• search hit 4 of 8
Back to Result List

Methionine Biosynthesis in Staphylococcus aureus Is Tightly Controlled by a Hierarchical Network Involving an Initiator tRNA-Specific T-box Riboswitch

Please always quote using this URN: urn:nbn:de:bvb:20-opus-130365
  • Abstract In line with the key role of methionine in protein biosynthesis initiation and many cellular processes most microorganisms have evolved mechanisms to synthesize methionine de novo. Here we demonstrate that, in the bacterial pathogen Staphylococcus aureus, a rare combination of stringent response-controlled CodY activity, T-box riboswitch and mRNA decay mechanisms regulate the synthesis and stability of methionine biosynthesis metICFE-mdh mRNA. In contrast to other Bacillales which employ S-box riboswitches to control methionineAbstract In line with the key role of methionine in protein biosynthesis initiation and many cellular processes most microorganisms have evolved mechanisms to synthesize methionine de novo. Here we demonstrate that, in the bacterial pathogen Staphylococcus aureus, a rare combination of stringent response-controlled CodY activity, T-box riboswitch and mRNA decay mechanisms regulate the synthesis and stability of methionine biosynthesis metICFE-mdh mRNA. In contrast to other Bacillales which employ S-box riboswitches to control methionine biosynthesis, the S. aureus metICFE-mdh mRNA is preceded by a 5′-untranslated met leader RNA harboring a T-box riboswitch. Interestingly, this T-box riboswitch is revealed to specifically interact with uncharged initiator formylmethionyl-tRNA \((tRNA_i^{fMet})\)while binding of elongator \(tRNA^{Met}\) proved to be weak, suggesting a putative additional function of the system in translation initiation control. met leader RNA/metICFE-mdh operon expression is under the control of the repressor CodY which binds upstream of the met leader RNA promoter. As part of the metabolic emergency circuit of the stringent response, methionine depletion activates RelA-dependent (p)ppGpp alarmone synthesis, releasing CodY from its binding site and thereby activating the met leader promoter. Our data further suggest that subsequent steps in metICFE-mdh transcription are tightly controlled by the 5′ met leader-associated T-box riboswitch which mediates premature transcription termination when methionine is present. If methionine supply is limited, and hence \((tRNA_i^{fMet})\) becomes uncharged, full-length met leader/metICFE-mdh mRNA is transcribed which is rapidly degraded by nucleases involving RNase J2. Together, the data demonstrate that staphylococci have evolved special mechanisms to prevent the accumulation of excess methionine. We hypothesize that this strict control might reflect the limited metabolic capacities of staphylococci to reuse methionine as, other than Bacillus, staphylococci lack both the methionine salvage and polyamine synthesis pathways. Thus, methionine metabolism might represent a metabolic Achilles' heel making the pathway an interesting target for future anti-staphylococcal drug development. Author Summary Prokaryote metabolism is key for our understanding of bacterial virulence and pathogenesis and it is also an area with huge opportunity to identify novel targets for antibiotic drugs. Here, we have addressed the so far poorly characterized regulation of methionine biosynthesis in S. aureus. We demonstrate that methionine biosynthesis control in staphylococci significantly differs from that predicted for other Bacillales. Notably, involvement of a T-box instead of an S-box riboswitch separates staphylococci from other bacteria in the order. We provide, for the first time, direct experimental proof for an interaction of a methionyl-tRNA-specific T-box with its cognate tRNA, and the identification of initiator \((tRNA_i^{fMet})\) as the specific binding partner is an unexpected finding whose exact function in Staphylococcus metabolism remains to be established. The data further suggest that in staphylococci a range of regulatory elements are integrated to form a hierarchical network that elegantly limits costly (excess) methionine biosynthesis and, at the same time, reliably ensures production of the amino acid in a highly selective manner. Our findings open a perspective to exploit methionine biosynthesis and especially its T-box-mediated control as putative target(s) for the development of future anti-staphylococcal therapeutics.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Sonja M. K. Schoenfelder, Gabriella Marincola, Tobias Geiger, Christiane Goerke, Christiane Wolz, Wilma Ziebuhr
URN:urn:nbn:de:bvb:20-opus-130365
Document Type:Journal article
Faculties:Medizinische Fakultät / Institut für Molekulare Infektionsbiologie
Language:English
Parent Title (English):PLoS Pathogens
Year of Completion:2013
Volume:9
Issue:9
Pagenumber:e1003606
Source:PLoS Pathogens 9(9): e1003606. doi:10.1371/journal.ppat.1003606
DOI:https://doi.org/10.1371/journal.ppat.1003606
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:DNA transcription; RNA synthesis; biosynthesis; methionine; ribonucleases; staphylococcus; staphylococcus aureus; transfer RNA
Release Date:2016/07/07
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung