)} durch das {Pt(PiPr3)2}-Fragment in einem neutralen sowie in einem kationischen, T-förmigen Komplex stabilisiert werden kann. Die Reaktion von trans-[Pt{B(Br)(NMe2)}(PCy3)2][BArf4] mit Acetonitril führt zur Bildung des kationischen Acetonitrilkomplexes trans-[Pt{B(Br)(NMe2)}(NCMe)(PCy3)2][BArf4]. Durch die Reaktion von trans-[Pt{B(Br)(NMe2)}Br(PCy3)2] mit Na2[B12Cl12] im Verhältnis 2:1 und Zugabe von Acetonitril wird trans-[Pt{B(Br)(NMe2)}(NCMe)(PCy3)2]2[B12Cl12] als erste kationische, metallorganische Verbindung, die durch [B12Cl12]2− stabilisiert wird, erhalten. Die Abstraktion des Bromoliganden aus trans-[Pt{B(4-Pic)(NMe2)}Br(PCy3)2][BArf4] mittels Na[BArf4] führt zur Bildung des ersten dikationischen 14-Elektronenkomplexes trans- [Pt{B(NMe2)(4-Pic)}(PCy3)2][BArf4]2 mit einer freien Koordinationsstelle. Die Reaktion von trans-[Pt(BCat’)Br(PCy3)2] mit MeLi liefert trans-[Pt(BCat’)Me(PCy3)2]. Die Anwesenheit von Alkinen oder Bisphosphanen (P–P) beschleunigt die Reduktive Eliminierung von CatBMe. Die Reaktion von trans–[Pt(BCat’)Me(PCy3)2] mit Cat2B2 führt zu einem Reaktionsgemisch, welches auf einen komplexen Reaktionsverlauf schließen lässt. Diese Prozesse verlaufen assoziativ. Es werden zwei mögliche Reaktionsmechanismen vorgeschlagen. Dies sind I) die reduktive Eliminierungsreaktion aus einem anfänglich gebildeten, hexakoordinierten Platinkomplex und II) eine -Bindungsmetathese der B–B- mit der Pt–C- Bindung. Die oxidative Addition von Cat2B2 an [Pt(PCy3)3] erfolgt reversibel. Die strukturellen Parameter des Bisborylkomplexes im Kristall deuten auf einen sterisch überfrachteten cis-Bis(boryl)komplex mit relativ schwach gebundenen Borylliganden hin. Das neuartige Phosphan P(CH2Cy)3, welches sich durch einen flexiblen sterischen Anspruch auszeichnet, wird als Ligand in niedervalenten Phosphankomplexen eingesetzt. Der Platinkomplex reagiert mit 1,3,5-(C6H3)(BBr2)3 selektiv zu 1,3,5-trans-[Pt(BBr)Br{P(CH2Cy)3}2]3(C6H3), dem ersten Tris(boryl)komplex. Die Bis- und Tris(phosphan)rhodium(I)-Komplexe, welche im Überschuss mit Phosphan im Gleichgewicht vorliegen, reagieren mit CatBH zu trans-[Rh(BCat)ClH{P(CH2Cy)3}2]. [Pt(PCy3)2] reagiert mit CatBH in einer cis-selektiv verlaufenden Reaktion. Die Reaktion von [Pt{P(CH2Cy)3}2] mit CatBH im Überschuss führt zur Bildung von trans-[Pt(BCat)H{P(CH2Cy)3}2], cis-[Pt(BCat)2{P(CH2Cy)2}2] und H2 im Gleichgewicht. Gemäß quantenchemischen Berechnungen erfolgt die oxidative Addition der B–H-Bindung an [Pt(PR3)2] (R=Me, Cy, CH2Cy) ausgehend von einem -Präkursorkomplex. Durch die oxidative Addition der B–H-Bindung von CatBH an cis-[Pt(BCat)H(PR3)2] wird ein hyperkoordiniertes Platin(IV)-Intermediat gebildet, aus welchem das thermodynamisch stabilere trans-konfigurierte Isomer gebildet werden kann. Dieses Platin(IV)-Intermediat stellt die Schlüsselverbindung für die nachfolgende Dehydrokupplung dar. Durch einen Übergangszustand, in welchem Diwasserstoff abgespalten werden kann, wird ein cis-Bis(boryl)platinkomplex gebildet. Durch eine -Bindungsmetathese mit der B–H-Bindung von CatBH kann die B–B-Bindung geknüpft und Diboran(4) abgespalten werden. Das metallhaltige Produkt dieser Reaktion ist identisch mit dem trans-(Boryl)(hydrido)platinkomplex. Durch die Flexibilität der P(CH2Cy)3-Liganden werden durchweg Intermediate berechnet, welche geringere Deformationskräfte aufweisen als mit den rigiden PCy3-Liganden.show moreshow less
  • The reaction of trans-[Pt{B(Br)(R)}Br(PCy3)2] with Lewis acidic bromoboranes results in the formation of the bromo-bridged, binuclear boryl complexes and the respective phosphine-borane adducts. Reaction with 4-picoline leads to coordination at the boron atom, formally shifting the halide ion from the boron to the metal centre with formation of the first neutral, base-stabilised borylene platinum. Through the oxidative addition of the B–Cl bond of BCl3 to [Pt(PCy3)2], trans-[Pt(BCl2)Cl(PCy3)2] was isolated, which reacts with Na[BArf4] toThe reaction of trans-[Pt{B(Br)(R)}Br(PCy3)2] with Lewis acidic bromoboranes results in the formation of the bromo-bridged, binuclear boryl complexes and the respective phosphine-borane adducts. Reaction with 4-picoline leads to coordination at the boron atom, formally shifting the halide ion from the boron to the metal centre with formation of the first neutral, base-stabilised borylene platinum. Through the oxidative addition of the B–Cl bond of BCl3 to [Pt(PCy3)2], trans-[Pt(BCl2)Cl(PCy3)2] was isolated, which reacts with Na[BArf4] to provide the cationic boryl complex trans-[Pt(BCl2)(PCy3)2][BArf4]. Through the structural characterisation of trans-[Pt{B(Br)(Fc)}Br(PiPr3)2] and trans-[Pt{B(Br)(Fc)}(PiPr3)2][BArf4] it was shown that the boryl ligand {B(Br)(Fc)} can be stabilised through the {Pt(PiPr3)2} fragment in both a neutral and a cationic T-shaped complex. The reaction of trans-[Pt{B(Br)(NMe2)}(PCy3)2][BArf4] with acetonitrile leads to the formation of the first cationic (bromoboryl) platinum complex trans-[Pt{B(Br)(NMe2)}(NCMe)(PCy3)2][BArf4]. Reacting trans-[Pt{B(Br)(NMe2)}Br(PCy3)2] with Na2[B12Cl12] in a molar ratio of 2:1 and addition of acetonitrile leads to the formation of trans-[Pt{B(Br)(NMe2)}(NCMe)(PCy3)2]2[B12Cl12]. The abstraction of the bromo ligand from trans-[Pt{B(4-Pic)(NMe2)}Br(PCy3)2][BArf4] results in the formation of the first dicationic 14-electron complex trans-[Pt{B(NMe2)(4-Pic)}(PCy3)2][BArf4]2 exhibiting a free coordination site. Reacting trans-[Pt(BCat’)Br(PCy3)2] with MeLi leads to the formation of trans-[Pt(BCat’)Me(PCy3)2]. Irreversible elimination of the alkyl borane with formation of [Pt(PCy3)2] is possible both in solution and in the solid state at elevated temperatures. The presence of various alkynes or bis(phosphines) (P–P) significantly facilitates the elimination with formation of h2-alkyne complexes or [Pt(P–P)2]. Likewise, the reaction of trans-[Pt(BCat’)Br(PCy3)2] with Cat2B2 facilitates the reductive elimination of Cat’BMe. Two possible mechanisms are proposed to account for these findings: a) reductive elimination reaction from a six-coordinate platinum centre and b) s-bond metathesis of B–B with Pt–C bonds. The oxidative addition of Cat2B2 to [Pt(PCy3)2] with formation of cis-[Pt(BCat)2(PCy3)2] was found to be a reversible process. Whereas spectroscopic data of the latter in solution remained unremarkable, its structural parameters in the crystal form convey the impression of a sterically congested cis-bis(boryl) complex with presumably loosely-bound BCat ligands. The novel tertiary phosphine P(CH2Cy)3, which features flexible steric bulk, is used as a ligand in the low-valent phosphine complexes [Pt{P(CH2Cy)3}2, [Pd{P(CH2Cy)3}2], [Rh(m-Cl){P(CH2Cy)3}2]2 and [RhCl{P(CH2Cy)3}3] and their reactivity towards boranes was investigated. The novel bis(phosphine) platinum complex reacts selectively with 1,3,5-(C6H3)(BBr2)3 forming 1,3,5-trans-[Pt(BBr)Br{P(CH2Cy)3}2]3(C6H3), which represents the first trinuclear tris(boryl) complex. The bis- and tris(phosphine) rhodium(I) complexes react with CatBH to furnish trans-[Rh(BCat)H{P(CH2Cy)3}2]. The [Pt(PCy)2] oxidative addition of the B–H bond of CatBH results in cis-[Pt(BCat)H(PCy3)2]. This compound isomerizes at room temperature with formation of trans-[Pt(BCat)H(PCy3)2]. The reaction of [Pt{P(CH2Cy)3}2] with an excess of CatBH yields trans-[Pt(BCat)H{P(CH2Cy)3}2], cis- [Pt(BCat)2{P(CH2Cy)2}2] and H2 in an equilibrium. Quantum chemical calculations suggest a possible reaction mechanism for the catalytic platinum-mediated dehydrocoupling of CatBH. The oxidative addition of the B–H bond to [Pt(PR3)2] (R =Me, Cy, CH2Cy) starts from a s-precursor complex and is an exothermal, cis-selective reaction resulting in cis-[Pt(BCat)H(PR3)2]. Through the oxidative addition of CatBH to cis-[Pt(BCat)H(PR3)2], a hypercoordinate platinum(IV) intermediate was calculated, that can react to form the thermodynamically favoured trans-isomer. This platinum(IV) intermediate is the key compound for the following dehydrocoupling reaction. As an alternative to the CatBH reductive eliminiation, H2 can be formed, resulting in a cis-bis(boryl) platinum complex cis-[Pt(BCat)2(PR3)2], representing the thermodynamic product in the catalytic cycle. A s-bond metathesis of the bis(boryl) complex with CatBH reinstates trans-[Pt(BCat)H(PCy3)2] and releases diborane, thereby completing the catalytic cycle. According to the quantum chemical calculations, the flexibility of the P(CH2Cy)3 ligands allows the formation of intermediates with lower deformation energy values than those with the rigid PCy3 ligands.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Peter Burkhard Brenner
URN:urn:nbn:de:bvb:20-opus-73022
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Anorganische Chemie
Date of final exam:2012/09/20
Language:German
Year of Completion:2012
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Borylgruppe; Borylene; Platinkomplexe
Tag:Bor; Borylenkomplex; Borylkomplex; Chemie; Mechanistische Studien; Platin; ungesättigte Komplexe
Borylcomplexes; Borylenecomplexes; mechanistic studies; unsaturated complexes
Release Date:2012/09/24
Advisor:Prof. Dr. Holger Braunschweig
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitung