• search hit 8 of 135
Back to Result List

A modified inflation cosmology relying on qubit-crystallization: rare qubit interactions trigger qubit ensemble growth and crystallization into “real” bit-ensembles and emergent time

Please always quote using this URN: urn:nbn:de:bvb:20-opus-321777
  • In a modified inflation scenario we replace the “big bang” by a condensation event in an eternal all-compassing big ocean of free qubits in our modified cosmology. Interactions of qubits in the qubit ocean are rare. If they happen, they provide a nucleus for a new universe as the qubits become decoherent and freeze-out into defined bit ensembles. Second, we replace inflation by a crystallization event triggered by the nucleus of interacting qubits to which rapidly more and more qubits attach (like in everyday crystal growth) – the crystal unitIn a modified inflation scenario we replace the “big bang” by a condensation event in an eternal all-compassing big ocean of free qubits in our modified cosmology. Interactions of qubits in the qubit ocean are rare. If they happen, they provide a nucleus for a new universe as the qubits become decoherent and freeze-out into defined bit ensembles. Second, we replace inflation by a crystallization event triggered by the nucleus of interacting qubits to which rapidly more and more qubits attach (like in everyday crystal growth) – the crystal unit cell guarantees same symmetries everywhere. Hence, the textbook inflation scenario to explain the same laws of nature in our domain is replaced by the crystal unit cell of the crystal formed. We give here only the perspective or outline of this modified inflation theory, as the detailed mathematical physics behind this has still to be formulated and described. Interacting qubits solidify, quantum entropy decreases (but increases in the ocean around). The interacting qubits form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. After that very early events, standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements, but more importantly can explain well by such a type of cosmological crystallization instead of inflation the early creation of large-scale structure of voids and filaments, supercluster formation, galaxy formation, and the dominance of matter: no annihilation of antimatter necessary, rather the unit cell of our crystal universe has a matter handedness avoiding anti-matter. We prove a triggering of qubit interactions can only be 1,2,4 or 8-dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. The phase space of the crystal agrees with the standard model of the basic four forces for n quanta. It includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. However, this means that in our four dimensions there is only one bit overlap to neighbor states left (almost solid, only below h dash liquidity left). However, the E8 symmetry of heterotic string theory has six rolled-up, small dimensions which help to keep the qubit crystal together and will never expand. Finally, we give first energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction and gravity derive from the permeating qubit-interaction field in the crystal. Hence, vacuum energy gets low inside the qubit crystal. Condensed mathematics may advantageously help to model free (many states denote the same qubit) and bound qubits in phase space.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Thomas DandekarORCiD
URN:urn:nbn:de:bvb:20-opus-321777
Document Type:Preprint
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Language:English
Year of Completion:2023
Pagenumber:42
DOI:https://doi.org/10.25972/OPUS-32177
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Tag:cosmology; crystallization; decoherence; emergent time; qubit
CCS-Classification:A. General Literature
MSC-Classification:00-XX GENERAL
PACS-Classification:90.00.00 GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS (for more detailed headings, see the Geophysics Appendix)
Release Date:2023/07/20
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International