The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10 of 24
Back to Result List

Molekulare Analysen zur Knochenregeneration im Alter und bei Osteoporose

Molecular analysis of bone regeneration in aging and osteoporosis

Please always quote using this URN: urn:nbn:de:bvb:20-opus-64701
  • Mesenchymale Stammzellen (MSC) stellen die Grundlage der Knochenformation dar, indem sie als multipotente Zellen in viele, für die Knochenhomöostase benötigte Zelltypen differenzieren können, wie z.B. Osteoblasten. Während der Alterung des Menschen kommt es zu einem Ungleichgewicht zwischen Knochenaufbau und Knochenabbau, resultierend in einer verringerten Knochenmasse. Noch ist unklar, ob MSC an dem verminderten Knochenaufbau direkt beteiligt sind, indem sie z.B.im Laufe der Zeit Funktionsstörungen akkumulieren oder in die Seneszenz eintreten,Mesenchymale Stammzellen (MSC) stellen die Grundlage der Knochenformation dar, indem sie als multipotente Zellen in viele, für die Knochenhomöostase benötigte Zelltypen differenzieren können, wie z.B. Osteoblasten. Während der Alterung des Menschen kommt es zu einem Ungleichgewicht zwischen Knochenaufbau und Knochenabbau, resultierend in einer verringerten Knochenmasse. Noch ist unklar, ob MSC an dem verminderten Knochenaufbau direkt beteiligt sind, indem sie z.B.im Laufe der Zeit Funktionsstörungen akkumulieren oder in die Seneszenz eintreten, und somit nicht mehr als Stammzellpool für die Osteoblastendifferenzierung zur Verfügung stehen. In der vorliegenden Arbeit wurde das Genexpressionsmuster gealterter Zellen mittels Mikroarray-Analysen untersucht, um die Alters-bedingten Veränderungen detektieren zu können. Hierfür wurde ein in-vitro-Alterungsmodell von humanen MSC (hMSC) etabliert, um die seneszenten Zellen mit hMSC früher Kultivierungspassagen zu vergleichen. Auch Zellen aus Spendern hohen Alters wurden untersucht, um einen Vergleich zwischen ex-vivo- und in-vitro-gealterten hMSC anstellen zu können. Da Osteoporose eine polygenetische Erkrankung des gealterten Knochens darstellt, wurden auch mit hMSC aus Osteoporose-Patienten Genexpressionsanalysen durchgeführt. Die Mikroarray-Analysen und anschließende systembiologische Auswertung zeigten, dass in-vitro-gealterte, seneszente hMSC starke Veränderungen im Transkriptom aufweisen, die auf Defizite in der Proliferation, Differenzierungskapazität und Migration schließen lassen. Neben bekannten Markern für replikative Seneszenz konnten in hMSC auch neue detektiert werden, wie z.B. HELLS, POU5F1 (OCT4) und FGFR2, deren Expression mit der Seneszenz abnimmt, oder CDH1 und PSG5, deren Expression zunimmt. Gene für Akute-Phase-SAA wurden stark erhöht exprimiert vorgefunden. Bei der funktionellen Charakterisierung konnte jedoch gezeigt werden, dass SAA1 und SAA1 durch Stress induziert werden, der der Seneszenz vorausgeht, und dass sie die Mineralisierung bei der osteogenen Differenzierung von hMSC fördern. Akute-Phase-SAA könnten somit eine Verbindung zwischen Alterung bzw. Inflammation und extra-skelettaler Verkalkung darstellen, die im Alter häufig auftritt, z.B. in Form von Arteriosklerose. In-vivo-gealterte hMSC wiesen ebenfalls Defizite im Expressionsmuster von Proliferations- und Migrations- relevanten Genen auf. Des Weiteren konnten nur wenige Gemeinsamkeiten zwischen in-vivo-gealterten hMSC und in-vitro-gealterten hMSC festgestellt werden. Dies lässt vermuten, dass die in-vivo-Alterung nicht zwangsläufig zu seneszenten Stammzellen führt, da Alterung eines Organismus ein multizellulärer Prozess ist, der durch viele Faktoren beeinflusst wird, wie z.B. Akkumulation von Mutationen und Krebsabwehr. Auch osteoporotische hMSC wiesen Veränderungen im Genexpressionsmuster auf, die mit den Daten zur in-vivo-Alterung verglichen wurden, um die rein Alters-assoziierten Änderungen herausfiltern zu können. Die übrig gebliebenen Gene repräsentierten Veränderungen allein aufgrund der Krankheit. Osteoporose bewirkte somit distinkte Genexpressions-änderungen in hMSC, die auf Förderung der Osteoklastogenese und Defizite in Proliferation, Migration und Differenzierungskapazität schließen lassen. Es konnten vielversprechende Kandidaten-gene für osteoporotische hMSC gefunden werden. Die prämature Expression des WNT-Inhibitors SOST (Sclerostin) und die Überexpression des BMP-Signalweg-Inhibitors MAB21L2 deuten auf eine Autoinhibition der Stammzellen hin, die letztlich die gestörte Knochenformation bei Alters-assoziierter Osteoporose begründen könnte. Zusammenfassend zeigt die vorliegende Arbeit, dass intrinsische Defizite von Stammzellen an der Pathophysiologie von Alterung und Osteoporose beteiligt sind. Sie eröffnet tiefgreifende Einblicke in die systembiologischen Veränderungen in Stammzellen aufgrund von Alterung oder Osteoporose, und setzt somit einen soliden Grundstein für weiterführende Analysen.show moreshow less
  • Mesenchymal stem cells (MSC) represent the basis of bone formation, because as multipotent cells they can differentiate into many cell types important for bone homeostasis, e.g. osteoblasts. During aging an imbalance between bone formation and bone resorption occurs, which results in reduced bone mass. It is still unclear whether MSC biology is directly involved in reduced bone formation, e.g. by accumulating malfunctions in aged organisms or by entering replicative senscence. Thereby they would no longer function as a regenerative source forMesenchymal stem cells (MSC) represent the basis of bone formation, because as multipotent cells they can differentiate into many cell types important for bone homeostasis, e.g. osteoblasts. During aging an imbalance between bone formation and bone resorption occurs, which results in reduced bone mass. It is still unclear whether MSC biology is directly involved in reduced bone formation, e.g. by accumulating malfunctions in aged organisms or by entering replicative senscence. Thereby they would no longer function as a regenerative source for osteogenesis. In this study, the gene expression pattern of aged human MSC (hMSC) was analyzed by microarray hybridizations to determine aging-associated changes in those cells. Therefore, a model for in vitro aging was established and the gene expression pattern of senescent hMSC was compared with the pattern of hMSC in early passages. Moreover, cells isolated from patients of old age were analyzed to perform a comparison between ex-vivo and in vivo aging. Human MSC of patients diagnosed with osteoporosis were also examined because osteoporosis is a polygenetic disease of aged bone. Systems biology based interpretation of the microarray data revealed changes on the mRNA level in in vitro aged hMSC that indicate deficits in proliferation, differentiation capacity and migration. Additionally to known markers of replicative senescence in hMSC, new markers were detected, e.g. reduced expression of HELLS, POU5F1 (OCT4), and FGFR2, as well as higher expression of CDH1 and PSG5. Furthermore, genes for acute phase SAA proteins showed extremely high expression in senescent hMSC. Functional characterization of SAA1 and SAA2 revealed that the expression is rather a consequence of stress that precedes senescence than of replicative senescence itself. SAA also increases mineralization of osteogenic differentiated hMSC and could therefore be involved in age- or inflammation-associated extraskeletal calcification, e.g. arteriosclerosis. In vivo aged hMSC also showed deficiency in proliferation and migration on mRNA level. Furthermore on the gene expression level, in vivo aged and in vitro aged hMSC shared only few similarities. Those findings suggest that in vivo aging does not necessarily results in senescent stem cells, because the aging of an organism is a multicellular process, which is influenced by many other factors, e.g. accumulation of mutations and tumor defense. Osteoporotic hMSC also showed changes in their gene expression pattern. By comparing those data with the results of hMSC from age-matched patients, age-associated changes could be eliminated. All remaining genes with differential expression represented osteoporosis-related changes that indicated deficiencies in proliferation, migration and differentiation capacity. There were hints for enhancement of osteoclastogenesis by osteoporotic hMSC and promising candidates for osteoporosis with respect to inhibition of osteogenesis were detected. SOST (sclerostin) acts as an inhibitor for WNT signaling and MAB21L2 as an inhibitor for BMP signaling. Both genes were expressed to a higher extent in osteoporotic hMSC, which indicates autoinhibition of the stem cells and could lead to the reduced bone formation in osteoporosis. In summary, this study indicates that intrinsic alterations in stem cell biology are involved in the pathophysiology of aging and osteoporosis. It opens up profound insights into changes in systems biology of hMSC due to aging or osteoporosis which provide a broad basis for further analyses.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Peggy Benisch
URN:urn:nbn:de:bvb:20-opus-64701
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Medizinische Fakultät / Lehrstuhl für Orthopädie
Date of final exam:2011/06/22
Language:German
Year of Completion:2011
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Osteoporose; Mesenchymzelle; Stammzelle; Altern
Tag:Alterung; Knochen; Mesenchymale; Microarray
mesenchymal stem cells
Release Date:2011/07/28
Advisor:Prof. Dr. med. Franz Jakob
Licence (German):License LogoDeutsches Urheberrecht