The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 5
Back to Result List

Controlling Light-Matter Interaction between Localized Surface Plasmons and Quantum Emitters

Kontrollierte Licht-Materie Wechselwirkung zwischen lokalisierten Oberflächenplasmonen und Quantenemittern

Please always quote using this URN: urn:nbn:de:bvb:20-opus-192097
  • Metal nanostructures have been known for a long time to exhibit optical resonances via localized surface plasmons. The high electric fields in close proximity to the metal surface have prospects to dramatically change the dynamics of electronic transitions, such as an enhanced spontaneous decay rate of a single emitter. However, there have been two major issues which impede advances in the experimental realization of enhanced light-matter interaction. (i) The fabrication of high-quality resonant structures requires state-of-the-art patterningMetal nanostructures have been known for a long time to exhibit optical resonances via localized surface plasmons. The high electric fields in close proximity to the metal surface have prospects to dramatically change the dynamics of electronic transitions, such as an enhanced spontaneous decay rate of a single emitter. However, there have been two major issues which impede advances in the experimental realization of enhanced light-matter interaction. (i) The fabrication of high-quality resonant structures requires state-of-the-art patterning techniques in combination with superior materials. (ii) The tiny extension of the optical near-field requires precise control of the single emitter with respect to the nanostructure. This work demonstrates a solution to these problems by combining scanning probe and optical confocal microscopy. Here, a novel type of scanning probe is introduced which features a tip composed of the edge of a single crystalline gold sheet. The patterning via focused ion beam milling makes it possible to introduce a plasmonic nanoresonator directly at the apex of the tip. Numerical simulations demonstrate that the optical properties of this kind of scanning probe are ideal to analyze light-matter interaction. Detailed experimental studies investigate the coupling mechanism between a localized plasmon and single colloidal quantum dots by dynamically changing coupling strength via their spatial separation. The results have shown that weak interaction affects the shape of the fluorescence spectrum as well as the polarization. For the best probes it has been found that it is possible to reach the strong coupling regime at the single emitter level at room temperature. The resulting analysis of the experimental data and the proposed theoretical models has revealed the differences between the established far-field coupling and near-field coupling. It has been found that the broad bandwidth of plasmonic resonances are able to establish coherent coupling to multiple transitions simultaneously giving rise to an enhanced effective coupling strength. It has also been found that the current model to numerically calculate the effective mode volume is inaccurate in case of mesoscopic emitters and strong coupling. Finally, light-matter interaction is investigated by the means of a quantum-dot-decorated microtubule which is traversing a localized nearfield by gliding on kinesin proteins. This biological transport mechanism allows the parallel probing of a meta-surface with nm-precision. The results that have been put forward throughout this work have shed new light on the understanding of plasmonic light-matter interaction and might trigger ideas on how to more efficiently combine the power of localized electric fields and novel excitonic materials.show moreshow less
  • Metallische Nanostrukturen sind seit langer Zeit bekannt dafür optische Resonanzen durch lokalisierte Oberflächenplasmonen zu zeigen. Hohe elektrische Felder in direkter Nähe zur Metalloberfläche versprechen dramatische Dynamikänderungen von elektrischen Übergängen wie z.B. die gesteigerte spontane Zerfallsrate eines Einzelemitters. Es gibt jedoch zwei maßgebliche Gründe warum die Fortschritte der experimentellen Realisierung von Licht-Materie Wechselwirkung ausgebremst wird. (i) Die Herstellung von qualitativ hochwertigen resonanten StrukturenMetallische Nanostrukturen sind seit langer Zeit bekannt dafür optische Resonanzen durch lokalisierte Oberflächenplasmonen zu zeigen. Hohe elektrische Felder in direkter Nähe zur Metalloberfläche versprechen dramatische Dynamikänderungen von elektrischen Übergängen wie z.B. die gesteigerte spontane Zerfallsrate eines Einzelemitters. Es gibt jedoch zwei maßgebliche Gründe warum die Fortschritte der experimentellen Realisierung von Licht-Materie Wechselwirkung ausgebremst wird. (i) Die Herstellung von qualitativ hochwertigen resonanten Strukturen benötigt modernste Strukturierungsmethoden sowie die bestmöglichen Materialeigenschaften. (ii) Die winzigen Dimensionen von optischen Nahfeldern erfordern eine präzise Kontrolle des Einzelemitters im Bezug zur Nanostruktur. Diese Arbeit löst diese Probleme durch die Kombination eines Rasterkraftmikroskops mit einem optischen Konfokalmikroskop. Dabei wird eine neuartige Rastersonde vorgestellt welche eine Spitze aufweist die aus der Ecke einer monokristallinen Goldflocke besteht. Die Strukturierung mittels eines fokussierten Ionenstrahls ermöglicht es einen plasmonischen Nanoresonator direkt an der Spitze der Sonde herzustellen. Numerische Simulationen haben gezeigt, dass die optischen Eigenschaften für diese Art von Sonde ideal sind um Licht-Materie Wechselwirkung zu untersuchen. Die hier gezeigten experimentellen Studien haben den Kopplungsmechanismus zwischen lokalisierten Plasmonen und einzelnen kolloidalen Quantenpunkten untersucht indem die Kopplungstärke dynamisch über den Abstand kontrolliert wurde. Die Ergebnisse haben gezeigt, dass schwache Wechselwirkung einen Einfluss auf die Form des Fluoreszenzspektrums als auch auf die Polarisation hat. Die besten Sonden haben gezeigt, dass es möglich ist starke Wechselwirkung mit Einzelemittern bei Raumtemperatur zu erreichen. Die resultierende Analyse der experimentellen Daten und die aufgestellten theoretischen Modelle haben die Unterschiede zwischen der etablierten Fernfeldkopplung und der Nahfeldkopplung aufgezeigt. Dabei wurde beobachtet, dass die große Bandbreite von plasmonischen Resonanzen es möglich macht kohärent mit mehreren Übergängen gleichzeitig zu koppeln und dabei die effektive Kopplungsstärke zu höhen. Es wurde auch festgestellt, dass das aktuelle Model zur numerischen Beschreibung von effektiven Modenvolumen Ungenauigkeiten bei mesoskopischen Emittern und starker Wechselwirkung aufzeigt. Zuletzt wird die Licht-Materie Wechselwirkung mittels Quantenpunkt-bestückten Mikrotubuli untersucht, die auf Kinesin Proteinen durch ein lokalisiertes Nahfeld gleiten. Dieses biologische Transportsystem erlaubt es eine Meta-Oberfläche mit nm-Präzision parallel zu untersuchen. Die Ergebnisse, die diese Arbeit hervorgebracht hat, wirft neues Licht auf das Verständnis von plasmonischer Licht-Materie Wechselwirkung und könnte als Grundlage dienen neue Ideen zu entwickeln um effizienter die Stärke von lokalisierten elektrischen Felder und neuartiger exzitonischer Materialien zu kombinieren.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Heiko GroßORCiD
URN:urn:nbn:de:bvb:20-opus-192097
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Bert Hecht, Prof. Dr. Matthias Bode
Date of final exam:2019/04/17
Language:English
Year of Completion:2019
DOI:https://doi.org/10.25972/OPUS-19209
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Plasmon; Starke Kopplung; Quantenpunkt; Mikrotubulus; Nahfeldoptik
Tag:light-matter interaction; optical antenna; quantum dot; quantum optics; strong coupling; surface plasmon
Release Date:2019/11/25
Licence (German):License LogoCC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell 4.0 International